CSC3105_Project/Project_DFT.ipynb

1988 lines
1.3 MiB
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"cells": [
{
"cell_type": "markdown",
"id": "cda961ffb493d00c",
"metadata": {
"collapsed": false
},
"source": [
"# CSC 3105 Project"
]
},
{
"cell_type": "markdown",
"id": "73fe8802e95a784f",
"metadata": {
"collapsed": false
},
"source": [
"# Data Preprocessing and Analysis"
]
},
{
"cell_type": "code",
"execution_count": 39,
"id": "2aa3c6c09e8645d1",
"metadata": {
"ExecuteTime": {
"end_time": "2024-03-21T13:38:52.857175Z",
"start_time": "2024-03-21T13:38:52.843610Z"
},
"collapsed": false
},
"outputs": [],
"source": [
"import os\n",
"\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"import pandas as pd\n",
"import pywt\n",
"import tensorflow as tf\n",
"from skimage import restoration\n",
"from sklearn.metrics import classification_report\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.preprocessing import LabelEncoder\n",
"from sklearn.preprocessing import StandardScaler\n",
"from tensorflow.keras import regularizers\n",
"from tensorflow.keras.callbacks import EarlyStopping\n",
"from tensorflow.keras.layers import Conv1D, Flatten, Dense, Dropout, BatchNormalization\n",
"from tensorflow.keras.models import Sequential\n",
"from tensorflow.keras.optimizers import Adam\n",
"from tensorflow.keras.models import Sequential\n",
"from tensorflow.keras.layers import Dense, Dropout, BatchNormalization\n",
"from tensorflow.keras.callbacks import EarlyStopping\n",
"from tensorflow.keras import regularizers\n",
"from tensorflow.keras.optimizers import Adam\n",
"from sklearn.metrics import classification_report, confusion_matrix, roc_curve, auc\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"\n"
]
},
{
"cell_type": "markdown",
"id": "e7597045d3c34419",
"metadata": {
"collapsed": false
},
"source": [
"# Load the Data\n",
"\n",
"This code block defines a function `load_data` to load the dataset from the specified directory. The function uses the `os` and `pandas` libraries to load the data from multiple CSV files into a single DataFrame. The `os` library is used to traverse the directory and find all the CSV files, while the `pandas` library is used to read the CSV files and concatenate them into a single DataFrame. The function then prints the shape of the original data."
]
},
{
"cell_type": "code",
"execution_count": 40,
"id": "7bcd7cfc8dd11cbb",
"metadata": {
"ExecuteTime": {
"end_time": "2024-03-21T13:38:53.000935Z",
"start_time": "2024-03-21T13:38:52.996670Z"
},
"collapsed": false
},
"outputs": [],
"source": [
"# Define the directory where the dataset is located\n",
"DATASET_DIR = './UWB-LOS-NLOS-Data-Set/dataset'\n",
"\n",
"\n",
"def load_data(dataset_dir):\n",
" # Load the data\n",
" # file_paths = [os.path.join(dirpath, file) for dirpath, _, filenames in os.walk(dataset_dir) for file in filenames if 'uwb_dataset_part7.csv' not in file]\n",
" file_paths = [os.path.join(dirpath, file) for dirpath, _, filenames in os.walk(dataset_dir) for file in filenames]\n",
" data = pd.concat((pd.read_csv(file_path) for file_path in file_paths))\n",
" print(f\"Original data shape: {data.shape}\")\n",
" return data\n"
]
},
{
"cell_type": "markdown",
"id": "8cdfcf73ad317dd5",
"metadata": {
"collapsed": false
},
"source": [
"# Statistical Analysis and Plots\n",
"\n",
"This code block defines a function `stat_analysis_and_plots` to perform statistical analysis and plot boxplots of the first 15 columns of the data. The function uses the `describe` method of the DataFrame to perform statistical analysis and the `boxplot` method of the `matplotlib` library to plot boxplots of the first 15 columns of the data. The boxplot is used to check for outliers in the data."
]
},
{
"cell_type": "code",
"execution_count": 41,
"id": "9e0b1ed6f23a17cf",
"metadata": {
"ExecuteTime": {
"end_time": "2024-03-21T13:38:53.026070Z",
"start_time": "2024-03-21T13:38:53.021620Z"
},
"collapsed": false
},
"outputs": [],
"source": [
"def stat_analysis_and_plots(data):\n",
" # Statistical Analysis\n",
" print(\"Statistical Analysis:\")\n",
" print(data.describe())\n",
"\n",
" # Plot Boxplot to check for outliers for the first 15 columns\n",
" print(\"Boxplot of the first 15 columns:\")\n",
" fig, axs = plt.subplots(15, 1, dpi=95, figsize=(7, 17))\n",
" for i, col in enumerate(data.columns[:15]):\n",
" axs[i].boxplot(data[col], vert=False)\n",
" axs[i].set_ylabel(col)\n",
" plt.show()\n"
]
},
{
"cell_type": "markdown",
"id": "1dd92fe7b6881ea6",
"metadata": {
"collapsed": false
},
"source": [
"# Channel Impulse Response (CIR) Graphs\n",
"\n",
"This code block defines a function `cir_graphs` to plot the Channel Impulse Response (CIR) for Line of Sight (LOS) and Non-Line of Sight (NLOS) data. The CIR is a sequence of values representing the channel response to a single impulse. It is used to characterize the channel in wireless communication systems."
]
},
{
"cell_type": "code",
"execution_count": 42,
"id": "308d64639b199bc7",
"metadata": {
"ExecuteTime": {
"end_time": "2024-03-21T13:38:53.057656Z",
"start_time": "2024-03-21T13:38:53.050382Z"
},
"collapsed": false
},
"outputs": [],
"source": [
"def cir_graphs(data):\n",
" # Separate the data into LOS and NLOS\n",
" data_los = data[data['NLOS'] == 0]\n",
" data_nlos = data[data['NLOS'] == 1]\n",
"\n",
" # Extract the CIR columns\n",
" cir_columns = [col for col in data.columns if 'CIR' in col]\n",
" data_los_cir = data_los[cir_columns]\n",
" data_nlos_cir = data_nlos[cir_columns]\n",
"\n",
" # Calculate the magnitude and time for each CIR column\n",
" time_los = np.arange(len(data_los_cir.columns))\n",
" magnitude_los = np.linalg.norm(data_los_cir.values, axis=0)\n",
"\n",
" time_nlos = np.arange(len(data_nlos_cir.columns))\n",
" magnitude_nlos = np.linalg.norm(data_nlos_cir.values, axis=0)\n",
"\n",
" # Plot the magnitude vs time for LOS\n",
" plt.figure(figsize=(20, 10), dpi=300) # Increase figure size and DPI\n",
" plt.plot(time_los, magnitude_los, linewidth=2) # Increase line width\n",
" plt.title('Magnitude vs Time for LOS')\n",
" plt.xlabel('Time (ns)')\n",
" plt.ylabel('Magnitude')\n",
" plt.xlim([600, max(time_los)]) # Set x-axis limits\n",
" # plt.ylim([0, 2e6])\n",
" plt.show()\n",
"\n",
" # Plot the magnitude vs time for NLOS\n",
" plt.figure(figsize=(20, 10), dpi=300) # Increase figure size and DPI\n",
" plt.plot(time_nlos, magnitude_nlos, linewidth=2) # Increase line width\n",
" plt.title('Magnitude vs Time for NLOS')\n",
" plt.xlabel('Time (ns)')\n",
" plt.ylabel('Magnitude')\n",
" plt.xlim([600, max(time_los)]) # Set x-axis limits\n",
" # plt.ylim([0, 2e6])\n",
" plt.show()\n"
]
},
{
"cell_type": "markdown",
"id": "531a6ffbad89ba15",
"metadata": {
"collapsed": false
},
"source": [
"# Calculate Total Distance\n",
"\n",
"This code block defines a function `calculate_total_distance` to calculate the total distance for each data point. The total distance is calculated as the sum of the absolute values of the Channel Impulse Response (CIR) columns multiplied by the speed of light in meters per nanosecond.\n",
"\n",
"$$\n",
"\\text{Total Distance} = \\sum_{i=1}^{n} |CIR_i| \\times \\text{speed of light}\n",
"$$\n",
"where:\n",
"- $n$ is the number of CIR columns\n",
"- $CIR_i$ is the $i$-th CIR column\n",
"- $\\text{speed of light}$ is the speed of light in meters per nanosecond"
]
},
{
"cell_type": "code",
"execution_count": 43,
"id": "80cfcfac265d9357",
"metadata": {
"ExecuteTime": {
"end_time": "2024-03-21T13:38:53.077550Z",
"start_time": "2024-03-21T13:38:53.073733Z"
},
"collapsed": false
},
"outputs": [],
"source": [
"def calculate_total_distance(data):\n",
" # Speed of light in meters per nanosecond\n",
" speed_of_light_ns = 0.299792458\n",
"\n",
" # Extract the CIR columns\n",
" cir_columns = [col for col in data.columns if 'CIR' in col]\n",
"\n",
" # Calculate the total distance for each row\n",
" data['Total_Distance'] = data[cir_columns].abs().sum(axis=1) * speed_of_light_ns\n",
"\n",
" return data"
]
},
{
"cell_type": "markdown",
"id": "bfd97fbe797a7067",
"metadata": {
"collapsed": false
},
"source": [
"# Signal to Noise Ratio (SNR) Graph\n",
"\n",
"This code block defines a function `snr_graph` to plot the Signal to Noise Ratio (SNR) for Line of Sight (LOS) and Non-Line of Sight (NLOS) data. The SNR is calculated as the ratio of the 'CIR_PWR' to the 'STDEV_NOISE' for each data point."
]
},
{
"cell_type": "code",
"execution_count": 44,
"id": "4afc8d71b3271351",
"metadata": {
"ExecuteTime": {
"end_time": "2024-03-21T13:38:53.117354Z",
"start_time": "2024-03-21T13:38:53.112375Z"
},
"collapsed": false
},
"outputs": [],
"source": [
"\n",
"def snr_graph(data):\n",
" # Separate the data into LOS and NLOS\n",
" data_los = data[data['NLOS'] == 0]\n",
" data_nlos = data[data['NLOS'] == 1]\n",
"\n",
" # Extract the SNR values\n",
" snr_los = data_los['SNR']\n",
" snr_nlos = data_nlos['SNR']\n",
"\n",
" # Create a new figure\n",
" plt.figure(figsize=(10, 5))\n",
"\n",
" # Plot SNR for LOS\n",
" plt.plot(snr_los, label='LOS')\n",
"\n",
" # Plot SNR for NLOS\n",
" plt.plot(snr_nlos, color='red', label='NLOS')\n",
"\n",
" # Set title and labels\n",
" plt.title('SNR for LOS and NLOS')\n",
" plt.xlabel('Index')\n",
" plt.ylabel('SNR')\n",
"\n",
" # Add a legend\n",
" plt.legend()\n",
"\n",
" # Show the plot\n",
" plt.show()\n"
]
},
{
"cell_type": "markdown",
"id": "74cbef5687382eea",
"metadata": {
"collapsed": false
},
"source": [
"# Plot Histogram\n",
"\n",
"This code block defines a function `plot_histogram` to plot a histogram of a given feature in the data for Line of Sight (LOS) and Non-Line of Sight (NLOS) data."
]
},
{
"cell_type": "code",
"execution_count": 45,
"id": "22025d6c8281fc09",
"metadata": {
"ExecuteTime": {
"end_time": "2024-03-21T13:38:53.149693Z",
"start_time": "2024-03-21T13:38:53.143648Z"
},
"collapsed": false
},
"outputs": [],
"source": [
"\n",
"\n",
"def plot_histogram(data, feature):\n",
" \"\"\"\n",
" Function to plot a histogram of a given feature in the data for 'NLOS' and 'LOS'.\n",
"\n",
" Parameters:\n",
" data (pd.DataFrame): The data.\n",
" feature (str): The name of the feature to plot.\n",
"\n",
" Returns:\n",
" None\n",
" \"\"\"\n",
" # Check if the feature exists in the data\n",
" if feature not in data.columns:\n",
" print(f\"The feature '{feature}' does not exist in the data.\")\n",
" return\n",
"\n",
" # Separate the data into 'NLOS' and 'LOS'\n",
" data_nlos = data[data['NLOS'] == 1]\n",
" data_los = data[data['NLOS'] == 0]\n",
"\n",
" # Create a figure with two subplots side by side\n",
" fig, axs = plt.subplots(1, 2, figsize=(10, 5))\n",
"\n",
" # Plot the histogram for 'NLOS'\n",
" axs[0].hist(data_nlos[feature], bins=30, edgecolor='black')\n",
" axs[0].set_title(f'Histogram of {feature} for NLOS')\n",
" axs[0].set_xlabel(feature)\n",
" axs[0].set_ylabel('Frequency')\n",
"\n",
" # Plot the histogram for 'LOS'\n",
" axs[1].hist(data_los[feature], bins=30, edgecolor='black')\n",
" axs[1].set_title(f'Histogram of {feature} for LOS')\n",
" axs[1].set_xlabel(feature)\n",
" axs[1].set_ylabel('Frequency')\n",
"\n",
" # Display the plots\n",
" plt.tight_layout()\n",
" plt.show()\n",
"\n",
"# Usage:\n",
"# plot_histogram(data, 'First_Path_Power_Level')"
]
},
{
"cell_type": "code",
"execution_count": 46,
"id": "ac4db13fed3f9916",
"metadata": {
"ExecuteTime": {
"end_time": "2024-03-21T13:38:53.190705Z",
"start_time": "2024-03-21T13:38:53.186718Z"
},
"collapsed": false
},
"outputs": [],
"source": [
"def plot_features(data, labels, feature1, feature2):\n",
" reds = labels == 1\n",
" blacks = labels == 0\n",
" plt.scatter(data[reds][feature1], data[reds][feature2], c=\"red\", s=20, edgecolor='k')\n",
" plt.scatter(data[blacks][feature1], data[blacks][feature2], c=\"yellow\", s=20, edgecolor='k')\n",
" plt.xlabel(feature1)\n",
" plt.ylabel(feature2)\n",
" plt.title(f\"Plot of data: {feature1} versus {feature2}\")\n",
" plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 47,
"id": "9d9ee6b43c102fd9",
"metadata": {
"ExecuteTime": {
"end_time": "2024-03-21T13:38:53.209130Z",
"start_time": "2024-03-21T13:38:53.205232Z"
},
"collapsed": false
},
"outputs": [],
"source": [
"def plot_learning_curve(history):\n",
" plt.figure(figsize=(10, 6))\n",
" plt.plot(history.history['loss'], label='Training Loss')\n",
" plt.plot(history.history['val_loss'], label='Validation Loss')\n",
" plt.plot(history.history['accuracy'], label='Training Accuracy')\n",
" plt.plot(history.history['val_accuracy'], label='Validation Accuracy')\n",
" plt.xlabel('Epoch')\n",
" plt.ylabel('Loss / Accuracy')\n",
" plt.title('Learning Curve')\n",
" plt.legend()\n",
" plt.show()\n"
]
},
{
"cell_type": "markdown",
"id": "69413268ac5b549d",
"metadata": {
"collapsed": false
},
"source": [
"## denoise_cir Function\n",
"\n",
"The `denoise_cir` function uses the Discrete Wavelet Transform (DWT) to denoise the Channel Impulse Response (CIR) values. The DWT is a linear transformation that operates on a data vector whose length is an integer power of two, transforming it into a numerically different vector of the same length. The DWT of a signal `x` is calculated as follows:\n",
"\n",
"1. **Wavelet Decomposition:**\n",
"\n",
" The input signal `x` is passed through two complementary filters and emerges as two signals. The filter outputs are decimated by 2 (down-sampled) to get the approximation coefficients (cA) and detail coefficients (cD).\n",
"\n",
" The approximation coefficients represent the high-scale, low-frequency component of the signal, while the detail coefficients represent the low-scale, high-frequency component.\n",
"\n",
"2. **Thresholding:**\n",
"\n",
" The detail coefficients are thresholded to remove noise. The thresholding function `T` applied to the detail coefficients `x` is defined as:\n",
"$$\n",
"T(x) = x * I(|x| > \\text{{value}}) \\quad \\text{{for 'hard' thresholding}}\n",
"$$\n",
"\n",
"$$\n",
"T(x) = \\text{{sign}}(x)(|x| - \\text{{value}})_+ \\quad \\text{{for 'soft' thresholding}}\n",
"$$\n",
"\n",
"where $I$ is the indicator function that is one if the argument is true and zero otherwise, $\\text{{value}}$ is the threshold value, and $(x)_+$ equals $x$ if $x > 0$ and zero otherwise.\n",
"\n",
"3. **Wavelet Reconstruction:**\n",
"\n",
" The original signal is reconstructed from the approximation and detail coefficients."
