Merge branch 'L4ncelot-R:main' into main
This commit is contained in:
commit
21ef7e8892
|
@ -15,6 +15,7 @@ target_compile_definitions(rtos_car PRIVATE
|
|||
NO_SYS=0 # don't want NO_SYS (generally this would be in your lwipopts.h)
|
||||
LWIP_SOCKET=1 # we need the socket API (generally this would be in your lwipopts.h)
|
||||
PING_USE_SOCKETS=1
|
||||
PICO_MAX_SHARED_IRQ_HANDLERS=5
|
||||
)
|
||||
target_include_directories(rtos_car PRIVATE
|
||||
${CMAKE_CURRENT_LIST_DIR}/config
|
||||
|
@ -22,6 +23,7 @@ target_include_directories(rtos_car PRIVATE
|
|||
${CMAKE_CURRENT_LIST_DIR}/line_sensor
|
||||
${CMAKE_CURRENT_LIST_DIR}/ultrasonic_sensor
|
||||
${CMAKE_CURRENT_LIST_DIR}/frontend
|
||||
${CMAKE_CURRENT_LIST_DIR}/magnetometer
|
||||
)
|
||||
target_link_libraries(rtos_car
|
||||
pico_cyw43_arch_lwip_sys_freertos
|
||||
|
|
|
@ -0,0 +1,19 @@
|
|||
add_executable(
|
||||
barcode_sensor_test
|
||||
barcode_sensor_test.c
|
||||
)
|
||||
|
||||
target_link_libraries(
|
||||
barcode_sensor_test
|
||||
hardware_adc
|
||||
pico_stdlib
|
||||
FreeRTOS-Kernel-Heap4 # FreeRTOS kernel and dynamic heap
|
||||
)
|
||||
|
||||
target_include_directories(barcode_sensor_test
|
||||
PRIVATE ../config
|
||||
../line_sensor
|
||||
)
|
||||
|
||||
pico_enable_stdio_usb(barcode_sensor_test 1)
|
||||
pico_add_extra_outputs(barcode_sensor_test)
|
|
@ -0,0 +1,124 @@
|
|||
/* Barcode sensor */
|
||||
|
||||
#include "barcode_sensor_init.h"
|
||||
|
||||
#define MAX_BARCODES 10 // Define the maximum number of barcodes to store
|
||||
#define BARCODE_SENSOR_TIMER_PERIOD_MS 100 // Define the barcode sensor timer period
|
||||
|
||||
// Define the barcode sensor timer
|
||||
static struct repeating_timer barcode_sensor_timer;
|
||||
|
||||
|
||||
/**
|
||||
* @brief Decode a Code 39 barcode
|
||||
*
|
||||
* This function decodes a Code 39 barcode represented as a 9-bit binary number.
|
||||
*
|
||||
* @param barcode_data Binary representation of the barcode data (9 bits)
|
||||
* @return Decoded value as an integer
|
||||
*/
|
||||
int code39_decode(uint32_t barcode_data) {
|
||||
// Define the binary representations of Code 39 characters
|
||||
const uint32_t code39_characters[] = {
|
||||
0b001001001, // 0
|
||||
0b001001011, // 1
|
||||
0b001011001, // 2
|
||||
0b001011011, // 3
|
||||
0b001100011, // 4
|
||||
0b001101001, // 5
|
||||
0b001101011, // 6
|
||||
0b001010011, // 7
|
||||
0b001011101, // 8
|
||||
0b001111001, // 9
|
||||
// Add more character representations as needed
|
||||
};
|
||||
|
||||
// Compare the barcode data to known Code 39 character representations
|
||||
for (int i = 0; i < 10; i++) {
|
||||
if (barcode_data == code39_characters[i]) {
|
||||
return i; // Return the decoded value (0-9)
|
||||
}
|
||||
}
|
||||
|
||||
// If the barcode data does not match any known character, return -1 to indicate an error
|
||||
return -1;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* @brief Monitor the barcode sensor
|
||||
*
|
||||
* This function will monitor the barcode sensor and send the state to the
|
||||
* barcode sensor message buffer, including Code 39 decoding.
|
||||
*
|
||||
* @param params
|
||||
*/
|
||||
void monitor_barcode_sensor_task(void *params) {
|
||||
// Create the barcode sensor timer
|
||||
add_repeating_timer_ms(BARCODE_SENSOR_TIMER_PERIOD_MS, h_barcode_sensor_timer_handler, NULL, &barcode_sensor_timer);
|
||||
|
||||
for (;;) {
|
||||
if (xSemaphoreTake(g_barcode_sensor_sem, portMAX_DELAY) == pdTRUE) {
|
||||
// Check the flag or receive the message
|
||||
if (barcode_sensor_triggered == pdTRUE) {
|
||||
uint32_t barcode_data = 0;
|
||||
int bar_width = 0; // Variable to store the width of the current bar
|
||||
|
||||
for (int i = 0; i < 9; i++) {
|
||||
sleep_ms(100); // Wait for a segment of the barcode
|
||||
|
||||
// Measure bar width using the IR sensor
|
||||
if (gpio_get(BARCODE_SENSOR_PIN)) {
|
||||
bar_width++;
|
||||
} else {
|
||||
// Bar ended, process the width
|
||||
if (bar_width > 0) {
|
||||
printf("Bar Width: %d\n", bar_width);
|
||||
// Process or store the bar width as needed
|
||||
bar_width = 0; // Reset the bar width measurement
|
||||
}
|
||||
|
||||
barcode_data |= (1u << i);
|
||||
}
|
||||
}
|
||||
|
||||
printf("Barcode Data (binary): %09b\n", barcode_data);
|
||||
|
||||
// Decode the barcode data
|
||||
int decoded_value = code39_decode(barcode_data);
|
||||
|
||||
if (decoded_value != -1) {
|
||||
printf("Decoded Value: %d\n", decoded_value);
|
||||
// Store or process the decoded value as needed
|
||||
|
||||
// Send the decoded value instead of the raw barcode data
|
||||
xMessageBufferSend(barcode_sensor_msg_buffer, &decoded_value, sizeof(int), 0);
|
||||
} else {
|
||||
printf("Error: Unable to decode the barcode.\n");
|
||||
}
|
||||
|
||||
// Reset the flag
|
||||
barcode_sensor_triggered = pdFALSE;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* @brief Monitor the barcode sensor
|
||||
* @param params
|
||||
*/
|
||||
void
|
||||
monitor_barcode_task(__unused void *params) {
|
||||
state_t barcode_state;
|
||||
|
||||
// Receive from Buffer
|
||||
xMessageBufferReceive(barcode_sensor_msg_buffer,
|
||||
&barcode_state,
|
||||
sizeof(state_t),
|
||||
portMAX_DELAY);
|
||||
|
||||
}
|
|
@ -0,0 +1,97 @@
|
|||
/* Initialise the barcode sensor */
|
||||
|
||||
#ifndef BARCODE_SENSOR_INIT_H
|
||||
#define BARCODE_SENSOR_INIT_H
|
||||
|
||||
#include <stdio.h>
|
||||
#include "pico/stdlib.h"
|
||||
|
||||
#include "hardware/adc.h"
|
||||
|
||||
#include "FreeRTOS.h"
|
||||
#include "task.h"
|
||||
#include "message_buffer.h"
|
||||
#include "semphr.h"
|
||||
|
||||
#include "barcode_sensor_config.h"
|
||||
#include "line_sensor_init.h"
|
||||
|
||||
// Set barcode time to 0
|
||||
static TickType_t lastBarcodeTime = 0;
|
||||
|
||||
|
||||
// Semaphore
|
||||
SemaphoreHandle_t g_barcode_sensor_sem = NULL;
|
||||
|
||||
|
||||
// Queue
|
||||
static MessageBufferHandle_t barcode_sensor_msg_buffer; // Barcode Sensor Buffer
|
||||
|
||||
// Flag
|
||||
static volatile BaseType_t barcode_sensor_triggered = pdFALSE;
|
||||
|
||||
|
||||
/**
|
||||
* @brief Setup the Line Sensor
|
||||
*
|
||||
* This function will setup the Line Sensor by initializing it as an input
|
||||
*/
|
||||
static inline void
|
||||
barcode_sensor_setup() {
|
||||
g_barcode_sensor_sem = xSemaphoreCreateBinary();
|
||||
|
||||
|
||||
uint mask = (1 << BARCODE_SENSOR_PIN);
|
||||
|
||||
// Initialise 3 GPIO pins and set them to input
|
||||
gpio_init_mask(mask);
|
||||
gpio_set_dir_in_masked(mask);
|
||||
|
||||
barcode_sensor_msg_buffer = xMessageBufferCreate(30);
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Timer Interrupt Handler for the barcode sensor
|
||||
*
|
||||
* @param repeatingTimer
|
||||
* @return True (To keep the timer running)
|
||||
*/
|
||||
bool h_barcode_sensor_timer_handler(repeating_timer_t *repeatingTimer) {
|
||||
|
||||
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
|
||||
xSemaphoreGiveFromISR(g_barcode_sensor_sem,
|
||||
&xHigherPriorityTaskWoken);
|
||||
portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void h_barcode_sensor_handler(void) {
|
||||
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
|
||||
TickType_t currentTicks = xTaskGetTickCount();
|
||||
printf("Interrupt triggered\n");
|
||||
|
||||
if (gpio_get_irq_event_mask(BARCODE_SENSOR_PIN) & GPIO_IRQ_EDGE_FALL)
|
||||
{
|
||||
if ((currentTicks - lastBarcodeTime) >=
|
||||
pdMS_TO_TICKS(DEBOUNCE_DELAY_MS))
|
||||
{
|
||||
lastBarcodeTime = currentTicks;
|
||||
gpio_acknowledge_irq(BARCODE_SENSOR_PIN, GPIO_IRQ_EDGE_FALL);
|
||||
// Set the flag to notify the task
|
||||
barcode_sensor_triggered = pdTRUE;
|
||||
xSemaphoreGiveFromISR(g_barcode_sensor_sem,
|
||||
&xHigherPriorityTaskWoken);
|
||||
}
|
||||
else
|
||||
{
|
||||
// Reset the timer to the currentTicks if the edge is ignored
|
||||
lastBarcodeTime = currentTicks;
|
||||
}
|
||||
}
|
||||
|
||||
portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
|
||||
}
|
||||
|
||||
#endif /* LINE_SENSOR_INIT_H */
|
|
@ -0,0 +1,48 @@
|
|||
#include "barcode_sensor.h"
|
||||
|
||||
#define READ_BARCODE_SENSOR_PRIO (tskIDLE_PRIORITY + 2UL)
|
||||
|
||||
void
|
||||
launch()
|
||||
{
|
||||
// isr to detect left line sensor
|
||||
gpio_set_irq_enabled(BARCODE_SENSOR_PIN, GPIO_IRQ_EDGE_FALL, true);
|
||||
gpio_add_raw_irq_handler(BARCODE_SENSOR_PIN, h_barcode_sensor_handler);
|
||||
|
||||
|
||||
irq_set_enabled(IO_IRQ_BANK0, true);
|
||||
|
||||
|
||||
struct repeating_timer g_barcode_sensor_timer;
|
||||
add_repeating_timer_ms(LINE_SENSOR_READ_DELAY,
|
||||
h_barcode_sensor_timer_handler,
|
||||
NULL,
|
||||
&g_barcode_sensor_timer);
|
||||
|
||||
|
||||
TaskHandle_t h_monitor_barcode_sensor_task;
|
||||
xTaskCreate(monitor_barcode_sensor_task,
|
||||
"Monitor Barcode Sensor Task",
|
||||
configMINIMAL_STACK_SIZE,
|
||||
NULL,
|
||||
READ_BARCODE_SENSOR_PRIO,
|
||||
&h_monitor_barcode_sensor_task);
|
||||
|
||||
vTaskStartScheduler();
|
||||
}
|
||||
|
||||
int
|
||||
main (void)
|
||||
{
|
||||
stdio_usb_init();
|
||||
|
||||
sleep_ms(10000);
|
||||
printf("Test started!\n");
|
||||
|
||||
barcode_sensor_setup();
|
||||
initialize_car_state();
|
||||
|
||||
launch();
|
||||
|
||||
return (0);
|
||||
}
|
|
@ -7,6 +7,7 @@
|
|||
|
||||
#define LEFT_SENSOR_PIN ( 26 )
|
||||
#define RIGHT_SENSOR_PIN ( 27 )
|
||||
#define BARCODE_SENSOR_PIN ( 22 )
|
||||
|
||||
|
||||
/* Map */
|
||||
|
|
|
@ -7,14 +7,19 @@
|
|||
|
||||
#define DIRECTION_READ_DELAY ( 100 )
|
||||
|
||||
#define ALPHA ( 0.01f ) // Complementary
|
||||
// Filter Constant
|
||||
#define NUM_READINGS ( 10 ) // Number of readings to
|
||||
// take before
|
||||
// calculating
|
||||
// direction
|
||||
|
||||
//#define ALPHA ( 0.1f ) // Low Pass Filter
|
||||
// Coefficient
|
||||
|
||||
// LSM303DLHC temperature compensation coefficients
|
||||
#define SCALE_Z ( 1.0f ) // Scale for Z-axis
|
||||
#define OFFSET_Z ( 3.0f ) // Offset for Z-axis
|
||||
#define OFFSET_Z ( 0.0f ) // Offset for Z-axis
|
||||
|
||||
#define TEMPERATURE_OFFSET ( 25.0f ) // Reference
|
||||
#define TEMPERATURE_OFFSET ( 32.0f ) // Reference
|
||||
// temperature for
|
||||
// calibration
|
||||
|
||||
|
|
|
@ -18,22 +18,33 @@
|
|||
#define DIRECTION_LEFT_FORWARD (1U << DIRECTION_PIN_LEFT_IN4)
|
||||
#define DIRECTION_LEFT_BACKWARD (1U << DIRECTION_PIN_LEFT_IN3)
|
||||
|
||||
#define DIRECTION_FORWARD (DIRECTION_LEFT_FORWARD | DIRECTION_RIGHT_FORWARD)
|
||||
#define DIRECTION_BACKWARD (DIRECTION_LEFT_BACKWARD | DIRECTION_RIGHT_BACKWARD)
|
||||
#define DIRECTION_LEFT (DIRECTION_LEFT_BACKWARD | DIRECTION_RIGHT_FORWARD)
|
||||
#define DIRECTION_RIGHT (DIRECTION_LEFT_FORWARD | DIRECTION_RIGHT_BACKWARD)
|
||||
|
||||
#define DIRECTION_MASK (DIRECTION_FORWARD | DIRECTION_BACKWARD)
|
||||
|
||||
#define SPEED_PIN_RIGHT 15U
|
||||
#define SPEED_PIN_LEFT 16U
|
||||
|
||||
#define PWM_CLK_DIV 250.f
|
||||
#define PWM_WRAP 5000U
|
||||
#define PWM_CLK_DIV 50.f
|
||||
#define PWM_WRAP 100U
|
||||
|
||||
#define MAX_SPEED 4900U
|
||||
#define MIN_SPEED 0U // To be changed
|
||||
#define MAX_PWM_LEVEL 99U
|
||||
#define MIN_PWM_LEVEL 0U
|
||||
|
||||
#define WHEEL_SPEED_PRIO (tskIDLE_PRIORITY + 1UL)
|
||||
#define WHEEL_CONTROL_PRIO (tskIDLE_PRIORITY + 1UL)
|
||||
#define WHEEL_PID_PRIO (tskIDLE_PRIORITY + 1UL)
|
||||
|
||||
/*!
