feature(LSM303DLHC Sensor):

Added:
- Accelerometer Sensor Data
- Magnetometer Sensor Data
- Compass Direction
This commit is contained in:
Devoalda 2023-10-25 17:02:38 +08:00
parent 2b34f8c856
commit 32bad31564
8 changed files with 504 additions and 0 deletions

View File

@ -4,6 +4,7 @@ add_subdirectory(motor)
add_subdirectory(line_sensor)
add_subdirectory(car)
add_subdirectory(ultrasonic_sensor)
add_subdirectory(magnetometer)
add_executable(rtos_car rtos_car.c)
@ -27,6 +28,7 @@ target_link_libraries(rtos_car
FreeRTOS-Kernel-Heap4 # FreeRTOS kernel and dynamic heap
hardware_adc
hardware_pwm
hardware_i2c
)
pico_enable_stdio_usb(rtos_car 1)
pico_add_extra_outputs(rtos_car)

View File

@ -0,0 +1,11 @@
#ifndef MAGNETOMETER_CONFIG_H
#define MAGNETOMETER_CONFIG_H
#define I2C_PORT i2c0
#define I2C_SDA ( 8 )
#define I2C_SCL ( 9 )
#define MAGNETOMETER_READ_DELAY ( 1000 )
#define ACCELEROMETER_READ_DELAY ( 1000 )
#endif

View File

@ -0,0 +1,19 @@
add_executable(
magnetometer_test
magnetometer_test.c
)
target_link_libraries(
magnetometer_test
hardware_i2c
pico_stdlib
FreeRTOS-Kernel-Heap4 # FreeRTOS kernel and dynamic heap
)
target_include_directories(
magnetometer_test
PRIVATE ../config
)
pico_enable_stdio_usb(magnetometer_test 1)
pico_add_extra_outputs(magnetometer_test)

View File

@ -0,0 +1,30 @@
#ifndef MAGNETOMETER_REGISTER_H
#define MAGNETOMETER_REGISTER_H
// Accelerometer registers
#define LSM303_CTRL_REG1_A 0x20
#define LSM303_CTRL_REG4_A 0x23
#define LSM303_CTRL_REG5_A 0x24
#define LSM303_OUT_X_L_A 0x28
#define LSM303_OUT_X_H_A 0x29
#define LSM303_OUT_Y_L_A 0x2A
#define LSM303_OUT_Y_H_A 0x2B
#define LSM303_OUT_Z_L_A 0x2C
#define LSM303_OUT_Z_H_A 0x2D
// Magnetometer registers
#define LSM303_CRA_REG_M 0x00
#define LSM303_CRB_REG_M 0x01
#define LSM303_MR_REG_M 0x02
#define LSM303_OUT_X_H_M 0x03
#define LSM303_OUT_X_L_M 0x04
#define LSM303_OUT_Z_H_M 0x05
#define LSM303_OUT_Z_L_M 0x06
#define LSM303_OUT_Y_H_M 0x07
#define LSM303_OUT_Y_L_M 0x08
#define LSM303_SR_REG_M 0x09
#define ACCEL_ADDR 0x19
#define MAG_ADDR 0x1E
#endif

