/** * @file mapping.h * @brief Map the environment using the line sensor and the ultrasonic sensor * * Reference: * https://stackoverflow.com/questions/37207022/flood-fill-algorithm-maze * * @author Woon Jun Wei */ #ifndef MAPPING_H #define MAPPING_H #include #include "pico/stdlib.h" #include "time.h" #include "pico/rand.h" #include "FreeRTOS.h" #include "task.h" #include "message_buffer.h" #include "semphr.h" #include "car_config.h" // Function to generate a random number between min and max (inclusive) int generate_random(int min, int max) { int num = (get_rand_32() % (max - min + 1)) + min; printf("Random number generated: %d\n", num); return num; } /** * Create a map with hardcoded walls, obstacles, and the goal * With the start point at the bottom left corner. * Ensures there is at least one clear path from start to goal. * @param maze */ void create_map(maze_t *maze) { // Create the map based on maze height and width for (int i = 0; i < maze->height; i++) { for (int j = 0; j < maze->width; j++) { if (i == 0 || i == maze->height - 1 || j == 0 || j == maze->width - 1) { maze->mazecells[i][j].type = 'X'; // Walls at the border } else { // Randomly place walls and obstacles if (generate_random(0, 9) < 2) // Adjust the threshold for more or fewer obstacles { maze->mazecells[i][j].type = 'X'; // Obstacle } else { maze->mazecells[i][j].type = ' '; // Empty space } } maze->mazecells[i][j].reachable = 0; maze->mazecells[i][j].visited = 0; } } // Set the start point maze->mazecells[0][0].type = 'S'; maze->mazecells[0][0].reachable = 1; maze->mazecells[0][0].visited = 1; // Set the goal (assuming it's at the top-right corner) maze->mazecells[maze->height - 1][maze->width - 1].type = 'G'; // Ensure there is a clear path from start to goal for (int i = 1; i < maze->height - 1; i++) { maze->mazecells[i][maze->width / 2].type = ' '; // Clear path } } /** * Create a hardcoded map with a clear path from start to goal * @param maze */ void create_hardcoded_map(maze_t *maze) { // Set fixed height and width during initialization maze->height = 5; maze->width = 5; // Create the map with a clear path char hardcoded_map[5][5] = { { 'S', ' ', ' ', ' ', 'G' }, { ' ', ' ', 'X', ' ', ' ' }, { ' ', ' ', ' ', ' ', ' ' }, { ' ', 'X', ' ', ' ', ' ' }, { 'C', ' ', 'X', ' ', ' ' }, }; // Copy the hardcoded map to the maze structure for (int i = 0; i < maze->height; i++) { for (int j = 0; j < maze->width; j++) { maze->mazecells[i][j].type = hardcoded_map[i][j]; maze->mazecells[i][j].reachable = 0; maze->mazecells[i][j].visited = 0; } } } /** * @brief Mapping Initialization */ void mapping_init(maze_t *p_maze) { printf("Initializing mapping\n"); // Set fixed height and width during initialization p_maze->height = MAX_HEIGHT / 2; p_maze->width = MAX_WIDTH / 2; // Create the maze printf("Creating maze\n"); create_hardcoded_map(p_maze); printf("Maze created\n"); } /** * @brief Print the map * @param maze */ void print_map(maze_t *maze) { for (int i = maze->height - 1; i >= 0; i--) { for (int j = 0; j < maze->width; j++) { char cellType = maze->mazecells[j][i].type; switch (cellType) { case 'X': printf("X "); // Wall break; case 'O': printf("O "); // Obstacle break; case 'S': printf("S "); // Start break; case 'G': printf("G "); // Goal break; case 'C': printf("C "); // Car break; case 'V': printf("V "); // Visited break; default: printf(" "); // Empty space break; } } printf("\n"); } } /** * @brief Print the map with the reachable cells * @param maze */ void print_map_reachable(maze_t *maze) { for (int i = maze->height - 1; i >= 0; i--) { for (int j = 0; j < maze->width; j++) { printf("%d ", maze->mazecells[j][i].reachable); } printf("\n"); } } /** * @brief Perform floodfill on the maze * @param maze * @param x starting position x-coordinate * @param y starting position y-coordinate * @param value value to fill */ void floodfill(maze_t *maze, int x, int y, int value) { // Check if the current position is within the maze boundaries and not // visited if (x >= 0 && x < maze->width && y >= 0 && y < maze->height && maze->mazecells[x][y].visited == 0) { maze->mazecells[x][y].reachable = value; maze->mazecells[x][y].visited = 1; // Recursive floodfill for neighboring cells floodfill(maze, x + 1, y, value + 1); // right floodfill(maze, x - 1, y, value + 1); // left floodfill(maze, x, y + 1, value + 1); // up floodfill(maze, x, y - 1, value + 1); // down } } /** * @brief Task to simulate the car moving in the maze and perform floodfill * @param pvParameters */ void combined_task(void *pvParameters) { maze_t *maze = (maze_t *)pvParameters; int currentX = 0; // Initial X position int currentY = 0; // Initial Y position for (;;) { // Reset maze before floodfill for (int i = 0; i < maze->height; i++) { for (int j = 0; j < maze->width; j++) { maze->mazecells[j][i].visited = 0; } } // Simulate car movement (you can replace this logic with your actual // movement algorithm) mapping_direction_t moveDirection = (mapping_direction_t)(get_rand_32() % 4); // Randomly choose a direction // Update the previously visited position before moving maze->mazecells[currentX][currentY].type = 'V'; // 'V' for visited switch (moveDirection) { case up: if (currentY < maze->height - 1 && maze->mazecells[currentX][currentY + 1].type != 'X') { currentY++; } break; case down: if (currentY > 0 && maze->mazecells[currentX][currentY - 1].type != 'X') { currentY--; } break; case left: if (currentX > 0 && maze->mazecells[currentX - 1][currentY].type != 'X') { currentX--; } break; case right: if (currentX < maze->width - 1 && maze->mazecells[currentX + 1][currentY].type != 'X') { currentX++; } break; } // Update the car's position in the maze // (you might want to clear the previous position before updating) maze->mazecells[currentX][currentY].type = 'C'; // 'C' for car // Print the map with the car's position printf("Map with the car's position:\n"); print_map(maze); // Floodfill the maze after each movement floodfill(maze, maze->width - 1, 0, 0); // Check if the car has reached the goal if (maze->mazecells[currentX][currentY].type == 'G') { printf("Goal reached! Stopping the task.\n"); // Stop the task vTaskSuspend(NULL); break; } vTaskDelay( pdMS_TO_TICKS(100)); // Delay to simulate time between movements } } /** * @brief Initialise tasks for the Maze * @param maze */ void mapping_tasks_init(maze_t *maze) { TaskHandle_t combined_task_handle = NULL; xTaskCreate(combined_task, "combined_task", configMINIMAL_STACK_SIZE, (void *)maze, PRIO, &combined_task_handle); } #endif /* MAPPING_H */