|
||||
* @brief Structure for the motor speed parameters
|
||||
* @param target_speed_cms Target speed in cm/s
|
||||
* @param current_speed_cms Current speed in cm/s
|
||||
* @param distance_cm Distance travelled in cm
|
||||
*/
|
||||
typedef struct {
|
||||
typedef struct
|
||||
{
|
||||
float current_cms;
|
||||
float distance_cm;
|
||||
} motor_speed_t;
|
||||
|
@ -44,7 +55,8 @@ typedef struct {
|
|||
* @param pwm_channel PWM channel, either A or B
|
||||
* @param pwm_level PWM level, from 0 to 5000
|
||||
*/
|
||||
typedef struct {
|
||||
typedef struct
|
||||
{
|
||||
uint slice_num;
|
||||
uint channel;
|
||||
uint16_t level;
|
||||
|
@ -56,7 +68,9 @@ typedef struct {
|
|||
* @param pid_ki Integral gain
|
||||
* @param pid_kd Derivative gain
|
||||
*/
|
||||
typedef struct {
|
||||
typedef struct
|
||||
{
|
||||
bool use_pid;
|
||||
float kp_value;
|
||||
float ki_value;
|
||||
float kd_value;
|
||||
|
@ -69,11 +83,31 @@ typedef struct {
|
|||
* @param pwm Motor PWM parameters
|
||||
* @param pid Motor PID parameters
|
||||
*/
|
||||
typedef struct {
|
||||
typedef struct
|
||||
{
|
||||
motor_speed_t speed;
|
||||
SemaphoreHandle_t sem;
|
||||
motor_pwm_t pwm;
|
||||
motor_pid_t pid;
|
||||
SemaphoreHandle_t * p_sem;
|
||||
bool * use_pid;
|
||||
|
||||
} motor_t;
|
||||
|
||||
typedef struct
|
||||
{
|
||||
float starting_distance_cm;
|
||||
float distance_to_travel_cm;
|
||||
volatile bool is_running;
|
||||
} distance_to_stop_t;
|
||||
|
||||
SemaphoreHandle_t g_left_sem;
|
||||
SemaphoreHandle_t g_right_sem;
|
||||
|
||||
typedef struct
|
||||
{
|
||||
motor_t * p_left_motor;
|
||||
motor_t * p_right_motor;
|
||||
motor_pid_t * p_pid;
|
||||
|
||||
} car_struct_t;
|
||||
|
||||
#endif /* MOTOR_CONFIG_H */
|
|
@ -3,8 +3,8 @@
|
|||
|
||||
/* ADC Configuration */
|
||||
|
||||
#define TRIG_PIN ( 0 )
|
||||
#define ECHO_PIN ( 1 )
|
||||
#define TRIG_PIN ( 2 )
|
||||
#define ECHO_PIN ( 3 )
|
||||
|
||||
#define ULTRASONIC_SENSOR_READ_DELAY ( 500 )
|
||||
|
||||
|
|
|
@ -6,6 +6,7 @@
|
|||
|
||||
#include "line_sensor_init.h"
|
||||
|
||||
|
||||
/**
|
||||
* @brief Monitor the left sensor
|
||||
*
|
||||
|
@ -101,6 +102,42 @@ monitor_right_sensor_task(void *params) {
|
|||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Monitor the barcode sensor
|
||||
*
|
||||
* This function will monitor the barcode sensor and send the state to the
|
||||
* barcode sensor message buffer, used to scan the barcode below the car
|
||||
*
|
||||
* @param params
|
||||
*/
|
||||
void monitor_barcode_sensor_task(void *params) {
|
||||
for (;;) {
|
||||
if (xSemaphoreTake(g_barcode_sensor_sem, portMAX_DELAY) == pdTRUE) {
|
||||
// Check the flag or receive the message
|
||||
if (barcode_sensor_triggered == pdTRUE) {
|
||||
uint32_t barcode_data = 0;
|
||||
|
||||
for (int i = 0; i < 9; i++) {
|
||||
sleep_ms(100); // Wait for a segment of the barcode
|
||||
|
||||
if (gpio_get(BARCODE_SENSOR_PIN)) {
|
||||
barcode_data |= (1u << i);
|
||||
} else {
|
||||
barcode_data &= ~(1u << i);
|
||||
}
|
||||
}
|
||||
|
||||
printf("Barcode Data (binary): %09b\n", barcode_data);
|
||||
|
||||
// Send or process the barcode data
|
||||
xMessageBufferSend(barcode_sensor_msg_buffer, &barcode_data, sizeof(uint32_t), 0);
|
||||
|
||||
// Reset the flag
|
||||
barcode_sensor_triggered = pdFALSE;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
/**
|
||||
* @brief Monitor the direction and Oritentation of the car
|
||||
*
|
||||
|
@ -113,6 +150,7 @@ void
|
|||
monitor_direction_task(__unused void *params) {
|
||||
state_t left_state;
|
||||
state_t right_state;
|
||||
state_t barcode_state;
|
||||
|
||||
for (;;)
|
||||
{
|
||||
|
@ -127,6 +165,11 @@ monitor_direction_task(__unused void *params) {
|
|||
sizeof(state_t),
|
||||
portMAX_DELAY);
|
||||
|
||||
xMessageBufferReceive(barcode_sensor_msg_buffer,
|
||||
&barcode_state,
|
||||
sizeof(state_t),
|
||||
portMAX_DELAY);
|
||||
|
||||
// g_car_state.current_direction = (left_state << 1) | right_state;
|
||||
|
||||
// switch (g_car_state.current_direction)
|
||||
|
|
|
@ -23,55 +23,59 @@
|
|||
|
||||
static TickType_t lastEdgeTimeLeft = 0;
|
||||
static TickType_t lastEdgeTimeRight = 0;
|
||||
static TickType_t lastBarcodeTime = 0;
|
||||
|
||||
typedef enum { // Unused, useful for readability
|
||||
LINE_DETECTED = 0,
|
||||
LINE_NOT_DETECTED = 1,
|
||||
} state_t;
|
||||
|
||||
typedef enum {
|
||||
ERROR = 0,
|
||||
RIGHT = 1,
|
||||
LEFT = 2,
|
||||
FORWARD = 3
|
||||
} direction_t;
|
||||
//typedef enum {
|
||||
// ERROR = 0,
|
||||
// RIGHT = 1,
|
||||
// LEFT = 2,
|
||||
// FORWARD = 3
|
||||
//} direction_t;
|
||||
|
||||
typedef enum {
|
||||
NORTH = 0,
|
||||
EAST = 1,
|
||||
SOUTH = 2,
|
||||
WEST = 3,
|
||||
} orientation_t;
|
||||
//typedef enum {
|
||||
// NORTH = 0,
|
||||
// EAST = 1,
|
||||
// SOUTH = 2,
|
||||
// WEST = 3,
|
||||
//} orientation_t;
|
||||
|
||||
typedef struct {
|
||||
u_int8_t x; // Current x coordinate
|
||||
u_int8_t y; // Current y coordinate
|
||||
direction_t current_direction; // Current direction (forward, left, right)
|
||||
orientation_t orientation; // Current orientation (N, E, S, W)
|
||||
} car_state_t;
|
||||
//typedef struct {
|
||||
// uint8_t x; // Current x coordinate
|
||||
// uint8_t y; // Current y coordinate
|
||||
// direction_t current_direction; // Current direction (forward, left, right)
|
||||
// orientation_t orientation; // Current orientation (N, E, S, W)
|
||||
//} car_state_t;
|
||||
|
||||
// Semaphore
|
||||
SemaphoreHandle_t g_left_sensor_sem = NULL;
|
||||
SemaphoreHandle_t g_right_sensor_sem = NULL;
|
||||
SemaphoreHandle_t g_barcode_sensor_sem = NULL;
|
||||
|
||||
// Queue
|
||||
static MessageBufferHandle_t left_sensor_msg_buffer; // Left Sensor Buffer
|
||||
static MessageBufferHandle_t right_sensor_msg_buffer; // Right Sensor Buffer
|
||||
static MessageBufferHandle_t barcode_sensor_msg_buffer; // Barcode Sensor Buffer
|
||||
|
||||
static volatile BaseType_t right_sensor_triggered = pdFALSE;
|
||||
static volatile BaseType_t left_sensor_triggered = pdFALSE;
|
||||
static volatile BaseType_t barcode_sensor_triggered = pdFALSE;
|
||||
|
||||
// Car State Struct
|
||||
static car_state_t g_car_state;
|
||||
|
||||
static car_state_t initialize_car_state() {
|
||||
g_car_state.x = MAP_SIZE >> 1;
|
||||
g_car_state.y = MAP_SIZE >> 1;
|
||||
g_car_state.current_direction = FORWARD;
|
||||
g_car_state.orientation = NORTH;
|
||||
|
||||
return g_car_state;
|
||||
}
|
||||
//// Car State Struct
|
||||
//static car_state_t g_car_state;
|
||||
//
|
||||
//static car_state_t initialize_car_state() {
|
||||
// g_car_state.x = MAP_SIZE >> 1;
|
||||
// g_car_state.y = MAP_SIZE >> 1;
|
||||
// g_car_state.current_direction = FORWARD;
|
||||
// g_car_state.orientation = NORTH;
|
||||
//
|
||||
// return g_car_state;
|
||||
//}
|
||||
|
||||
/**
|
||||
* @brief Setup the Line Sensor
|
||||
|
@ -82,15 +86,17 @@ static inline void
|
|||
line_sensor_setup() {
|
||||
g_left_sensor_sem = xSemaphoreCreateBinary();
|
||||
g_right_sensor_sem = xSemaphoreCreateBinary();
|
||||
g_barcode_sensor_sem = xSemaphoreCreateBinary();
|
||||
|
||||
uint mask = (1 << LEFT_SENSOR_PIN) | (1 << RIGHT_SENSOR_PIN);
|
||||
uint mask = (1 << LEFT_SENSOR_PIN) | (1 << RIGHT_SENSOR_PIN) | (1 << BARCODE_SENSOR_PIN);
|
||||
|
||||
// Initialise 2 GPIO pins and set them to input
|
||||
// Initialise 3 GPIO pins and set them to input
|
||||
gpio_init_mask(mask);
|
||||
gpio_set_dir_in_masked(mask);
|
||||
|
||||
left_sensor_msg_buffer = xMessageBufferCreate(30);
|
||||
right_sensor_msg_buffer = xMessageBufferCreate(30);
|
||||
barcode_sensor_msg_buffer = xMessageBufferCreate(30);
|
||||
|
||||
}
|
||||
|
||||
|
@ -124,6 +130,22 @@ bool h_right_sensor_timer_handler(repeating_timer_t *repeatingTimer) {
|
|||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Timer Interrupt Handler for the barcode sensor
|
||||
*
|
||||
* @param repeatingTimer
|
||||
* @return True (To keep the timer running)
|
||||
*/
|
||||
bool h_barcode_sensor_timer_handler(repeating_timer_t *repeatingTimer) {
|
||||
|
||||
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
|
||||
xSemaphoreGiveFromISR(g_barcode_sensor_sem,
|
||||
&xHigherPriorityTaskWoken);
|
||||
portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void h_line_sensor_handler(void) {
|
||||
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
|
||||
TickType_t currentTicks = xTaskGetTickCount();
|
||||
|
@ -166,6 +188,25 @@ void h_line_sensor_handler(void) {
|
|||
}
|
||||
}
|
||||
|
||||
if (gpio_get_irq_event_mask(BARCODE_SENSOR_PIN) & GPIO_IRQ_EDGE_FALL)
|
||||
{
|
||||
if ((currentTicks - lastBarcodeTime) >=
|
||||
pdMS_TO_TICKS(DEBOUNCE_DELAY_MS))
|
||||
{
|
||||
lastBarcodeTime = currentTicks;
|
||||
gpio_acknowledge_irq(BARCODE_SENSOR_PIN, GPIO_IRQ_EDGE_FALL);
|
||||
// Set the flag to notify the task
|
||||
barcode_sensor_triggered = pdTRUE;
|
||||
xSemaphoreGiveFromISR(g_barcode_sensor_sem,
|
||||
&xHigherPriorityTaskWoken);
|
||||
}
|
||||
else
|
||||
{
|
||||
// Reset the timer to the currentTicks if the edge is ignored
|
||||