View File

@ -0,0 +1,119 @@
#include "magnetometer_init.h"
static char
*direction(int16_t acceleration[3], int16_t magnetometer[3]) {
// Calculate the angle from accelerometer data
float roll = atan2(acceleration[1], acceleration[2]) * (180.0 / M_PI);
float pitch = atan2(- acceleration[0],
sqrt(acceleration[1] * acceleration[1] +
acceleration[2] * acceleration[2])) *
(180.0 / M_PI);
// Calculate the heading from magnetometer data
float heading = atan2(magnetometer[1], magnetometer[0]) * (180.0 / M_PI);
// Adjust the heading for negative values
if (heading < 0)
{
heading += 360.0;
}
// Determine the direction based on the heading
// TODO: Optimize this
char *dir;
if (heading >= 315 || heading < 45)
{
dir = "North";
}
else
{
if (heading >= 45 && heading < 135)
{
dir = "East";
}
else
{
if (heading >= 135 && heading < 225)
{
dir = "South";
}
else
{
dir = "West";
}
}
}
printf("Roll: %f, Pitch: %f, Heading: %f\n", roll, pitch, heading);
return dir;
}
/**
* FreeRTOS Tasks
*/
void
monitor_direction_task(__unused void *params) {
for (;;)
{
if (xSemaphoreTake(g_direction_sem, portMAX_DELAY) == pdTRUE)
{
// Read from message buffer
int16_t magnetometer[3];
int16_t accelerometer[3];
read_magnetometer(magnetometer);
read_accelerometer(accelerometer);
// Calculate the angle from accelerometer data
float roll =
atan2(accelerometer[1], accelerometer[2]) * (180.0 / M_PI);
float pitch = atan2(- accelerometer[0],
sqrt(accelerometer[1] * accelerometer[1] +
accelerometer[2] * accelerometer[2])) *
(180.0 / M_PI);
// Calculate the heading from magnetometer data
float heading =
atan2(magnetometer[1], magnetometer[0]) * (180.0 / M_PI);
// Adjust the heading for negative values
if (heading < 0)
{
heading += 360.0;
}
// Determine the direction based on the heading
char *dir;
if (heading >= 315 || heading < 45)
{
dir = "North";
}
else
{
if (heading >= 45 && heading < 135)
{
dir = "East";
}
else
{
if (heading >= 135 && heading < 225)
{
dir = "South";
}
else
{
dir = "West";
}
}
}
printf("Roll: %f, Pitch: %f, Heading: %f\n", roll, pitch, heading);
printf("Direction: %s\n", dir);
}
}
}

View File

@ -0,0 +1,146 @@
/**
* @file magnetometer_init.h
* @brief Initialise the magnetometer sensor and calculate the direction of the car
* @details This file contains the function prototypes for the magnetometer sensor
* and the function to calculate the direction of the car
* based on the magnetometer sensor data
* @author Woon Jun Wei
*/
#ifndef MAGNETOMETER_INIT_H
#define MAGNETOMETER_INIT_H
#include <stdio.h>
#include <math.h>
#include "pico/stdlib.h"
#include "hardware/i2c.h"
#include "pico/binary_info.h"
#include "FreeRTOS.h"
#include "task.h"
#include "message_buffer.h"
#include "semphr.h"
#include "magnetometer_config.h"
#include "LSM303DLHC_register.h"
// Semaphores
//SemaphoreHandle_t g_magnetometer_sem = NULL;
//SemaphoreHandle_t g_accelerometer_sem = NULL;
SemaphoreHandle_t g_direction_sem = NULL;
// Message Buffers
//MessageBufferHandle_t g_magnetometer_buffer = NULL;
