Linear Algebra L1 - Vectors

Alexander Binder

February 17, 2023

Learning Goals

- vectors of real numbers
- · norms of vectors and their properties
- inner products, their interpretation and properties
- · representing a vector as a linear combination
- vector spaces
- · independent sets of vectors
- orthogonal sets of vectors
- · projecting onto a vector, removing the direction of a vector
- · creating an orthogonal set of vectors

Task 1

Compute the euclidean vector norm for vectors

 $[1,0,2], [3,4], [-7,2,-4,\sqrt{12}]$

Task 2

Compute the corresponding unit length vector for these:

 $[3,4], [-1,-2,3], [-7,2,-4,\sqrt{12}]$

Task 3

Compute the inner product between these vectors and their angle in degrees:

$$[3, -2, 2], [1, 2, 2]$$

Compute the inner product between these vectors and their angle in degrees:

$$[1,0,1], [2,1,-2], [\frac{1}{2\sqrt{2}}, -\frac{\sqrt{3}}{2}, \frac{1}{2\sqrt{2}}]$$

Task 4

- What is the projection of [5, 2] onto the subspace spanned by vector [1, 1]?
- What is the projection of [0, 2, 1] onto the subspace spanned by vector [1, -1, -1]?
- Project [5, 2] onto the subspace spanned by vectors [2, 3], [1, 1]
- What is the projection of [1, -1, 1] onto the subspace spanned by vectors [0, 0, -1], [2, 0, 1]? Hint: this one is more tricky. Reason: $[0, -1, -1] \cdot [2, 0, 1] \neq 0$

Task 5

compute these matrix multiplications:

$$\begin{bmatrix} 2 & 1 \\ 3 & -2 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ -4 & -2 \end{bmatrix}$$
$$\begin{bmatrix} -3 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 2 & 4 & -2 \end{bmatrix}$$

Question: Do you need more of them to practice? If so, you can do at home:

[1	2]	[3	0	1]
2	4	0	1	2
ſ	0.5	2	.5]	[6]
Ŀ	-3.5	1	.5	$\lfloor 4 \rfloor$

Task 6

- Project [5, 2] onto the orthogonal space of vector [2, -3]
- Project [1, -1, 3] onto the orthogonal space of vector [-3, 1, 1]
- Project [1, -1, 3, 1] onto the orthogonal space of vectors [-2, 2, 0, 0], $[0, 0, \sqrt{2}, \sqrt{2}]$

Task 7

run Gram-Schmid-orthogonalization on the vectors

$$[12, 12, 6], [2, -2, 4], [-2, -2, 1]$$

Task 8: understanding distances coming from ℓ_p -norms

Coding: plot in python or similar the set of points $x \in \mathbb{R}^2$ such that $||x||_p = 1$ for

- p = 0.2
- p = 0.5
- p = 1
- p = 1.5
- p=2

- p = 4
- *p* = 8
- p = 16

Hint: in 2 dimensions for p = 2 the solution is given by

$$x(t) = (\cos(t), \sin(t))$$

due to $\cos^2(t) + \sin^2(t)$ =1.

You can use the same idea with different powers. You can start by considering $(\cos^r(t), \sin^r(t))$. One thing to note: $\cos(t)^r, \sin(t)^r$ is not always defined for negative values and certain r.

For $p \neq 2$ you can consider this, which deals with the signs:

$$x(t) = (sign(\cos(t))|\cos(t)|^r, sign(\sin(t))|\sin(t)|^r)$$

for the right choice of r. Find out which r is suitable for a general p > 0 such that $||x||_p = 1$. Then plot it in python.