lastBarcodeTime = currentTicks;
|
||||
}
|
||||
}
|
||||
|
||||
portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
|
||||
}
|
||||
|
||||
|
|
|
@ -3,6 +3,7 @@
|
|||
|
||||
#define READ_LEFT_SENSOR_PRIO (tskIDLE_PRIORITY + 2UL)
|
||||
#define READ_RIGHT_SENSOR_PRIO (tskIDLE_PRIORITY + 2UL)
|
||||
#define READ_RIGHT_SENSOR_PRIO (tskIDLE_PRIORITY + 2UL)
|
||||
|
||||
#define DIRECTION_TASK_PRIORITY (tskIDLE_PRIORITY + 3UL)
|
||||
|
||||
|
@ -10,14 +11,18 @@ void
|
|||
launch()
|
||||
{
|
||||
// isr to detect left line sensor
|
||||
// gpio_set_irq_enabled(LEFT_SENSOR_PIN, GPIO_IRQ_EDGE_FALL, true);
|
||||
// gpio_add_raw_irq_handler(LEFT_SENSOR_PIN, h_line_sensor_handler);
|
||||
//
|
||||
// // isr to detect right line sensor
|
||||
// gpio_set_irq_enabled(RIGHT_SENSOR_PIN, GPIO_IRQ_EDGE_FALL, true);
|
||||
// gpio_add_raw_irq_handler(RIGHT_SENSOR_PIN, h_line_sensor_handler);
|
||||
//
|
||||
// irq_set_enabled(IO_IRQ_BANK0, true);
|
||||
gpio_set_irq_enabled(LEFT_SENSOR_PIN, GPIO_IRQ_EDGE_FALL, true);
|
||||
gpio_add_raw_irq_handler(LEFT_SENSOR_PIN, h_line_sensor_handler);
|
||||
|
||||
// isr to detect right line sensor
|
||||
gpio_set_irq_enabled(RIGHT_SENSOR_PIN, GPIO_IRQ_EDGE_FALL, true);
|
||||
gpio_add_raw_irq_handler(RIGHT_SENSOR_PIN, h_line_sensor_handler);
|
||||
|
||||
// isr to detect barcode line sensor
|
||||
gpio_set_irq_enabled(BARCODE_SENSOR_PIN, GPIO_IRQ_EDGE_FALL, true);
|
||||
gpio_add_raw_irq_handler(BARCODE_SENSOR_PIN, h_line_sensor_handler);
|
||||
|
||||
irq_set_enabled(IO_IRQ_BANK0, true);
|
||||
|
||||
struct repeating_timer g_left_sensor_timer;
|
||||
add_repeating_timer_ms(LINE_SENSOR_READ_DELAY,
|
||||
|
@ -47,6 +52,14 @@ launch()
|
|||
READ_RIGHT_SENSOR_PRIO,
|
||||
&h_monitor_right_sensor_task);
|
||||
|
||||
TaskHandle_t h_monitor_barcode_sensor_task;
|
||||
xTaskCreate(monitor_barcode_sensor_task,
|
||||
"Monitor Barcode Sensor Task",
|
||||
configMINIMAL_STACK_SIZE,
|
||||
NULL,
|
||||
READ_RIGHT_SENSOR_PRIO,
|
||||
&h_monitor_right_sensor_task);
|
||||
|
||||
// TaskHandle_t h_monitor_direction_task;
|
||||
// xTaskCreate(monitor_direction_task,
|
||||
// "Monitor Direction Task",
|
||||
|
|
|
@ -24,6 +24,7 @@
|
|||
#define MAGNETOMETER_DIRECTION_H
|
||||
|
||||
#include "magnetometer_init.h"
|
||||
#include "map.h"
|
||||
|
||||
/**
|
||||
* @brief Roll Calculation with Accelerometer Data
|
||||
|
@ -55,7 +56,7 @@ calculate_pitch(int16_t acceleration[3]) {
|
|||
*/
|
||||
static inline float
|
||||
calculate_yaw_magnetometer(int16_t magnetometer[3]) {
|
||||
return atan2(magnetometer[1], magnetometer[0]) * (180.0 / M_PI);
|
||||
return atan2(magnetometer[1], magnetometer[0]) * (180.0f / M_PI);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -64,10 +65,10 @@ calculate_yaw_magnetometer(int16_t magnetometer[3]) {
|
|||
* @param yaw_mag Yaw calculated from Magnetometer Data
|
||||
* @return yaw Yaw calculated from Complementary Filter
|
||||
*/
|
||||
static inline float
|
||||
calculate_yaw_complementary(float yaw_acc, float yaw_mag) {
|
||||
return ALPHA * yaw_acc + (1 - ALPHA) * yaw_mag;
|
||||
}
|
||||
//static inline float
|
||||
//calculate_yaw_complementary(float yaw_acc, float yaw_mag) {
|
||||
// return ALPHA * yaw_acc + (1 - ALPHA) * yaw_mag;
|
||||
//}
|
||||
|
||||
/**
|
||||
* @brief Compensate the magnetometer readings for temperature
|
||||
|
@ -78,11 +79,11 @@ calculate_yaw_complementary(float yaw_acc, float yaw_mag) {
|
|||
float
|
||||
compensate_magnetometer(float yaw_mag, int16_t temperature) {
|
||||
// Calculate temperature difference from the reference temperature
|
||||
float delta_temp = (float) (temperature - TEMPERATURE_OFFSET);
|
||||
uint delta_temp = temperature - TEMPERATURE_OFFSET;
|
||||
|
||||
// Apply temperature compensation to each axis using macros
|
||||
float compensated_yaw_mag =
|
||||
yaw_mag - (delta_temp * TEMPERATURE_COEFFICIENT_Z);
|
||||
yaw_mag - ((float) delta_temp * TEMPERATURE_COEFFICIENT_Z);
|
||||
|
||||
// Apply scale and offset corrections using macros
|
||||
compensated_yaw_mag = (compensated_yaw_mag - OFFSET_Z) * SCALE_Z;
|
||||
|
@ -97,7 +98,17 @@ compensate_magnetometer(float yaw_mag, int16_t temperature) {
|
|||
*/
|
||||
static inline float
|
||||
adjust_yaw(float yaw) {
|
||||
return (yaw < 0) ? yaw + 360.0f : yaw;
|
||||
if (yaw < 0)
|
||||
{
|
||||
yaw += 360;
|
||||
}
|
||||
|
||||
if (yaw > 360)
|
||||
{
|
||||
yaw -= 360;
|
||||
}
|
||||
|
||||
return yaw;
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -106,33 +117,86 @@ adjust_yaw(float yaw) {
|
|||
* the compass direction enum
|
||||
* 45.0 = 360 / 8, used to calculate the compass direction from
|
||||
* the orientation (0 - 7)
|
||||
* @param yaw Yaw calculated from Complementary Filter
|
||||
* @param yaw Yaw calculated
|
||||
* @return Compass Direction
|
||||
*/
|
||||
static inline compass_direction_t
|
||||
calculate_compass_direction(float yaw) {
|
||||
int orientation = (int) ((yaw + 22.5) / 45.0) % 8; // 8 compass directions
|
||||
switch (orientation)
|
||||
if (yaw >= 337.5 || yaw < 22.5)
|
||||
{
|
||||
case 0:
|
||||
return NORTH;
|
||||
case 1:
|
||||
return NORTH_EAST;
|
||||
case 2:
|
||||
return EAST;
|
||||
case 3:
|
||||
return SOUTH_EAST;
|
||||
case 4:
|
||||
return SOUTH;
|
||||
case 5:
|
||||
return SOUTH_WEST;
|
||||
case 6:
|
||||
return WEST;
|
||||
case 7:
|
||||
return NORTH_WEST;
|
||||
default:
|
||||
return NORTH;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (yaw >= 22.5 && yaw < 67.5)
|
||||
{
|
||||
return NORTH_EAST;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (yaw >= 67.5 && yaw < 112.5)
|
||||
{
|
||||
return EAST;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (yaw >= 112.5 && yaw < 157.5)
|
||||
{
|
||||
return SOUTH_EAST;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (yaw >= 157.5 && yaw < 202.5)
|
||||
{
|
||||
return SOUTH;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (yaw >= 202.5 && yaw < 247.5)
|
||||
{
|
||||
return SOUTH_WEST;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (yaw >= 247.5 && yaw < 292.5)
|
||||
{
|
||||
return WEST;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (yaw >= 292.5 && yaw < 337.5)
|
||||
{
|
||||
return NORTH_WEST;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
// int orientation = (int) ((yaw + 22.5) / 45.0) % 8; // 8 compass directions
|
||||
// switch (orientation)
|
||||
// {
|
||||
// case 0:
|
||||
// return NORTH;
|
||||
// case 1:
|
||||
// return NORTH_EAST;
|
||||
// case 2:
|
||||
// return EAST;
|
||||
// case 3:
|
||||
// return SOUTH_EAST;
|
||||
// case 4:
|
||||
// return SOUTH;
|
||||
// case 5:
|
||||
// return SOUTH_WEST;
|
||||
// case 6:
|
||||
// return WEST;
|
||||
// case 7:
|
||||
// return NORTH_WEST;
|
||||
// default:
|
||||
// return NORTH;
|
||||
// }
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -161,26 +225,33 @@ update_orientation_data(float roll, float pitch, float yaw,
|
|||
* @param magnetometer Magnetometer Data
|
||||
*/
|
||||
static void
|
||||
read_direction(int16_t acceleration[3],
|
||||
int16_t magnetometer[3],
|
||||
int16_t temperature[1]) {
|
||||
read_direction(int16_t acceleration[3], int16_t magnetometer[3]) {
|
||||
|
||||
float roll = calculate_roll(acceleration);
|
||||
float pitch = calculate_pitch(acceleration);
|
||||
float yaw_mag = calculate_yaw_magnetometer(magnetometer);
|
||||
|
||||
yaw_mag = adjust_yaw(yaw_mag);
|
||||
|
||||
// Apply temperature compensation to the magnetometer data
|
||||
float compensated_mag_yaw = compensate_magnetometer(yaw_mag,
|
||||
temperature[0]);
|
||||
// float compensated_mag_yaw = compensate_magnetometer(yaw_mag,
|
||||
// temperature[0]);
|
||||
// compensated_mag_yaw = adjust_yaw(compensated_mag_yaw);
|
||||
|
||||
float yaw_acc = atan2(acceleration[1], acceleration[0]) * (180.0 / M_PI);
|
||||
float yaw = calculate_yaw_complementary(yaw_acc, compensated_mag_yaw);
|
||||
// float yaw_acc = atan2(acceleration[1], acceleration[0]) * (180.0f / M_PI);
|
||||
// yaw_acc = adjust_yaw(yaw_acc);
|
||||
//
|
||||
// float yaw = calculate_yaw_complementary(yaw_acc, yaw_mag);
|
||||
|
||||
yaw = adjust_yaw(yaw);
|
||||
// yaw = adjust_yaw(yaw);
|
||||
// printf("Yaw: %f\n", yaw);
|
||||
|
||||
compass_direction_t compass_direction = calculate_compass_direction(yaw);
|
||||
compass_direction_t compass_direction = calculate_compass_direction(yaw_mag);
|
||||
|
||||
update_orientation_data(roll, pitch, yaw, compass_direction);
|
||||
update_orientation_data(roll,
|
||||
pitch,
|
||||
yaw_mag,
|
||||
compass_direction);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -192,7 +263,8 @@ read_direction(int16_t acceleration[3],
|
|||
* @param params
|
||||
*/
|
||||
void print_orientation_data() {
|
||||
printf("Roll: %f, Pitch: %f, Yaw: %f\n",
|
||||
// printf("Roll: %f, Pitch: %f, Yaw: %f\n",
|
||||
printf("%f %f %f\n",
|
||||
g_direction.roll,
|
||||
g_direction.pitch,
|
||||
g_direction.yaw
|
||||
|
@ -251,34 +323,80 @@ void print_roll_and_pitch(angle_t roll_angle, angle_t pitch_angle) {
|
|||
}
|
||||
}
|
||||
|
||||
void monitor_direction_task(__unused void *params) {
|
||||
