INF2004_Project/frtos/car/wheel.h

269 lines
7.7 KiB
C

// GPIO 2 as the PWM output, GPIO 26 as the ADC input
#define PWM_PIN_LEFT 0U // chanel A
#define PWM_PIN_RIGHT 1U // chanel B
#define DIRECTION_PIN_RIGHT_IN1 11U
#define DIRECTION_PIN_RIGHT_IN2 12U
#define DIRECTION_PIN_LEFT_IN3 19U
#define DIRECTION_PIN_LEFT_IN4 20U
#define DIRECTION_RIGHT_FORWARD (1U << DIRECTION_PIN_RIGHT_IN2)
#define DIRECTION_RIGHT_BACKWARD (1U << DIRECTION_PIN_RIGHT_IN1)
#define DIRECTION_LEFT_FORWARD (1U << DIRECTION_PIN_LEFT_IN4)
#define DIRECTION_LEFT_BACKWARD (1U << DIRECTION_PIN_LEFT_IN3)
#define SPEED_PIN_RIGHT 15U
#define SPEED_PIN_LEFT 16U
#define PWM_CLK_DIV 250.f
#define PWM_WRAP 5000U
#define PID_KP 10.f
#define PID_KI 0.0f
#define PID_KD 0.0f
#define START_SPEED 1500U
#define MAX_SPEED 4900U
#define MIN_SPEED 0U // To be changed
uint g_slice_num_left = 0U;
uint g_slice_num_right = 0U;
SemaphoreHandle_t g_wheel_speed_sem_left = NULL;
SemaphoreHandle_t g_wheel_speed_sem_right = NULL;
void
wheel_setup(void)
{
// Semaphore
g_wheel_speed_sem_left = xSemaphoreCreateBinary();
g_wheel_speed_sem_right = xSemaphoreCreateBinary();
gpio_init(SPEED_PIN_RIGHT);
gpio_init(SPEED_PIN_LEFT);
gpio_set_dir(SPEED_PIN_RIGHT, GPIO_IN);
gpio_set_dir(SPEED_PIN_LEFT, GPIO_IN);
// Initialize direction pins as outputs
gpio_init(DIRECTION_PIN_RIGHT_IN1);
gpio_init(DIRECTION_PIN_RIGHT_IN2);
gpio_init(DIRECTION_PIN_LEFT_IN3);
gpio_init(DIRECTION_PIN_LEFT_IN4);
gpio_set_dir(DIRECTION_PIN_RIGHT_IN1, GPIO_OUT);
gpio_set_dir(DIRECTION_PIN_RIGHT_IN2, GPIO_OUT);
gpio_set_dir(DIRECTION_PIN_LEFT_IN3, GPIO_OUT);
gpio_set_dir(DIRECTION_PIN_LEFT_IN4, GPIO_OUT);
// Initialise PWM
gpio_set_function(PWM_PIN_LEFT, GPIO_FUNC_PWM);
gpio_set_function(PWM_PIN_RIGHT, GPIO_FUNC_PWM);
g_slice_num_left = pwm_gpio_to_slice_num(PWM_PIN_LEFT);
g_slice_num_right = pwm_gpio_to_slice_num(PWM_PIN_RIGHT);
// NOTE: PWM clock is 125MHz for raspberrypi pico w by default
// 125MHz / 250 = 500kHz
pwm_set_clkdiv(g_slice_num_left, PWM_CLK_DIV);
pwm_set_clkdiv(g_slice_num_right, PWM_CLK_DIV);
// have them to be 500kHz / 5000 = 100Hz
pwm_set_wrap(g_slice_num_left, (PWM_WRAP - 1U));
pwm_set_wrap(g_slice_num_right, (PWM_WRAP - 1U));
pwm_set_enabled(g_slice_num_left, true);
pwm_set_enabled(g_slice_num_right, true);
}
/*!
* @brief Set the direction of the wheels; can use bitwise OR to set both
* wheels such as DIRECTION_LEFT_FORWARD | DIRECTION_RIGHT_BACKWARD, it will
* set the left wheel to go forward and the right wheel to go backward within
* the same function.
* if the wheel direction is not set, it will not move.
* @param direction The direction of the left and right wheels
* @param left_speed The speed of the left wheel, from 0.0 to 1.0
* @param right_speed The speed of the right wheel, from 0.0 to 1.0
*/
void
set_wheel_direction (uint32_t direction)
{
static const uint32_t mask = DIRECTION_LEFT_FORWARD |
DIRECTION_LEFT_BACKWARD |
DIRECTION_RIGHT_FORWARD |
DIRECTION_RIGHT_BACKWARD;
gpio_put_masked(mask, 0U);
gpio_set_mask(direction);
}
/*!
