feature(BFS): Mapping

Mapping Algo Update
This commit is contained in:
Devoalda 2023-11-28 13:24:46 +08:00
parent de7025ea81
commit cde1209016
2 changed files with 344 additions and 172 deletions

View File

@ -8,7 +8,7 @@ main(void)
stdio_usb_init();
maze_t maze;
sleep_ms(7000);
sleep_ms(3000);
printf("Test started!\n");

View File

@ -34,19 +34,23 @@ generate_random(int min, int max)
}
// Define a queue structure for BFS
typedef struct {
typedef struct
{
int x;
int y;
} QueueNode;
typedef struct {
typedef struct
{
QueueNode *array;
int front, rear, size;
unsigned capacity;
} Queue;
// Function to create a new queue
Queue* createQueue(unsigned capacity) {
Queue *
createQueue(unsigned capacity)
{
Queue *queue = (Queue *)malloc(sizeof(Queue));
queue->capacity = capacity;
queue->front = queue->size = 0;
@ -56,17 +60,23 @@ Queue* createQueue(unsigned capacity) {
}
// Function to check if the queue is empty
bool isEmpty(Queue* queue) {
bool
isEmpty(Queue *queue)
{
return (queue->size == 0);
}
// Function to check if the queue is full
bool isFull(Queue* queue) {
bool
isFull(Queue *queue)
{
return (queue->size == queue->capacity);
}
// Function to enqueue a cell in the queue
void enqueue(Queue* queue, int x, int y) {
void
enqueue(Queue *queue, int x, int y)
{
if (isFull(queue))
return;
queue->rear = (queue->rear + 1) % queue->capacity;
@ -76,7 +86,9 @@ void enqueue(Queue* queue, int x, int y) {
}
// Function to dequeue a cell from the queue
QueueNode dequeue(Queue* queue) {
QueueNode
dequeue(Queue *queue)
{
QueueNode cell = queue->array[queue->front];
queue->front = (queue->front + 1) % queue->capacity;
queue->size = queue->size - 1;
@ -84,14 +96,18 @@ QueueNode dequeue(Queue* queue) {
}
// Function to perform BFS and find the shortest path
void bfs_shortest_path(maze_t *maze, int startX, int startY) {
void
bfs_shortest_path(maze_t *maze, int startX, int startY)
{
// Create a queue for BFS
Queue *queue = createQueue(maze->height * maze->width);
// Initialize visited array
bool visited[maze->height][maze->width];
for (int i = 0; i < maze->height; i++) {
for (int j = 0; j < maze->width; j++) {
for (int i = 0; i < maze->height; i++)
{
for (int j = 0; j < maze->width; j++)
{
visited[i][j] = false;
}
}
@ -105,25 +121,32 @@ void bfs_shortest_path(maze_t *maze, int startX, int startY) {
int dy[] = { 0, 0, -1, 1 };
// Perform BFS
while (!isEmpty(queue)) {
while (!isEmpty(queue))
{
// Dequeue a cell and process it
QueueNode current = dequeue(queue);
int x = current.x;
int y = current.y;
// Process the cell (you can customize this part based on your needs)
// Here, we mark the cell with a special character to indicate it's part of the shortest path
// Here, we mark the cell with a special character to indicate it's part
// of the shortest path
maze->mazecells[y][x].type = 'P'; // 'P' for path
// Explore adjacent cells
for (int i = 0; i < 4; i++) {
for (int i = 0; i < 4; i++)
{
int newX = x + dx[i];
int newY = y + dy[i];
// Check if the new position is within the maze boundaries
if (newX >= 0 && newX < maze->width && newY >= 0 && newY < maze->height) {
if (newX >= 0 && newX < maze->width && newY >= 0
&& newY < maze->height)
{
// Check if the cell is not a wall and hasn't been visited
if (maze->mazecells[newY][newX].type != 'X' && !visited[newY][newX]) {
if (maze->mazecells[newY][newX].type != 'X'
&& !visited[newY][newX])
{
// Mark the new cell as visited and enqueue it
visited[newY][newX] = true;
enqueue(queue, newX, newY);
@ -188,54 +211,6 @@ create_map(maze_t *maze)
}
}
/**
* Create a hardcoded map with a clear path from start to goal
* @param maze
*/
void
create_hardcoded_map(maze_t *maze)
{
// Set fixed height and width during initialization
maze->height = 5;
maze->width = 5;
// Create the map with a clear path
char hardcoded_map[5][5] = {
{ 'S', ' ', ' ', ' ', 'G' }, { ' ', ' ', 'X', ' ', ' ' },
{ ' ', ' ', ' ', ' ', ' ' }, { ' ', 'X', ' ', ' ', ' ' },
{ 'C', ' ', 'X', ' ', ' ' },
};
// Copy the hardcoded map to the maze structure
for (int i = 0; i < maze->height; i++)
{
for (int j = 0; j < maze->width; j++)
{
