INF2004_Labs/lab_5/lab_5.c

280 lines
6.9 KiB
C

/**
* Copyright (c) 2022 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
/**
* Lab 5
*
* Done on: pico-examples/pico_w/wifi/freertos/ping/picow_freertos_ping.c
*/
#include <stdio.h>
#include "pico/stdlib.h"
#include "FreeRTOS.h"
#include "task.h"
#include "message_buffer.h"
#include "hardware/adc.h"
#include <queue.h>
#define mbaTASK_MESSAGE_BUFFER_SIZE ( 60 )
#ifndef PING_ADDR
#define PING_ADDR "142.251.35.196"
#endif
#ifndef RUN_FREERTOS_ON_CORE
#define RUN_FREERTOS_ON_CORE 0
#endif
#define BUFFER_SIZE ( 10 ) // 10 data points
#define QUEUE_SIZE ( 3 ) // 3 Tasks to print
#define TASK_ONE_PRIORITY ( tskIDLE_PRIORITY + 1UL )
#define TASK_TWO_PRIORITY ( tskIDLE_PRIORITY + 2UL )
#define TASK_THREE_PRIORITY ( tskIDLE_PRIORITY + 3UL )
#define TASK_FOUR_PRIORITY ( tskIDLE_PRIORITY + 4UL )
#define TEMP_READING_DELAY_MS ( 1000 ) // 1 second
static MessageBufferHandle_t TaskTwoMsgBuffer; // Task 2 Buffer
static QueueHandle_t TaskThreeQueue; // Task 3 Queue
static QueueHandle_t printQueue; // Task 4 Queue
static float read_onboard_temperature () {
/* 12-bit conversion, assume max value == ADC_VREF == 3.3 V */
const float conversionFactor = 3.3f / (1 << 12);
float adc = (float) adc_read() * conversionFactor;
float tempC = 27.0f - (adc - 0.706f) / 0.001721f;
return tempC;
}
/**
* Task 1: Read temperature data from Sensor
* @param params Pointer to the task parameters
*/
static void temp_sensor_task (__unused void *params) {
const TickType_t xBlockTime = pdMS_TO_TICKS(TEMP_READING_DELAY_MS);
static float temperature = 0.0f;
static char text_to_print[mbaTASK_MESSAGE_BUFFER_SIZE];
adc_init();
adc_set_temp_sensor_enabled(true);
adc_select_input(4);
while (true)
{
vTaskDelay(xBlockTime);
temperature = read_onboard_temperature();
// Print the temperature first
snprintf(text_to_print,
sizeof(text_to_print),
"Task 1: Onboard temperature = %.02f C\n",
temperature);
xQueueSend(printQueue, &text_to_print, 0);
// Send to Task 2
xMessageBufferSend(TaskTwoMsgBuffer,
(void *) &temperature,
sizeof(temperature),
0);
// Send to Task 3
xQueueSend(TaskThreeQueue, &temperature, 0);
}
}
/**
* Task 2: Calculate moving average of 10 data points
*
* @param params Pointer to the task parameters
*/
static void avg_task (__unused void *params) {
static float fReceivedData;
static float sum = 0.0f;
static float data[BUFFER_SIZE] = {0};
static int index = 0;
static int count = 0;
static char text_to_print[mbaTASK_MESSAGE_BUFFER_SIZE];
while (true)
{
xMessageBufferReceive(TaskTwoMsgBuffer,
(void *) &fReceivedData,
sizeof(fReceivedData),
portMAX_DELAY);
// Circular buffer
sum -= data[index];
data[index] = fReceivedData;
sum += data[index];
index = (index + 1) % BUFFER_SIZE;
if (count < BUFFER_SIZE)
{
count ++;
}
snprintf(text_to_print,
sizeof(text_to_print),
"Task 2: Moving Average Temperature = %0.2f C\n",
sum / count);
xQueueSend(printQueue, &text_to_print, 0);
}
}
/**
* Task 3: Calculate simple average of ALL data points
*
* @param params Pointer to the task parameters
*/
static void avg_task_simple (__unused void *params) {
static float fReceivedData;
static float sum = 0.0f;
static float count = 0.0f;
static char text_to_print[mbaTASK_MESSAGE_BUFFER_SIZE];
while (true)
{
xQueueReceive(TaskThreeQueue,
&fReceivedData,
portMAX_DELAY);
sum += fReceivedData;
count ++;
snprintf(text_to_print,
sizeof(text_to_print),
"Task 3: Simple Average Temperature = %0.2f C\n",
sum / count);
xQueueSend(printQueue, &text_to_print, 0);
}
}
/**
* Task 4: To print all the printf statements from other tasks
*
* @param params Pointer to the task parameters
*/
static void print_task (__unused void *params) {
static char text_to_print[mbaTASK_MESSAGE_BUFFER_SIZE];
while (true)
{
// Receive from Queue
xQueueReceive(printQueue,
&text_to_print,
portMAX_DELAY);
printf("%s", text_to_print);
}
}
void vLaunch (void) {
// Task 1: Read temperature data from Sensor
TaskHandle_t task_1;
xTaskCreate(
temp_sensor_task,
"TempSensorTask",
configMINIMAL_STACK_SIZE,
NULL,
TASK_ONE_PRIORITY,
&task_1
);
// Task 2: Calculate moving average
TaskHandle_t task_2;
xTaskCreate(
avg_task,
"AvgTask",
configMINIMAL_STACK_SIZE,
NULL,
TASK_TWO_PRIORITY,
&task_2
);
// Task 3: Calculate simple average
TaskHandle_t task_3;
xTaskCreate(
avg_task_simple,
"AvgTaskSimple",
configMINIMAL_STACK_SIZE,
NULL,
TASK_THREE_PRIORITY,
&task_3
);
// Task 4: Print all the printf statements from other tasks
TaskHandle_t task_4;
xTaskCreate(
print_task,
"PrintTask",
configMINIMAL_STACK_SIZE,
NULL,
TASK_FOUR_PRIORITY,
&task_4
);
TaskTwoMsgBuffer = xMessageBufferCreate(mbaTASK_MESSAGE_BUFFER_SIZE);
TaskThreeQueue = xQueueCreate(10, sizeof(float));
printQueue = xQueueCreate(QUEUE_SIZE, sizeof(char[60]));
#if NO_SYS && configUSE_CORE_AFFINITY && configNUM_CORES > 1
// we must bind the main task to one core (well at least while the init is called)
// (note we only do this in NO_SYS mode, because cyw43_arch_freertos
// takes care of it otherwise)
vTaskCoreAffinitySet(task, 1);
#endif
/* Start the tasks and timer running. */
vTaskStartScheduler();
}
int main (void) {
stdio_init_all();
/* Configure the hardware ready to run the demo. */
const char *rtos_name;
#if (portSUPPORT_SMP == 1)
rtos_name = "FreeRTOS SMP";
#else
rtos_name = "FreeRTOS";
#endif
#if (portSUPPORT_SMP == 1) && (configNUM_CORES == 2)
printf("Starting %s on both cores:\n", rtos_name);
vLaunch();
#elif (RUN_FREERTOS_ON_CORE == 1)
printf("Starting %s on core 1:\n", rtos_name);
multicore_launch_core1(vLaunch);
while (true);
#else
printf("Starting %s on core 0:\n", rtos_name);
vLaunch();
#endif
return 0;
}