]
},
{
"cell_type": "code",
"execution_count": 48,
"id": "fe3089568e99a58d",
"metadata": {
"ExecuteTime": {
"end_time": "2024-03-21T13:38:53.233683Z",
"start_time": "2024-03-21T13:38:53.230379Z"
},
"collapsed": false
},
"outputs": [],
"source": [
"def denoise_cir(cir_values, wavelet='db1', level=1):\n",
" # Perform wavelet decomposition\n",
" coeffs = pywt.wavedec(cir_values, wavelet, level=level)\n",
"\n",
" # Set the detail coefficients to zero\n",
" for i in range(1, len(coeffs)):\n",
" coeffs[i] = pywt.threshold(coeffs[i], value=0.5, mode='soft')\n",
"\n",
" # Perform wavelet reconstruction\n",
" denoised_cir = pywt.waverec(coeffs, wavelet)\n",
"\n",
" return denoised_cir\n"
]
},
{
"cell_type": "markdown",
"id": "9fa7435148a660ec",
"metadata": {
"collapsed": false
},
"source": [
"# Discrete Fourier Transform (DFT)\n",
"\n",
"The `perform_dft` function performs a Discrete Fourier Transform (DFT) on the Channel Impulse Response (CIR) values. The DFT is a mathematical technique used to transform a sequence of complex numbers into another sequence of complex numbers with the same length. It is widely used in signal processing to analyze the frequency components of a time-domain signal.\n",
"\n",
"Here's a step-by-step breakdown of the function:\n",
"\n",
"1. **Extract the CIR values**: The function takes a DataFrame and the column names of the CIR values as input, and extracts the CIR values.\n",
"\n",
"2. **Perform DFT on the CIR values**: The function uses the `numpy.fft.fft` function to perform the DFT on the CIR values. The DFT is computed along the second axis of the array (axis=1), which corresponds to the columns of the DataFrame.\n",
"\n",
"3. **Take the absolute values of the DFT**: The DFT operation returns complex numbers, which can be difficult to interpret and visualize. Therefore, the function takes the absolute values of the DFT, which gives the magnitude of the frequency components.\n",
"\n",
"4. **Return the absolute values**: The function returns the absolute values of the DFT.\n",
"\n",
"The mathematical representation of the DFT is:\n",
"\n",
"$$\n",
"X[k] = \\sum_{n=0}^{N-1} x[n] \\cdot e^{-j(2\\pi/N)kn}\n",
"$$\n",
"\n",
"where:\n",
"- $X[k]$ is the $k$-th element of the DFT.\n",
"- $x[n]$ is the $n$-th element of the input sequence.\n",
"- $N$ is the total number of elements in the input sequence.\n",
"- $j$ is the imaginary unit.\n",
"\n",
"The reason for using the DFT in this context is to analyze the frequency components of the CIR values. This can provide valuable insights into the characteristics of the wireless channel, such as the presence of multipath propagation."
]
},
{
"cell_type": "code",
"execution_count": 49,
"id": "cef7ba14c54b52d8",
"metadata": {
"ExecuteTime": {
"end_time": "2024-03-21T13:38:53.264050Z",
"start_time": "2024-03-21T13:38:53.261341Z"
},
"collapsed": false
},
"outputs": [],
"source": [
"def perform_dft(data, cir_columns):\n",
" # Extract the CIR values\n",
" cir_values = data[cir_columns].values\n",
"\n",
" # Perform DFT on the CIR values\n",
" dft_values = np.fft.fft(cir_values, axis=1)\n",
"\n",
" # Take the absolute values of the DFT\n",
" dft_values_abs = np.abs(dft_values)\n",
"\n",
" # Return the absolute values\n",
" return dft_values_abs"
]
},
{
"cell_type": "markdown",
"id": "e1edd5ef4f54e752",
"metadata": {
"collapsed": false
},
"source": [
"## deconvolve_cir Function\n",
"\n",
"The `deconvolve_cir` function applies the Richardson-Lucy deconvolution algorithm to deconvolve the Channel Impulse Response (CIR) values. \n",
"\n",
"In the context of signal processing, deconvolution is the process of reversing the effects of convolution on a signal. Convolution is a mathematical operation that blends two functions together and is often used to describe the effect of a linear time-invariant system on a signal. Deconvolution, therefore, attempts to recover the original signal that was convolved with the system's impulse response to produce the current signal.\n",
"\n",
"The Richardson-Lucy algorithm is an iterative method for deconvolution. It is particularly suitable for cases where the impulse response of the system (also known as the Point Spread Function, or PSF) is known, and the noise is Poissonian (such as in astronomical images). \n",
"\n",
"The algorithm works by iteratively refining an estimate of the original signal. In each iteration, it performs a prediction step where it convolves the current estimate with the PSF to predict the observed signal, and a correction step where it computes the ratio of the observed signal to the predicted signal, convolves this ratio with the PSF, and multiplies the result with the current estimate to get the next estimate.\n",
"\n",
"This process is repeated for a fixed number of iterations, or until the estimate converges to a stable solution. The result is a denoised estimate of the original signal.\n",
"\n",
"The mathematical formulas involved in the Richardson-Lucy deconvolution algorithm are as follows:\n",
"\n",
"1. **Prediction Step:**\n",
"\n",
" The current estimate of the latent image `x` is convolved with the PSF `h` to predict the observed image `y`. This can be represented as:\n",
"\n",
"$$\n",
"y = h \\ast x\n",
"$$\n",
"\n",
"where $\\ast$ denotes the convolution operation.\n",
"\n",
"2. **Correction Step:**\n",
"\n",
"The ratio of the observed image $y$ to the predicted image $y'$ is computed, then the PSF $h$ is convolved with this ratio and multiplied with the current estimate $x$ to get the next estimate $x'$. This can be represented as:\n",
"\n",
"$$\n",
"x' = x \\cdot (h \\ast \\left(\\frac{y}{y'}\\right))\n",
"$$\n",
"\n",
"where $\\div$ denotes element-wise division and $\\ast$ denotes the convolution operation.\n"
]
},
{
"cell_type": "code",
"execution_count": 50,
"id": "670e8c2cf19126ea",
"metadata": {
"ExecuteTime": {
"end_time": "2024-03-21T13:38:53.286019Z",
"start_time": "2024-03-21T13:38:53.282665Z"
},
"collapsed": false
},
"outputs": [],
"source": [
"\n",
"def deconvolve_cir(cir_values, psf=None, iterations=50):\n",
" # If no point spread function is provided, create a simple one\n",
" if psf is None:\n",
" psf = np.ones((5,)) / 5\n",
"\n",
" # Perform Richardson-Lucy deconvolution\n",
" deconvolved_cir = restoration.richardson_lucy(cir_values, psf, num_iter=iterations)\n",
"\n",
" return deconvolved_cir"
]
},
{
"cell_type": "markdown",
"id": "b61e454327e5acbf",
"metadata": {
"collapsed": false
},
"source": [
"# Clean the Data\n",
"\n",
"This code block defines a function `clean_data` to clean the dataset. The function performs the following steps:\n",
"\n",
"1. **Drop Missing Values**: It drops any rows with missing values in the dataset.\n",
"2. **Drop Duplicate Rows**: It drops any duplicate rows in the dataset.\n",
"3. **Convert 'NLOS' Column to Integer**: It converts the 'NLOS' column to integer data type (0 for Line of Sight (LOS), 1 for Non-Line of Sight (NLOS)).\n",
"4. **Calculate 'RX_Level'**: It calculates the 'RX_Level' feature using the formula.\n",
"5. **Replace Zero Values in 'RX_Level'**: It replaces zero values in 'RX_Level' with the median of 'RX_Level'.\n",
"6. **Calculate 'First_Path_Power_Level'**: It calculates the 'First_Path_Power_Level' feature using the formula.\n",
"7. **Calculate 'SNR'**: It calculates the 'SNR' feature as the ratio of 'CIR_PWR' to 'STDEV_NOISE' for each data point.\n",
"8. **One-Hot Encode Categorical Features**: It one-hot encodes the categorical features 'CH', 'FRAME_LEN', 'PREAM_LEN', and 'BITRATE'.\n",
"9. **Denoise 'CIR' Columns**: It denoises the 'CIR' columns using the `denoise_cir` function.\n",
"10. **Drop Columns with Only One Unique Value**: It drops any columns that have only one unique value.\n",
"11. **Print the Shape of the Cleaned Data**: It prints the shape of the cleaned data.\n",
"12. **Return the Cleaned Data**: It returns the cleaned data."
]
},
{
"cell_type": "code",
"execution_count": 51,
"id": "685463c2d6065b08",
"metadata": {
"ExecuteTime": {
"end_time": "2024-03-21T13:38:53.333469Z",
"start_time": "2024-03-21T13:38:53.324565Z"
},
"collapsed": false
},
"outputs": [],
"source": [
"def clean_data(data):\n",
" print(\"Starting data cleaning process...\")\n",
"\n",
" # print(\"Before Cleaning\")\n",
" # stat_analysis_and_plots(data)\n",
"\n",
" # Calculate total number of missing values in the data\n",
" total_missing = data.isnull().sum().sum()\n",
" print(f\"Total number of missing values: {total_missing}\")\n",
"\n",
" # Data has no missing values\n",
" data = data.dropna()\n",
" print(\"Missing values dropped.\")\n",
"\n",
" # Data has no duplicate rows\n",
" data = data.drop_duplicates()\n",
" print(\"Duplicate rows dropped.\")\n",
"\n",
" # Convert 'NLOS' column to integer data type (0 for LOS, 1 for NLOS)\n",
" data['NLOS'] = data['NLOS'].astype(int)\n",
" print(\"'NLOS' column converted to integer data type.\")\n",
"\n",
" # Print line where CIR_PWR is 0\n",
" print(f\"Line where CIR_PWR is 0: {data[data['CIR_PWR'] == 0]}\")\n",
"\n",
" # Calculate the expression inside the log10 function\n",
" expression = (data['CIR_PWR'] * (2 ** 17)) / (data['RXPACC'] ** 2)\n",
"\n",
" # If the expression is 0, set 'RX_Level' to 0\n",
" zero_indices = expression == 0\n",
" data.loc[zero_indices, 'RX_Level'] = 0\n",
"\n",
" # For the rest of the data where the expression is not 0, calculate 'RX_Level'\n",
" # First, update the 'expression' and 'data' to exclude zero_indices\n",
" expression = expression.loc[~zero_indices]\n",
" data = data.loc[~zero_indices]\n",
"\n",
" # Now, calculate 'RX_Level' for the rest of the data\n",
" data['RX_Level'] = 10 * np.log10(expression) - data['PRFR']\n",
"\n",
" # Calculate the median of 'RX_Level'\n",
" median = data['RX_Level'].median()\n",
"\n",
" # Create the boolean mask on the same DataFrame 'data'\n",
" zero_indices = (data['RX_Level'] == 0)\n",
"\n",
" # Replace zero values in 'RX_Level' with the median\n",
" data.loc[zero_indices, 'RX_Level'] = median\n",
"\n",
" print(\"New feature 'RX_Level' created.\")\n",
"\n",
" # Calculate new feature 'First_Path_Power_Level'\n",
" data['First_Path_Power_Level'] = (10 * np.log10(\n",
" (data['FP_AMP1'] ** 2 + data['FP_AMP2'] ** 2 + data['FP_AMP3'] ** 2) / (data['RXPACC'] ** 2))) - 64\n",
" print(\"New feature 'First_Path_Power_Level' calculated.\")\n",
" data.drop(['FP_AMP1', 'FP_AMP2', 'FP_AMP3', 'RXPACC', 'PRFR'], axis=1, inplace=True)\n",
"\n",
" # Calculate SNR as the ratio of 'CIR_PWR' to 'STDEV_NOISE' for each data point\n",
" data['SNR'] = data['CIR_PWR'] / data['STDEV_NOISE']\n",
" print(\"New feature 'SNR' created.\")\n",
" data.drop(['CIR_PWR', 'STDEV_NOISE'], axis=1, inplace=True)\n",
"\n",
" plot_histogram(data, 'First_Path_Power_Level')\n",
" plot_histogram(data, 'RX_Level')\n",
"\n",
" # One-hot encode categorical features\n",
" categorical_features = ['CH', 'FRAME_LEN', 'PREAM_LEN', 'BITRATE']\n",
" encoder = LabelEncoder()\n",
" for feature in categorical_features:\n",
" data[feature] = encoder.fit_transform(data[feature])\n",
" print(\"Categorical features one-hot encoded.\")\n",
"\n",
" # Extract the 'CIR' columns\n",
" cir_columns = [col for col in data.columns if 'CIR' in col]\n",
" # cir_data = data[cir_columns]\n",
" print(\"'CIR' columns extracted.\")\n",
"\n",
" # Convert 'CIR' columns to float\n",
" # cir_data = cir_data.astype(float)\n",
" print(\"'CIR' columns converted to float.\")\n",
"\n",
" # Denoise 'CIR' columns\n",
" # denoised_cir_data = cir_data.apply(denoise_cir)\n",
" # denoised_cir_data = cir_data.apply(deconvolve_cir)\n",
" denoised_cir_data = perform_dft(data, cir_columns)\n",
" print(\"'CIR' columns denoised.\")\n",
"\n",
" # Replace original 'CIR' columns with denoised data\n",
" data[cir_columns] = denoised_cir_data\n",
" print(\"Original 'CIR' columns replaced with denoised data.\")\n",
"\n",
" # List of columns to check for unique values\n",
" columns_to_check = ['CH', 'PREAM_LEN', 'BITRATE']\n",
"\n",
" # Iterate over the columns\n",
" for column in columns_to_check:\n",
" # If the column has only one unique value, drop it\n",
" if data[column].nunique() == 1:\n",
" data = data.drop(column, axis=1)\n",
" print(f\"Column '{column}' dropped due to having only one unique value.\")\n",
"\n",
" # Print the shape of the cleaned data\n",
" print(f\"Cleaned data shape: {data.shape}\")\n",
"\n",
" # print(\"After Cleaning\")\n",
" # stat_analysis_and_plots(data)\n",
"\n",
" print(\"Data cleaning process completed.\")\n",
"\n",
" # Return the cleaned data\n",
" return data"
]
},
{
"cell_type": "markdown",
"id": "8323170f6733d41d",
"metadata": {
"collapsed": false
},
"source": [
"# Load and Clean the Data\n",
"\n",
"This code block loads the dataset from the specified directory and cleans the data using the `load_data` and `clean_data` functions. It then prints the first few rows of the cleaned data and the column headers."