maze->mazecells[i][j].type = hardcoded_map[i][j];
maze->mazecells[i][j].reachable = 0;
maze->mazecells[i][j].visited = 0;
}
}
}
/**
* @brief Mapping Initialization
*/
void
mapping_init(maze_t *p_maze)
{
printf("Initializing mapping\n");
// Set fixed height and width during initialization
p_maze->height = MAX_HEIGHT / 2;
p_maze->width = MAX_WIDTH / 2;
// Create the maze
printf("Creating maze\n");
create_hardcoded_map(p_maze);
printf("Maze created\n");
}
/**
* @brief Print the map
* @param maze
@ -278,6 +253,57 @@ print_map(maze_t *maze)
}
}
/**
* Create a hardcoded map with a clear path from start to goal
* @param maze
*/
void
create_hardcoded_map(maze_t *maze)
{
// Set fixed height and width during initialization
maze->height = 5;
maze->width = 5;
// Create the map based on the image
char hardcoded_map[5][5] = { { ' ', ' ', ' ', ' ', ' ' },
{ 'S', 'X', 'X', 'X', ' ' },
{ ' ', 'X', ' ', ' ', ' ' },
{ ' ', 'X', ' ', 'X', ' ' },
{ ' ', ' ', ' ', 'X', 'G' } };
// Copy the hardcoded map to the maze structure
for (int i = 0; i < maze->height; i++)
{
for (int j = 0; j < maze->width; j++)
{
maze->mazecells[i][j].type = hardcoded_map[i][j];
maze->mazecells[i][j].reachable = 0;
maze->mazecells[i][j].visited = 0;
}
}
printf("Here is the hardcoded map:\n");
print_map(maze);
}
/**
* @brief Mapping Initialization
*/
void
mapping_init(maze_t *p_maze)
{
printf("Initializing mapping\n");
// Set fixed height and width during initialization
p_maze->height = 5;
p_maze->width = 5;
// Create the maze
printf("Creating maze\n");
create_hardcoded_map(p_maze);
printf("Maze created\n");
}
/**
* @brief Print the map with the reachable cells
* @param maze
@ -322,9 +348,9 @@ floodfill(maze_t *maze, int x, int y, int value)
}
/**
* @brief Function to check if the entire maze has been explored
* @brief Function to check if the entire map is filled
* @param maze
* @return true if all cells are visited, false otherwise
* @return true if the entire map is filled, false otherwise
*/
bool
maze_explored(const maze_t *maze)
@ -334,7 +360,10 @@ maze_explored(const maze_t *maze)
for (int j = 0; j < maze->width; j++)
{
if (maze->mazecells[j][i].type != 'X'
&& maze->mazecells[j][i].type != 'V')
&& maze->mazecells[j][i].type != 'V'
&& maze->mazecells[j][i].type != 'C'
&& maze->mazecells[j][i].type != 'G'
&& maze->mazecells[j][i].type != 'S')
{
return false;
}
@ -343,8 +372,11 @@ maze_explored(const maze_t *maze)
return true;
}
// Update the find_shortest_path function with the newly created bfs_shortest_path function
void find_shortest_path(maze_t *maze) {
// Update the find_shortest_path function with the newly created
// bfs_shortest_path function
void
find_shortest_path(maze_t *maze)
{
// Assuming the starting point is the bottom-left corner (0, 0)
int startX = 0;
int startY = 0;
@ -353,113 +385,109 @@ void find_shortest_path(maze_t *maze) {
bfs_shortest_path(maze, startX, startY);
}
/**
* @brief Function to backtrack to the start from the goal iteratively
* @param maze
* @param currentX pointer to the current X position
* @param currentY pointer to the current Y position
*/
void
backtrack_to_start(maze_t *maze, int *currentX, int *currentY)
{
// Get the current cell type
char currentCellType = maze->mazecells[*currentX][*currentY].type;
printf("Backtracking to the start...\n");
// Base case: Stop if the current cell is the start
if (currentCellType == 'S')
// Continue backtracking until reaching the start
while (*currentX != 0 || *currentY != 0)
{
printf("Backtracking completed. Reached the start!\n");
return;
}
printf("Backtracking...\n");
print_map(maze);
// Update the current cell as part of the backtracking path
maze->mazecells[*currentX][*currentY].type = 'P'; // 'P' for path
// Initialize newX and newY
int newX = *currentX;
int newY = *currentY;
// Explore adjacent cells in all directions
for (int i = 0; i < 4; i++)
// Move the car towards the starting point
if (*currentX > 0)
{
// Adjust the new position based on the movement direction
switch ((mapping_direction_t)i)
(*currentX)--;
}
else if (*currentY > 0)
{
case up:
newY++;
break;