for (;;)
|
||||
{
|
||||
if (xSemaphoreTake(g_direction_sem, portMAX_DELAY) == pdTRUE)
|
||||
{
|
||||
void updateDirection() {
|
||||
int16_t magnetometer[3];
|
||||
int16_t accelerometer[3];
|
||||
int16_t temperature[1];
|
||||
|
||||
static int cur_x = 0;
|
||||
static int cur_y = 0;
|
||||
|
||||
read_magnetometer(magnetometer);
|
||||
read_accelerometer(accelerometer);
|
||||
read_temperature(temperature);
|
||||
|
||||
read_direction(accelerometer, magnetometer, temperature);
|
||||
read_direction(accelerometer, magnetometer);
|
||||
|
||||
// Temperature in degrees Celsius
|
||||
printf("Temperature: %d\n", temperature[0]);
|
||||
// printf("Temperature: %d\n", temperature[0]);
|
||||
|
||||
print_orientation_data();
|
||||
|
||||
printf("Direction: ");
|
||||
// printf("Direction: ");
|
||||
|
||||
print_direction(g_direction.orientation);
|
||||
// print_direction(g_direction.orientation);
|
||||
|
||||
print_roll_and_pitch(g_direction.roll_angle,
|
||||
g_direction.pitch_angle);
|
||||
switch (g_direction.orientation)
|
||||
{
|
||||
case NORTH:
|
||||
cur_y ++;
|
||||
break;
|
||||
case EAST:
|
||||
cur_x ++;
|
||||
break;
|
||||
case SOUTH:
|
||||
cur_y --;
|
||||
break;
|
||||
case WEST:
|
||||
cur_x --;
|
||||
break;
|
||||
case NORTH_EAST:
|
||||
cur_x ++;
|
||||
cur_y ++;
|
||||
break;
|
||||
case SOUTH_EAST:
|
||||
cur_x ++;
|
||||
cur_y --;
|
||||
break;
|
||||
case SOUTH_WEST:
|
||||
cur_x --;
|
||||
cur_y --;
|
||||
break;
|
||||
case NORTH_WEST:
|
||||
cur_x --;
|
||||
cur_y ++;
|
||||
break;
|
||||
}
|
||||
|
||||
// Update the map based on the direction of the car (N, E, S, W)
|
||||
// update_map(g_direction.orientation, cur_x, cur_y);
|
||||
|
||||
// printf("Current Position: (%d, %d)\n", cur_x, cur_y);
|
||||
// print_map();
|
||||
|
||||
// print_roll_and_pitch(g_direction.roll_angle, g_direction.pitch_angle);
|
||||
}
|
||||
|
||||
|
||||
void monitor_direction_task(__unused void *params) {
|
||||
for (;;)
|
||||
{
|
||||
if (xSemaphoreTake(g_direction_sem, portMAX_DELAY) == pdTRUE)
|
||||
{
|
||||
updateDirection();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#endif
|
|
@ -32,13 +32,204 @@ SemaphoreHandle_t g_direction_sem = NULL;
|
|||
direction_t g_direction = {
|
||||
.roll = 0,
|
||||
.pitch = 0,
|
||||
// .heading = 0,
|
||||
.yaw = 0,
|
||||
.orientation = NORTH,
|
||||
.roll_angle = LEFT,
|
||||
.pitch_angle = UP
|
||||
};
|
||||
|
||||
struct s_calibration_data {
|
||||
int16_t accelerometerBias[3];
|
||||
int16_t magnetometerBias[3];
|
||||
};
|
||||
|
||||
struct s_calibration_data g_calibration_data = {
|
||||
.accelerometerBias = {0, 0, 0},
|
||||
.magnetometerBias = {0, 0, 0}
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Read Data with I2C, given the address and register
|
||||
* @param addr Address of the device
|
||||
* @param reg Register to read from
|
||||
* @return 1 piece of data read from the register
|
||||
*/
|
||||
static inline int
|
||||
read_data(uint8_t addr, uint8_t reg) {
|
||||
uint8_t data[1];
|
||||
|
||||
// Send the register address to read from
|
||||
i2c_write_blocking(i2c_default, addr, ®, 1, true);
|
||||
|
||||
// Read the data
|
||||
i2c_read_blocking(i2c_default, addr, data, 1, false);
|
||||
|
||||
return data[0];
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Read Accelerometer Data
|
||||
* @param accelerometer Accelerometer Data
|
||||
*/
|
||||
static inline void
|
||||
read_accelerometer(int16_t accelerometer[3]) {
|
||||
uint8_t buffer[6];
|
||||
|
||||
buffer[0] = read_data(ACCEL_ADDR, LSM303_OUT_X_L_A);
|
||||
buffer[1] = read_data(ACCEL_ADDR, LSM303_OUT_X_H_A);
|
||||
buffer[2] = read_data(ACCEL_ADDR, LSM303_OUT_Y_L_A);
|
||||
buffer[3] = read_data(ACCEL_ADDR, LSM303_OUT_Y_H_A);
|
||||
buffer[4] = read_data(ACCEL_ADDR, LSM303_OUT_Z_L_A);
|
||||
buffer[5] = read_data(ACCEL_ADDR, LSM303_OUT_Z_H_A);
|
||||
|
||||
// Combine high and low bytes
|
||||
|
||||
// xAcceleration
|
||||
accelerometer[0] = (int16_t) ((buffer[1] << 8) | buffer[0]);
|
||||
|
||||
// yAcceleration
|
||||
accelerometer[1] = (int16_t) ((buffer[3] << 8) | buffer[2]);
|
||||
|
||||
// zAcceleration
|
||||
accelerometer[2] = (int16_t) ((buffer[5] << 8) | buffer[4]);
|
||||
|
||||
// Apply the calibration data
|
||||
accelerometer[0] -= g_calibration_data.accelerometerBias[0];
|
||||
accelerometer[1] -= g_calibration_data.accelerometerBias[1];
|
||||
accelerometer[2] -= g_calibration_data.accelerometerBias[2];
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Read Magnetometer Data with Moving Average
|
||||
* @param magnetometer Magnetometer Data
|
||||
*/
|
||||
static inline void
|
||||
read_magnetometer(int16_t magnetometer[3]) {
|
||||
uint8_t buffer[6];
|
||||
int32_t xMagFiltered = 0;
|
||||
int32_t yMagFiltered = 0;
|
||||
int32_t zMagFiltered = 0;
|
||||
|
||||
for (int i = 0; i < NUM_READINGS; i ++)
|
||||
{
|
||||
buffer[0] = read_data(MAG_ADDR, LSM303_OUT_X_H_M);
|
||||
buffer[1] = read_data(MAG_ADDR, LSM303_OUT_X_L_M);
|
||||
buffer[2] = read_data(MAG_ADDR, LSM303_OUT_Y_H_M);
|
||||
buffer[3] = read_data(MAG_ADDR, LSM303_OUT_Y_L_M);
|
||||
buffer[4] = read_data(MAG_ADDR, LSM303_OUT_Z_H_M);
|
||||
buffer[5] = read_data(MAG_ADDR, LSM303_OUT_Z_L_M);
|
||||
|
||||
// Update the cumulative sum of the magnetometer data
|
||||
xMagFiltered += (int16_t) (buffer[0] << 8 | buffer[1]);
|
||||
yMagFiltered += (int16_t) (buffer[2] << 8 | buffer[3]);
|
||||
zMagFiltered += (int16_t) (buffer[4] << 8 | buffer[5]);
|
||||
}
|
||||
|
||||
// Calculate the moving average
|
||||
magnetometer[0] = xMagFiltered / NUM_READINGS;
|
||||
magnetometer[1] = yMagFiltered / NUM_READINGS;
|
||||
magnetometer[2] = zMagFiltered / NUM_READINGS;
|
||||
|
||||
// Apply the calibration data
|
||||
magnetometer[0] -= g_calibration_data.magnetometerBias[0];
|
||||
magnetometer[1] -= g_calibration_data.magnetometerBias[1];
|
||||
magnetometer[2] -= g_calibration_data.magnetometerBias[2];
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Read Temperature Data in Degrees Celsius
|
||||
* @param temperature Temperature Data in Degrees Celsius
|
||||
*/
|
||||
static inline void
|
||||
read_temperature(int16_t temperature[1]) {
|
||||
uint8_t buffer[2];
|
||||
|
||||
buffer[0] = read_data(MAG_ADDR, LSM303_TEMP_OUT_H_M);
|
||||
buffer[1] = read_data(MAG_ADDR, LSM303_TEMP_OUT_L_M);
|
||||
|
||||
/**
|
||||
* Normalize temperature; it is big-endian, fixed-point
|
||||
* 9 bits signed integer, 3 bits fractional part, 4 bits zeros
|
||||
* and is relative to 20 degrees Celsius
|
||||
* Source: https://electronics.stackexchange.com/a/356964
|
||||
*/
|
||||
|
||||
int16_t raw_temperature =
|
||||
(20 << 3) + (((int16_t) buffer[0] << 8 | buffer[1]) >> 4);
|
||||
|
||||
// Convert the raw temperature data to degrees Celsius
|
||||
float temperature_celsius = (float) raw_temperature / 8.0;
|
||||
|
||||
// Store the result in the temperature array
|
||||
temperature[0] = (int16_t) temperature_celsius;
|
||||
}
|
||||
|
||||
static void initial_calibration() {
|
||||
int16_t accelerometer[3];
|
||||
int16_t magnetometer[3];
|
||||
|
||||
int16_t accelerometerMin[3] = {0, 0, 0};
|
||||
int16_t accelerometerMax[3] = {0, 0, 0};
|
||||
int16_t magnetometerMin[3] = {0, 0, 0};
|
||||
int16_t magnetometerMax[3] = {0, 0, 0};
|
||||
|
||||
printf("Initial Calibration\n");
|
||||
|
||||
for (int i = 0; i < 100; i ++)
|
||||
{
|
||||
printf("Calibrating... %d\n", i);
|
||||
|
||||
read_accelerometer(accelerometer);
|
||||
read_magnetometer(magnetometer);
|
||||
|
||||
for (int j = 0; j < 3; j ++)
|
||||
{
|
||||
if (accelerometer[j] > accelerometerMax[j])
|
||||
{
|
||||
accelerometerMax[j] = accelerometer[j];
|
||||
}
|
||||
if (accelerometer[j] < accelerometerMin[j])
|
||||
{
|
||||
accelerometerMin[j] = accelerometer[j];
|
||||
}
|
||||
if (magnetometer[j] > magnetometerMax[j])
|
||||
{
|
||||
magnetometerMax[j] = magnetometer[j];
|
||||
}
|
||||
if (magnetometer[j] < magnetometerMin[j])
|
||||
{
|
||||
magnetometerMin[j] = magnetometer[j];
|
||||
}
|
||||
}
|
||||
sleep_ms(10);
|
||||
}
|
||||
|
||||
g_calibration_data.accelerometerBias[0] =
|
||||
(accelerometerMax[0] + accelerometerMin[0]) / 2;
|
||||
g_calibration_data.accelerometerBias[1] =
|
||||
(accelerometerMax[1] + accelerometerMin[1]) / 2;
|
||||
g_calibration_data.accelerometerBias[2] =
|
||||
(accelerometerMax[2] + accelerometerMin[2]) / 2;
|
||||
|
||||
g_calibration_data.magnetometerBias[0] =
|
||||
(magnetometerMax[0] + magnetometerMin[0]) / 2;
|
||||
g_calibration_data.magnetometerBias[1] =
|
||||
(magnetometerMax[1] + magnetometerMin[1]) / 2;
|
||||
g_calibration_data.magnetometerBias[2] =
|
||||
(magnetometerMax[2] + magnetometerMin[2]) / 2;
|
||||
|
||||
printf("Accelerometer Bias: %d, %d, %d\n",
|
||||
g_calibration_data.accelerometerBias[0],
|
||||
g_calibration_data.accelerometerBias[1],
|
||||
g_calibration_data.accelerometerBias[2]);
|
||||
|
||||
printf("Magnetometer Bias: %d, %d, %d\n",
|
||||
g_calibration_data.magnetometerBias[0],
|
||||
g_calibration_data.magnetometerBias[1],
|
||||