]
},
{
"cell_type": "code",
"execution_count": 52,
"id": "79c2c23691b26753",
"metadata": {
"ExecuteTime": {
"end_time": "2024-03-21T13:38:57.839279Z",
"start_time": "2024-03-21T13:38:53.345725Z"
},
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Loading data from pickle file...\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA08AAAHUCAYAAADiABOzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAADF1klEQVR4nOzdd5QTVcMG8CfZ3ikLiKKoKEiRIrxgAcWOioqA/bMXRLBXQMUCgoiIVEGKVEG6iAJSpZelN+m9be+7ySbz/bFsNmUmmUkmmUzy/M7xyGZm7txpd+6d2wyCIAggIiIiIiIit4xaR4CIiIiIiEgPWHgiIiIiIiKSgYUnIiIiIiIiGVh4IiIiIiIikoGFJyIiIiIiIhlYeCIiIiIiIpKBhSciIiIiIiIZWHgiIiIiIiKSgYUnIiIiIiIiGVh4IiIKcgcPHsR7772H2267DU2aNEHbtm3x7rvv4sCBAw7rffrpp2jQoAGWLVsmGs5zzz2H5557zmV95/9atGiBhx9+GBMnTvQYt0WLFuHOO+9EkyZN8MUXX/h2oCIaNGiA4cOHy1o3LS0Nb731Fm677TbceOONuPvuu/HZZ5/hyJEjkuu/8cYbaNOmDZo0aYL27dujd+/eOHXqlJqHoNimTZvQoEEDbNq0SXIdb671XXfdJWv/WVlZGDRoEDp06ICmTZvilltuwQsvvIC//vpLdP3s7GwMGDAA99xzD5o0aYLWrVvjhRdewD///CNrf0REehKpdQSIiEjaoUOH8OSTT6J58+b47LPPUL16dZw/fx5Tp07FE088gcmTJ6N58+YO2/Tt2xetWrVClSpVPIZfo0YNjBgxwva3IAjIyMjAjBkzMHDgQMTExOCZZ56R3P7rr7/G1VdfjYEDB6JWrVreHqbPxo4diyFDhqBt27bo3bs3atSogRMnTuC3337DY489hgEDBuChhx6yrb9hwwa8+uqruPfee9G/f38kJSXh5MmTmDBhArp27YpZs2bhqquu0ux45FJyreU4cOAAXn31VURGRuL5559H48aNkZ+fj+XLl+ODDz7AkiVLMHjwYERFRQEASkpK8Oyzz8JiseD1119H3bp1kZ+fj7///hs9e/ZE79698cILL6gSNyKiYMDCExFREJs4cSKqVq2KX375BZGRlUn2Pffcgw4dOmDUqFEYO3as7fe4uDjk5ubim2++wQ8//OAx/OjoaJfCFwC0b98e99xzD+bOneu28JSTk4PbbrsNbdq0UXZgKlq5ciV++OEHvPXWW+jZs6ft99atW6NTp0744IMP8Omnn6J+/fq4/vrrAQA///wzmjZtiqFDh9rWb9OmDe644w7ce++9mDhxIvr27RvoQ1FE6bX2pLi4GG+++SZq1KiBSZMmITk52bbsnnvuwZ133om33noL11xzDd59910AwOLFi3HkyBEsWbIEV199tcP6JSUlGDZsGP7v//4PERERPsePiCgYsNkeEVEQy8jIgCAIsFqtDr/Hx8ejd+/eeOCBBxx+r1atGl5//XX8+eefWL58udf7jYqKQlxcHAwGg+jyiqZlADBy5Eg0aNAAp0+fBgCsW7cOzzzzDFq2bIk2bdrggw8+wLlz52zbzp07F40aNcKsWbNw2223oXXr1jh8+LDXcR0xYgSuvfZa9OjRQ/Q4vv76a0REROCXX36x/V5xXp3VrFkTn332GW677Ta3+zxw4AB69uyJm2++GY0bN0a7du3Qr18/lJSU2NZp0KABpk2bhj59+qB169Zo0aIF3nnnHWRkZDiENWPGDNx///1o2rQp/u///g9nz56VddxqXesKc+fOxZkzZ9C3b1+HglOF++67Dw8++CB+/fVXFBYWAoDtWJzvTwDo1q0b3nzzTZhMJp/jRkQULFh4IiIKYu3bt8fZs2fx1FNPYdq0aThy5Igt09+hQwc89thjLtt0794dDRo0QN++fZGTk+NxH2VlZbb/TCYTTp8+jQEDBuDYsWPo1KmT6DaNGzfGzJkzAQBdu3bFzJkzUbNmTcyfPx8vv/wyateujSFDhqBXr17Yvn07nnzySWRmZtq2t1gsmDBhAvr3749evXqhXr16yk8Oyvvn7NmzB3feeadkQa9KlSq49dZbHQoY7du3x/bt2/Hcc89h9uzZDv2cHn/8cdxzzz2S+7x48SKeffZZFBcXY+DAgfjll1/w0EMPYcqUKZg8ebLDuj/++COsViuGDBmCjz/+GCtXrsS3335rWz516lT07dsXd9xxB0aNGoVmzZrh888/l338Sq+1O2vWrEG1atVEayIrPPTQQyguLsb69esBAO3atUNkZCReeOEFjBgxAjt27IDZbAYANG3aFK+88gri4uJ8ihcRUTBhsz0ioiD2zDPPID09HePHj8fXX38NAKhatSratm2L559/Hk2bNnXZJioqCgMHDsTjjz+Ofv36YfDgwZLhnzlzBo0bN3b5/eqrr0bfvn3x9NNPi26XmJhoy2RfdtllaN68OaxWKwYPHoy2bds6NCO76aab8OCDD2L8+PH4+OOPbb+/8cYbaN++vZzT4Db+AHDFFVe4Xa9u3bpYvnw5cnNzkZKSgnfeeQf5+fmYPXs2Nm/ebDuOO+64Ay+++CKuvfZaybAOHjyIhg0b4qeffkJiYiIA4NZbb8W6deuwadMmvP7667Z169evjwEDBtj+3rVrFxYvXgygvH/ZqFGj8OCDD6J3794AgLZt26KgoAAzZsyQdfxKrrUnp0+f9ngeK/qBVZz3Bg0a4Mcff8RXX32F4cOHY/jw4YiNjUWrVq3QtWtXl5pRIiK9Y80TEVGQe+edd7BmzRr88MMP6Nq1KxITE7Fw4ULbgBFiGjVqhNdeew0LFy7EihUrJMOuUaMGZs+ejdmzZ2PChAlo1aoVatasiYEDB+KZZ56RrM0Rc+zYMaSnp6Njx44Ov1911VVo0aKFrZBSoWHDhrLDllJRC1cxgIGUij43FetHR0fj66+/xurVq9G/f388/PDDsFqtmDlzJh555BEsXbpUMqy2bdti6tSpiImJweHDh7F8+XKMHj0aWVlZLk3UnGtxLrvsMhQXFwMAjh49iszMTNx5550O6ygtcMi91p4IguDQr06M83kEypvzrVq1CuPGjcPLL7+MevXqYf369Xj33Xfx9ttvizaPJCLSKxaeiIh0ICUlBR07dkT//v2xbNkyzJs3D/Xq1cP333+P7Oxs0W3efPNN1K9fH1988QVyc3NF14mOjsaNN96IG2+8EbfddhvGjRuHpKQkvPbaazh27JiiOFY0G0tNTXVZlpqaivz8fIff4uPjFYUvpqKmpKImRMqpU6eQkJDgMipdjRo10LVrVwwePBhr1qzBpEmTULVqVXz55Zei/XgA2GrYWrdujYceegjffPMN9u/fj5iYGJd1nZusGY1GW2Gi4ppUrVrVJU5KybnWnlxxxRUez2NFv7bLL7/c4feoqCi0a9cOn3zyCebOnYtVq1bhvvvuw5IlS7Bq1Sqv4kNEFIxYeCIiClIXLlxA27ZtMWvWLJdljRo1wnvvvQeTySQ5L1F0dDQGDBiA7Oxs9O/fX9Y+4+LiMHDgQBQWFqJXr16Kag0qCibOAyIAQHp6ukshQQ3Vq1dH8+bNsWTJEsnCTkFBAdatW2eb52jnzp22ZnbObr75ZrzyyivIzMyULJSOHTsWv/76Kz777DNs3boVq1atwrBhw1CtWjVFca84H/Z9wQB41XfJm2vt7K677sLFixexbds2yXUWL16M2NhY24AaTz31FHr16uWyXq1atWzx8GUwECKiYMPCExFRkEpNTUVkZCSmT5+O0tJSl+VHjx5FTEwM6tatKxlGkyZN8Oqrr2LBggXYt2+frP02bdoUTzzxBLZv34758+fLju8111yDGjVq4M8//3T4/dSpU9ixYwduuukm2WEp0bNnTxw7dgxDhgxxWWaxWNC3b1+UlJTg1VdfBVDen6u4uBiTJ08WLXAdO3YMNWrUkCwMpaWl4brrrkOXLl2QlJQEoLyge/DgQckCnJirr74atWvXtvWBqrBy5UrZYdjz5lrbe+SRR1C3bl188cUXogXHlStXYv78+Xjuuedsfb2uuOIKLF68WLQAX1FzWb9+fcVxISIKVhwwgogoSEVERODLL79Ejx490KVLFzz77LOoV68eiouLsW7dOkybNg3vvPMOUlJS3IbTo0cPLF++HIcOHZK973fffRd///03fvjhB9x77722zLI7RqMR77//Pnr16oUPPvgAjzzyCLKzszFixAikpKTgpZdekr1/ezt27MCvv/7q8nu7du1Qr149tGvXDp9++ikGDRqE/fv3o0uXLqhZsyZOnz6N3377Dfv370f//v1xww03AChvAvnJJ5+gb9++eOaZZ/DEE0/gyiuvRH5+Pv755x/MmzcPgwcPluzv1bRpU9v8Ws2bN8eJEycwZswYmEwmW38mOQwGAz788EN88MEH+Oyzz9ChQwfs2LEDv/32m1fnCXB/rQsKCkTP4+WXX4777rsP8fHxGD58OLp164ZOnTrhpZdeQqNGjVBcXIwVK1Zg9uzZuPvuu/HOO+/Ytn3vvfewadMmdO3aFc8//zxatGgBo9GI3bt3Y8KECbj99ttx++23e308RETBhoUnIqIg1r59e/z+++8YP348fv75Z2RlZSE6OhqNGjXCjz/+iPvuu89jGBVNup588knZ+61atSreeecdfP311xg5ciQ++eQTWdt17twZCQkJGDNmDHr06IHExES0a9cO77//vld9eQBg7dq1WLt2rWgcK4Y4f+mll9CiRQtMmjQJ3333HbKyslCjRg3cdttt6N+/P6677jqHbZ966inUrVsXkydPxpAhQ5CTk4OEhAQ0bdoUkyZNcjvpb7du3ZCdnY3Jkydj5MiRqF27Nh599FEYDAaMGTMGeXl5ovMkienYsSOMRiNGjRqFBQsWoH79+vj666/x/vvvKzhDldxd69zcXIeR/yrccssttvuoQYMGmDt3LqZOnYrZs2fj9OnTiI2NxQ033IBBgwbhoYcecti2Tp06mDdvHsaMGYOFCxfil19+gSAIqFu3Ll555RU8//zzigYdISIKdgaBw+AQERERERF5xD5PREREREREMrDwREREREREJAMLT0RERERERDKw8ERERERERCQDC09EREREREQysPBEREREREQkAwtPREREREREMrDwREREREREJEOk1hHQWmZmPrSeJthgAKpXTwqKuJA6eE1DE69r6OE1DU28rqGH1zT0BNs1rYiPJ2FfeBIEBMUFA4IrLqQOXtPQxOsaenhNQxOva+jhNQ09erumbLZHREREREQkAwtPREREREREMrDwREREREREJEPY93kiIiL1CYIAq9UCq9WqdVTcMhiAkpISmM2moG9zbzQaYTRGwGAwaB0VIqKwxcITERGpqqzMjNzcLJjNJVpHRZasLGPQF/IqREfHIjm5GiIjo7SOChFRWGLhiYiIVCMIAjIzz8NoNCIlJRUREZFBX1MSEWGAxRLc1U6CIMBiKUNBQQ4yM8+jZs06QX9eiYhCEQtPRESkmrIyMwTBipSUGoiOjtU6OrJERhpRVqaHmqcYREREICvrAsrKzIiKitY6QkREYYcDRhARkeoMBr5e/IHnlYhIW0yFiYiIiIiIZGDhiYiIiIiISAb2eSIiIgLQtm0rDBv2M266qZXkOlu2bMTkyRNx4MA+REZGoWHDRnjuuZfQokVLl/UmTBiLgwf/Q2RkJJo0aYbXXuuOG25o6O/DICIiP2LNExERkQyLFv2Bjz9+D82b34Rx46Zg1KhxaNCgId57rwcWL15kW+/Agf349NMPcO+9D2DSpBkYPXo8LrvsMrz99hs4d+6shkdARES+Ys0TERGRBxkZ6Rgy5Du8//4nePjhTrbfu3XrgZSUFAwZMgj/+18bVK+ein/++RutW9+Mzp0ft6334Ye9kJa2FcuWLcVzz70Y+AMgIiJVsOaJiIj8ThAEFJstAf1PENSbu2np0r+RmJiIhx56xGVZ165PISIiAsuXLwVQPiLe4cOHkZ2dZVvHYDBg6NCRePTRx1SLE8kXN3woknq8DuhkMmQiCl6seSIiIr8SBAGvztiJXWfzArrfZpcn45enmqkymeyBA/tRv/4NMBpdvzlGRkaiUaMm2LdvLwCgY8dHsWDBHHTp8jBat26DVq1a45Zb2uKKK+r4HA/yTuI3XwAASp58Bubb22sbGSLSNdY8ERGR3/lefNFWXl4ukpKSJZcnJSUhLy8XAHD11ddg7NhJaN/+LuzYsQ1Dhw7Gk092wueff4qSkpJARZlEGIqLtY4CEekca56IiMivDAYDfnmqGUrKAttkKjbSqEqtEwAkJ6cgMzNTcnlGRjpSU2vY/r7mmmvxxRffoKysDHv27MKyZUuxcOE8VK+einff/VCVOBER+WrvuTz8tu0Mera7Bpclx2odHV1g4YmIiPzOYDAgLipC62h4rVGjxpg+fQrMZjOioqIclpWWluL48aNo1+4OAMCIEUNx//0P4vrr6yMyMhLNm9+E5s1vQkJCAtatW6NF9ImIRL04fQcA4GJ+KcY+1VzTuOgFm+0RERF5cM89HVBSUoJ582a5LJsz53eUlppw9933Ayif4+mvvxa6rJeYmIQqVar4O6rkjt7bjxL5yckcNimWizVPREREl+zfvxcmk8nht+bNb0Jqaio++OATfPddPxQWFuLuu+8FACxbthRTp/6Kjz7qjdTUVADACy+8ii+/7I3o6Gjcd98DiIqKxK5dOzF9+mT06dM34MdERETqYeGJiIjoktGjh7v8NmPGPNSpcyXuv/9B1KhRE1OmTMTMmdMBAI0aNcEPPwxHixYtbevfddc9iI6Owm+/TcX8+bNhNpehXr3r0KvXF2jb9o6AHQsREamPhSciIiIAa9du9bjOTTe1wk03tfK4Xtu2d7CgRES6oea8eKGOfZ6IiIgoPHg5+qKVGUsiuoSFJyIiIiIJff8+gE7jNqPIZNE6KkQUBFh4IiIiovDgRQ3SX/su4lxeKVYdzvBDhIiCg1pz4oUDFp6IiIiIPGDLPQpl7PMkHwtPREREFB74dZ2IfMTCExEREZEHAvhlnohYeCIiIiIiIpKFhSciIiIiD9glhIgAFp6IiIgoXLDPExH5iIUnIiIiAG3btsKXX/Zx+f2vvxaia9eHHdbbtm2r27C2bNmIt97qhnvvbYcHHrgL77/fE9u3p4mu1737y7j77ttw//134IMP3saBA/t9PxhSHSuegl/c6BGo2v5WGDIztY4KhTAWnoiIiC5ZtmwJ0tK2+BTGokV/4OOP30Pz5jdh3LgpGDVqHBo0aIj33uuBxYsX2dY7cGA/Pv30A9x77wOYNGkGRo8ej8suuwxvv/0Gzp076+uhEIWdxL69EblvD+KHDtY6KhTCWHgiIiK6pHbtyzFkyHcwm81ebZ+RkY4hQ77D++9/glde6Ya6da/GNddci27deuCNN3piyJBByMwsn2z1n3/+RuvWN6Nz58dRp86VuPba6/Dhh71QrVp1LFu2VM3DogpsthcWDKZSraNAIYyFJyIi8j9BAAoLA/ufFz38X3utO9LT0zF9+mSvDnPp0r+RmJiIhx56xGVZ165PISIiAsuXlxeMDAYjDh8+jOzsLNs6BoMBQ4eOxKOPPubV/omIyL8itY4AERGFOEFAlY73IWrLpoDu1tz6ZuQsXKKotiE1tQZeeeV1jB07Cvfe2wGXX36Fon0eOLAf9evfAKPR9dtkZGQkGjVqgn379gIAOnZ8FAsWzEGXLg+jdes2aNWqNW