* @brief Set the speed of the wheels; can use bitwise OR to set both
* @param speed in range [0, 5000]
* @param side 0 for left, 1 for right
*/
void
set_wheel_speed (float speed, uint8_t side)
{
if (side == 0U)
{
pwm_set_chan_level(g_slice_num_left,
PWM_CHAN_A,
(uint16_t) speed);
}
else
{
pwm_set_chan_level(g_slice_num_right,
PWM_CHAN_B,
(uint16_t) speed);
}
}
void
h_left_wheel_sensor_isr_handler (void)
{
if (gpio_get_irq_event_mask(SPEED_PIN_LEFT) & GPIO_IRQ_EDGE_FALL)
{
gpio_acknowledge_irq(SPEED_PIN_LEFT, GPIO_IRQ_EDGE_FALL);
// printf("left wheel sensor isr\n");
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
xSemaphoreGiveFromISR(g_wheel_speed_sem_left, &xHigherPriorityTaskWoken);
portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
}
}
void
h_right_wheel_sensor_isr_handler (void)
{
if (gpio_get_irq_event_mask(SPEED_PIN_RIGHT) & GPIO_IRQ_EDGE_FALL)
{
gpio_acknowledge_irq(SPEED_PIN_RIGHT, GPIO_IRQ_EDGE_FALL);
// printf("right wheel sensor isr\n");
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
xSemaphoreGiveFromISR(g_wheel_speed_sem_right, &xHigherPriorityTaskWoken);
portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
}
}
float
compute_pid(float target_speed, float current_speed, float * integral, float * prev_error)
{
float error = target_speed - current_speed;
*integral += error;
float derivative = error - *prev_error;
float control_signal = PID_KP * error +
PID_KI * (*integral) +
PID_KD * derivative;
*prev_error = error;
return control_signal;
}
void
monitor_left_wheel_speed_task (void *pvParameters)
{
static float * target_speed = NULL;
*target_speed = * (float *) pvParameters;
for (;;)
{
if (xSemaphoreTake(g_wheel_speed_sem_left, portMAX_DELAY) == pdTRUE)
{
static uint64_t curr_time_left = 0u;
curr_time_left = time_us_64();
static uint64_t prev_time_left = 0u;
static uint64_t elapsed_time_left = 1u; // to avoid division by 0
elapsed_time_left = curr_time_left - prev_time_left;
prev_time_left = curr_time_left;
static float speed_left = 0.f;
// speed in cm/s; speed = distance / time
// distance = circumference / 20
// circumference = 2 * pi * 3.25 cm = 20.4203522483 cm
// distance = 20.4203522483 cm / 20 = 1.02101761242 cm
speed_left = (float)
(1.02101761242f / (elapsed_time_left / 1000000.f));
printf("left speed: %f cm/s\n", speed_left);
}
}
}
void
monitor_right_wheel_speed_task (void *pvParameters)
{
// volatile float * target_speed = (float *) pvParameters;
static volatile float * target_speed = NULL;
target_speed = (float *) pvParameters;
for (;;)
{
if (xSemaphoreTake(g_wheel_speed_sem_right, portMAX_DELAY) == pdTRUE)
{
static uint64_t curr_time_right = 0u;
curr_time_right = time_us_64();
static uint64_t prev_time_right = 0u;
static uint64_t elapsed_time_right = 1u; // to avoid division by 0
elapsed_time_right = curr_time_right - prev_time_right;
prev_time_right = curr_time_right;
static float speed_right = 0.f;
speed_right = (float)
(1.02101761242f / (elapsed_time_right / 1000000.f));
printf("right speed: %f cm/s\n", speed_right);
static float control_signal = 0.f;
static float integral = 0.f;
static float prev_error = 0.f;
control_signal = compute_pid(*target_speed,
speed_right,
&integral,
&prev_error);
static float new_pwm = START_SPEED;
if (new_pwm + control_signal > MAX_SPEED)
{
new_pwm = MAX_SPEED;
}
else if (new_pwm + control_signal < MIN_SPEED)
{
new_pwm = MIN_SPEED;
}
else
{
new_pwm = new_pwm + control_signal;
}
printf("control signal: %f\n", control_signal);
printf("new pwm: %f\n\n", new_pwm);
set_wheel_speed(new_pwm, 1u);
}
}
}