g_calibration_data.magnetometerBias[2]);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Initialise the LSM303DLHC sensor (Accelerometer and Magnetometer)
|
||||
* @details
|
||||
|
@ -105,8 +296,12 @@ magnetometer_init()
|
|||
|
||||
LSM303DLHC_init();
|
||||
|
||||
// initial_calibration();
|
||||
|
||||
// sleep_ms(3000);
|
||||
printf("Magnetometer Initialised\n");
|
||||
// Semaphore
|
||||
g_direction_sem = xSemaphoreCreateBinary();
|
||||
// g_direction_sem = xSemaphoreCreateBinary();
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -123,4 +318,5 @@ h_direction_timer_handler(repeating_timer_t *repeatingTimer) {
|
|||
portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
|
||||
return true;
|
||||
}
|
||||
|
||||
#endif
|
|
@ -10,101 +10,5 @@
|
|||
|
||||
#include "magnetometer_init.h"
|
||||
|
||||
/**
|
||||
* @brief Read Data with I2C, given the address and register
|
||||
* @param addr Address of the device
|
||||
* @param reg Register to read from
|
||||
* @return 1 piece of data read from the register
|
||||
*/
|
||||
static inline int
|
||||
read_data(uint8_t addr, uint8_t reg) {
|
||||
uint8_t data[1];
|
||||
|
||||
// Send the register address to read from
|
||||
i2c_write_blocking(i2c_default, addr, ®, 1, true);
|
||||
|
||||
// Read the data
|
||||
i2c_read_blocking(i2c_default, addr, data, 1, false);
|
||||
|
||||
return data[0];
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Read Accelerometer Data
|
||||
* @param accelerometer Accelerometer Data
|
||||
*/
|
||||
static inline void
|
||||
read_accelerometer(int16_t accelerometer[3]) {
|
||||
uint8_t buffer[6];
|
||||
|
||||
buffer[0] = read_data(ACCEL_ADDR, LSM303_OUT_X_L_A);
|
||||
buffer[1] = read_data(ACCEL_ADDR, LSM303_OUT_X_H_A);
|
||||
buffer[2] = read_data(ACCEL_ADDR, LSM303_OUT_Y_L_A);
|
||||
buffer[3] = read_data(ACCEL_ADDR, LSM303_OUT_Y_H_A);
|
||||
buffer[4] = read_data(ACCEL_ADDR, LSM303_OUT_Z_L_A);
|
||||
buffer[5] = read_data(ACCEL_ADDR, LSM303_OUT_Z_H_A);
|
||||
|
||||
// Combine high and low bytes
|
||||
|
||||
// xAcceleration
|
||||
accelerometer[0] = (int16_t) ((buffer[1] << 8) | buffer[0]);
|
||||
|
||||
// yAcceleration
|
||||
accelerometer[1] = (int16_t) ((buffer[3] << 8) | buffer[2]);
|
||||
|
||||
// zAcceleration
|
||||
accelerometer[2] = (int16_t) ((buffer[5] << 8) | buffer[4]);
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Read Magnetometer Data
|
||||
* @param magnetometer Magnetometer Data
|
||||
*/
|
||||
static inline void
|
||||
read_magnetometer(int16_t magnetometer[3]) {
|
||||
uint8_t buffer[6];
|
||||
|
||||
buffer[0] = read_data(MAG_ADDR, LSM303_OUT_X_H_M);
|
||||
buffer[1] = read_data(MAG_ADDR, LSM303_OUT_X_L_M);
|
||||
buffer[2] = read_data(MAG_ADDR, LSM303_OUT_Y_H_M);
|
||||
buffer[3] = read_data(MAG_ADDR, LSM303_OUT_Y_L_M);
|
||||
buffer[4] = read_data(MAG_ADDR, LSM303_OUT_Z_H_M);
|
||||
buffer[5] = read_data(MAG_ADDR, LSM303_OUT_Z_L_M);
|
||||
|
||||
magnetometer[0] = (int16_t) (buffer[0] << 8 | buffer[1]); //xMag
|
||||
|
||||
magnetometer[1] = (int16_t) (buffer[2] << 8 | buffer[3]); //yMag
|
||||
|
||||
magnetometer[2] = (int16_t) (buffer[4] << 8 | buffer[5]); //zMag
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Read Temperature Data in Degrees Celsius
|
||||
* @param temperature Temperature Data in Degrees Celsius
|
||||
*/
|
||||
static inline void
|
||||
read_temperature(int16_t temperature[1]) {
|
||||
uint8_t buffer[2];
|
||||
|
||||
buffer[0] = read_data(MAG_ADDR, LSM303_TEMP_OUT_H_M);
|
||||
buffer[1] = read_data(MAG_ADDR, LSM303_TEMP_OUT_L_M);
|
||||
|
||||
/**
|
||||
* Normalize temperature; it is big-endian, fixed-point
|
||||
* 9 bits signed integer, 3 bits fractional part, 4 bits zeros
|
||||
* and is relative to 20 degrees Celsius
|
||||
* Source: https://electronics.stackexchange.com/a/356964
|
||||
*/
|
||||
|
||||
int16_t raw_temperature =
|
||||
(20 << 3) + (((int16_t) buffer[0] << 8 | buffer[1]) >> 4);
|
||||
|
||||
// Convert the raw temperature data to degrees Celsius
|
||||
float temperature_celsius = (float) raw_temperature / 8.0;
|
||||
|
||||
// Store the result in the temperature array
|
||||
temperature[0] = (int16_t) temperature_celsius;
|
||||
}
|
||||
|
||||
#endif
|
|
@ -2,6 +2,7 @@
|
|||
#include "magnetometer_init.h"
|
||||
#include "magnetometer_read.h"
|
||||
#include "magnetometer_direction.h"
|
||||
#include "map.h"
|
||||
|
||||
#define DIRECTION_TASK_PRIORITY (tskIDLE_PRIORITY + 1UL)
|
||||
|
||||
|
@ -30,9 +31,11 @@ main (void)
|
|||
{
|
||||
stdio_usb_init();
|
||||
|
||||
// sleep_ms(2000);
|
||||
int grid_rows = 10; // Define the number of rows in your grid
|
||||
int grid_cols = 10; // Define the number of columns in your grid
|
||||
|
||||
car_path_grid = create_grid(grid_rows, grid_cols);
|
||||
|
||||
// printf("Test started!\n");
|
||||
magnetometer_init();
|
||||
|
||||
launch();
|
||||
|
|
|
@ -0,0 +1,128 @@
|
|||
//
|
||||
// Created by junwei on 31/10/23.
|
||||
//
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#ifndef TEST_PROJECT_MAP_H
|
||||
#define TEST_PROJECT_MAP_H
|
||||
|
||||
|
||||
// Define the grid structure
|
||||
typedef struct {
|
||||
bool **data; // 2D array to represent the grid
|
||||
int rows; // Number of rows in the grid
|
||||
int cols; // Number of columns in the grid
|
||||
} Grid;
|
||||
|
||||
// Global grid to track the car's path
|
||||
Grid *car_path_grid;
|
||||
|
||||
// Function to create and initialize a grid
|
||||
Grid *create_grid(int rows, int cols) {
|
||||
Grid *grid = (Grid *) malloc(sizeof(Grid));
|
||||
grid->rows = rows;
|
||||
grid->cols = cols;
|
||||
|
||||
// Allocate memory for the 2D array
|
||||
grid->data = (bool **) malloc(rows * sizeof(bool *));
|
||||
for (int i = 0; i < rows; i++) {
|
||||
grid->data[i] = (bool *) malloc(cols * sizeof(bool));
|
||||
for (int j = 0; j < cols; j++) {
|
||||
grid->data[i][j] = false; // Initialize to 'false' (unvisited)
|
||||
}
|
||||
}
|
||||
|
||||
return grid;
|
||||
}
|
||||
|
||||
// Function to mark a cell as visited
|
||||
void mark_cell(Grid *grid, int row, int col) {
|
||||
if (row >= 0 && row < grid->rows && col >= 0 && col < grid->cols) {
|
||||
grid->data[row][col] = true;
|
||||
}
|
||||
}
|
||||
|
||||
// Function to check if a cell has been visited
|
||||
bool is_cell_visited(Grid *grid, int row, int col) {
|
||||
if (row >= 0 && row < grid->rows && col >= 0 && col < grid->cols) {
|
||||
return grid->data[row][col];
|
||||
}
|
||||
return false; // Consider out-of-bounds as unvisited
|
||||
}
|
||||
|
||||
// Function to destroy the grid and free memory
|
||||
void destroy_grid(Grid *grid) {
|
||||
for (int i = 0; i < grid->rows; i++) {
|
||||
free(grid->data[i]);
|
||||
}
|
||||
free(grid->data);
|
||||
free(grid);
|
||||
}
|
||||
|
||||
// Function to update the map based on car's current orientation
|
||||
// Function to update the map based on car's current orientation and position
|
||||
void update_map(int orientation, int cur_x, int cur_y) {
|
||||
// Define offsets for different orientations
|
||||
int offset_x = 0;
|
||||
int offset_y = 0;
|
||||
|
||||
switch (orientation) {
|
||||
case NORTH:
|
||||
offset_y = 1;
|
||||
break;
|
||||
case EAST:
|
||||
offset_x = 1;
|
||||
break;
|
||||
case SOUTH:
|
||||
offset_y = -1;
|
||||
break;
|
||||
case WEST:
|
||||
offset_x = -1;
|
||||
break;
|
||||
case NORTH_EAST:
|
||||
offset_x = 1;
|
||||
offset_y = 1;
|
||||
break;
|
||||
case SOUTH_EAST:
|
||||
offset_x = 1;
|
||||
offset_y = -1;
|
||||
break;
|
||||
case SOUTH_WEST:
|
||||
offset_x = -1;
|
||||
offset_y = -1;
|
||||
break;
|
||||
case NORTH_WEST:
|
||||
offset_x = -1;
|
||||
offset_y = 1;
|
||||
break;
|
||||
}
|
||||
|
||||
// Update the map based on the car's current position and orientation
|
||||
mark_cell(car_path_grid, cur_x, cur_y);
|
||||
mark_cell(car_path_grid, cur_x + offset_x, cur_y + offset_y);
|
||||
}
|
||||
|
||||
|
||||
// Function to print the map
|
||||
void print_map() {
|
||||
// Invert the map, 0,0 is at the Middle
|
||||
// Print 1 for visited cells and 0 for unvisited cells
|
||||
for (int i = car_path_grid->rows - 1; i >= 0; i--) {
|
||||
for (int j = 0; j < car_path_grid->cols; j++) {
|
||||
(car_path_grid->data[j][i]) ? printf("1 ") : printf("0 ");
|
||||
// case false:
|
||||
// printf("0 ");
|
||||
// break;
|
||||
// case true:
|
||||
// printf("1 ");
|
||||
// break;
|
||||
// }
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
}
|
||||
|
||||
#endif //TEST_PROJECT_MAP_H
|
|
@ -4,12 +4,14 @@ target_link_libraries(motor_test
|
|||
pico_cyw43_arch_lwip_sys_freertos
|
||||
pico_stdlib
|
||||
pico_lwip_iperf
|
||||
hardware_i2c
|
||||
FreeRTOS-Kernel-Heap4 # FreeRTOS kernel and dynamic heap
|
||||
hardware_pwm
|
||||
)
|
||||
|
||||
target_include_directories(motor_test PRIVATE
|
||||
../config
|
||||
../magnetometer
|
||||
)
|
||||
|
||||
pico_enable_stdio_usb(motor_test 1)
|
||||
|
|
|
@ -4,7 +4,13 @@
|
|||
* @author Richie
|
||||
*/
|
||||
|
||||
#ifndef MOTOR_DIRECTION_H
|
||||
#define MOTOR_DIRECTION_H
|
||||
|
||||
#include "motor_init.h"
|
||||
#include "magnetometer_init.h"
|
||||
#include "magnetometer_direction.h"
|
||||
#include "math.h"
|
||||
|
||||
/*!