65pS2uuKKOon2SAr4MmcdOT0ReMZVZsf9CPprUTkaEUf+1v6x5IiIi/9NRc6muXZ9CnTpXYagX/Sby8nKRlJQsuTwpKQl5ebkAgKuvvgZjx05C+/Z3YceObRg6dDCefLITPv/8U5SUlHgdf6Kwp6P0Jhz0/nM/Xp2xE+M3ntA6KqpgzRMREfmXwVBeA1RUFNj9xsd7lYmKiIjAhx9+ijfffBX//rtK0bbJySnIdDPSV0ZGOlJTa9j+vuaaa/HFF9+grKwMe/bswrJlS7Fw4TxUr56Kd9/9UHHcyQMfMtUCq56IvLL6SHmaOGPbWbx+69XaRkYFLDwREZH/GQxAQoLWsZDtxhub4aGHHsFPPw3GM888L3u7Ro0aY/r0KTCbzYiKinJYVlpaiuPHj6JduzsAACNGDMX99z+I66+vj8jISDRvfhOaN78JCQkJWLdujarHQxQyBAGJH7wLyzXXorjnO1rHhsIQm+0RERGJ6N79LZSUFGPGjKmyt7nnng4oKSnBvHmzXJbNmfM7SktNuPvu+wGUz/H0118LXdZLTExClSpVvI43+Ycv3aVIPZFbNyNuykQkfv251lGhMMWaJyJvCQLbVXvpeGYRqiVEITk2yvPKRBpJSamC7t3fwsCB/XDZZbUdlu3fvxcmk8nht+bNb0Jqaio++OATfPddPxQWFuLuu+8FACxbthRTp/6Kjz7qjdTUVADACy+8ii+/7I3o6Gjcd98DiIqKxK5dOzF9+mT06dM3MAdJpDOGwkIZK4XXu9l49AisV14FRAX3OzVUmr6y8ETkhYSvv0DM/DnIXvYvhGrVtY6OrhzPLMLjv24FAGz54HaNY0Pk3kMPPYpFi/5Aenq6w++jRw93WXfGjHmoU+dK3H//g6hRoyamTJmImTOnAwAaNWqCH34YjhYtWtrWv+uuexAdHYXffpuK+fNnw2wuQ71616FXry/Qtu0d/j2wMCX41OeJdCOMqgmjFy1EykvPwtTuDuTOca3JJvWx8ETkhfgRQwEAcePGoOjj3tpGRme2nsrROgpEotau3erym8FgwOjREzyu5+ymm1rhpptaeVyvbds7WFAiIq/FTRgLAIhes1rjmIQP9nki8kUYfd0iIiLShTBrtkeBxcIThYzY8WMQ85v8jt2qYAJNREQUtGbtOIuPFuyFqcyqdVT8gx9xA47N9igkGM+fQ1KvjwAA6U88DUREaBwjksLyJhHpEbOo+jRo+WEAwJ/7LqBz09oe1ibyjDVPFBIMBQUa7Vh5SUAQBLw3bw++WfKfHyJEREQU3sQGBiksLdMgJgGg0hdJVmDJx8JTuCouRvy3XyNym+eOz7oT5CnAkcwirD2ahT/2XNA6KppgxVN4EIL8OdQrnlcN8dxTMOJ9GXAsPIWp+J8GI2HoYFTtcJfWUQFQPnz17B1nUWb1MhHQKkfuxRcfq7fHGCLC++hDX8SlJrMmU6nGMQlNFec1IoKt7r3DzzdE5BumvmEqcv9+raPgoGLeH5PFimda1vEtsEB+hWEHHiIHRmME4uISUVCQDQCIjo6BIcifE6vVAIsluIv1giDAZCpFQUE24uISYTTy22egBfcdQmFLpfQ1yJPpoMLCU7gK0mre3WfzgZae13Nh99Qv2H0Ov+2+iKGPNcFlybHqRY5UEWrpc+S2rbDUuQpCzZpaRyVoJCdXAwBbASrYGY1GWK36GIkrLi7Rdn6JSL4gzfYEDZ4f+Vh4Cluh+5QMXHYYZRGR+HHVUXz3SCOto0MhLHLbVlvT1/SLeRrHJngYDAakpFRHUlJVWCzB3UnbYACqVk1AdnZh0GceIiIiWeNERKQxTQtP//zzD3r27Onw2/33349hw4Zh37596Nu3Lw4ePIjrrrsOX331FZo0aWJb788//8TQoUORnp6Otm3b4ptvvkG1avwap3/q5V5KQ3VOB70LobYBUWvXaB2FoGY0GmE0RmsdDbcMBiA2NhZRUeagLzyRCkIo/SEibWj6Cevw4cO48847sXbtWtt//fr1Q1FREV5//XW0atUKc+fORYsWLdCtWzcUFRUBAHbt2oU+ffqgZ8+emDlzJvLy8tCrVy8tD4WCiCGQtWp8EYc3Xn+isMHCtY6IpM28fKQWTQtPR44cQf369VGjRg3bf8nJyfjrr78QExODjz/+GPXq1UOfPn2QkJCAxYsXAwCmTp2KBx54AJ06dcINN9yAQYMGYfXq1Th16pSWh0MaEkR60gQkX8vMc3jj9SciIr2yWBBnKtE6FrqjeeHp6quvdvl9586daNmypW2EJoPBgJtuugk7duywLW/VqpVt/dq1a+Pyyy/Hzp07AxHt0BDCn9AMoXtoFGxYeCIKG3y16BvnSHNV9a7bsP/HrkguKdA6KrqiWZ8nQRBw7NgxrF27FmPGjIHFYkGHDh3w9ttvIz09Hdddd53D+tWrV8ehQ4cAABcvXkRNp5GtqlevjvPnzyuORzDkfSrioFVcguEc2PMmPgaj+EZ+PzaDQXQf7q6pfX9vseWCICDtVC6ur5GAlLgodeIZROwPOdjuPU+cr6v9fae3Y6FyWqe/5B9S19Vg8P5aG0TCo8ARu6ZS10PsWvly7fWi4vgiN22E5eprINSq5Xb9yP37AAC3ntiJTVXb+/38CIL49QuW6yI3HpoVns6ePYvi4mJER0dj6NChOH36NPr164eSkhLb7/aio6NhMpkAACUlJW6XK1G9epL3B6GygMYlKsL2z9TU4DkHMTFR3sUnN9H2z4o+T9HRkX4/toSEGCS42YfYNU03V379Eovf3G2n8f7vu1ArOQabet+jTkSDSFJS5fDVwXTvKWG7rgkxtt/0eixULpjeBaQe5+uakhIPePmsJiTGhNxzXmQqw/AVh3F/48vQ/MoqWkdHluTkeNu/pa5HXHwM4pyWxcWH3vUDAERWfpFNTU0CVq8GOt5X/oOC2jaj0eD382M0iO9Db+mvZoWnK664Aps2bUJKSgoMBgMaNmwIq9WKjz76CK1bt3YpCJlMJsTGls/ZExMTI7o8Li5OcTwyM/M1b8FmMJTfOGJxidi/D8nPP42iT3qjtOuTqu0z2VSGiuJnRka+auH6qqTU7FV8jFkFcB5r0WQq89uxpV76f2GRCcUi+3B3TbOzC23/FovfH9tOAwAu5JV6H3+LBYkfvANzy/+h9LkXvAvDTwoKKttXB9O9J4fzdY0tMqGi2K63Y6Fy7p5V0i/n61qRZufmFsHs5bNaUOBDmhykRvx7DL9uPoXRq45g64e3ax0dtyquaV5eEZIv/eZ8PSquc3GxCYVOy4qKQu/6AUCy2eKQn4v/YxHi7f52J9Xu31ar4PfzYxUc9xFs6W9FfDzRdKjyKlWqOPxdr149lJaWokaNGsjIyHBYlpGRYWuqV6tWLdHlNWrUUBwHQQie7j9icUns0Q0Rx48hqftrKOmiXuHJfjfBcvwVvImPIHFA/j42wWBwuw+xa2r/t9Uq2Pr2SW3vjehFCxE7bTJip01Gyf8FV+HJ/piC7d6Ty9N1Jf0JpncBqcf5uvpynQVBCLl75HBG+ce8mDITjLt3w9K4SfC0oZIg5x0iiCwL2Wfc7noJgvf5O7Fz5g9i+9DbtdFswIg1a9agTZs2KC4utv22f/9+VKlSBS1btsT27dttnfsEQcC2bdvQrFkzAECzZs2QlpZm2+7cuXM4d+6cbXkoMZQUe17JG0F6l3qdZAd5Ym8vEFE15uT4fyde0s+VkkHiYh7PKkJOkTnAkSEij/TyrhAEJL32IhLf7RGQ3U2b0QfV7roNMbNmBGR/pCIV8nOGIM0TBivNCk8tWrRATEwMPvvsMxw9ehSrV6/GoEGD8Oqrr6JDhw7Iy8tD//79cfjwYfTv3x/FxcV44IEHAABPP/00FixYgFmzZuHAgQP4+OOP0b59e1x55ZVaHQ6pRI3HN6DzPPkB0zB9O51TjMcnbsW9ozdoHRUi0injqZOIXTAXcdOnAKWlft9fqzP7AQCx0yb7fV8UnHTyWSEoaFZ4SkxMxPjx45GVlYUuXbqgT58+ePLJJ/Hqq68iMTERY8aMQVpaGjp37oydO3di7NixiI8vb8XZokULfP311xg5ciSefvpppKSkYMCAAVodiu59OH8vLFad59hFviYyISC/E7nvdp3N0yAiRBRSLBatYxByQvbDpF5qU0OIpn2err/+ekycOFF0WdOmTTFv3jzJbTt37ozOnTv7K2rBIwAPxeojmdhyMhs3X+085II+BXaeJ9+uj+BzCKSpEH9pGS+cR8R/B2Bud0fIHyuFCR/u45DNfJO+qXRj8vaWT9NJcklDTg+byRIcj43uXk5+yFCqcgp0dyL1SQjxAkW1pg1QpesjiP5nsdZRISKSTyRtFlR4uxryclH19jaIH9jP57BIv1h4IgChldfWe5+nUBdS5Y2QOhhXFZ2Io1av1DgmRNoLxTdLaKdg6ov9dTwiD+xHwpBBWkelUoi/h4IRC0/hKkhLS16nAVolHn7YbygngxmFJpSWBee9R27w5UxEOqdGtsdgDsJRVIM0PxfKNO3zRDKEWaZFlcTtUiDu5k8KFoJIp6dQTQbP5ZXgkV82ax0NlQX/PaYKHTxLRP4WqmlzaGKaRf7Dmqdgxy8K8uio5skQpon6hmNZWkdBfSxUEGnObLHir30XcDHf/0N6a4L5gOARjNeC76GAY81TmArlCdGYjFDAhM1LK1yOk/Ro0uZTGLP+BFJiI7Gsx61ehRG5PQ1CZBQsNzZVOXZe0iptCZm8getxhMqRuQiZa6YfrHkKdmGTOVNfQM6cF9dHjRF/dEkH9/K6Y1noOHYTtp7M0ToqwUUH147C1/pLtdq5JWVebW/Iz0PV++9EtbvbAmXehaE6ZojVp8YpDdG0MDSPyn9YeApXLglz6CTUehptTyymQhi+NAVBQL+lBzE97bSm8Xh37h5cyC9F91m75G0Qoi9SF+FynBT6xCZUz7JrUuxmQADN0mY/Pn966BvsHT8dVwi/n8Mx7+EtNtuj0KCjF0C49nlyd9RbT+Vgwe7zAIBnWtYJTITUIDaXSCi+f3T0fBGRfMwwEynHmie6JDgyR6rUqgfyZRCsmUqdvRCLTBato+CdYL3+aguX4yQKdyH8rIdtk3lSHQtPwS5gCZnOE5UQTvDDg06vn1gTIJ0eilsheVBEFLLN9sKlVYBKBATuXoidNhnVmt2AiH17A7I/f2DhKVyFQSoSkHTA132EwXWQI5Te37ykREHMh8RGs2dbR4lKxJFDiJ04DjCZtI4KKWBA4JpwJr3XExHnziLp3TcDsj9/YJ+nMBNx5BAsda/RVWIc1EIp1+9n7s6Ubs9iuFz/cDlOAgBE7tiGiBPHUfpoZ62jEhjB+D7U6TNX7ZaWAABDQQGK33pX28hQcCvTaXN9sPAUVmLmzkLyG6+g9O57tY6KX+l9Dit9xz7MsNkehaCq97UHAGRfeRXKbmqlbWSCCNNm+aK2bESx1pFwosr103n+gtTBZnthJG7sKABAzPJ/XJbpPj3QKnPHTKVs7k6Vbk+jhu3qOUoW+VvE4UNaRyEwdJsA+QHTFQoQPX/oZuGJgooaGUK9z/NE5MnG41m4d9QGrDqUEZgdMnNJREQEgIWn8GJfMAm1XLueap6YD3Wh17mvBI3uu7fm7EFuSRk++mNfQPan1XESqUKPX7gDFGe/PdlBeM6DL0bBQ8+1QFpg4SnYhVmmRY2hMoM+EQjy6GlCr7d5uDyfYXKYFKZkvjM0ayrrx3QmZF9HYucs2PMGQSB2/FikdHoQhvw8v4QfKpeAhScKKmq+nFYfzlQtLPKdXmuXiCiEeCqIBOMHkVDJcVLQS+r1IaLXr0Xc6BFaRyWosfAUrkI4Ma549QXiCH1tzuS3y6Cz6xuE2RV5gjGj5Q/hcpxEbqw7loX+Sw+ixByAIZYD9MzxySbANS9jKCrSKCb6wMIThQY9Ze50FNVA0dPlc6DbiCsVLsdJIUmlj0lpp3Ixf/d5TEs7rUp4IS0I00Z9fVIMAzr7yGuPhaeg568ESHDzl74FtM9TEL4gKIDC5fqHy3H6KGr9WsR/1x8oK9M6KuoIx+su4/1xPq/Up13ETp6IqDWrfQoj6GmdMQ7He9cHLvkmra9fkGPhKZyE8sOg2bGpm0AbLl7E7ev+RKy5xMeAgvDF4W6ep8DFQl3BeJ79IVyO00dVOj2IhB++Q+y0yVpHRR2h+M4Qu5cDeH9Hpm1B0ofvoEqXh73aPu1UDp74dSu2n85VOWbubTudg2//OYj8khD5MKAGiwWJ77+F2KmTtI6JPuk4fWHhiUKOnud5qvJoB7w++Vt8tmK8JvHxp5DMfodLoSJcjlMlEUePaB0FkiKWYQtgJi7i1Emftn/j9104llmE12fuVClG8nSbuQvzdp3HyLXHArpfNalyme0Cif57EeKmTkLS+2+pEHCQYZrvFgtP4STAD4Px1EkYcrIDus+AU/mcRh45DAC4/9AG3wLS2RcdjsRHQPkImV0nbMH+C/laR8U3Onv+Qp6S68FMo1unsou1joLX1H4qjbk5KocYZnT8rLHwFE4cJslVORmxWhG19l8YLiUmhgsXUL1lE6TWr6vufmQwhEK+JRSOwYnbdFKvaaj9QYVyhjlAL7kPF+zFiexivD9vb0D25zehci/44bobsjKR+OkHiNy5XfWwAyXgV9eP95OO86/aCJcTFog0TMfpJAtPpIrYKb+iSueOqHL/nQCA+J/DZI4APyWkemp6qAbdvo5YePKL4kAMBe1PglXrGKjDD/d0Yq8PETfhF1S99w7Vw5ZFjXvZl9MSZOlEkEUnKBxKL8CecxKTxIboCQu3PIevWHgKVyonADHz5wAAIi+19Y9esUzV8JXRTyKg1qTAZRYrdpzOhdkSIpk2vWDhKSC7U3Py7IDQW3wDKPLAfq2joD9BVNuhZVTm7z6He4esRkaByavt5T6Wz0zehpem70BOkdn9ikF0XVQXysemAhaegl2AbmDdv+rDPLMyaMVhvDZzJ75fcVjrqISXcCk8aehsbgkeHLMJEzf51tGevBAqGSglzyaf46DVb8khHLpYgNk7z3peWYV7N6PQu0KaHgmatP/Q77PGwhOFnFCY50npMczbdd7h/8GYAXA3KERI5NGC8Jyr5tIFih/0bfk8Rn4QuWkjbj65y+X3kWuOIaPQhFFrj/tlv34RyveCzszfdQ5/7DlX+YMKiY2g40yfMz2mvSaL/86/klpuQY8nL0CMZ88g8eP3EHHwP62j4heRWkeANOLvl7uXiQrzHOXCLUnW62h7gkjNUyhlrGwMBhhyc5AweCAAoLjbmxCqVFUvfLMZVR++DzMA3PjuTCAmxbbIqsPTGdAPOBoxW6zIKylD9YRoraMiKbfYjH5LDyHCasErcjcKswxxGNyqdhQerIdbIRyec28lv/IcotK2ImbWTGQek6op1O+zxpqncBLI51zDRCWgHR+DpObJNYDgS5TcRcmxDOLdscf/8B2q3nELDHkBnDwynJrtmcvE/+0lQ3o6qtzdDrHjxwKmyuYxySWFPoetuQDeC5uOZ+OjBXuRUVAasH0CwFOT0tDh541BPXR16aWBR3SVyS0rQ/KzjyN+6ODK3/QU/2Ah8sKRcxorVrn9aBpqzpqqbpy8VVqK6MV/wZAvMYiFCtTON0Xu3AEAMBYWuFlLv/c1C0/BLggzwSQtctNGRO7Y5nYdXlH3vE1OE77rj8j9exE3drSq8XHPtfCk11o0dxK+/Rrxw39UN8zBAxC1eyeSen3oYU0dvmADmNntOWc3Vh3OxHfLA9vf8eSlQtPqI5kB3a8S/roKal3eKve3R9wvjulV9N9/IuafJYibPkWdnXgQslkMmRcpu8iE1YczUOZUxT15Vl/U6/sRIvbslgw3UM32Er75AinPP4Xk/3vSq+0jDuxH3MhhQEmJ2/V0mNJqhoWnILZg9znklXgY7UWusjJE+XNejSD6MhbQeZ7sEk9DdhaqPnwfqt7XHrD6Nuqd3oYNjdy4AXHDfvT5uFVRptIzo5ROm+0N//coOo/fjIJS97VJ8aOHq7pfQ7HnGouP/9iHZQczVN1vQGiQHl7ID2zNk24FUWkhavs2JPb5xOE3Oc9FuFPzCr4wbTs+XLAP07eeBuD66EZcOCeyVWDF/jYNABC9YZ1X21e7vQ0Sv/oM8SOGqhgr7+jt/SiFhacglV1kQr+lh3Ahz/2XArliJ01w/ME5hVD9ZR/gB0Srwpvdi9iYafcF1k18AhJTp/0nP/8UUh5/1G/nqeoj9yOxX1/EzJ3lc1hBVA73LASa7U3echqnckowZ6f2mQSg/MNBxWldeUiHBSdAN59wy6wC9pzLc/nqrgSHkQ8veq5ZF7vy5/LKPzqsOiwzrQmiwrdSnlrFBJyOn0UWnoJU0aW22mpVC0evX+v4g683rcfttUtg9FRrIxVTVdvoFxQgZvFfiF69EsbTp9QLV0TEEe+aDjmUQVSKS0CIFJ70mrmwBvhF5pC26ThDIkrrTIHM/f+48ghemr4DgwM6xUHgr7Wid4KMc+fT1fUUfqg9C1rxdtAqlx/cfGgOoWtlELQZrFyvWHgKUupXBKkXYPygb1G9yfUwnjld+aNKiYiuMs6A9HG7Od+BTqAMQmVTOk9Ns7RiEOk7pAs+jLY3dv1xvDV7N8qCZGJjTU+7nq65HFoej8WCKg/cheRXnve46u87ykfBCmytY+DOTajdVuQbd/cDbxUN6LjwycJTCDmVXYwuE7Zg/i7/vggTBg+EMf0i4r8f4Nf9eEuzmicV0wF/JSmzdgRH0yxn9scrmM22t1yJ2RLwGhFF7Pu8KbzvftlwEhtPZHvucF9UhIS+fRC5cYM3MdSe2Yy4YUMQuT1N1uqCbuvu7InfC4bcHBjPnvHrniN3bkfUtjTELJzv1/3olo4zbFTOr5fQ+X0TSveLu+4EBg1yTsH8bveAhacQ8u2yQziZXYz+/xzSOipeC6FkyjdqJip2YZWUWdQL1w/iTcW4rHE9pHTuiIyCUrQbtg49ZrlOnBqUvGy2Z/JQ8xQ/7AfEjx6Oqo/c73XU5PBXR964X8chsd+XqHr/nbLW11OzW0kSz2/q9VehevOGMFy86L99B8OgLWHOYhW87wsmllnXcSZTMyLnsd6uDYgfMojnk3zGwlOQk9sKtaC0DFtP5sgOV5U+NX7oLK9GKF6PticIiP5nsbJ+QV4025Ozmt8ykEb5j3zU2n+R8kQnGI8dVWXXcuZ5and8O4z5eYhetwZL/0sHAGw9FcB5m5RSYZJcT7dK5CG7jyGWICn8KnjeI/bv87xSKH3dlSFyj04+CPhF4K51xbOo9gis7oIrMVvwyC+b8OECiftexXvdkJ6u+iAABrNGo5UGwMv9uiNhYD9EL1oouY4AINZsN1AXC1okgoWnELHkgMpfMgUByS8/h4SvPpdex+1LQH+j7UX/vQgpzz6B6jc19i4AL16KpjIr/j2SiSKTHzPFdudGSQyrdO6I6FUrkNztJfXjJMXuMiafP43kEncT7AWBAI+2V61NC7/VLDCPoCINTiavnw9UPHmbTmTjYoEJ/0o1x/VyXxar4PKeSG1cD1Xva4/IbVu9ClNMVNoW9yvIfYkE8Q0Zcfqk5LKonTtwYEhX5YHqvNCpyUTSQXyPeMLCU4jweA96GJrcefPIbVsR8+cCxI/8yee4BZq3tTZR69d4sTPfMs+DVhzGB/P34rNF+x2DVR4TWQxeFPCM588r2YH0IoVH9dJL92HXT0+hXoZ/Rwj0iUNnLf+Mtmc/Kl3EyeMwnlen39rpnGKc92UqBF9rwUK5tkkHmQLt+hJqfG5KSxE3bAgi9u31S/D+Oq3PT92GO4aLz/MTtWa1f3YapJxTDjXv5cTB3vXlTr2qpksrDePZM34f4Za0wcJTiFA7vTaYTDJWCrHMjyHwj8M/l5qmrTmaFZgdBuk1c1eoWz6+u7ymX3byS8rw87rjOJ5Z5GvU5AvQJLnJr77gcxiFpjI8Nn4LHv5ls+03JbGO3rAWqddejtipk3yOS/nOK/c+ZeZnuDrztJuVdcAfw1GXlHhVYC0xW/D6zJ2YtNkxE6eD8p1q7D+oxQ8fisR+X6Ja+1u8D1DtkycjvIPphdILgzRdD4RzeSXoMHojxqw77lM4si+pxIoGiwXxI+w+NpvNqN68YXlLFp8nPvYQOR09zA5R1fF9y8JTiPA87VLAB8gO8P7seJuQREQo35Wf5qrxVxW6XpOqqHX/Klr/h5WHMX7jSTz+q3rNWURpMElu1NbNnldyErlrBxI/fg+GjPKJINMLRD6OKIh+8msvwlBcjKT331IcF0+uyT6HH2d8pXq4YrKLTJi29TQyC0pVDfd0dhEsPkw868xQkI/Ua2qjyr13eF7Z6T6cv/s8tp/OxYg1x7zYsV5TjHJij2Tkzu3KN3JexctlUiI3baz8w6tzHrjrFGx3xJh1x5FdbMa4jdJN8VyodV+7a2lRXPnhzpjlYURVD8yW4CgcCYKAFQfTcTbXrsWC2YyIo17OE6ejQp8zFp5ChMeRfTw029NUQZD0a1EwmIKNF4mw1CZHM918WVTK/vra93mS2PfOM7nYeUZiYIYAZKDU3sPuc/kqhyhBhdl9/f3hI7HXh6h6z+2I+3U8kj5699JOReKhZXMqp2Oske9bZkOujxbsw4+rjqL7VHU73e86nYN5Kk4ZEbVhHQwWC6K8GGiitMyHPnJ+eU9onP0We55UTOM8njGRc2rM93FQnAAWct0d3x97FDTxDjKy73S5H8wCmcfyx/UXif8//6Xjk4X78ei4yg94KU8+hmo334TohQvUj0MQY+EpRGiT7XFX6yIvRvHfD0CNay/HfQfL57DxenhX8Vgp403hSYoXx1Fsrszk+Gu0PbHmcaVlVrw6YydenbETxWb/DVzh7rqonfarcR/JIuNFuuVkNmZuOyM/TmXqTmQcN36s7d8RB5Q1f1SFxMWNPCL9tVLt0dGk7DybBwDYfFz9ZrPbT7vJEOu8RkfXgvDU/7DyCErcpb3+aAaqshKzBd8sOah1NCp5e06Ufoh2XKhuXCpC9bS93HeLh/U8BbNNJE2LXlveKiTu13Hy4hAiWHgKch4fmor1FAccHEOVJ1yaaLff0lG+xUWF4xF8LDzJHVZeenhyu3+rmXn0cG7sC0z+HPVPzq2sVqFRxRZT8kmc5zdn7cbglUeQJjHkun2NT1LPbqh+wzUwZAam5iUgJM5L1CbvJ/01HjuKKne3Q8y82V6H4VeC4GEw0sDdoFLRUCsGyg9F/WP3prZH0XLfVvfoVE5J5Yi53mS0g6DwVCaS6FqsAs75MiiNDGpdCq/OoLvz7qe5GgPG13tKzvbB1AJKIRaedMiQnYWYWTOAoso2tQH70q4DXvcXMmr/AqoQyJqnYBCcsVLIw3131kMmwnjuLGJ//w3GvFzE/jZVzZhVcjfDfAAL7J54uv+TPnwHUbt3Irnby+U/lJWpegAWq4D+Sw963QzJgMA/a1JHbzAAMeZS3H14E1CosGlwkKYXQc2L+1CAeOGjwu87zrgPwIfrpPQ+VbJ2n0X78cgvm7FU7alU/ED1N679faDic1RaZsWzk9Pw/XK7mnuVwlergkv5yvrDwlOQErvvJmw8iTKLFSlPd0Fyj9eR2Psj3wJ0t1jOja/iVxe/TQqriIoZBTfHL3Xa/JZPcejzFPqZoTIrcCbXv187Rfn4skjoLzFIQoAumUvsvTwe4/lzqNbsBsQP7OdznKQYCuz6tJlMqHZTY1R58G7Vwl91OAPzd5/3uhmSQfBQD+3P51Dksn27dCTGz/kGyT272a0n4/rqpM+TohC1TgNF9+8+TiP+Pe5FmOq742gaeg99B8aTJ2RFYfnB8gFqpmzRYPRMObOy+3Efh9ILZK2n1MpDGTiYXojfd5yt/NEfz2kgCj9aP4s+CJrC0+uvv45PP/3U9ve+ffvw+OOPo1mzZujSpQv27NnjsP6ff/6Je+65B82aNUOPHj2QlRWgoZ41NHrdcfy+4yyitqUBAGLnz7EtC7pCvoYPhdcFsQANGCErWH+NtmcX3aUHLqL77zuRVSRjWHp/k3ke3X2drbD9VI6PkfGOzx8AzAG4DkruK4X34C/rT+D1GTsQ88P3iDh/DglDBpUv8GZQFU/n0i7MyN07EXH+HKLS1BtZMbdY+YSXMbNm2P5tgIdmewHWZc8KAEDMoj80jklgid1FpX4euczbJoRB9w4XMWlWX9z431Ykvd1d66jYBON5yysx443fd/slbH/Oz6Y4aF8nbA/GiydTUBSeFi1ahNWrKyd5Kyoqwuuvv45WrVph7ty5aNGiBbp164aiS83Udu3ahT59+qBnz56YOXMm8vLy0KtXL62i71fOt9aRjMpmF2aLFQWl5Z3LFT9QqvR58j2ICnL7C/mVxgNGBOIM2O+jz6ID2HoqF8P/9WIIY5XJOfZFey/g1h/X4N8jjv2BjEePIO6X0ba/T+cEsNZJYlRDMbsvDU7gLggbDXLevtY8jd1wAtvP5OFUttPcWv54Qap0ftod24bJMz/HFblOzYq8CD+5x+uVmwsBqOU1mZD8wjN4casfC0TBVAL0gX1h3H5gHlG+DlXu7aib3m1WLsCXyZgeuGZ4MTOmIfHj93zPqHugZteH9AKT6wegggKkPPkYYidPVG0/Nio8py4hiIRp3z83at0aVL/+Kp/3q1eaF55ycnIwaNAg3Hjjjbbf/vrrL8TExODjjz9GvXr10KdPHyQkJGDx4sUAgKlTp+KBBx5Ap06dcMMNN2DQoEFYvXo1Tp0KnZmc5TzGFouAwSuP+GcPAf4iUJHQSO01fsggxE6fIi8su7grKlR6Mc8TAD917vfT+RdJEPNLREZ382IyTl94SvuN6ReR89kXqJWXgQ/m73VYVv3mFkjs84ntb+eatJ1nct2PZKUWD/fa/N3nRef+8XSlDSXqzkEkm5dpQGCmJFEntzjl9y9w+/HtGPzXj6qH7rdme4KAiH17Efv7b4j5+098uXys523EgvE+BrometzBVEjU6YARBj+V4JLf7o64X8cj+u9FXodxTdYZxJTZvRfcnC/fis52u3Dq8xQ/dhSiVy5H0ofvyNreKbTKvYvtXoManJRnH4cxX/yDYDjQvPD03Xff4dFHH8V1111n+23nzp1o2bKl7cudwWDATTfdhB07dtiWt2rVyrZ+7dq1cfnll2Pnzp0BjXswqPia7euz49XmAZogNGL/PiQM7Iekd3tIriM1yaVzRtsd2aPt2R1r8ltvILXhNYj6dxXUzJ6LjbZnyM5C/A/fibY3d8s+LJFjFHuPpHTu6H4FKe4mDZQRjlRzxYQfB+Pddb9h6szP5Mflkldn7MS78/Z4XtFXcr5Ye/GcxCz2PtPgEy+faTlfMF03Upbxikrbomh9T2oUZMtaL+Lgf4gfPNCxz5UIgx/r0uN+GY1q7W/xywTF3vBntm3U2mPo/ed+VWsFREew1bj5kGAwuI2CkmasgWI8fw4JfT5GxOFDostjli5G22Pb1dtftnddM6JW/IOVv3TDnKnu+4jb3k9+mBNTgAGGPF8KGirdn35stu0VNtvzzoYNG7B161a8+eabDr+np6ejZs2aDr9Vr14d58+Xj3x08eJFt8uVMBiC4z+xuHiMOwQIl4bEdb4FXcNyf5Ma3OzfYCjvA7DuWJZLTY5tfaff5J5jl3iIrGPMzfEY1vsSmeO1R7PkXwe7goXb9UTOZfzwHx3iULGO+PbixAoX9tslvdsDCd/1R9UOd7o9j2LXr4LRw/KKZdEb1knGw+11dHvexI7Z/Tlxdl3WaZf4yJF2Klf2c+jpmO2XOawvWD0/C0aD6/mH6zkQW0+KomOqiJNouILH+1zMl38fwKK9dmmv3aiVYudD6lw7/C0x1Lf4MQkuy+X+Jxa22PNR8V+1tv9DwqBvkfDNF27DMgqC2/35Es+4ET+5nhiUN6lxvbcEGJ0CkLqvPMWz0FSm+FkRPRYF52HiplP457907Dmf73Y9QSIuFYUu+49R9sVauddG7GzLuV6iyyWeq8rzI7pD9wwGt/ExGICk7q8gqfsrMo5N3jlIfvUFxP/yM6p0uAsGg/hgtVN//1z6PCi+9+2ec4fIOsa7QrHZAoMBiPttGgCgyQXHVjou4buZXsAxTo73j8N6guszWLmeOumU2PMDpzjZb+KYHsi5tytXdruuSMHHYV27Zpbu9lOxzJd7RO3/5IiUt5r6SktL0bdvX3zxxReIjY11WFZcXIzo6GiH36Kjo2EylVe7lpSUuF2uRPXqSYq38Rf7uOQJ4lcwNjbK8QejAampSYhPcDwfqalOxxXteKmjIh2bqCUnxzlukxLvENbDA5ZDOHUav++ZZvs9Li4acRXb2IWfmpoERFQWRFKrJ8q+I6OjIl3jnhInfVyX5Ng1PXPek9Q2LpI87weAaNvr6KgInMiprP2quJZi91e2RBVV1aqV57ziBesQj3VrAADGjAykjh4KvPEGUKOGSzipqUlAQkxlXKol2P4dlxDjcmxRkeXXLqG0CKm5F1G9bkOH5RGX7jE5EuJjkCCxblKy69f6inCrliprzy77mvqwjbv1bdfV7jmpVjUBSE1CYlKuZBip1RMRGeH4zSoxKbZ8vZjKZ3vZoQw8KjO+So4rIsKI1NQk5Iic7ri4aMewSuU1F1y07yIW7avsAxHlnBbYpVlScU2tnuj0i/g9J/ZblSoJbpfLYYDjs5qYWFkTJRZm3M7tlWmfGEFAvPP5tJOSEg8oiavdfRZx/pzoKpEREeX7c0ovE+zSgorfAKC0zCL6u72kpDgkpSbhmz/3YfzaY5j6yNVoW8UANGpkWychIQapiVFAdLS8fqP27waZ5yA+Mda2blahCd2npqFryzp4vNWVAIBIu/eZfZinnfvfObGtm5vo+FtCgsQW5WJioiTjnni2Mp0TXcfuPWMvoSJtThZf7k5iUhwS3Z3L9HRgziwAQOzPo4DUVNuimGjXbKCn6xIZGQFsKx+gxZiXi9TUJBSZpCf3joyM8PrZrJBkdx9HRlVe79gY8fRlxrYz6JGaBMS4Hl9iYqzL+YqMKo9jmdP5cHlW4yrzWknJ8Q7rxsZGITY1CVkWx3xI9eqJDtspPRf2KXFyUmV+2RZOlNP9Hx/jug6A6GiR/JUd+2xafHwM4p3WjY2tPAbnfFZ0lNM1tssn2f9uX/iMjDC6zSsFM80KTyNGjECTJk3Qrl07l2UxMTEuBSGTyWQrZEktj4tTnuhkZuZrXnNoMJTfOPZxycoST/RLShxHgSorsyIjIx+FhY4ZnYwMx4xqktkC+1eo2VwG+2JYXl6xwzZRuUVIsQvrXG4JJv/9E646XlkNX1xiRuGlbVLMFlt4GRn5qGKx2m6ujIx8ycJTqtPfJlOZS9wjc4pQReK45JC7TVyRCRWvTLfbWCyi8baXmZmP6nXiRO+v7GzxuVZyciqveUXzNft4VLMKlVXFX3wB04qVyJu1wCWcjIx8xBaUoCI7kJlZgOqX/l1SbHI5NnNZedw3jHoRyUOLkL12M6raH65VQLaHc1hxPgqLSlEssW6+yDxHZ87n4lxuCUrKlBWe/tlxGofTC9G1eW24Fh/FeboPsp36Somt7/ysRuUU2p6TrMx8WBPyUZBfLBlGZmYBIpw+0ebnlyAjIx+JpjJUvBZ3ncnDbZe2db7XlB6X/faWMguyM/KRLZKpLCpyujeKiz3uW4zZ7lpmZOQjscRsO66Mc1n4L7sUtZJicJ3dNhkZ+Q77MkAQPa4MkXOSk+t9+mAfTmZmPpCeAaF6dRQWVN6r9mFWrF9WZkWO076c419aanaJT8U6ublFMCuIq316LKXMYkFGRr5Lein1bjA5PXNix5mfX4zSjHyMX1s+qEzb25oAALI276jcb0YmhMQGKLuxKcy3tkXkzh3ImzUfiIrC0YxCZBWZ0eqqKrb1Xd4NMuTlFiEjozzj9t2yQ9h0LAubjmXhzqvLw7XYFQQrwjQYABjd92OtWDf+x2GIt/+t2H16JHZtbXHNk37+ASAmvxjO2UQBQEFBeToQnVeMZLd7d1VQWIoSqXS3pAzxOTmodenvzIx8CHa5gVKRQo+n63IutxiXoTIDnZGRj2I3E6yXlVm8encDlffiij3ngPgrysOz68NqnyeyT0cEgwEZGflIKi2D4+eD8nPtfL7KzOVxjDeVOWSMc/OKHZ7V+KJS272S73QtS0rLUJCR7/KOz8wqRFyxyfEeU8D+01JevmvalGwqQ7Tdb/ZxtD8nJlMZ8tykW/Z5laJiE4qc1i0pMdmt69g02WS2VIYtCA7h2h+vfRPcMosVuZn5LvlfLVW84z3RrPC0aNEiZGRkoEWLFgBgKwwtWbIEHTt2REZGhsP6GRkZtqZ6tWrVEl1eQ+QrvCeCEDzNLu3jImNEZtt6guBaGeJyTB4CFJy2EezWr/j98rx0x40Mle207UN3aTJsFWRPQOscD5flMs6Lc78Z25+C4LYGTDBUfhF1ux/RDptOf146f+L3l3gcHPqXyohH1OpVosud9+k8V59UfJJN5RnqqBXL3MbNLYXP02szdmLf+Xy8fmtd+Rtd2g4ArqwSh45Oy0T7NMB9vJYeuIg+iw54XL/MzXUVrEL5727CsAqA0XkQptKy8oEkpO5bD7wZaFPOfSM7EfK0L7u/q9epgT6vjMaZGnVwyGk9sW2V/uZLWh65cgVSHu+Eks6PAz0q56gS3afBQx8VofI+EaPkvRO5YxsSP/nA84qCyLNvFVySK6l3jKx7oiJO29KAS9nxOjs3w2CxIGrHdkTtKP+4FrV8GUz3P4Anfi2fVmP2S61Qt1q8LZ7u9imu8nznl1ZmnOXeI05BuawbP3KY42+XfjdbrBi/8aToPtxdW7fxc5P+ez9Sn/j9mFNsxr2jNuAGFGKxxH7EYuMpHgWllvJ+PPZheoqjj8nJ8v8uAi0uhWUfrpt9SMVL7PmVzHsIguM1dbc/VJ5f+3yIIMDhgfPpXHi6v9y8gzzlrxxYBdHz6TZql3aQ0vUR2dvZ8pA+3P9a0KzP05QpU7Bw4ULMnz8f8+fPx1133YW77roL8+fPR7NmzbB9+3ZbCVUQBGzbtg3NmjUDADRr1gxpaWm2sM6dO4dz587ZloeCileeVEbQtl7FOQrmsZOC4ImIXvwXqje8RrRgYCOzgOfr8ah1rWTPBRUE51/KvvPlX6QW7lHeXxEATuUUe15Jhp9WH/W4zu/bz+LWH9dg/ZEM8RW8PM8/rjqKnrP9MyeIT7w8HndbGaxW9NgwC2ZPQ/Ip2bcq97eAuKE/AABi585SITy4H31MbsN6AFXva4+I0wpGknU6H/L35F5Ksd1XaPs+FmLn3+zYQuJ4ljrPqVIVUVM0B5vd8czYdka08OQPPt3FEvfT9tPlTYgzCn2fQy6pVLzFRAVvH8OojetR9ZabELVqhdv1lN7HhsqL72Ld0Sz8vv2MwhDFduIUuMRJqNL5IcT/PMKXHblf7OXouEaJJsA+KSlB9JrV6ocbZDQrPF1xxRWoW7eu7b+EhAQkJCSgbt266NChA/Ly8tC/f38cPnwY/fv3R3FxMR544AEAwNNPP40FCxZg1qxZOHDgAD7++GO0b98eV155pVaHozq5H30rVvOYcCn9hCBn3waRT3hyWK3qz9lgt3+xF2XK80/BmJWFKk91lg7Dp3mefD+famVy3DEaREbbc/5B4lAMebniC2Ryl19Us3znnJmrUpyHy/N8n5fk+xWHYRWAd2fsEF/Bh4PYcjJHUYbaH1xi7+3xiNxjDouD9EOPwSEN8e1aOPXh1o6ba6h0BLudw56u/MNT2q/yBxupU3k4o1DWxNn2lIyDeDTTfZ8pr/hwbr5dPBy//dYLRmtgp5IAgOe2OY766enDbuWK7o835dEHEHnkMKo80Ul2XOyfT6n7uMdG6Y8gG45n4/sV3k7zIo99Ohd58D/1whU57dEb13sVVvJL/+fwdy37+e78lIA5XK0g/rDrieZDlYtJTEzEmDFjkJaWhs6dO2Pnzp0YO3Ys4uPLq/1btGiBr7/+GiNHjsTTTz+NlJQUDBgwQONYq0zGPWUQBNu8Mb7egnJepF4/SvZhW62o2v4WVL29jfwClMIHrE7uRSSUKn/pCR7axyuKjxeJgsOoOD4kKr9vP4tZO86KxkVOepjYt7dLxGIWzEXqdVci/rv+XsdLitFqscXRH8n1jmHPYP3ol2HIkKgxgmMnVkXUajMWYGK1n87R97qQExSlBqUUxtnD6mJDlas53LYYqdD9cjkchymTsYFvx+48YliFpyelofef+xWFJTvT7y4MlS+lYLB72kTiV/E+eGbnEtxycjdannE6ZqmmyirGMcri1DdK5nn0lI748q4LNhfy/DUnn0pN/pw4T/nw4oY5vgcaQtfTHc36PDkbOHCgw99NmzbFvHnzJNfv3LkzOnd2U4ugc3KbdtnuU6X3q6zGq94xnj2DyP37RJcZsrIQeaA84XeXmfXFpFl9URQVg0bvK0wIvJjnyeFnmbuR81Xb6MNr7/sVh/GcxIAjYhkHWQWqj98DACT88B2KPukjvaJTYHE/j4AQn4CS518SXT3GXIrl497A0cuvw/OPuglX3u7cijywD+a2t4uHI/JbxJFDsNaoCSE5xeF3yUyqmlkVfxVAAtEcTkbBQrV9qUbdBvflQxY7nohVhzPxhGp7kMlP59VzAcRxv6rWLDvteuWhDNxY2/uRuvJKzLIHnang7nB8PdbIXTs9rhMhOH14DIIPFlJ5FqNaF18iHK8/fCncj5izuSUOg3tsOJ6F5BPZqJ4QLTpXo9bcF1QFx7RZZF0BQNWiXBRFxwVBmq2toKx5ospme87fLx0z3oJt3iVN+jxJJFoJA75x/EFWTY0K8bETb/biC5BPzfZ8568Z2h2bNCoXcea0V/synjuLxC96l8+oLtEmu+2JHaiTl47bD2zwImb+c13GSVS7pSWqN77O88oV/FQjGTjqNO1V4z5WVBD1R8bRm170Tps7B7H+mHeTfGpK4tw6dllzXWfX6RyHfjZa3/UOnfedlimZSF0Ob4+1omYyfviPHtd1zphnl0gPEy6yIyXRqtzM7l5Q0vRx509P4f8WT/Rqn/ak0gRvanTFtrANXKAgnNHrjrv8tudcRd9Are96Dwpd+7B5KvAlZ2dg+/Bnsfbnl/0UKf1g4SmI5BSZ8f68PVh9OMOWIDgnGM6FJNl9npyokoeTyrQ4dRaWNSyRO4HKcKrUhlv2OhqQ1edJJQa7xHnR3vMB6dOllnaXhuQ3iMx1JHk7qzA6na+MR4/AeMG7wTdceHsPexp4RUa4MWVmj+soCU8plzlMlv6N6k2ul7/9pQmT7QXq7lC1BlTi3G4/k2e3jmvz6xlpZ/D81G2ydhG1ZjUid7uvbfFUu3BOQXMp54z/Dvtjcd6v7FDlM2a7FqKVFEYqtrC37L90ifW0l2gqxrNLJ/kcTjA271OjCagosxmxE8ch4kj5mKTK7w/3Yub8jhrX1BZZYneORY7t+r3lzfxqFOYEbR4nUFh4CiLD/j2KNUez8OGCfTIHjDDY1Twp89/FAqXRE9m9QfzfXoXl2+aq8LXmyd9NJ5R8+ZZa19/nWeIcfL3koLzN1R7IxGGBdNjuLl2vhfL6VHT/fSdyihRk+t3w5mVpyMhA9ZtboPqN9d0FLGnV4UwcTrf7GhlGL0dP913K/z0JY7qyQUdcMvwiuzBcuIDoRQuBMgU1B0q4GzDCh2BNdlVPUl+r0ws81zwZT51ElS4Po+rd5fM9xk74BdVaNoHxqLLO/EpGk1OS4fV0jgRBACwWJD/TFQnf9L20jfutEvt8Inv/clmVpBdevqdcjkreQHOqqdjdHUfT0GvYu37Zh/HUSSSsdDMib4DEjRmFpE/eR7VbWvol/OTur4r+LpUOGi5eRLVWTXH/gnF+iY8esfAURByaOdgKRe4Suspx+JVWXfu787LTzmSs49suVCkT2BeepBKR9HREiL3Y1TifwVCA9JW78yDy0lb7i5o/LDuYLl0osjvczAITftumoImjB9O2nsbec9JfxZ1FHvJtRKeT2cV4enLlFBDe39PBf01FKRhYRYDBZZJZewZBZMAIka+61drfjJSXnkXchLFKYyubwWBQlrn2B4l7KeKU4zDgSZ9+gIhTJ5HU+yOHd5R97JUciT9fc0czC9Hh541YN2EOYpYtLW9uV+T96HxK4uoyl2EQ9Hnyt4pjnjSrr8INRd47Euer6n13eA5P5oXy5UNg1GYtmrFLl4bjh36PiJPHUevcCc/BBHyaCW2w8BSk5E+SK7fmSY12fc6/eTFUuZfzEQSCIKPwlNq4HqrdcbPHsPwyHLOXL0j7uIg2f5ETbpAmckrOSMyfC1CtRSNEbtmkOByr5LSM9mEIHp9bJWdx6OqjeHH6DgVbyCfrcnrdbM/5B+d+m/r338UC3DNqveQw2WJDlYudTmNmJgAgeukSlWPouFOvM9dSo7jZpZViZ8C1ublCZRaHbRyi4cWxKNkiasc2VL3lJkQv+VtyHUEABi47jKwiMxZuq8xQJnz7leK4qcGb6ztx00l8tmi/D2+qwD7Jar5TpQo2Fc+j1+H6tLU76r5/xe8XNy0zgjjfphUWnoLU0Uz3E9JVsA0sEZx523KXIhdx6CBSb6zsNyCWGGp6HHYJyuh//TsHhOjuPa2gwskR646iaoIv8RIX60AP+OeLqdSLMW7iOEScOY2U/6sc86zfkoPo+/cBReFLtoisyKjaLTdbvJvPTPDmtNjtuMwqeL3vyvC83dD5taLfPoJSLAJQbLYit1i8RrK85ik4iokGuO8g75bkSu6HKve5+a3Bf7eEp9rulKe7IPLIYaQ896TLmo0uHMXLWxbAaCkTbb0RtX6dV/F2GKpchHM8ps/8DB/8O0VGwNKhjlp7HGlpB1F97gzEeDPAUpD48NvXEWcq8d8OFF5Qv4xfYxcFVQYHk+iiYH8XnrHvRxgGNZtKsfAUpPadF++TZP9CNgjSNU9Ttrifkb7p+cM+xc9esdmC9AL7xFf84Y4f9K13OwhUxiqicp6nKZv9N6u8VDKkZvrkMDKSyHxaDk2O5JxfHyOXUlKAuHSVBjLwlak8w1toKsOCPefx176LSHfqM+EugyWdnXRd0n74OgUR8/EGsLuOXSdswf2jN3osQF2RexFViiWaBno7kbWHe8WfHb+jVJrZ3vdJcgVlA0aoeU7EhhhWOfNjH56ckOUcXkGpY78vh5onedGSxdOHCbFBYir89evb+GLFL7j93/ni23o7kh2UN6V/a8PMyu29vL6zp36MwX8NRa9VEz2u67yPQDcVlOpbd/2hnXh6p5uaW5nN9g6o0Q/cfrdBMtpe4kfvuf4oVXiyuwdXHkzHrrNumo073686+wDmKxaegpStUOTyAhac1rv0u9N9O+zfY4r3ue10Dj6Yvxdncx2/4kh2xr2UAA1bfRSnc9x8+ZGcFynIvmbYJSi+zk1h8fWrv4/sE0H7lkXGS9fs50tDrN5zaBPGffow2h7b7tf4bBv+LB7udCuqFuX6dT+yXDoH9pfYufWV8/WXvB1E+mXYv5dNFiX3kWD3Ly+eDbu4nMktwZUnDyJjs/N1rVwntTAb635+GTuGPeMxPN94+Zx7UXir0uVh7/YFeHW87vKPrn2epFn8Vs1S8XFNrL+hSh9NROIu+9jtwn984lbpcC+tdzqnGOuPKh/yXe2M7JWnDtn+HQzvMW+P7uqccwCA+w5tdF1YVISo1StdR8+VkF/qp0FPLnF3DaOsbuLo5tnqI2eCZbfPgFOB0n6JL7ecS582+z0qu9/iJo13DVey5snRgQuXCpRKCsphUohi4SlIWWXcgAaHiR19u2EFAeg2cxf+PZLp0oyp0y+ufUTKI1D+QG08ke0SM5fAxTYPki8zNvaFJy8ybvYv0T92X3Cznrrif/wer2yeJ70/kQz+kgPlI4eNm/sNUgpyMPX3z93uw6yoECCtfob7Gr1A3hMO/VWc7tEvVvwiuZ3UF2KxZnsBZbfjhNIi/PXr22j66J2Sqze6cFR2eIp4+rIv8xon9ezm3f694BwnnwcPFUTCcHM+t53KRqmbASh85VUzUHccWu2JNgp0/EukIOTM+SOdWKiPjd+CbImmklpx6d+lxfMvMgWFElaRa5Lc7SVUefxRJHxd/m6wf7+J3U/DViv/YKuImxNrUXj8nfauAgAslTPEu5JRbh3+7b8PIsklPtaSSY0sLIing6K1jM7nJcya9rHwFKTE+iGv+fkV1N+zSXQ9jwNMKEgAzjvNmeHppe7tI2M8ftzLLUXioMpod5VHYhSZu8Qtp/2vUzohpiAg9pjyflbG8+eQMOAbfL5yPKIl5sZxLDx5d56KTfK+Km46kY1tp3NgtlglO9M7xM2r2PjIYEBusRn3jlJ3RCM559b9bapes72qUk3xUD7s7JVD+uOqHPFmlPGDByJ23M/ev/x9zMhViJ090/NKgPRJLSwUH/2stBTJrzyP2OlOfUYUpCENLx7Dp6smIiJP/DyXN9uT/iotltG4kO9bvxPRD262Uf8q91diVtD5W7LVgHtu0+MANBOOOHQQ0Yv/kqhd8z2TJ3UEkXt3o/Hv4yWW+o/vhWPXAGIuDZgRN158JMjIkmKHv49lyeun7S136ZHFGCG5TEzLswfQ2NuuC4LoP124i2/ktq2Sy5ytOJjuEFL7vj2x66envI8/IJpGazKCo45rqVh4CiYOH8Jdb6orcy+g53c97VavfDx9vQddNlfytcXjuL7ibQvFJgvUkv0IUkYfs/VncoowecNx0T4nYmfrrfUz0OzBtsp3VFz5AjMK4pkixzKMfxPE7Wfy0G3mLjzw80a8PXuXX/cFQNEwtPbbLD+obFJJOXeDQShfLxg+wElGQRCQ3P0VXDFuBPr9M9plcZ2c80gY9C2Sen/sQ81TEJwAsxk1rqmN1GsvdxnhM3bqr4hZOB9J7/bwOvgYixlvbJqDGt9+IbpcdKhyP+cTjmSUFxSjNjl+FKh+9ABiLJUfVu4aud73+ATgGtvHb8SaY9h+Wn6T32q3tULyc08hZv1a13D9HPf/jR6IVqf3KtpGMBh8uh6+Nh2Uc07s12kg0oLA3/e3u2ZwbmueJI7tylzp1iH+VrXDXe5XsIvzJwv3o8yu5cfVa5YCAF5O+8O7nQuC48jCUlFQ8YJe9PHDUDBi4SlIyRmq3AABNQqyEbV6JQSlNSVO3LV/l/yC4oeXkH08DHm5iBs7CsZzZ1Xfjyi7BNjXhONcXim+WLAXk7fIm/fng7XTvNuRfcdtGf1yxEbbU1NF8LklZbhY4NpXzvVe0iaj7RwL73omOao4NjXeOf87vRf3HJJoLitF5o6dM9f2EsyVfRdjZk5Xtv9L8kqUN6tSu4mL8WJ5xshgtcJQ7Fj7ZMx2bmbsff+EmL27RX83CJUDRsROmoAq992BpLwAfCwqLETCt19X/i0IePrNxxxWUdQEVyqNt08rfa5xldjG7t9bT+bg9Zk7FYcRvbt8G/v0XO08vljB5bJ85UNe+xQvL97FNQoqnwOxZntKaVmHoLTmyScyT5VXaUpRESKOqjeYl7PolctR9eYWMBbkiy53ab5s+4fngz6VXYxD6eLNCdNO5yiIpT6w8BSk5D53a38ub5fcaMtK1fYt+b6U7LvkzGk9QUBOsRkbnZuyeXijJn70LhI/+xTJPV53u55iUvt1GDDCt2Z7FXYq+FrqiVWkH5ZULO2vidWuJB4MlQK+emrHYtRPP+59AKoOayjdb8oXD/23DuPmfoPL8y6qFqYc9s94Yv+vvArD04SsPnWkFg1QpespePGcuOnPWRFE0kfvImrHdnScO8ZuBf88iFKZIrV5qqlwO2CEzGNXYyL39HzXDziq1Dx5iJqvAw4581RAlfxu5mabK+2a7QbDoBcAsPqwdKHT3TkoC2DhySKzb6I3H4Sqtf0fqt18E6LSHJv1xZuKXdb19ppFHhPv6yoYDC5ps5JH5Xx+CZ6ZvC34pqDxExaegpTcF0eMpbwvyvXb1/u4P08/iJD5ZBkg4LdtZ1BgcmpW5mEf0cv+kRW+UimdHhRf4MNoe85f2/0xHLNY3zM5/ZkcavO83LfchFrpUXuTkRm4ZASWTujpeUU12Z3nnCIzpm08DkO6Y9M/sdH2fFXT7uuwR/b3grv7LxRK0HYi9ylrIiWV7lws8KJpidvT7HieY0pcM0C2dQWt6mC9ZRdbsdH2fJ7nSZ2zMWur65QdgSgoGKQ+vrmZN0uNwqIS9u8L5z5TcgascqFC9D9coPBZvsSqUj9LT8wWK6amyWtN4il/k/xMV8T9PMLht4jT5ferMb3yo1m7Y9sQ6WPLItnsa2jtn0E5A0aEGRaegoj9rVh5X0on9Gpm0Pv+/Z/y/Vx6oIxy2ksLgtsXYkVCvv5YdmU/IRntcr0RvUFi7h0fBow4nF6o/ohWMlgc5v2SKDzJGOkqWKhxT/uj4Pr23D0Of7d/rQtSG9dD5P7Kl72c0facF/3w5w+YPfUjGK0qzOAu47jlDOLhczQ8tA1Vu4le0ofvKNtA4jydsxsoR/ZwwDJqnjSlwrNg8mIUQJcR6Bw79NqtKH2WvI35R3YZ8DI/3u5JBTnosns54kQmmFW75skT+4zuvvP5WLn/PCI3b0KE2QSDYMWUmZWjqe44k+OSDjjfrc6DRgUD9wNGiOcVYn7/TdU4XMgv9dilQu5zH7NsKRK/6O1xvT4rxAcgUTuFcX5vGhTmG1RvURDkIrWOAIlT/uVHwzvX03MlCIgwGGS/yDccz8bt9aor+hSrep8JqxWC4DpiVrCxz9bYx7Tp+cp5SBzmebr0f6VnS7wq3vX8RHo7saqXvLo6Xmx0KN1xJKlml85vjN2IcN7cg132lje3vensARSZLYh1Wq4oRLvn641Nc0RXSS8oxRXKoqiYp2dGSeH21c1zMa51Z1+jBADIKTZj1vazeLnEjASnZVfnnENhdJziMKWuudhQ5UrvjoLSMszZeQ4fKthGSYZKzmX4e/9FfH12g8vIXp4KyHL3FTt1kuJtPFnlpumXUvaFjBi7QtJt6/9C3SN7cM2Zw7iYUNVlO28KT768wewLTy9M247eK8aj6pZ5eCSlKlJqNkBDu2bOnyzYh86FkZLbA971jZU1b5gPvBkwIrlnN5R07qpaHJwvq7uWE8GdcxAn2edJjBofCHRce8WapyCl9AOxx5emH29S5z1HHDrksk6EgtTYFtVAF1zsB1YQfHsV3JB+HL9P+xg3HNrhc7TcsUhUd3XZs8L2b/tLX+XUUdHJRz31U3G241QO7hu9EUv2O/bJeWd95Ze+QM9AL5vIyFZePx4ymspdmXMerU/tEV1mv+2/R7zL9G06no30glLYZ7+e2blYfGWZNcC+Ue+6f7ZygmphfbX4P4zdcAJ/7BYfor3xRfG+AHJGitp91nHI8vKaJ4PLb1LElv2w8ghGrDnmcd9u+ZjurzuWhUKTBYsmvesYrEONt+t2br9C291/sVI1AwaD3zPjcvxtl761sXuGo8pMuOZMeYGyZqFr01rJlgt+ew873muvb5kHAIjJzRadAHfeLudnwOle9WYUUz9Tc6hyb3m6egYZ7wNdUXDNtWh5oyUWnoKU0ponNR9T52dA6pnYf7EABaVl5c+XXXyjdjuNiiQIigpPtqPRMLE2wqr4PWefoZj0e1+0Pr0PXwzxfjjkCsVmC9Yfy5Ks/fHIriT+8HvPIrH3R66rKDjXkbt34n9tG6Pj+gX47K8DkuvJeXn44/Vi/5KX7Hug2s4qj6B+xgnRVdaMeRW/T//U86S0Xuo5ZzceHLMJyw8oG37db7x5bAOQ0dh6MgcAUGz2fE/YH0LnCVukV7wU753OhSe70fYqtNm4RE40bbadylG0vlI+FU48Dhjh+/X01y0RmEyeeOSl3uu+xknJ9oKh/OpULa4cXMQ5VsH4CLt7n7ifJFf8aNRo9uYujEBO+K4W+ylaHAvLSm4w1+MuKFWhWXqQYeEpSNmmRtKq8ldGSrjpZA76Lz3kuX+AICBSrZqnAH3NUVrz5BzTuDL5bcYf2bfK7fLPFx3AO3PFay7sK5GkEmur0+9xE35R1PzAWVLPN1ClOB/9lo4SXW4QrLjh4jHRl12g20Xb18BVRsI/z1TrU/vc3p4tzh5wW9j15VmvVpSLLl++4XG9QJx/f6VYySUFMJ4UL6Aq4/kk2N8ibicJl2imaoCH20xOP1GPa2hJog9TkGl1eh9+mfNNwEeWk2q2t0Ci1hPw7TR6c0zj5n5j+7fzgAtir+sg6cUnypuaJ9mFG4XXxXCpcOrvmid/fASIMVeOTmmLv9WK+DEjfQp3wibXecH0jn2egoj9oyan5sn+2QnE66t6Ua7Lb2uPZuLKqnEeMwOiNU9SX+G8ip26DIJwKX7qp1DOxzds4WC366++1JxL7OUl53uOVUYbUGUvxsrwGqQfR8R/NR2W9l45Aa9tmY/l9f7nOSQ/1y62Oem+uZwtHirsy9PLOKbM/fxHSr5UxpSZUBoZbfv7zQ2/y97WbRxUORHuv8l5e8V3/fQU8BOQuX2flyH4gVQ6Lbg22/PEL4+CvzJwdpF1uwdBwBV56RCs9RXFKXrFMpS+9BJw06s+nZiO/5VPknttlswR0txQklbFlLkOkQ4A645mwpuJNzxmxA0GGAryISQkehG6a0ZcaV/fyG1bcdXFEzgRVdPzyl5ydw4qhio/l1eCGn6LgcyWHoCqmZhA1WDVLMjGg3tXO+0biJ3yq7KARM5RZqH486BnrHkKAv8eycTAKWsQWVg5wZjWw0VEHD1i+3dFopVS6thpXoBB3ntNouapxFzmfrsANtszZGYiduqvtr8Vz/PkB4mlRYhav9bW9EwsEbUvZEu/XGQUnrw81Usm9ES1dq0dfntty3wAwN1H3DR3ChDp4dtVYnfOIzyMmBdjKX+BHLxYgHN5JW7XtQUv8Qz890NndNs02/Z3tMXDs2QLD/5/rpzDV3l/kWme7yt3H59U/SLsbrQ9JQPeBHp0NkHwrabDUwH5UuCfrpqIdT+/jMYzxynexw3LFuCms9LNgpWok1vZdykQfXe+XjZG9HepPQvwrY/XDYd2IPXaK5D4yftebe/88SzC0zDVTqp2uAtThrwsOh+RWtwVIipqzh75ZbPs8GR/MLRbTe4VEoK6nk7cI/tXi/6e9NG74huIJCARejtoH7DwFAT6ztiMT5+/HVM/vB8AUKMgC/DwlVoxhW/KxL6eh9CsIOd5iTAaXAokc+06rYrPAO8a8u/bzmDFoQyH35YeuOhz5iPl/55AzNLKTva+Dhhh7+J/R2E8o/zL56xpH6NKpwfx7A6Jzv8ALHK6PMmpeVIwT0ax83xdKlKa9npaX/SF66fM02Meml/GlJlwPr8Uz07ZJvqSV/q67bXqV0XrAwFqNul8GKqNziHf0FWu/ctsrYHV3JFU4UmFQ1TjNAXiq3WG6IAa5ft9Y/NcAMD/xgyyi5TvNThKxVjs36fa5fDcHbogADB5d7z3ryofXTPuV/FhrV335XhfuBQovTxF9v2oAklqqHIAmvWdVuuDSKCKYc73gGBQVncuN82zbwat50E1WHgKAvXTK9vxNz13EFtGPo++33f3uJ2/bjyD1QqDzETcAIPnKn5BQEyZCQ8edJzI9/DFAtHVzWVWbDyeBbPI4Q1eeRif/FHZbGfX2Tz0WeT718kop6/Z5UOVKwtDKpFr3K45qrdoBBQr+ypXMbzsY2L9di6RM0qenKYGShLo00E4B4giGr1Moy1mHM0s8kvYimoOA13zJENCvy9V233klk0uH1jsBaJAYYAga/479Xcsb58C5H5Fl+hsb7efXWddm3OrVUj/bMV4NLAbZlvvpN6VFecz5cnHAhkdWawC0PvP/bLSGKXP1urD0s+ps/ZH0/DGxtmeV3SS5WuTsUuHtOJgOg5cKJA3EJIg/1w4T5QrP1r+TV+8zl/quECkBAtPQeaJXf8AAK4/rqxdv5q365Thjq2yJZs+XUrwDYD7B0YQcNXWta4/i4QFAJ/9dQBvzdmD3BLPTZGOZRZ6XMcbRsGKg+kFmLLlFMwWKw6lF+C5Kdt8CzOrvO+S0va/bpsryGi2J6vwFMRNjJTy9mv1FbkX0WnvSo/N7+yJnYtis/j2MWVm+W3mL5H7glQrs+qXocplZOjjJipv1iUl5u9For8rK1/KPe/l58v5uhoEZVkbv2WDJNME2QGI/+whwk/uWoo4k7ymqe40vngUSyb09Dkce97e4WpkVt3N/yQAiF63xud9eCKWZjV0U0C1WAX8859/RvL8cIH8fE6rM/vx6epfFe9DrHCv1L7z+fhk4X587jS6rFQTUCX3mJyJcgNB6XtdbP3gzhmoiwNGhIpLd22suQQlUeVTbZaWWRETqaB8LAi47cROXHtR3ohWFX2e5OQzjCJ9nuwzmaIPokjABkFwyOj7Kx9vhICXpu+w/T17x1mcdVfjoiAianaePJRRiBsv/VuykCsjbs6jLQWKP76evbF5Lgbe+fKlHYgdu+s8TwCw7ufybaoW57kuVOD7FUdEf4+2mBXP36a2gHQ+9jCyphZD+Bpyc9B1+2L8cf2t6gbsbZ8nf9VKyUyHfL0CnvoNtTx7AJ+tFC8QR+6TN4iLv2g9X1Ew8Oa9Gcy9eNxl/DvsWulT2MVlVhyT2WLAUHGW5FftAgDMFitKzFZFg108ufsf5GxcD/PN6qRpLq2tDQZFkyXb8mVB/nFVLax5CnJyawQEA9Dq9F4cGNIVny//BQDQ9qe1mKhgiMh7Dm/GtJmfyY+bghVFJ91zesiuTz+BrruX2R4+LR9B+/5Z/10skFUL5ulaCZfCKpSomZDirlZhwHLXgT1c9iuSY3f+Rcm59i3z4WlPAbjqHuJ/64ldDn9HWcx4eN9q3HJiF15IW4hI+8EZFLwoor2oeZLrqhzpIZADLggzp0lvvIJ+fw3DqPkDZH1htT+CKIu7/qc6zSgIgkPU40wlSHznTUQv/dtpRalrWZl1kDqf9x7a5PJbxH8qDAAhCHht01zcdnyHd5trWAiQyoxGWK2ocu5UQOIgK/3W6W3ti/fWTBX9fUbaaa8G81DykajTuM24a+R60WXuwqnySAfF8ZLivBeDFyOGhhPWPAWZJhfEv1qLcZjQTAA+Xj0JAPDK1gX45u7XAACj1h7HS22ukhXe7cfEm6V5ahIkp4lLhEiHTodBIgwG/DOhfELZ4sgYLGrYTnxfHvekDvvmFbZRy320+WQO3lyvfKJU94mwQeRfjuSMG6hVhsLXr8CeNpdeLP+CvrFxNj5YO832d/XCHDfBSIcbYzGJ9uPz1Z1HtqD9sTT1A/aSfXpgPHsGUWudhr/V4MtkzPLy5tBtT+zEztr1PaxdKcpixtbh/ye9wqVjcU4DK9JMXwrLXm3p/EDInA6i2+Y5iFv3G+J+m4r0i77VvLpjyM72OYz2R9PQZ9UEAMDVn/ypPA4algw2HMsS/f2Xud8gcYb/RqpTQzDXPKnhnfUzRH/fcy4Pt0rcMi+kLXT4u+IcCRAUpXMXC7QfyjvV/r1WwZtLzpon0kLzcwe92k7Lpgge9ywI4pPu2cXZPqG58cLh8uUKnly1j9454fP05UnOC3mVm07s7l3KoHmbJskabS+0X4zOJm6S/5X3nsOOI+O9vWGm7d8RJ4/LDiemzOwyYXGF8pGN5DVddfbs9r9kx6Gca5gRVgtqFGR79eJLcRphyz706s0bIvKo/A9CchgkJqaVvb2CzPO1WWdcpmhwINXnydM+NH7eyiueKuNYO08qbZK4X432H23kn0+DClNA1Mm76HklN7wtBPiaRhaaylBsFj/+RD8O8R0O/Pk0dd29HI+9/JDDRMsV2pzeK7qNAG0L6d6oXZDpcxhKXx/Gc2d93qdWWHgKER6/cnhYHmcqkWx2llKSj1lTP3YN0mDX58nTJLlevHg8vaz+3n8BEzf7p6mDfbM9Adp+THFXaLK/ZtIDRnjeh1aFJ3+fVqm+dBkaTNoXbTFDKt9vEITADCMuYcb0Xtgy8jk0O39I8bY7hz2N6zIqmwd7apTa8uyB8ua5Xkro/5XX2wLyPkJUPA73Htro5T48zKMUqOHb/TYRuf2HL/E1ahaK1DL5WPAF4PO5itBoDr8iP07xoJTnxtOBSYw0HUlR5iuvw8H1qHr8EL7652cZQVZ8TPElYo60qvF7fcs8v+/DUKrfkXtZeApySiZr9fYh67p7Gfb/2BUvbBMfparnhpn43xnpUXHk1DyJFa4kC3y2Pk/ut/nir/9wNtf3EZ0MF12/ZEY4veQ9v2z8l8C5+4Jln3GpWO/TVRMd1rHKuIeqlIgPGx9QIV7dH1NmcpspCcgQ2oIgWlCueL4rRvtUyn67dUfFmyZVqFWQhcF/DfVqPwAQceK419sC8s5zxQiiH0r0g7CRCErplKfuRmFTRO5Q5bL353mockWC4Bmvl6V8zj2vOLde0P7QbZQ0J422liHGLDOTq/Ag/5j0nqL1VaXwesSbleU1lDwhNQqyVKmVVZtX8zx5uAdCZeoBFp6C2NQZfdD8nLwvwe4y79O2nsZF0YkMy3nKyIh1/C1nqPy/h6HKlbxsK74MKpq7RmK/nsR/PwCpTa5z+d0gCEgqLcTkmZ/j1n//8BiOnAzZoA8fwQMHXIdsV0tF4vXGpjkOv/tzUlul7jyy1eG6JNs1iaoh9qXaHzzci/cedrzfbzx/2Otd1cuorBktH6pcfL2OB9bgkf3/uvzuj/yW1FDqvrC///0xcmPd7MA377j/0AbPK0lOkut+0JtjWY6jd/3vzD5U+aey+WXCZ59g8JTP/Jqhso9bwJoYeVnzlGqXNuipOVT0X38i5dEHYDx9KmBNueI9NAGU0xdn9o5zDn8v+vUd39/HImLcDsYSXOQevsFwqdmegoLklpHP48c/f/AqXsFEzhE/tnelw9+mMivMluArOHrCwlMQa3tip+x13d20Q1cfxaF07+dDujxfvD28YAAMMKDuuaOSbX+98dqW+ZcyS/JT69gy18Jhv6Wj0OiC+wEaEr4fIPq7EVZ02zQHtx/fjpd+7a/aKGmjFwxUvI38RFh8vV4LXWsNlR6PWp38X98yDw/8t04yXLUHExDNrCj8am70MsOTUFqE5eMrJ7uOsZgkC09Stb7+4O/sm9qZrBsuHsPqsa97XlGmF9JkDDJgMKCZjP6n0W76vEUWFSL+J/EM0fA/XdP2a3q8ZPt3/NjRaPffJrQ4+5/nuNoLVHNA++bCSu4oL+Pz1M4lbpe3OHMA/4zrjnYSgx5pwQABKS8+g+gN65Dy3FMB2+++Hx/3uI7Fw3UYu8FxupLrAlVb5yWv3hteplOy7ndBUFxQ7rRvtejvSsNJers7YubPVbSNFK8qmBVeituGrkXr/suQW6yfgjTAwlPI0OpbnMEAfDj5a/crCQLEYujuufxAormMVELSzam2BQD+b8ff+OvXt93HTYJREJBcUlngDIZvnZ4S0WCfvLaC/aiOPo+25+ENGOh+RGdzKwvx1YscJ2eMLjM7TGqsBX99+fbnvTdmXn9Vw4sT+dAiRu69YxQZEMMAoOP3HyHpW/G0UW6hSMmEzUr43I8zwM32PN1f02b2wfWZpzDl9y+8Ct+d5JICRFrKfHpyIvfu9ts0Bd4oKFV+XwW6702ZVcDRTO8/+qpOwfUrr3nyX1TciZ0xTfVBeuSo+Gi25oj7gbGc7yMBQHaRGSey9TVoCocqDxHxRflul/uzuUCsCjPJi1GSsa6bre48N0bBqmgyXn8mlO7PQuWOpa6x2PZGP2XK5IhUo9O4L/w4OMayg+mSy2IsJlnDxuuRw9D+Kmey6iqdw0qlTKrcNNOYmwOgpuO2goDrtoh/SQb8+DFG7lDlKkZAUcHZ28KTh+XxcvvkKFQzPxObR70AAMiIT1G0rdh58fY9oebHiWAfWTXivwOIOH4Mn5TWxYpDGTiudYQu0VNzUS19s+QgHlOwfq2kaFzI136odqVY8xQi2mxcEvDhb21zGnjYrwHK+jwBlzq2i/6uKBgAQOxE8ZnuPe+/Ms5aJpsVzcY8ZUqVnJvH0pwnw3RPzRduhFBZcNNiJKEIjYZHjSkzwypj2Hh/Ut6YRJ7GF47gMsnhrvVHyV1ZpeN9qHnYsWmsVhmtqF3bHf9eI16AUzKcxbWZYk22