case down:
newY--;
break;
case left:
newX--;
break;
case right:
newX++;
break;
(*currentY)--;
}
// Check if the new position is within the maze boundaries
if (newX >= 0 && newX < maze->width && newY >= 0 && newY < maze->height)
{
// Check if the new cell is part of the backtracking path
if (maze->mazecells[newX][newY].type == 'V'
|| maze->mazecells[newX][newY].type == 'P')
{
// Move to the new position
*currentX = newX;
*currentY = newY;
// Recursively backtrack from the new position
backtrack_to_start(maze, currentX, currentY);
// If backtracking is successful, stop exploring other
// directions
return;
}
}
// Reset newX and newY to the original values
newX = *currentX;
newY = *currentY;
}
// If no valid adjacent cells are found, backtrack to the previous position
switch (currentCellType)
{
case 'C':
maze->mazecells[*currentX][*currentY].type
= ' '; // Clear the car's position
break;
default:
maze->mazecells[*currentX][*currentY].type
= 'V'; // Mark as visited during backtracking
break;
}
// Print the map during backtracking
printf("Map during backtracking:\n");
// Print the map after updating the current cell during backtracking
printf("Map after updating current cell during backtracking:\n");
print_map(maze);
// Move back to the previous position (if not at the start)
if (currentCellType != 'S')
{
// Update the current position to the previous position
*currentX = newX;
*currentY = newY;
// Print the car's position in the map
printf("Car's position during backtracking: (%d, %d)\n",
*currentX,
*currentY);
vTaskDelay(
pdMS_TO_TICKS(100)); // Delay to simulate time between movements
}
// Print the map after moving back during backtracking
printf("Map after moving back during backtracking:\n");
print_map(maze);
printf("Backtracking completed. Reached the start!\n");
}
/**
* @brief Task to explore the maze, find the shortest path, and reach the goal
* @brief Task to demonstrate the car following the shortest path from start to
* goal
* @param pvParameters
*/
void
combined_task(void *pvParameters)
demo_shortest_path_task(void *pvParameters)
{
maze_t *maze = (maze_t *)pvParameters;
// Assuming the starting point is the bottom-left corner (0, 0)
int currentX = 0;
int currentY = 0;
// Find the shortest path using BFS
bfs_shortest_path(maze, currentX, currentY);
printf("Shortest path found. Demonstrating the car's movement...\n");
// Iterate through the path and demonstrate the car's movement
for (int i = maze->height - 1; i >= 0; i--)
{
for (int j = 0; j < maze->width; j++)
{
if (maze->mazecells[i][j].type == 'P')
{
// Move the car to the cell in the shortest path
currentX = j;
currentY = i;
// Print the map with the car's position
printf("Map with the car's position (BFS):\n");
print_map(maze);
// Delay to simulate the car's movement
vTaskDelay(pdMS_TO_TICKS(500));
}
}
}
printf("Car reached the goal following the shortest path!\n");
vTaskDelete(NULL); // Delete the demonstration task
}
/**
* @brief Task to perform mapping of the maze
* @param pvParameters
*/
void
mapping_task(void *pvParameters)
{
maze_t *maze = (maze_t *)pvParameters;
int currentX = 0; // Initial X position
int currentY = 0; // Initial Y position
// Reset maze before floodfill
// Reset maze before mapping
for (int i = 0; i < maze->height; i++)
{
for (int j = 0; j < maze->width; j++)
@ -473,12 +501,13 @@ combined_task(void *pvParameters)
{
// Simulate car movement (you can replace this logic with your actual
// movement algorithm)
mapping_direction_t moveDirection
= (mapping_direction_t)(get_rand_32() % 4);
// Update the previously visited position before moving
if (maze->mazecells[currentX][currentY].type
!= 'S') // Check if it's not the start position
if (maze->mazecells[currentX][currentY].type != 'S'
&& maze->mazecells[currentX][currentY].type != 'G')
{
maze->mazecells[currentX][currentY].type = 'V'; // 'V' for visited
}
@ -516,8 +545,7 @@ combined_task(void *pvParameters)
}
// Update the car's position in the maze
if (maze->mazecells[currentX][currentY].type
!= 'S') // Check if it's not the start position
if (maze->mazecells[currentX][currentY].type != 'S')