|
||||
* @brief Set the direction of the wheels; can use bitwise OR to set both
|
||||
|
@ -19,28 +25,81 @@
|
|||
void
|
||||
set_wheel_direction(uint32_t direction)
|
||||
{
|
||||
static const uint32_t mask
|
||||
= DIRECTION_LEFT_FORWARD | DIRECTION_LEFT_BACKWARD
|
||||
| DIRECTION_RIGHT_FORWARD | DIRECTION_RIGHT_BACKWARD;
|
||||
|
||||
gpio_put_masked(mask, 0U);
|
||||
gpio_put_masked(DIRECTION_MASK, 0U);
|
||||
gpio_set_mask(direction);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Set the speed of the wheels
|
||||
* @param speed The speed of the wheels, from 0 to 5000
|
||||
* @brief Set the direction of the wheel to opposite direction using bit mask
|
||||
*/
|
||||
void
|
||||
set_wheel_speed(uint32_t speed)
|
||||
revert_wheel_direction()
|
||||
{
|
||||
g_motor_right.pwm.level = speed;
|
||||
g_motor_left.pwm.level = speed;
|
||||
uint32_t current_direction = gpio_get_all();
|
||||
|
||||
pwm_set_chan_level(g_motor_right.pwm.slice_num,
|
||||
g_motor_right.pwm.channel,
|
||||
g_motor_right.pwm.level);
|
||||
pwm_set_chan_level(g_motor_left.pwm.slice_num,
|
||||
g_motor_left.pwm.channel,
|
||||
g_motor_left.pwm.level);
|
||||
uint32_t reverted_direction = current_direction ^ DIRECTION_MASK;
|
||||
|
||||
gpio_put_masked(DIRECTION_MASK, 0U);
|
||||
gpio_set_mask(reverted_direction & DIRECTION_MASK);
|
||||
}
|
||||
|
||||
bool
|
||||
check_direction(float current_direction, float target_direction, float range)
|
||||
{
|
||||
// Normalize directions to be within 0 to 360 degrees
|
||||
current_direction = fmod(current_direction, 360.0f);
|
||||
if (current_direction < 0)
|
||||
current_direction += 360.0f;
|
||||
|
||||
target_direction = fmod(target_direction, 360.0f);
|
||||
if (target_direction < 0)
|
||||
target_direction += 360.0f;
|
||||
|
||||
// Check if current_direction is within ±1 degree of target_direction
|
||||
if (fabs(current_direction - target_direction) <= range
|
||||
|| fabs(current_direction - target_direction) >= (360 - range))
|
||||
{
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void
|
||||
spin_to_yaw(float target_yaw, car_struct_t *car_struct)
|
||||
{
|
||||
updateDirection();
|
||||
float initial_yaw = g_direction.yaw;
|
||||
|
||||
// if it will to turn more than 180 degrees, turn the other way
|
||||
if ((target_yaw > initial_yaw) && (target_yaw - initial_yaw < 180.f)
|
||||
|| ((target_yaw < initial_yaw) && (initial_yaw - target_yaw >= 180.f)))
|
||||
{
|
||||
set_wheel_direction(DIRECTION_RIGHT);
|
||||
}
|
||||
else if ((target_yaw > initial_yaw) && (target_yaw - initial_yaw >= 180.f)
|
||||
|| ((target_yaw < initial_yaw)
|
||||
&& (initial_yaw - target_yaw < 180.f)))
|
||||
{
|
||||
set_wheel_direction(DIRECTION_LEFT);
|
||||
}
|
||||
|
||||
set_wheel_speed_synced(80u, car_struct);
|
||||
|
||||
car_struct->p_pid->use_pid = false;
|
||||
|
||||
for (;;)
|
||||
{
|
||||
updateDirection();
|
||||
if (check_direction(g_direction.yaw, target_yaw, 1))
|
||||
{
|
||||
set_wheel_direction(DIRECTION_MASK);
|
||||
set_wheel_speed_synced(0u, car_struct);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
car_struct->p_pid->use_pid = true;
|
||||
vTaskDelay(pdMS_TO_TICKS(50));
|
||||
}
|
||||
|
||||
#endif /* MOTOR_DIRECTION_H */
|
|
@ -19,24 +19,32 @@
|
|||
|
||||
#include "motor_config.h"
|
||||
|
||||
motor_t g_motor_left = { .pwm.level = 0u,
|
||||
.pwm.channel = PWM_CHAN_A,
|
||||
.speed.distance_cm = 0.0f };
|
||||
|
||||
motor_t g_motor_right = { .pwm.level = 0u,
|
||||
.pwm.channel = PWM_CHAN_B,
|
||||
.speed.distance_cm = 0.0f,
|
||||
.pid.kp_value = 1000.f,
|
||||
.pid.ki_value = 0.0f,
|
||||
.pid.kd_value = 10000.0f,};
|
||||
|
||||
void
|
||||
motor_init(void)
|
||||
motor_init(car_struct_t *car_struct)
|
||||
{
|
||||
// Semaphore
|
||||
g_motor_left.sem = xSemaphoreCreateBinary();
|
||||
g_motor_right.sem = xSemaphoreCreateBinary();
|
||||
g_left_sem = xSemaphoreCreateBinary();
|
||||
g_right_sem = xSemaphoreCreateBinary();
|
||||
|
||||
car_struct->p_pid->use_pid = true;
|
||||
car_struct->p_pid->kp_value = 600.f;
|
||||
car_struct->p_pid->ki_value = 66.67f;
|
||||
car_struct->p_pid->kd_value = 1350.f;
|
||||
|
||||
// initialize the car_struct
|
||||
car_struct->p_left_motor->pwm.level = 0u;
|
||||
car_struct->p_left_motor->pwm.channel = PWM_CHAN_A;
|
||||
car_struct->p_left_motor->speed.distance_cm = 0.0f;
|
||||
car_struct->p_left_motor->p_sem = &g_left_sem;
|
||||
car_struct->p_left_motor->use_pid = &car_struct->p_pid->use_pid;
|
||||
|
||||
car_struct->p_right_motor->pwm.level = 0u;
|
||||
car_struct->p_right_motor->pwm.channel = PWM_CHAN_B;
|
||||
car_struct->p_right_motor->speed.distance_cm = 0.0f;
|
||||
car_struct->p_right_motor->p_sem = &g_right_sem;
|
||||
car_struct->p_right_motor->use_pid = &car_struct->p_pid->use_pid;
|
||||
|
||||
// Initialize speed pins as inputs
|
||||
gpio_init(SPEED_PIN_RIGHT);
|
||||
gpio_init(SPEED_PIN_LEFT);
|
||||
gpio_set_dir(SPEED_PIN_RIGHT, GPIO_IN);
|
||||
|
@ -57,21 +65,24 @@ motor_init(void)
|
|||
gpio_set_function(PWM_PIN_LEFT, GPIO_FUNC_PWM);
|
||||
gpio_set_function(PWM_PIN_RIGHT, GPIO_FUNC_PWM);
|
||||
|
||||
g_motor_left.pwm.slice_num = pwm_gpio_to_slice_num(PWM_PIN_LEFT);
|
||||
g_motor_right.pwm.slice_num = pwm_gpio_to_slice_num(PWM_PIN_RIGHT);
|
||||
car_struct->p_left_motor->pwm.slice_num
|
||||
= pwm_gpio_to_slice_num(PWM_PIN_LEFT);
|
||||
car_struct->p_right_motor->pwm.slice_num
|
||||
= pwm_gpio_to_slice_num(PWM_PIN_RIGHT);
|
||||
|
||||
// NOTE: PWM clock is 125MHz for raspberrypi pico w by default
|
||||
|
||||
// 125MHz / 250 = 500kHz
|
||||
pwm_set_clkdiv(g_motor_left.pwm.slice_num, PWM_CLK_DIV);
|
||||
pwm_set_clkdiv(g_motor_right.pwm.slice_num, PWM_CLK_DIV);
|
||||
// 125MHz / 50 = 2500kHz
|
||||
pwm_set_clkdiv(car_struct->p_left_motor->pwm.slice_num, PWM_CLK_DIV);
|
||||
pwm_set_clkdiv(car_struct->p_right_motor->pwm.slice_num, PWM_CLK_DIV);
|
||||
|
||||
// have them to be 500kHz / 5000 = 100Hz
|
||||
pwm_set_wrap(g_motor_left.pwm.slice_num, (PWM_WRAP - 1U));
|
||||
pwm_set_wrap(g_motor_right.pwm.slice_num, (PWM_WRAP - 1U));
|
||||
// L289N can accept up to 40kHz
|
||||
// 2500kHz / 100 = 25kHz
|
||||
pwm_set_wrap(car_struct->p_left_motor->pwm.slice_num, (PWM_WRAP - 1U));
|
||||
pwm_set_wrap(car_struct->p_right_motor->pwm.slice_num, (PWM_WRAP - 1U));
|
||||
|
||||
pwm_set_enabled(g_motor_left.pwm.slice_num, true);
|
||||
pwm_set_enabled(g_motor_right.pwm.slice_num, true);
|
||||
pwm_set_enabled(car_struct->p_left_motor->pwm.slice_num, true);
|
||||
pwm_set_enabled(car_struct->p_right_motor->pwm.slice_num, true);
|
||||
}
|
||||
|
||||
#endif /* MOTOR_INIT_H */
|
|
@ -5,7 +5,10 @@
|
|||
* @author Richie
|
||||
*/
|
||||
|
||||
#include "motor_init.h"
|
||||
#ifndef MOTOR_PID_H
|
||||
#define MOTOR_PID_H
|
||||
|
||||
// #include "magnetometer_init.h"
|
||||
|
||||
/*!