//MessageBufferHandle_t g_accelerometer_buffer = NULL;
static void
lsm303_reset() {
/**
* Accelerometer Setup
*/
// 0x20 = CTRL_REG1_A
// Normal power mode, all axes enabled, 10 Hz
uint8_t buf[2] = {LSM303_CTRL_REG1_A, 0x27};
i2c_write_blocking(i2c_default, ACCEL_ADDR, buf, 2, false);
// Reboot memory content (0x40 = CTRL_REG4_A)
// Full Scale +-2g, continuous update (0x00 = 0b0000 0000)
buf[0] = LSM303_CTRL_REG4_A;
buf[1] = 0x00;
i2c_write_blocking(i2c_default, ACCEL_ADDR, buf, 2, false);
/**
* Magnetometer Setup
*/
// MR_REG_M (0x02) - Continuous-conversion mode (0x00 -> 00000000)
buf[0] = LSM303_MR_REG_M;
buf[1] = 0x00;
i2c_write_blocking(i2c_default, MAG_ADDR, buf, 2, false);
// CRA_REG_M (0x00), 15 Hz (0x10 -> 00010000)
// buf[0] = LSM303_CRA_REG_M;
// buf[1] = 0x10;
// i2c_write_blocking(i2c_default, MAG_ADDR, buf, 2, false);
// CRB_REG_M (0x01) - Gain = +/- 1.3 (0x20 -> 00100000)
buf[0] = LSM303_CRB_REG_M;
buf[1] = 0x20;
i2c_write_blocking(i2c_default, MAG_ADDR, buf, 2, false);
// CRA_REG_M (0x00), 0x9C = 0b1001 1100
buf[0] = LSM303_CRA_REG_M;
buf[1] = 0x9C;
i2c_write_blocking(i2c_default, MAG_ADDR, buf, 2, false);
}
void
magnetometer_init()
{
i2c_init(I2C_PORT, 400 * 1000);
gpio_set_function(I2C_SDA, GPIO_FUNC_I2C);
gpio_set_function(I2C_SCL, GPIO_FUNC_I2C);
gpio_pull_up(I2C_SDA);
gpio_pull_up(I2C_SCL);
lsm303_reset();
// Semaphore
// g_magnetometer_sem = xSemaphoreCreateBinary();
// g_accelerometer_sem = xSemaphoreCreateBinary();
g_direction_sem = xSemaphoreCreateBinary();
// Message Buffers
// g_magnetometer_buffer = xMessageBufferCreate(sizeof(int16_t) * 3);
// g_accelerometer_buffer = xMessageBufferCreate(sizeof(int16_t) * 3);
printf("Magnetometer initialised\n");
}
/**
* @brief Timer Interrupt Handler for the magnetometer
* @param repeatingTimer The timer handler
* @return True (To keep the timer running)
*/
//bool
//h_magnetometer_timer_handler(repeating_timer_t *repeatingTimer) {
//
// BaseType_t xHigherPriorityTaskWoken = pdFALSE;
// xSemaphoreGiveFromISR(g_magnetometer_sem,
// &xHigherPriorityTaskWoken);
// portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
// return true;
//}
/**
* @brief Timer Interrupt Handler for the accelerometer
* @param repeatingTimer The timer handler
* @return True (To keep the timer running)
*/
//bool
//h_accelerometer_timer_handler(repeating_timer_t *repeatingTimer) {
//
// BaseType_t xHigherPriorityTaskWoken = pdFALSE;
// xSemaphoreGiveFromISR(g_accelerometer_sem,
// &xHigherPriorityTaskWoken);
// portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
// return true;
//}
/**
* @brief Timer Interrupt Handler To calculate the direction of the car
* @param repeatingTimer The timer handler
* @return True (To keep the timer running)
*/
bool
h_direction_timer_handler(repeating_timer_t *repeatingTimer) {
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
xSemaphoreGiveFromISR(g_direction_sem,
&xHigherPriorityTaskWoken);
portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
return true;
}
#endif