{
maze->mazecells[currentX][currentY].type = 'C'; // 'C' for car
}
@ -530,13 +558,30 @@ combined_task(void *pvParameters)
floodfill(maze, maze->width - 1, 0, 0);
// Check if the car has explored the entire maze
printf("%d\n", maze_explored(maze));
if (maze_explored(maze))
{
printf("Entire maze explored! Now finding the shortest path.\n");
printf("Entire maze explored!\n");
// Continue with backtracking, BFS, and demonstration of the
// shortest path
printf("Now Backtracking...\n");
backtrack_to_start(maze, &currentX, &currentY);
printf("Map after backtracking:\n");
print_map(maze);
// Find the shortest path after backtracking
printf("Finding the shortest path...\n");
find_shortest_path(maze);
// Create a task to demonstrate the shortest path
xTaskCreate(demo_shortest_path_task,
"demo_shortest_path_task",
configMINIMAL_STACK_SIZE,
(void *)maze,
PRIO,
NULL);
}
vTaskDelay(
@ -544,6 +589,100 @@ combined_task(void *pvParameters)
}
}
/**
* @brief Task to perform backtracking from the goal to the start
* @param pvParameters
*/
void
backtracking_task(void *pvParameters)
{
maze_t *maze = (maze_t *)pvParameters;
int currentX = 0; // Initial X position
int currentY = 0; // Initial Y position
printf("Backtracking to the start...\n");
backtrack_to_start(maze, &currentX, &currentY);
printf("Map after backtracking:\n");
print_map(maze);
vTaskDelete(NULL); // Delete the backtracking task
}
/**
* @brief Task to show the movement from start to goal
* @param pvParameters
*/
void
movement_task(void *pvParameters)
{
maze_t *maze = (maze_t *)pvParameters;
int currentX = 0; // Initial X position
int currentY = 0; // Initial Y position
for (;;)
{
// Simulate car movement (you can replace this logic with your actual
// movement algorithm)
mapping_direction_t moveDirection
= (mapping_direction_t)(get_rand_32() % 4);
// Update the previously visited position before moving
if (maze->mazecells[currentX][currentY].type != 'S'
&& maze->mazecells[currentX][currentY].type != 'G')
{
maze->mazecells[currentX][currentY].type = 'V'; // 'V' for visited
}
switch (moveDirection)
{
case up:
if (currentY < maze->height - 1
&& maze->mazecells[currentX][currentY + 1].type != 'X')
{
currentY++;
}
break;
case down:
if (currentY > 0
&& maze->mazecells[currentX][currentY - 1].type != 'X')
{
currentY--;
}
break;
case left:
if (currentX > 0
&& maze->mazecells[currentX - 1][currentY].type != 'X')
{
currentX--;
}
break;
case right:
if (currentX < maze->width - 1
&& maze->mazecells[currentX + 1][currentY].type != 'X')
{
currentX++;
}
break;
}
// Update the car's position in the maze
if (maze->mazecells[currentX][currentY].type != 'S')
{
maze->mazecells[currentX][currentY].type = 'C'; // 'C' for car
}
// Print the map with the car's position
printf("Map with the car's position:\n");
print_map(maze);
vTaskDelay(
pdMS_TO_TICKS(100)); // Delay to simulate time between movements
}
}
/**
* @brief Initialise tasks for the Maze
* @param maze
@ -551,13 +690,46 @@ combined_task(void *pvParameters)
void
mapping_tasks_init(maze_t *maze)
{
TaskHandle_t combined_task_handle = NULL;
xTaskCreate(combined_task,
"combined_task",
// Task handles
TaskHandle_t mapping_task_handle = NULL;
TaskHandle_t backtracking_task_handle = NULL;
TaskHandle_t demo_shortest_path_handle = NULL;
TaskHandle_t movement_task_handle = NULL;
// Create tasks
xTaskCreate(mapping_task,
"mapping_task",
configMINIMAL_STACK_SIZE,
(void *)maze,
PRIO,
&combined_task_handle);
&mapping_task_handle);
xTaskCreate(backtracking_task,
"backtracking_task",
configMINIMAL_STACK_SIZE,
(void *)maze,
PRIO,
&backtracking_task_handle);
// Shortest path task demo
xTaskCreate(demo_shortest_path_task,
"demo_shortest_path_task",
configMINIMAL_STACK_SIZE,
(void *)maze,
PRIO,
&demo_shortest_path_handle);
xTaskCreate(movement_task,
"movement_task",
configMINIMAL_STACK_SIZE,
(void *)maze,
PRIO,
&movement_task_handle);
// Suspend all tasks except the mapping task
vTaskSuspend(backtracking_task_handle);
vTaskSuspend(demo_shortest_path_handle);
vTaskSuspend(movement_task_handle);
}
#endif /* MAPPING_H */