|
||||
* @brief Compute the control signal using PID controller
|
||||
|
@ -16,62 +19,56 @@
|
|||
* @return The control signal
|
||||
*/
|
||||
float
|
||||
compute_pid(float *integral, float *prev_error)
|
||||
compute_pid(float *integral, float *prev_error, car_struct_t *car_struct)
|
||||
{
|
||||
float error
|
||||
= g_motor_left.speed.distance_cm - g_motor_right.speed.distance_cm;
|
||||
float error = car_struct->p_left_motor->speed.distance_cm
|
||||
- car_struct->p_right_motor->speed.distance_cm;
|
||||
|
||||
*integral += error;
|
||||
|
||||
float derivative = error - *prev_error;
|
||||
|
||||
float control_signal = g_motor_right.pid.kp_value * error
|
||||
+ g_motor_right.pid.ki_value * (*integral)
|
||||
+ g_motor_right.pid.kd_value * derivative;
|
||||
float control_signal
|
||||
= car_struct->p_pid->kp_value * error
|
||||
+ car_struct->p_pid->ki_value * (*integral)
|
||||
+ car_struct->p_pid->kd_value * derivative;
|
||||
|
||||
*prev_error = error;
|
||||
|
||||
return control_signal;
|
||||
}
|
||||
|
||||
void
|
||||
motor_pid_task(__unused void *p_param)
|
||||
bool
|
||||
repeating_pid_handler(struct repeating_timer *t)
|
||||
{
|
||||
float integral = 0.0f;
|
||||
float prev_error = 0.0f;
|
||||
car_struct_t *car_strut = (car_struct_t *)t->user_data;
|
||||
|
||||
for (;;)
|
||||
static float integral = 0.0f;
|
||||
static float prev_error = 0.0f;
|
||||
|
||||
if (!car_strut->p_pid->use_pid)
|
||||
{
|
||||
if (g_motor_left.pwm.level == 0u)
|
||||
{
|
||||
g_motor_right.pwm.level = 0;
|
||||
pwm_set_chan_level(g_motor_right.pwm.slice_num,
|
||||
g_motor_right.pwm.channel,
|
||||
g_motor_right.pwm.level);
|
||||
vTaskDelay(pdMS_TO_TICKS(50));
|
||||
continue;
|
||||
return true;
|
||||
}
|
||||
|
||||
float control_signal = compute_pid(&integral, &prev_error);
|
||||
float control_signal = compute_pid(&integral, &prev_error, car_strut);
|
||||
|
||||
float temp = (float) g_motor_right.pwm.level + control_signal * 0.05f;
|
||||
float temp
|
||||
= (float)car_strut->p_right_motor->pwm.level + control_signal * 0.05f;
|
||||
|
||||
if (temp > MAX_SPEED)
|
||||
if (temp > MAX_PWM_LEVEL)
|
||||
{
|
||||
temp = MAX_SPEED;
|
||||
temp = MAX_PWM_LEVEL;
|
||||
}
|
||||
|
||||
if (temp < MIN_SPEED)
|
||||
if (temp <= MIN_PWM_LEVEL)
|
||||
{
|
||||
temp = MIN_SPEED;
|
||||
temp = MIN_PWM_LEVEL + 1u;
|
||||
}
|
||||
|
||||
g_motor_right.pwm.level = (uint16_t) temp;
|
||||
set_wheel_speed((uint32_t)temp, car_strut->p_right_motor);
|
||||
|
||||
pwm_set_chan_level(g_motor_right.pwm.slice_num,
|
||||
g_motor_right.pwm.channel,
|
||||
g_motor_right.pwm.level);
|
||||
|
||||
vTaskDelay(pdMS_TO_TICKS(50));
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
#endif /* MOTOR_PID_H */
|
|
@ -3,6 +3,8 @@
|
|||
* @brief monitor and update the speed of the wheels
|
||||
* @author Richie
|
||||
*/
|
||||
#ifndef MOTOR_SPEED_H
|
||||
#define MOTOR_SPEED_H
|
||||
|
||||
#include "motor_init.h"
|
||||
|
||||
|
@ -17,7 +19,7 @@ h_wheel_sensor_isr_handler(void)
|
|||
gpio_acknowledge_irq(SPEED_PIN_LEFT, GPIO_IRQ_EDGE_FALL);
|
||||
|
||||
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
|
||||
xSemaphoreGiveFromISR(g_motor_left.sem,
|
||||
xSemaphoreGiveFromISR(g_left_sem,
|
||||
&xHigherPriorityTaskWoken);
|
||||
portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
|
||||
}
|
||||
|
@ -27,7 +29,7 @@ h_wheel_sensor_isr_handler(void)
|
|||
gpio_acknowledge_irq(SPEED_PIN_RIGHT, GPIO_IRQ_EDGE_FALL);
|
||||
|
||||
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
|
||||
xSemaphoreGiveFromISR(g_motor_right.sem,
|
||||
xSemaphoreGiveFromISR(g_right_sem,
|
||||
&xHigherPriorityTaskWoken);
|
||||
portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
|
||||
}
|
||||
|
@ -51,8 +53,8 @@ monitor_wheel_speed_task(void *pvParameters)
|
|||
|
||||
for (;;)
|
||||
{
|
||||
if (xSemaphoreTake(p_motor->sem, pdMS_TO_TICKS(100))
|
||||
== pdTRUE)
|
||||
if ((xSemaphoreTake(*p_motor->p_sem, pdMS_TO_TICKS(100))
|
||||
== pdTRUE) && (*p_motor->use_pid == true))
|
||||
{
|
||||
curr_time = time_us_64();
|
||||
elapsed_time = curr_time - prev_time;
|
||||
|
@ -73,3 +75,54 @@ monitor_wheel_speed_task(void *pvParameters)
|
|||
}
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
set_wheel_speed(uint32_t pwm_level, motor_t * motor)
|
||||
{
|
||||
motor->pwm.level = pwm_level;
|
||||
|
||||
pwm_set_chan_level(motor->pwm.slice_num,
|
||||
motor->pwm.channel,
|
||||
motor->pwm.level);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Set the speed of the wheels
|
||||
* @param pwm_level The pwm_level of the wheels, from 0 to 99
|
||||
*/
|
||||
void
|
||||
set_wheel_speed_synced(uint32_t pwm_level, car_struct_t *car_strut)
|
||||
{
|
||||
if (pwm_level > MAX_PWM_LEVEL)
|
||||
{
|
||||
pwm_level = MAX_PWM_LEVEL;
|
||||
}
|
||||
|
||||
set_wheel_speed(pwm_level, car_strut->p_left_motor);
|
||||
set_wheel_speed(pwm_level, car_strut->p_right_motor);
|
||||
}
|
||||
|
||||
///*!
|
||||
// * @brief Set the distance to travel before stopping, must be called after
|
||||
// * setting the speed and direction.
|
||||
// * @param distance_cm distance to travel in cm
|
||||
// */
|
||||
//void
|
||||
//distance_to_stop(float distance_cm)
|
||||
//{
|
||||
// float initial = g_motor_right.speed.distance_cm;
|
||||
//
|
||||
// for (;;)
|
||||
// {
|
||||
// if (g_motor_right.speed.distance_cm - initial >= distance_cm)
|
||||
// {
|
||||
// set_wheel_speed_synced(0u);
|
||||
// break;
|
||||
// }
|
||||
// vTaskDelay(pdMS_TO_TICKS(10));
|
||||
// }
|
||||
// vTaskDelay(pdMS_TO_TICKS(1000));
|
||||
// g_motor_right.speed.distance_cm = g_motor_left.speed.distance_cm;
|
||||
//}
|
||||
|
||||
#endif /* MOTOR_SPEED_H */
|
||||
|
|
|
@ -4,55 +4,65 @@
|
|||
#include "motor_direction.h"
|
||||
#include "motor_pid.h"
|
||||
|
||||
#define WHEEL_SPEED_PRIO (tskIDLE_PRIORITY + 1UL)
|
||||
void
|
||||
motor_control_task(void *params)
|
||||
{
|
||||
car_struct_t *car_struct = (car_struct_t *)params;
|
||||
for (;;)
|
||||
{
|
||||
set_wheel_direction(DIRECTION_FORWARD);
|
||||
set_wheel_speed_synced(90u, car_struct);
|
||||
|
||||
vTaskDelay(pdMS_TO_TICKS(10000));
|
||||
|
||||
revert_wheel_direction();
|
||||
set_wheel_speed_synced(90u, car_struct);
|
||||
|
||||
vTaskDelay(pdMS_TO_TICKS(10000));
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
launch()
|
||||
launch(car_struct_t *car_struct, void *isr_handler)
|
||||
{
|
||||
// isr to detect right motor slot
|
||||
gpio_set_irq_enabled(SPEED_PIN_RIGHT, GPIO_IRQ_EDGE_FALL, true);
|
||||
gpio_add_raw_irq_handler(SPEED_PIN_RIGHT, h_wheel_sensor_isr_handler);
|
||||
|
||||
// isr to detect left motor slot
|
||||
gpio_set_irq_enabled(SPEED_PIN_LEFT, GPIO_IRQ_EDGE_FALL, true);
|
||||
gpio_add_raw_irq_handler(SPEED_PIN_LEFT, h_wheel_sensor_isr_handler);
|
||||
|
||||
irq_set_enabled(IO_IRQ_BANK0, true);
|
||||
|
||||
// Set wheel speed
|
||||
set_wheel_speed(3500);
|
||||
|
||||
// Left wheel
|
||||
//
|
||||
TaskHandle_t h_monitor_left_wheel_speed_task_handle = NULL;
|
||||
xTaskCreate(monitor_wheel_speed_task,
|
||||
"monitor_left_wheel_speed_task",
|
||||
configMINIMAL_STACK_SIZE,
|
||||
(void *)&g_motor_left,
|
||||
(void *)car_struct->p_left_motor,
|
||||
WHEEL_SPEED_PRIO,
|
||||
&h_monitor_left_wheel_speed_task_handle);
|
||||
|
||||
|
||||
// Right wheel
|
||||
//
|
||||
TaskHandle_t h_monitor_right_wheel_speed_task_handle = NULL;
|
||||
xTaskCreate(monitor_wheel_speed_task,
|
||||
"monitor_wheel_speed_task",
|
||||
configMINIMAL_STACK_SIZE,
|
||||
(void *)&g_motor_right,
|
||||
(void *)car_struct->p_right_motor,
|
||||
WHEEL_SPEED_PRIO,
|
||||
&h_monitor_right_wheel_speed_task_handle);
|
||||
|
||||
TaskHandle_t h_motor_pid_right_task_handle = NULL;
|
||||
xTaskCreate(motor_pid_task,
|
||||
"motor_pid_task",
|
||||
// control task
|
||||
TaskHandle_t h_motor_turning_task_handle = NULL;
|
||||
xTaskCreate(motor_control_task,
|
||||
"motor_turning_task",
|
||||
configMINIMAL_STACK_SIZE,
|
||||
(void *)&g_motor_right,
|
||||
WHEEL_SPEED_PRIO,
|
||||
&h_motor_pid_right_task_handle);
|
||||
(void *)car_struct,
|
||||
WHEEL_CONTROL_PRIO,
|
||||
&h_motor_turning_task_handle);
|
||||
|
||||
// isr to detect right motor slot
|
||||
gpio_set_irq_enabled(SPEED_PIN_RIGHT, GPIO_IRQ_EDGE_FALL, true);
|
||||
gpio_add_raw_irq_handler(SPEED_PIN_RIGHT, isr_handler);
|
||||
|
||||
vTaskStartScheduler();
|
||||
// isr to detect left motor slot
|
||||
gpio_set_irq_enabled(SPEED_PIN_LEFT, GPIO_IRQ_EDGE_FALL, true);
|
||||
gpio_add_raw_irq_handler(SPEED_PIN_LEFT, isr_handler);
|
||||
|
||||
irq_set_enabled(IO_IRQ_BANK0, true);
|
||||
}
|
||||
|
||||
int
|
||||
|
@ -63,12 +73,23 @@ main(void)
|
|||
sleep_ms(4000);
|
||||
printf("Test started!\n");
|
||||
|
||||
motor_init();
|
||||
set_wheel_direction(DIRECTION_LEFT_FORWARD | DIRECTION_RIGHT_FORWARD);
|
||||
motor_t g_motor_right;
|
||||
motor_t g_motor_left;
|
||||
motor_pid_t g_pid;
|
||||
|
||||
launch();
|
||||
car_struct_t car_struct = { .p_right_motor = &g_motor_right,
|
||||
.p_left_motor = &g_motor_left,
|
||||
.p_pid = &g_pid };
|
||||
|
||||
// for(;;);
|
||||
motor_init(&car_struct);
|
||||
|
||||
launch(&car_struct, &h_wheel_sensor_isr_handler);
|
||||
|
||||
// PID timer
|
||||
struct repeating_timer pid_timer;
|
||||
add_repeating_timer_ms(-50, repeating_pid_handler, &car_struct, &pid_timer);
|
||||
|
||||
vTaskStartScheduler();
|
||||
|
||||
return (0);
|
||||
}
|
164
frtos/rtos_car.c
164
frtos/rtos_car.c
|
@ -14,89 +14,157 @@
|
|||
|
||||
#include "motor_speed.h"
|
||||
#include "motor_direction.h"
|
||||
#include "motor_pid.h"
|
||||
|
||||
#include "line_sensor.h"