View File

@ -0,0 +1,106 @@
#include "magnetometer_init.h"
static inline int
read_data(uint8_t addr, uint8_t reg) {
uint8_t data[1];
// Send the register address to read from
i2c_write_blocking(i2c_default, addr, &reg, 1, true);
// Read the data
i2c_read_blocking(i2c_default, addr, data, 1, false);
return data[0];
}
static inline void
read_accelerometer(int16_t accelerometer[3]) {
uint8_t buffer[6];
buffer[0] = read_data(ACCEL_ADDR, LSM303_OUT_X_L_A);
buffer[1] = read_data(ACCEL_ADDR, LSM303_OUT_X_H_A);
buffer[2] = read_data(ACCEL_ADDR, LSM303_OUT_Y_L_A);
buffer[3] = read_data(ACCEL_ADDR, LSM303_OUT_Y_H_A);
buffer[4] = read_data(ACCEL_ADDR, LSM303_OUT_Z_L_A);
buffer[5] = read_data(ACCEL_ADDR, LSM303_OUT_Z_H_A);
// Combine high and low bytes
// xAcceleration
accelerometer[0] = (int16_t) ((buffer[1] << 8) | buffer[0]);
// yAcceleration
accelerometer[1] = (int16_t) ((buffer[3] << 8) | buffer[2]);
// zAcceleration
accelerometer[2] = (int16_t) ((buffer[5] << 8) | buffer[4]);
}
static inline void
read_magnetometer(int16_t magnetometer[3]) {
uint8_t buffer[6];
buffer[0] = read_data(MAG_ADDR, LSM303_OUT_X_H_M);
buffer[1] = read_data(MAG_ADDR, LSM303_OUT_X_L_M);
buffer[2] = read_data(MAG_ADDR, LSM303_OUT_Y_H_M);
buffer[3] = read_data(MAG_ADDR, LSM303_OUT_Y_L_M);
buffer[4] = read_data(MAG_ADDR, LSM303_OUT_Z_H_M);
buffer[5] = read_data(MAG_ADDR, LSM303_OUT_Z_L_M);
magnetometer[0] = (int16_t) (buffer[0] << 8 | buffer[1]); //xMag
magnetometer[1] = (int16_t) (buffer[2] << 8 | buffer[3]); //yMag
magnetometer[2] = (int16_t) (buffer[4] << 8 | buffer[5]); //zMag
}
/**
* FreeRTOS Tasks
*/
//void
//monitor_magnetometer_task(__unused void *params) {
// for (;;)
// {
// if (xSemaphoreTake(g_magnetometer_sem, portMAX_DELAY) == pdTRUE)
// {
//// printf("Magnetometer Task");
// int16_t magnetometer[3];
// read_magnetometer(magnetometer);
//
// // Send to message buffer
// xMessageBufferSend(g_magnetometer_buffer,
// &magnetometer,
// sizeof(magnetometer),
// 0
// );
//
// printf("Magnetometer: %d, %d, %d\n", magnetometer[0],
// magnetometer[1], magnetometer[2]);
// }
// }
//}
//void
//monitor_accelerometer_task(__unused void *params) {
// for (;;)
// {
// if (xSemaphoreTake(g_accelerometer_sem, portMAX_DELAY) == pdTRUE)
// {
// int16_t accelerometer[3];
// read_accelerometer(accelerometer);
//
// // Send to message buffer
// xMessageBufferSend(g_accelerometer_buffer,
// &accelerometer,
// sizeof(accelerometer),
// 0
// );
//
// printf("Accelerometer: %d, %d, %d\n", accelerometer[0],
// accelerometer[1], accelerometer[2]);
// }
// }
//}

View File

@ -0,0 +1,71 @@
#include "magnetometer_init.h"
#include "magnetometer_read.h"
#include "magnetometer_direction.h"
//#define READ_MAGNETOMETER_PRIORITY (tskIDLE_PRIORITY + 2UL)
//#define READ_ACCELEROMETER_PRIORITY (tskIDLE_PRIORITY + 3UL)
#define DIRECTION_TASK_PRIORITY (tskIDLE_PRIORITY + 1UL)
void
launch()
{
struct repeating_timer g_direction_timer;
add_repeating_timer_ms(1000,
h_direction_timer_handler,
NULL,
&g_direction_timer);
// struct repeating_timer g_magnetometer_timer;
// add_repeating_timer_ms(MAGNETOMETER_READ_DELAY,
// h_magnetometer_timer_handler,
// NULL,
// &g_magnetometer_timer);
//
// struct repeating_timer g_accelerometer_timer;
// add_repeating_timer_ms(ACCELEROMETER_READ_DELAY,
// h_accelerometer_timer_handler,
// NULL,
// &g_accelerometer_timer);
// TaskHandle_t h_monitor_magnetometer_task = NULL;
// xTaskCreate(monitor_magnetometer_task,
// "Monitor Magnetometer Task",
// configMINIMAL_STACK_SIZE,
// NULL,
// READ_MAGNETOMETER_PRIORITY,
// &h_monitor_magnetometer_task);
// TaskHandle_t h_monitor_accelerometer_task = NULL;
// xTaskCreate(monitor_accelerometer_task,
// "Monitor Accelerometer Task",
// configMINIMAL_STACK_SIZE,
// NULL,
// READ_ACCELEROMETER_PRIORITY,
// &h_monitor_accelerometer_task);
TaskHandle_t h_monitor_direction_task = NULL;
xTaskCreate(monitor_direction_task,
"Monitor Direction Task",
configMINIMAL_STACK_SIZE,
NULL,
DIRECTION_TASK_PRIORITY,
&h_monitor_direction_task);
vTaskStartScheduler();
}
int
main (void)
{
stdio_usb_init();
sleep_ms(2000);
printf("Test started!\n");
magnetometer_init();
launch();
return(0);
}