\documentclass[a4paper]{article} \usepackage{fancyhdr} \usepackage{extramarks} \usepackage{amsmath} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{tikz} \usepackage{pgfplots} \usepackage[plain]{algorithm} \usepackage{algpseudocode} \usepackage{enumitem} \graphicspath{ {./images/} } \usetikzlibrary{automata,positioning} % % Basic Document Settings % \topmargin=-0.45in \evensidemargin=0in \oddsidemargin=0in \textwidth=6.5in \textheight=9.0in \headsep=0.25in \linespread{1.1} \pagestyle{fancy} \lhead{\hmwkAuthorName} \chead{\hmwkClass\ : \hmwkTitle} \rhead{\firstxmark} \lfoot{\lastxmark} \cfoot{\thepage} \renewcommand\headrulewidth{0.4pt} \renewcommand\footrulewidth{0.4pt} \setlength\parindent{0pt} % % Create Problem Sections % \newcommand{\enterProblemHeader}[1]{ \nobreak\extramarks{}{Question \arabic{#1} continued on next page\ldots}\nobreak{} \nobreak\extramarks{Question \arabic{#1} (continued)}{Question \arabic{#1} continued on next page\ldots}\nobreak{} } \newcommand{\exitProblemHeader}[1]{ \nobreak\extramarks{Question \arabic{#1} (continued)}{Question \arabic{#1} continued on next page\ldots}\nobreak{} \stepcounter{#1} \nobreak\extramarks{Question \arabic{#1}}{}\nobreak{} } \setcounter{secnumdepth}{0} \newcounter{partCounter} \newcounter{homeworkProblemCounter} \setcounter{homeworkProblemCounter}{1} \nobreak\extramarks{Question \arabic{homeworkProblemCounter}}{}\nobreak{} \newenvironment{homeworkProblem}[1][-1]{ \ifnum#1>0 \setcounter{homeworkProblemCounter}{#1} \fi \section{Question \arabic{homeworkProblemCounter}} \setcounter{partCounter}{1} \enterProblemHeader{homeworkProblemCounter} }{ \exitProblemHeader{homeworkProblemCounter} } \newcommand{\hmwkClass}{INF 1004 Mathematics 2} \newcommand{\hmwkTitle}{Tutorial\ \#7} \newcommand{\hmwkAuthorName}{\textbf{Woon Jun Wei}} \newcommand{\hmwkStudentID}{\textbf{2200624}} \title{ \vspace{2in} \textmd{\textbf{\hmwkClass \\ \hmwkTitle}}\\ \vspace{3in} } \author{\hmwkAuthorName \\ \hmwkStudentID} \date{\today} \renewcommand{\part}[1]{\textbf{\large Part \arabic{partCounter}}\stepcounter{partCounter}\\} % % Various Helper Commands % % Useful for algorithms \newcommand{\alg}[1]{\textsc{\bfseries \footnotesize #1}} % For derivatives \newcommand{\deriv}[1]{\frac{\mathrm{d}}{\mathrm{d}x} (#1)} % For partial derivatives \newcommand{\pderiv}[2]{\frac{\partial}{\partial #1} (#2)} % Integral dx \newcommand{\dx}{\mathrm{d}x} % Alias for the Solution section header \newcommand{\solution}{\textbf{\large My Solution\\}} \newcommand{\answer}{\textbf{\large Sample Solutions\\}} % Probability commands: Expectation, Variance, Covariance, Bias \newcommand{\E}{\mathrm{E}} \newcommand{\Var}{\mathrm{Var}} \newcommand{\Cov}{\mathrm{Cov}} \newcommand{\Bias}{\mathrm{Bias}} \begin{document} \maketitle \pagebreak \begin{homeworkProblem} Compute the euclidean vector norm for vectors $$ \begin{bmatrix} 1,0,2 \end{bmatrix} , \begin{bmatrix} 3,4 \end{bmatrix} , \begin{bmatrix} -7,2,-4, \sqrt{12} \end{bmatrix} $$ \solution \part $$\lVert [1,0,2] \rVert_2 = \sqrt{1^2 + 0^2 + 2^2} = \boxed{\sqrt{5}}$$ \part $$\lVert [3,4] \rVert_2 = \sqrt{3^2 + 4^2} = \sqrt{25} = \boxed{5}$$ \part $$ \begin{align*} \lVert [-7,2,-4, \sqrt{12}] \rVert_2 &= \sqrt{(-7)^2 + 2^2 + (-4)^2 + \sqrt{12}^2} \\ &= \sqrt{49 + 4 + 16 + 12} \\ &= \sqrt{81}\\ &= \boxed{9} \end{align*} $$ \end{homeworkProblem} \pagebreak \begin{homeworkProblem} Compute the corresponding unit length vector for these: $$ \begin{bmatrix} 3,4 \end{bmatrix} , \begin{bmatrix} -1,-2,3 \end{bmatrix} , \begin{bmatrix} -7,2,-4, \sqrt{12} \end{bmatrix} $$ \solution $$ \lVert v \rVert_2 = 1 $$ $$ v \neq 0 \implies \frac{v}{\lVert v \rVert_2} $$ \part $$ \begin{align*} \frac{[3,4]}{\lVert [3,4] \rVert_2} &= \frac{[3,4]}{5} \\ &= \frac{1}{5} \begin{bmatrix} 3,4 \end{bmatrix} \\ &= \boxed{\begin{bmatrix} \frac{3}{5}, \frac{4}{5} \end{bmatrix}} \end{align*} $$ \part $$ \begin{align*} \frac{[-1,-2,3]}{\lVert [-1,-2,3] \rVert_2} &= \frac{[-1,-2,3]}{\sqrt{1^2 + 4^2 + 9^2}} \\ &= \frac{1}{\sqrt{14}} \begin{bmatrix} -1,-2,3 \end{bmatrix} \\ &= \boxed{\begin{bmatrix} -\frac{1}{\sqrt{14}}, -\frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}} \end{bmatrix}} \end{align*} $$ \part $$ \begin{align*} \frac{[-7,2,-4, \sqrt{12}]}{\lVert [-7,2,-4, \sqrt{12}] \rVert_2} &= \frac{[-7,2,-4, \sqrt{12}]}{\sqrt{(-7)^2 + 2^2 + (-4)^2 + \sqrt{12}^2}} \\ &= \frac{1}{\sqrt{81}} \begin{bmatrix} -7,2,-4, \sqrt{12} \end{bmatrix} \\ &= \frac{1}{9} \begin{bmatrix} -7,2,-4,\sqrt{12}\end{bmatrix}\\ &= \boxed{\begin{bmatrix} -\frac{7}{9}, \frac{2}{9}, -\frac{4}{9}, \frac{\sqrt{12}}{9} \end{bmatrix}} \end{align*} $$ \end{homeworkProblem} \pagebreak \begin{homeworkProblem} Compute the inner product between these vectors and their angle in degrees: $$ \begin{bmatrix} 3,-2,2 \end{bmatrix} , \begin{bmatrix} 1,2,2 \end{bmatrix} $$ Compute the inner product between these vectors and their angle in degrees: $$ \begin{bmatrix} 1,0,1 \end{bmatrix} , \begin{bmatrix} 2,1,-2 \end{bmatrix} , \begin{bmatrix} \frac{1}{2\sqrt{2}} , -\frac{\sqrt{3}}{2} , \frac{1}{2\sqrt{2}}} \end{bmatrix} $$ \solution $$\frac{u}{\lVert u \rVert_2} \cdot \frac{v}{\lVert v \rVert_2} = \cos(\angle (u,v))$$ \part $$ \begin{align*} \langle [3,-2,2], [1,2,2] \rangle &= 3 \cdot 1 + (-2) \cdot 2 + 2 \cdot 2 \\ &= 3 + (-4) + 4 \\ &= \boxed{3} \end{align*} $$ Angle:\\ Let $u$ be $\begin{bmatrix}3,-2,2\end{bmatrix}$ and $v$ be $\begin{bmatrix}1,2,2\end{bmatrix}$\\ $$ \begin{align*} \cos(\angle (u,v)) &= \frac{\langle u,v \rangle}{\lVert u \rVert_2 \cdot \lVert v \rVert_2} \\ &= \frac{\begin{bmatrix}3,-2,2\end{bmatrix} \cdot \begin{bmatrix}1,2,2\end{bmatrix}}{\lVert \begin{bmatrix}3,-2,2\end{bmatrix} \rVert_2 \cdot \lVert \begin{bmatrix}1,2,2\end{bmatrix} \rVert_2} \\ &= \frac{3}{\sqrt{17}\cdot\sqrt{9}} \\ &= \frac{3}{\sqrt{153}} \\\\ \angle (u,v) &= \cos^{-1}(\frac{3}{\sqrt{153}}) \\ &= \boxed{75.96^{\circ}} \end{align*} $$ \pagebreak \part $$ \begin{align*} \langle [1,0,1], [2,1,-2] \rangle &= 1 \cdot 2 + 0 \cdot 1 + 1 \cdot (-2) \\ &= 2 + 0 + (-2) \\ &= \boxed{0} \end{align*} $$ Angle:\\ Let $u$ be $\begin{bmatrix}1,0,1\end{bmatrix}$ and $v$ be $\begin{bmatrix}2,1,-2\end{bmatrix}$\\ $$ \begin{align*} \cos(\angle (u,v)) &= \frac{\langle u,v \rangle}{\lVert u \rVert_2 \cdot \lVert v \rVert_2} \\ &= \frac{\begin{bmatrix}1,0,1\end{bmatrix} \cdot \begin{bmatrix}2,1,-2\end{bmatrix}}{\lVert \begin{bmatrix}1,0,1\end{bmatrix} \rVert_2 \cdot \lVert \begin{bmatrix}2,1,-2\end{bmatrix} \rVert_2} \\ &= \frac{0}{\sqrt{2}\cdot\sqrt{6}} \\ &= 0 \\\\ \angle (u,v) &= \cos^{-1}(0) \\ &= \boxed{90^{\circ}} \end{align*} $$ \part $$ \begin{align} [2,1,2], \left[\frac{1}{2\sqrt{2}}, -\frac{\sqrt{3}}{2}, \frac{1}{2\sqrt{2}}\right] &= \left(2 \cdot \frac{1}{2\sqrt(2)}\right) + \left(1 \cdot -\frac{\sqrt{3}}{2}\right) + \left(2 \cdot \frac{1}{2\sqrt(2)}\right) \\ &= \frac{1}{\sqrt{2}} - \frac{\sqrt{2}}{2} + \frac{1}{\sqrt{2}}\\ &= \frac{\sqrt{2}}{2} \end{align} $$ Angle:\\ Let $u$ be $\begin{bmatrix}2,1,2\end{bmatrix}$ and $v$ be $\begin{bmatrix}\frac{1}{2\sqrt{2}}, -\frac{\sqrt{3}}{2}, \frac{1}{2\sqrt{2}}\end{bmatrix}$\\ $$ \begin{align*} \cos(\angle (u,v)) &= \frac{\langle u,v \rangle}{\lVert u \rVert_2 \cdot \lVert v \rVert_2} \\ &= \frac{\begin{bmatrix}2,1,2\end{bmatrix} \cdot \begin{bmatrix}\frac{1}{2\sqrt{2}}, -\frac{\sqrt{3}}{2}, \frac{1}{2\sqrt{2}}\end{bmatrix}}{\lVert \begin{bmatrix}2,1,2\end{bmatrix} \rVert_2 \cdot \lVert \begin{bmatrix}\frac{1}{2\sqrt{2}}, -\frac{\sqrt{3}}{2}, \frac{1}{2\sqrt{2}}\end{bmatrix} \rVert_2} \\ &= \frac{\frac{\sqrt{2}}{2}}{\sqrt{9}\cdot\sqrt{1}}\\ &= \frac{\frac{\sqrt{2}}{2}}{\sqrt{9}}\\ &= \frac{\sqrt{2}}{2\sqrt{9}}\\ &= \cos^{-1}(\frac{\sqrt{2}}{2\sqrt{9}})\\ &= \boxed{76.36^{\circ}} \end{align*} $$ \end{homeworkProblem} \pagebreak \begin{homeworkProblem} \begin{itemize} \item What is the projection of $\begin{bmatrix}5,2 \end{bmatrix}$ onto the subspace spanned by vector $\begin{bmatrix} 1,1 \end{bmatrix}$? \item What is the projection of $\begin{bmatrix}0,2,1 \end{bmatrix}$ onto the subspace spanned by vector $\begin{bmatrix} 1,-1,-1 \end{bmatrix}$? \item