|
||||
// #include "line_sensor.h"
|
||||
|
||||
#include "ultrasonic_sensor.h"
|
||||
|
||||
#define READ_LEFT_WHEEL_SPEED_PRIO (tskIDLE_PRIORITY + 1UL)
|
||||
#define READ_RIGHT_WHEEL_SPEED_PRIO (tskIDLE_PRIORITY + 1UL)
|
||||
|
||||
#define READ_LEFT_SENSOR_PRIO (tskIDLE_PRIORITY + 2UL)
|
||||
#define READ_RIGHT_SENSOR_PRIO (tskIDLE_PRIORITY + 2UL)
|
||||
|
||||
#define DIRECTION_TASK_PRIORITY (tskIDLE_PRIORITY + 3UL)
|
||||
// #define READ_LEFT_SENSOR_PRIO (tskIDLE_PRIORITY + 2UL)
|
||||
// #define READ_RIGHT_SENSOR_PRIO (tskIDLE_PRIORITY + 2UL)
|
||||
// #define READ_BARCODE_SENSOR_PRIO (tskIDLE_PRIORITY + 2UL)
|
||||
//
|
||||
// #define DIRECTION_TASK_PRIORITY (tskIDLE_PRIORITY + 3UL)
|
||||
|
||||
#define DISTANCE_TASK_PRIORITY (tskIDLE_PRIORITY + 4UL)
|
||||
|
||||
/* Common Car State Structure (TODO: TBC)*/
|
||||
//static car_state_t g_car_state;
|
||||
// static car_state_t g_car_state;
|
||||
|
||||
static void
|
||||
motor_control_task(__unused void *p_param)
|
||||
{
|
||||
vTaskDelay(1000);
|
||||
|
||||
// set_wheel_direction(DIRECTION_FORWARD);
|
||||
// set_wheel_speed_synced(90);
|
||||
// vTaskDelay(1000);
|
||||
|
||||
// spin_to_yaw(300);
|
||||
//
|
||||
// set_wheel_direction(DIRECTION_FORWARD);
|
||||
// set_wheel_speed_synced(90);
|
||||
// vTaskDelay(1000);
|
||||
|
||||
spin_to_yaw(65);
|
||||
|
||||
set_wheel_direction(DIRECTION_FORWARD);
|
||||
set_wheel_speed_synced(90);
|
||||
vTaskDelay(10000);
|
||||
|
||||
// set_wheel_direction(DIRECTION_MASK);
|
||||
|
||||
for (;;);
|
||||
}
|
||||
|
||||
void
|
||||
launch()
|
||||
{
|
||||
// // isr to detect left line sensor
|
||||
// gpio_set_irq_enabled(LEFT_SENSOR_PIN, GPIO_IRQ_EDGE_FALL, true);
|
||||
// gpio_add_raw_irq_handler(LEFT_SENSOR_PIN, h_line_sensor_handler);
|
||||
|
||||
struct repeating_timer g_left_sensor_timer;
|
||||
add_repeating_timer_ms(LINE_SENSOR_READ_DELAY,
|
||||
h_left_sensor_timer_handler,
|
||||
NULL,
|
||||
&g_left_sensor_timer);
|
||||
// isr for ultrasonic
|
||||
|
||||
struct repeating_timer g_right_sensor_timer;
|
||||
add_repeating_timer_ms(LINE_SENSOR_READ_DELAY,
|
||||
h_right_sensor_timer_handler,
|
||||
NULL,
|
||||
&g_right_sensor_timer);
|
||||
// isr to detect right motor slot
|
||||
gpio_set_irq_enabled(SPEED_PIN_RIGHT, GPIO_IRQ_EDGE_FALL, true);
|
||||
gpio_add_raw_irq_handler(SPEED_PIN_RIGHT, h_wheel_sensor_isr_handler);
|
||||
|
||||
TaskHandle_t h_monitor_left_sensor_task;
|
||||
xTaskCreate(monitor_left_sensor_task,
|
||||
"Monitor Left Sensor Task",
|
||||
// isr to detect left motor slot
|
||||
gpio_set_irq_enabled(SPEED_PIN_LEFT, GPIO_IRQ_EDGE_FALL, true);
|
||||
gpio_add_raw_irq_handler(SPEED_PIN_LEFT, h_wheel_sensor_isr_handler);
|
||||
|
||||
irq_set_enabled(IO_IRQ_BANK0, true);
|
||||
|
||||
// // line sensor timer
|
||||
// struct repeating_timer g_left_sensor_timer;
|
||||
// add_repeating_timer_ms(LINE_SENSOR_READ_DELAY,
|
||||
// h_left_sensor_timer_handler,
|
||||
// NULL,
|
||||
// &g_left_sensor_timer);
|
||||
|
||||
// PID timer
|
||||
struct repeating_timer pid_timer;
|
||||
add_repeating_timer_ms(-50, repeating_pid_handler, NULL, &pid_timer);
|
||||
|
||||
// Line sensor
|
||||
// TaskHandle_t h_monitor_left_sensor_task;
|
||||
// xTaskCreate(monitor_left_sensor_task,
|
||||
// "Monitor Left Sensor Task",
|
||||
// configMINIMAL_STACK_SIZE,
|
||||
// NULL,
|
||||
// READ_LEFT_SENSOR_PRIO,
|
||||
// &h_monitor_left_sensor_task);
|
||||
|
||||
// Left wheel
|
||||
//
|
||||
TaskHandle_t h_monitor_left_wheel_speed_task_handle = NULL;
|
||||
xTaskCreate(monitor_wheel_speed_task,
|
||||
"monitor_left_wheel_speed_task",
|
||||
configMINIMAL_STACK_SIZE,
|
||||
(void *)&g_motor_left,
|
||||
WHEEL_SPEED_PRIO,
|
||||
&h_monitor_left_wheel_speed_task_handle);
|
||||
|
||||
// Right wheel
|
||||
//
|
||||
TaskHandle_t h_monitor_right_wheel_speed_task_handle = NULL;
|
||||
xTaskCreate(monitor_wheel_speed_task,
|
||||
"monitor_wheel_speed_task",
|
||||
configMINIMAL_STACK_SIZE,
|
||||
(void *)&g_motor_right,
|
||||
WHEEL_SPEED_PRIO,
|
||||
&h_monitor_right_wheel_speed_task_handle);
|
||||
|
||||
// control task
|
||||
TaskHandle_t h_motor_turning_task_handle = NULL;
|
||||
xTaskCreate(motor_control_task,
|
||||
"motor_turning_task",
|
||||
configMINIMAL_STACK_SIZE,
|
||||
NULL,
|
||||
READ_LEFT_SENSOR_PRIO,
|
||||
&h_monitor_left_sensor_task);
|
||||
WHEEL_CONTROL_PRIO,
|
||||
&h_motor_turning_task_handle);
|
||||
|
||||
TaskHandle_t h_monitor_right_sensor_task;
|
||||
xTaskCreate(monitor_right_sensor_task,
|
||||
"Monitor Right Sensor Task",
|
||||
configMINIMAL_STACK_SIZE,
|
||||
NULL,
|
||||
READ_RIGHT_SENSOR_PRIO,
|
||||
&h_monitor_right_sensor_task);
|
||||
|
||||
TaskHandle_t h_monitor_direction_task;
|
||||
xTaskCreate(monitor_direction_task,
|
||||
"Monitor Direction Task",
|
||||
configMINIMAL_STACK_SIZE,
|
||||
NULL,
|
||||
DIRECTION_TASK_PRIORITY,
|
||||
&h_monitor_direction_task);
|
||||
|
||||
TaskHandle_t h_monitor_distance_task;
|
||||
// ultra
|
||||
TaskHandle_t disttask;
|
||||
xTaskCreate(distance_task,
|
||||
"Monitor Distance Task",
|
||||
"TestDistThread",
|
||||
configMINIMAL_STACK_SIZE,
|
||||
NULL,
|
||||
DISTANCE_TASK_PRIORITY,
|
||||
&h_monitor_distance_task);
|
||||
1,
|
||||
&disttask);
|
||||
|
||||
// magnetometer
|
||||
// struct repeating_timer g_direction_timer;
|
||||
// add_repeating_timer_ms(DIRECTION_READ_DELAY,
|
||||
// h_direction_timer_handler,
|
||||
// NULL,
|
||||
// &g_direction_timer);
|
||||
|
||||
vTaskStartScheduler();
|
||||
}
|
||||
|
||||
int
|
||||
main (void)
|
||||
main(void)
|
||||
{
|
||||
stdio_usb_init();
|
||||
|
||||
sleep_ms(4000);
|
||||
printf("Test started!\n");
|
||||
|
||||
motor_init();
|
||||
printf("motor init");
|
||||
|
||||
set_wheel_direction(DIRECTION_LEFT_FORWARD | DIRECTION_RIGHT_FORWARD);
|
||||
magnetometer_init();
|
||||
printf("magnet init");
|
||||
|
||||
line_sensor_setup();
|
||||
// line_sensor_setup();
|
||||
|
||||
init_ultrasonic();
|
||||
printf("ultraman init");
|
||||
|
||||
initialize_car_state(); // TODO: Could be common functionality, To confirm
|
||||
// initialize_car_state(); // TODO: Could be common functionality, To
|
||||
// confirm
|
||||
// during Integration
|
||||
launch();
|
||||
|
||||
|
|
|
@ -6,12 +6,17 @@ add_executable(
|
|||
target_link_libraries(
|
||||
ultrasonic_sensor
|
||||
hardware_adc
|
||||
pico_cyw43_arch_lwip_sys_freertos
|
||||
pico_stdlib
|
||||
pico_lwip_iperf
|
||||
hardware_i2c
|
||||
FreeRTOS-Kernel-Heap4 # FreeRTOS kernel and dynamic heap
|
||||
hardware_pwm
|
||||
)
|
||||
|
||||
target_include_directories(ultrasonic_sensor
|
||||
PRIVATE ../config
|
||||
../motor
|
||||
)
|
||||
|
||||
pico_enable_stdio_usb(ultrasonic_sensor 1)
|
||||
|
|
|
@ -1,16 +1,17 @@
|
|||
/**
|
||||
* @file ultrasonic_sensor.h
|
||||
* @brief Monitor the distance between the car and the wall
|
||||
* @author Poon Xiang Yuan
|
||||
*/
|
||||
* @file ultrasonic_sensor.h
|
||||
* @brief Monitor the distance between the car and the wall
|
||||
* @author Poon Xiang Yuan
|
||||
*/
|
||||
|
||||
#ifndef ULTRASONIC_SENSOR_H
|
||||
#define ULTRASONIC_SENSOR_H
|
||||
|
||||
#include "ultrasonic_init.h"
|
||||
#include "motor_speed.h"
|
||||
|
||||
volatile uint32_t start_time;
|
||||
volatile uint32_t end_time;
|
||||
// volatile uint32_t start_time;
|
||||
// volatile uint32_t end_time;
|
||||
volatile bool echo_rising = false;
|
||||
|
||||
float
|
||||
|
@ -35,20 +36,20 @@ KalmanFilter(float U)
|
|||
return U_hat;
|
||||
}
|
||||
|
||||
void
|
||||
echo_handler()
|
||||
{
|
||||
if (gpio_get(ECHO_PIN))
|
||||
{
|
||||
start_time = time_us_32();
|
||||
echo_rising = true;
|
||||
}
|
||||
else
|
||||
{
|
||||
end_time = time_us_32();
|
||||
echo_rising = false;
|
||||
}
|
||||
}
|
||||
// void
|
||||
// echo_handler()
|
||||
// {
|
||||
// if (gpio_get(ECHO_PIN))
|
||||
// {
|
||||
// start_time = time_us_32();
|
||||
// echo_rising = true;
|
||||
// }
|
||||
// else
|
||||
// {
|
||||
// end_time = time_us_32();
|
||||
// echo_rising = false;
|
||||
// }
|
||||
// }
|
||||
|
||||
void
|
||||
distance_task(__unused void *params)
|
||||
|
@ -61,22 +62,34 @@ distance_task(__unused void *params)
|
|||
sleep_us(10);
|
||||
gpio_put(TRIG_PIN, 0);
|
||||
|
||||
while (echo_rising)
|
||||
{
|
||||
while (gpio_get(ECHO_PIN) == 0)
|
||||
tight_loop_contents();
|
||||
}
|
||||
|
||||
// Measure the pulse width (time taken for the echo to return)
|
||||
uint32_t start_time = time_us_32();
|
||||
while (gpio_get(ECHO_PIN) == 1)
|
||||
tight_loop_contents();
|
||||
uint32_t end_time = time_us_32();
|
||||
|
||||
// Calculate the distance (in centimeters)
|
||||
uint32_t pulse_duration = end_time - start_time;
|
||||
float distance = (pulse_duration * 0.034 / 2) * 1.125; // Speed of sound in cm/us
|
||||
float distance
|
||||
= (pulse_duration * 0.034 / 2); // Speed of sound in cm/us
|
||||
|
||||
// printf("Distance: %.2f cm\n", distance);
|
||||
printf("Kalman Filtered Distance: %.2f cm\n", KalmanFilter(distance));
|
||||
printf("Distance: %.2f cm\n", distance);
|
||||
// printf("Kalman Filtered Distance: %.2f cm\n", KalmanFilter(distance));
|
||||
|
||||
if (distance < 5)
|
||||
if (distance < 7)
|
||||
{
|
||||
// set_wheel_direction(DIRECTION_MASK);
|
||||
set_wheel_speed_synced(0u);
|
||||
printf("Collision Imminent!\n");
|
||||
vTaskDelay(pdMS_TO_TICKS(3000));
|
||||
spin_to_yaw(350);
|
||||
set_wheel_direction(DIRECTION_FORWARD);
|
||||
set_wheel_speed_synced(90u);
|
||||
}
|
||||
start_time, end_time = 0;
|
||||
}
|
||||
}
|
||||
#endif /* ULTRASONIC_SENSOR_H */
|
Loading…
Reference in New Issue