Project $\begin{bmatrix} 5,2 \end{bmatrix}$ onto the subspace spanned by vectors $\begin{bmatrix} 2,3 \end{bmatrix}$, $\begin{bmatrix}1,1 \end{bmatrix}$ \item What is the projection of $\begin{bmatrix} 1,-1,1 \end{bmatrix}$ onto the subspace spanned by vector $\begin{bmatrix} 1,1,1 \end{bmatrix}$ onto the subspace spanned by vectors $\begin{bmatrix} 0,0,-1 \end{bmatrix}, \begin{bmatrix} 2,0,1 \end{bmatrix}$? Hint: this one is more tricky. Reason: $\begin{bmatrix} 0,-1,-1 \end{bmatrix} \cdot \begin{bmatrix}2,0,1\end{bmatrix} \neq 0$ \end{itemize} \solution $$ x_{\parallel} v = \frac{x\cdot v}{v\cdot v}v =\left(x\cdot \frac{v}{\lVert v \rVert_2}\right) \frac{v}{\lVert v \rVert_2} $$ \part $$ \begin{align*} \frac{\begin{bmatrix} 5,2 \end{bmatrix} \cdot \begin{bmatrix} 1,1 \end{bmatrix}}{2} \begin{bmatrix} 1,1 \end{bmatrix} &= \frac{7}{2} \begin{bmatrix}1,1\end{bmatrix}\\ \end{align*} $$ \part $$ \begin{align*} \frac{\begin{bmatrix} 0,2,1 \end{bmatrix} \cdot \begin{bmatrix} 1,-1,-1 \end{bmatrix}}{3} \begin{bmatrix} 1,-1,-1 \end{bmatrix} &= \frac{-3}{3} \begin{bmatrix}1,-1,-1\end{bmatrix}\\ &= \begin{bmatrix}-1,1,1\end{bmatrix} \end{align*} $$ \part $$ \begin{align*} \frac{\begin{bmatrix} 5,2 \end{bmatrix} \cdot \begin{bmatrix} 2,3 \end{bmatrix}}{13} \begin{bmatrix} 2,3 \end{bmatrix} + \frac{\begin{bmatrix} 5,2 \end{bmatrix} \cdot \begin{bmatrix} 1,1 \end{bmatrix}}{2} \begin{bmatrix} 1,1 \end{bmatrix} &= \frac{16}{13} \begin{bmatrix}2,3\end{bmatrix} + \frac{7}{2} \begin{bmatrix}1,1\end{bmatrix}\\ &= \begin{bmatrix} \frac{32}{13}, \frac{48}{13} \end{bmatrix} + \begin{bmatrix} \frac{7}{2}, \frac{7}{2} \end{bmatrix}\\ &= \begin{bmatrix} \frac{32+7}{13}, \frac{48+7}{13} \end{bmatrix}\\ &= \begin{bmatrix} \frac{39}{13}, \frac{55}{13} \end{bmatrix} \end{align*} $$ \end{homeworkProblem} \pagebreak \begin{homeworkProblem} Compute these matrix multiplications: $$ \begin{bmatrix} 2 & 1\\3&-2 \end{bmatrix} \begin{bmatrix} -1 &0\\-4&-2 \end{bmatrix} $$ \\ $$ \begin{bmatrix} -3\\2\\1 \end{bmatrix} \begin{bmatrix} 2&4&-2 \end{bmatrix} $$ \\ Question: Do you need more of them to practice? If so, you can do at home:\\ $$ \begin{bmatrix} 1&2\\2&4 \end{bmatrix} \begin{bmatrix} 3&0&1\\0&1&2 \end{bmatrix} $$ \\ $$ \begin{bmatrix} 0.5&2.5\\-3.5&1.5 \end{bmatrix} \begin{bmatrix} 6\\4 \end{bmatrix} $$ \solution \part $$ \begin{bmatrix} 2 & 1\\3&-2 \end{bmatrix} \begin{bmatrix} -1 &0\\-4&-2 \end{bmatrix} = \begin{bmatrix} 2\cdot(-1)+1\cdot(-4) & 2\cdot0+1\cdot(-2)\\3\cdot(-1)+(-2)\cdot(-4) & 3\cdot0+(-2)\cdot(-2) \end{bmatrix} = \begin{bmatrix} -6 & -2\\5 & 4 \end{bmatrix} $$ \\ $$ \begin{bmatrix} -3\\2\\1 \end{bmatrix} \begin{bmatrix} 2&4&-2 \end{bmatrix} = \begin{bmatrix} -3\cdot2 & -3\cdot4 & -3\cdot(-2)\\2\cdot2 & 2\cdot4 & 2\cdot(-2)\\1\cdot2 & 1\cdot4 & 1\cdot(-2) \end{bmatrix} = \begin{bmatrix} -6 & -12 & 6\\4 & 8 & -4\\2 & 4 & -2 \end{bmatrix} $$ \part $$ \begin{bmatrix} 1&2\\2&4 \end{bmatrix} \begin{bmatrix} 3&0&1\\0&1&2 \end{bmatrix} = \begin{bmatrix} 1\cdot3+2\cdot0 & 1\cdot0+2\cdot1 & 1\cdot1+2\cdot2\\2\cdot3+4\cdot0 & 2\cdot0+4\cdot1 & 2\cdot1+4\cdot2 \end{bmatrix} = \begin{bmatrix} 3 & 2 & 4\\6 & 4 & 10 \end{bmatrix} $$ \\ $$ \begin{bmatrix} 0.5&2.5\\-3.5&1.5 \end{bmatrix} \begin{bmatrix} 6\\4 \end{bmatrix} = \begin{bmatrix} 0.5\cdot6+2.5\cdot4 \\ 0.5\cdot4+2.5\cdot6 \end{bmatrix} = \begin{bmatrix} 13 \\ -15 \end{bmatrix} $$ \end{homeworkProblem} \pagebreak \begin{homeworkProblem} \begin{itemize} \item Project $\begin{bmatrix} 5,2 \end{bmatrix}$ onto the orthogonal space of vector $\begin{bmatrix} 2,-3 \end{bmatrix}$ \item Project $\begin{bmatrix} 1,-1,3 \end{bmatrix}$ onto the orthogonal space of vector $\begin{bmatrix} -3,1,1\end{bmatrix}$ \item Project $\begin{bmatrix} 1,-1,3,1 \end{bmatrix}$ onto the orthogonal space of vector $\begin{bmatrix} -2,2,0,0\end{bmatrix}$, $\begin{bmatrix} 0,0,\sqrt{2}, \sqrt{2}\end{bmatrix}$ \end{itemize} \solution \part $$ \begin{align*} \begin{bmatrix} 5,2 \end{bmatrix} \cdot \begin{bmatrix} 2,-3 \end{bmatrix} \cdot \frac{\begin{bmatrix} 2,-3 \end{bmatrix}}{\lVert \begin{bmatrix} 2,-3 \end{bmatrix} \rVert^2} &= \frac{2\cdot5+(-3)\cdot2}{\lVert \begin{bmatrix} 2,-3 \end{bmatrix} \rVert^2} \\ &= \frac{13}{13} \\ &= 1 \end{align*} $$ \part $$ \begin{align*} \begin{bmatrix} 1,-1,3 \end{bmatrix} \cdot \begin{bmatrix} -3,1,1\end{bmatrix} \cdot \frac{\begin{bmatrix} -3,1,1\end{bmatrix}}{\lVert \begin{bmatrix} -3,1,1\end{bmatrix} \rVert^2} &= \frac{(-3)\cdot1+1\cdot(-1)+1\cdot3}{\lVert \begin{bmatrix} -3,1,1\end{bmatrix} \rVert^2} \\ &= \frac{1}{\sqrt{13}} \\ &= \frac{1}{\sqrt{13}} \end{align*} $$ \part $$ \begin{align*} \begin{bmatrix} 1,-1,3,1 \end{bmatrix} \cdot \begin{bmatrix} -2,2,0,0\end{bmatrix} \cdot \frac{\begin{bmatrix} -2,2,0,0\end{bmatrix}}{\lVert \begin{bmatrix} -2,2,0,0\end{bmatrix} \rVert^2} &= \frac{(-2)\cdot1+2\cdot(-1)+0\cdot3+0\cdot1}{\lVert \begin{bmatrix} -2,2,0,0\end{bmatrix} \rVert^2} \\ &= \frac{1}{\sqrt{8}} \\ &= \frac{1}{\sqrt{8}} \end{align*} $$ $$ \begin{align*} \begin{bmatrix} 1,-1,3,1 \end{bmatrix} \cdot \begin{bmatrix} 0,0,\sqrt{2}, \sqrt{2}\end{bmatrix} \cdot \frac{\begin{bmatrix} 0,0,\sqrt{2}, \sqrt{2}\end{bmatrix}}{\lVert \begin{bmatrix} 0,0,\sqrt{2}, \sqrt{2}\end{bmatrix} \rVert^2} &= \frac{0\cdot1+0\cdot(-1)+\sqrt{2}\cdot3+\sqrt{2}\cdot1}{\lVert \begin{bmatrix} 0,0,\sqrt{2}, \sqrt{2}\end{bmatrix} \rVert^2} \\ &= \frac{3+\sqrt{2}}{\sqrt{2}} \\ &= \frac{3+\sqrt{2}}{\sqrt{2}} \end{align*} $$ \end{homeworkProblem} \pagebreak \begin{homeworkProblem} Run Gram-Schmid-orthogonalization on the vectors $$\begin{bmatrix} 12,12,6 \end{bmatrix}, \begin{bmatrix} 2,-2,4 \end{bmatrix}, \begin{bmatrix} -2,-2,1 \end{bmatrix}$$ \solution \part $$ \begin{align*} \begin{bmatrix} 12,12,6 \end{bmatrix} &= \begin{bmatrix} 12,12,6 \end{bmatrix} \\ \begin{bmatrix} 2,-2,4 \end{bmatrix} &= \begin{bmatrix} 2,-2,4 \end{bmatrix} - \frac{2\cdot12+(-2)\cdot12+4\cdot6}{\lVert \begin{bmatrix} 12,12,6 \end{bmatrix} \rVert^2} \cdot \begin{bmatrix} 12,12,6 \end{bmatrix} \\ &= \begin{bmatrix} 2,-2,4 \end{bmatrix} - \frac{144}{144} \cdot \begin{bmatrix} 12,12,6 \end{bmatrix} \\ &= \begin{bmatrix} 2,-2,4 \end{bmatrix} - \begin{bmatrix} 12,12,6 \end{bmatrix} \\ &= \begin{bmatrix} -10,-14,-2 \end{bmatrix} \\ \begin{bmatrix} -2,-2,1 \end{bmatrix} &= \begin{bmatrix} -2,-2,1 \end{bmatrix} - \frac{(-2)\cdot12+(-2)\cdot12+1\cdot6}{\lVert \begin{bmatrix} 12,12,6 \end{bmatrix} \rVert^2} \cdot \begin{bmatrix} 12,12,6 \end{bmatrix} \\ &= \begin{bmatrix} -2,-2,1 \end{bmatrix} - \frac{0}{144} \cdot \begin{bmatrix} 12,12,6 \end{bmatrix} \\ &= \begin{bmatrix} -2,-2,1 \end{bmatrix} - \begin{bmatrix} 0,0,0 \end{bmatrix} \\ &= \begin{bmatrix} -2,-2,1 \end{bmatrix} \end{align*} $$ \end{homeworkProblem} \pagebreak \begin{homeworkProblem} {\large \textbf{Understanding Distances coming from $\ell_p$-norms}}\\ Coding: plot in python or similar the set of points $x \in \mathbb{R}^2$ usuch that $\lVert x \rVert_p = 1$ for \begin{itemize} \item $p = 0.2$ \item $p = 0.5$ \item $p = 1$ \item $p = 1.5$ \item $p = 2$ \item $p = 4$ \item $p = 8$ \item $p = 16$ \end{itemize} Hint: in 2 dimensions for $p=2$ the solution is given by $$x(t) = \left(\cos(t), \sin(t)\right)$$ due to $\cos^2(t) + \sin^2(t) = 1$. you can use the same idea with different powers. You can start by considering $(\cos^r(t), \sin^r(t))$. One thing to node: $\cos(t)^r + \sin(t)^r$ is not always defined for negative values and certain $r$.\\ For $p \neq 2$, you can consider this, thich deals with the signs: $$x(t) = (sign(\cos(t))|\cos(t)|^r, sign(\sin(t))|\sin(t)|^r)$$ for the right choice of r. Find out which $r$ is suitable for a general $p > 0$ such that $\lVert x \rVert_p = 1$. Then plot it in python.\\ \solution \part $$ \begin{align*} \begin{bmatrix} 1,-1,3,1 \end{bmatrix} \cdot \begin{bmatrix} 1,1,1,1\end{bmatrix} \cdot \frac{\begin{bmatrix} 1,1,1,1\end{bmatrix}}{\lVert \begin{bmatrix} 1,1,1,1\end{bmatrix} \rVert^2} &= \frac{1\cdot1+(-1)\cdot1+3\cdot1+1\cdot1}{\lVert \begin{bmatrix} 1,1,1,1\end{bmatrix} \rVert^2} \\ &= \frac{4}{2} \\ &= 2 \end{align*} $$ \end{homeworkProblem} \end{document}