vK158u7zgX3hwf7fdx+W6o+rjvZHK+dPS3WqSdarKsX53o12GaD8RbV2rZHy3JPIXqWkf3BwFWwEAbgm64w6YWk4v9aEjSc9r+TkhlqJbpc7N+uuGIk5uIv0rlh4Ip/IuuH93FwhwmpBlRLpiR2TPnlfcZguo1/JOAZ/1T5VhOux2Z5UzZNI3BueVT4ktVqiLGUB21cwfS2MtpiVx0blDIu/zkeb03uxcfSL+ODfKfjfaemROXVFZrplMJvRtc8rDr9Fl7lvvy/3Y4TSq5/ydFfHv199QXz/Vuni00vTHQtgf0z2fUS0iuP1tgbFAAF3HE3DN0tHIbas8iv1+DnfIMlpHq7bjwbHhNHO1y5YUqJf5vbzabRLb0WtsBvJU8YQ1Q3Tj/kxNv4lABj5x3daR8Nnp3KUtyoa1vlGt8u1nJJDTWy2R15TUhvhadhxMe5G7bLvOzJvyge4Jvuc5LrecB4iXsvn3f1Q5Z6b7YmJ1LDZnkM/Dr19bvJBTJn0gBHBw7cIvmU3gbBmJCYcVhSEwvVjCxw/3njqYK94IAgVpRTn48o2NyLvvoeAyx51Wb7nnGMTcLEJXM/nlQBIuPSXgnPtZZNdgyBg0qy+AIDjVWo7LHMeXW7ypfXU0Oii+wGHlNC6v2MFfw7V7u65qfJUF6RfzENC748QP24MslbJGM1SphqFOfh5Xn/81qyDamE6kzU/nB8ucTB9AJRF4j6PLjOj4cWjLiOIVqwd5K1JXbDmKUz446GWHaScWhuxzUR+rEhIFu+vnJupqQ9DSUvGx2l49ee3LkSd3AuqhD3g72GoJTGCoWhcZJ5pqWsstn2kwtofNdvcR0o03fHHiElaDqIh9nEhGDJQSW6HMtbZG0yGCX1GKt7G3y/y249v97ySn/zf9r8Qee4sqk36xfab0veDyduhhVUYMCLZqabJn1+yX9wmY2RGmQRBhxlhP4gfNwYAkPCD+5oZoyCgdp50H1J7n68Yhw4HN9gK2FpTc3CQBhnum86lncpRbV++8PQc/rTweyyY8gHe2KzOSIBaY+EpCASiTWutgky/hFtmFTzmNCwS/Tw8vUjc1SZtPpnjMW6+cD6iL5eNwZLxPVQJ++ldS/HTwsGqhCWLyGmOtAau6ZwztUYQizcV438j1B2JTU1iBbclvy3BXxPfUnVIZSU1wKFXNBLh1F/x49++VRzEjSMHanKunOfj80dWW60MfLdNs/H0jsXKCi/eDphg9++suGSnZcFZINHL6Kdy3Xg+sE29+y0dhQ2jX/K8IlwL1P4QrPfZG7/v0joKNkarRfIDyQMH14v+rtfHhIWnIKDWQ+kulIZ+mtVZTr5ty4ls3dXJir34EtzMMK70Gtb38DXJMS4y14OAWJmzoEdavC/A+Dp4hLs+T0pCfm/tNDSdO8ntOiklBbLCSpa5nq9+ndUXjS4ekz2kspadhcNZg2ljXZruqm3OTteBSx4Zt9mrsLpvnIXpv/VWvJ23HzKqXzyDXqt+xYAlI2Stb0szvMwpRdlNploQE+dVGOQbqXmIwoVBEHDDxWOok3tRch3Bt9vcK1dWiQ3czty49eQu7B/SFbEzpinaztZsT2fvOhaeyCdybniTWfkcGZKhVqRKfk6dUoty/JpxVRJ7t32e7JcJAi4XGfFMjWZ7DuH5eO7tR9tzCFfhXVJPdBSwSsklBbKaR918chd2/RSYSSzlFub8JdS+houJ3BE8E6W6M3CZa3Nj51p6uSnQJ6sn4daTyr9A//vzq16lpf8d8bKPqZd9nlwG8LFTO0hHeXROz8qnO/R+wAw9COX0pWZhNhZPfAuP7P9Xch2DAMzaEdjRXGe99L+A7s+dGIsZif2Co+mkv7HwFAT0+nW5Ym4Nsb5J9iZsOgWxbEAwJ7RajEYkRZA5vLWSu+i6iyccvuZ6jIOKNYf28zzZ3/uvbpmPlmf2qxanG2X2hXt37XTZ+1Qi2OdTCVXR69ZoHYWgZp/uXpGfjpgyxzlW+i1R1kdMUcbeyzTfXS3g3GkfeRWmv7209Q+to0AqulJmn+dzeaWYvk2dYcrl6D4reJrteac8TdDb65KFpyCgl69Kzrpvmi1rvczCUpzLc21O5s2zsmnUC3jwwFrbGWt8IfAzaYtRWhBU1k9FkLUPgyA+i4/YdpfnXsBX/4yRHwc1B4yQqPV6bct8PLf9L9nheIqR3DiXRMbI3qcSaszz8fLWBSrEpBILdPIF88cdf/q/HZ7ngLP/6CHnPBkrPpi4q3lyE467mqdg1XvVRIe/9XcEyukpffHnR+uVhwJXG7r9dPDPP9bq9F6P6+jnzinHwlMIifEwt4g/GAyem+49s2MxFu9W50tMlZICjFow0Pb3ol/fUSVcMYon9lXwelSScLvLnNj3h1JaCH9q5xJF61fw9QXpMEluELxsS6Ki/RJuyzMHfA6j657lKsSkkueMbjhk8eTR/s4MHKm0Q87dYFR0z4R2szV38krMIXEc7ujpg8P1GSfxw58/4CqVpzkhV7OnfSK5zGzRzz1jj/M8hZAW5wI/d0heief+TD03/I5/r24hskSfD42YYCgESL244srEJyRUlulRT6SX/R6UkptRKfZTzZMYPWUuwp1W1yqn2IwafgzfJaXyIu2yPzNyz1NBaRmqqXBO9TrJ5g8rg6OVRLCI2ig++lqgfLRmCgCg+bmDuPs1+a0wSF1ZReUf/YMgC6UIa57IZ8VlnjPDLc66foV3mOBVabO3ALxAFQ3qoDRClxKKFjJqJ+SmKVLrjZo/UGKJNtQaqtxTgdVdU586Oedt8SiJVK/mqd2xbfh49a/lQ7bqks7eYH6kVS3Bd8v8OyR03Wz5Hdql7oak0qLKdWSmfX/tu+C+Ft3N+bbv86TX2pvYndrN7aXUzV4MPqKUMV161LpAqqdC82pSg77ePax5ooAwRUQBcDc5pxMPL+RAvD79WZskwIDG5w9j3tQPfQrHPiMhlTGpk6fuS+oKN0O1yhEZBAWLtWNexcprW+Klx79CSZR6NU8VQ5DHm0qQE5fkslwwGDStcNVrxjNctL+uOvZf8O+IjF32rnT5TWnz0D6rJtj+LXdId0GAKqPt+WNS9EC48eRe7KlaR+toyDLDi2HvicIJa54oIMoLT8Fj3bEszAjgiDjOBIMBrWSPLFeecYjxMDqePzPGKXaTEKb4OCGh/QS9vnXadb+tpy/idx5NAwCUqljzVOHFbX/qtnkRaSc2KiLgzVdq5UtPoC7nFr730CZZ+xEAv4y2pyfepgl6ae7r6R0UcTiwE+1q4dbjO/DWut+0joZu3HlkCwD9NdtjzVMQ8NeoL40uHMVdRzbjl9ad/RJ+Jc/xN0e43mr2fV+UZvwFH18m787dAwB4y6dQKvmz4CL7xamP96tqfZ481wwGX58ntak9ua9ep03wBy0yrL6ma974atnPPm1/rcxmTwLgdc2TXgoP7ggw4PL8dK2j4VfjZ3/tdnnyqy8EKCbaMEDA9JmfaR0NXZk4+ytc/cmfWkdDMRaegoC/Mt5//fo2ACC1MMcv4SthNbhWcr66ZZ7X4fm7aQvg34ykWpPk6pH9UOWe5gjzhdyg/TXanqdjU6Pg895aZbO5exIq95oaxxEM58J5DiZ/qOHm/aDm43nfgA9hvuZy6X25HVVU+2uhhuXjumsdBb+6Lsv9xOWW8+fdZjo/Wj1J3QiRbujts52mzfZOnDiBV155BS1atED79u0xbtw427JTp07hxRdfRPPmzfHggw9i7dq1DtuuX78eHTt2RLNmzfD888/j1KlTgY6+bry4TftS/dU5rsOBNkw/bvu30oLKyWwF/aeCkLKhyqWXPWs3J0swZPbkiBRUGjDCw3I5Ga5mZ//Dy36azFLsGtvHacSC73zeh7uMrzeanzuoanh6pkWzS0FwzERU9KHzJ3fPiZzBJeR+ALlh9SJU//UXudFy4M95npRMFu6LYBiRVWsxWe7nP+qxcVaAYuIfak8tEU709nhoVniyWq14/fXXUbVqVcybNw9fffUVRo8ejYULF0IQBPTo0QOpqamYM2cOHn30UfTs2RNnz5Yn5GfPnkWPHj3QuXNnzJ49G9WqVcObb76pSZMHNei9qYwaZz0YM/7+nOcJkP811V24PTf8rjg8rRntmu5ofe8vmPIBahVk+SXs99ZNd7v89uMajL6lj1vEZ2rcV1qkSVpcHnfH2eKs5+kvAlHIlJpuQQ2DFw31W9j2vlrG4bCJQoXqzfbMZjOiojwPDpCRkYGGDRviyy+/RGJiIq6++mrccsstSEtLQ2pqKk6dOoUZM2YgPj4e9erVw4YNGzBnzhy89dZbmDVrFpo0aYKXX34ZADBgwADcdttt2Lx5M9q0aaP2IfldMBYcAs0549/xv7USawanq3LO46PVk2Wv74+vkHq5j6JUGm3P0xkMxvOh9Wh7JJ82fZ4Cvkuvhw9Xso6seLhZ9sj+f1XZh5hH96/2W9hEJI9BZ5UIimqeCgsLsWLFCqxevRqFha4jbq1atQodO3aUFVbNmjUxdOhQJCYmQhAEpKWlYcuWLWjdujV27tyJRo0aIT4+3rZ+y5YtsWPHDgDAzp070apVK9uyuLg4NG7c2LacQl8DuyZ/wSC1KBeP7Vsle31lzfbk1lDpg1rzPHkSDqPddTywBvce3qx1NEg1AgxB1H5FzjOklxpvIiK1yK552rp1K3r06IHc3FwAQGpqKiZMmID69evj7Nmz+Oqrr7B69WqHQo1cd911F86ePYs777wT999/P7799lvUrFnTYZ3q1avj/PnzAID09HS3y5UIhveU1k2X9GjJhJ5+H6HFn1kCJQMlyJ4kVxBg0EGJwX6ocl/cd2ij2+UNLx5VZT+hJBhr44KVv8+VQWT47TVHs1AqY9JxNYXKMODeiDh2ROsoyGIA0JT9ESmEGQzBkR+XGwfZhadBgwahSZMm+PbbbxEVFYVBgwahf//+ePPNN9GjRw/Ex8dj8ODBsmue7A0bNgwZGRn48ssvMWDAABQXFyM62nEErOjoaJhM5SMPeVquRPXqrhNZkjIh2xE2SI7rytwLGPj3MI/r6SVjbD9Uub/uncTSInyg8kh0alCrySK51/iC7wVnf3+H+GHRjy6/BbrgBLg/TjlpSu0C6Xmigl21Ni20joJs3TfO1joKIateJgcc01rVqglITdVPflx24enQoUOYPn06atWqBQDo3bs3br31Vrz33nt46KGH8NFHHyExMdGrSNx4440AgNLSUnz44Yfo0qULiosdR1MzmUyIjY0FAMTExLgUlEwmE5KTkxXvOzMzX5N25hWKTcxMhaMoqwVfLh8re/2ndi31uI4OKp0AABEB+NKdWpjt933oUbjUcg/+y7Vgopx/H6jOe1f6NXy5gqXmic3/3KtelKN1FEJWbACmBCBpb637DbnP3oiMCK1jUv7NXE6liuw+T8XFxQ5N5ZKTkxEVFYWnnnoKX331leKCU0ZGBpYtW+bw23XXXQez2YwaNWogIyPDZf2K/deqVUt0eY0aNRTFASjvoKvlf/8e8c9Xu5TifL+E66xaUa4q4QRjlu7KHOXNQOXyxwhvNQqzUa04T/Vw/clf2aWr/Hjt9EwvtZO+UiMjHi6Z+WBMe8lV7Xz91vAFu2CYCzOcfbB2GlLWrtI8P17xnxw+D1X+8MMPe7Xd6dOn0bNnT1y4cMH22549e1CtWjW0bNkSe/fuRUlJiW1ZWloamjVrBgBo1qwZ0tLSbMuKi4uxb98+23I98Vfn4J3DnvZLuM7+mviWKl+zk0tdByDR2kP/rdM6CopMmtUXv0//VOtoBIXJs/pqHQXSuXApVIj1vaLgc2XuBc8rkVdqsKWC5iJK9DV3p+zCk8FgEM3oR0Z6N9r5jTfeiMaNG6N37944fPgwVq9eje+//x5vvPEGWrdujdq1a6NXr144dOgQxo4di127dqFr164AgC5dumDbtm0YO3YsDh06hF69eqFOnTo6HaZc31+DL/PTHDkULsIlixocwqU2JSUIP8YEK3fvn0DeL3p+D5K+hUtzZqVant4XsH3pre+87JKPIAjo168fYmJibL+ZzWZ8//33SEhIcFh3wIABHsOLiIjAqFGj8M033+DJJ59EXFwcnnvuOTz//PMwGAwYNWoU+vTpg86dO6Nu3boYOXIkLr/8cgBAnTp1MHz4cHz77bcYOXIkWrRogZEjRwbVEK8U3O47uAGvbF2gdTSIGSYKUuFS0NRLX8lw9vSOxVpHIaQpGf02nMyZ9nHA9qW3/LvswlOnTp1cDs7bJnsVatWqhREjRoguq1u3LqZOnSq57R133IE77rjDp/0Hg/I5M/V10ziLsWjT2fKHRUO83nbsvP4qxoS8p+97X4nwOdLQEC41IeFynHr20ZopWkchpFkNPvdgIZ/p6w0pu/A0cOBAf8YjbOnrdhFXV6PO+V32rNBkv0QU+sKlRsZd+q23pjRE3giTR10xkzES0SrNy+iJYNRXWiO78HT27FnZgVY0ryMZ+HKiMHRlznmcqnKZ1tEIKL6g9SXKatY6CmElXAqrRGr62Y+taI5WuwI3ZJzwW/j2QrbZ3l133eVycMKlNuHOv+/fv1+FqBFRqFoz5lXc8P7ssPqyHT5HGho67VutdRQ0Z7RyJD4KfXp+D3U4uMFvYQe0Sa/OroHswtPy5csll+3fvx8DBgzAhQsX8Morr6gSsXChr9uFSD1VAzQXGVViehPcPvh3Cn5p/ZjW0bBpd2KH1lEgCgD9pox97+mGr5aN8UvYxkAOmhOqhacrrrjC5beioiL89NNPmDZtGlq1aoWxY8eiXr16qkYw1OnrdiFST7h1VA+voyVvvLVhJi7PT9c6GkSkE8eq+q+bTECnKgjVwpOzv//+GwMHDoTFYsG3336LRx55RM14hZXUohyto0BEfhZnLtU6CqQDD+hscm61GAWL1lGgsKXfT1uhMiG83ppOKi48nTx5El999RU2bNiAp556Cu+99x6SkpL8EbewYDAAV2fLH4yDiPQpUtC+/0i4zF2kZ/FhWsjePOJ5raNAYarZuUNaRyEoBbI4E7I1TyaTCWPGjMG4ceNQv359zJo1C40bN/Zn3MKEQffzPBEREfki2VSkdRQoTL2ydYHWUQhS7PMkRXbh6aGHHsLp06dxxRVX4Pbbb8fKlSuxcuVK0XV79uypWgRDnc7uFyIiIiIKccZAtpbQWWZYduHpsssuw2WXlc/LsnnzZsn19Fb1RkREREREGtFZ2UF24WnKlCkAgIyMDFSpUgWRkeWb7t27F5s2bUK1atVw3333IT4+3j8xDVH6ul2I1FMrPwvf/zVU62iElaolHB6eiIg8C+jE1TorPBnlrlhUVITu3bujXbt2OHGifMbhefPm4fHHH8fUqVMxZswYPPzww7hw4YLfIhuqBH3dM0SqmDf1Q9QszNY6GkREROTk6pxzgdtZqBaehg0bhtOnT2Pq1Km49tprUVRUhH79+qFp06ZYsmQJ/v77b7Rt2xbff/+9P+Mbcow6u2GIiIiIiFSjs7yw7MLT0qVL0adPH7Rs2RIGgwFr165FYWEhnnvuOURFRQEAOnfujLVr1/otsiHJAI62R0REREThKVQLT+np6bjqqqtsf69fvx4RERFo27at7bfU1FQUFxerG8NwoLObhoiIiIhIFTrLB8suPNWqVQunTp0CAAiCgNWrV6NZs2ZISUmxrbN9+3bUrl1b/ViGMH3dLkREREREKgrVwtOjjz6K/v37Y/ny5fj2229x7tw5PPPMM7blBw4cwJAhQ9ChQwe/RJSIiIiIiEKMzgpPsocq7969OwoKCtC7d28YDAa8/fbb6NixIwDgu+++w8SJE9G+fXt0797db5ENRTq7X4iIiIiIVCPoLDMsu/AUGRmJXr16oVevXi7LOnXqhIcffhiNGjVSNXLhQF+3CxERERGRmvSVG5ZdeHKnQYMGagQTlgw6u2GIiIiIiNRi0FnNk+w+T+QnHKqciIiIiMIVC09ERERERESe6a3PEwtPGtPX7UJEREREpCIWnkipBFOR1lEgIiIiIgo8fZWdWHjSmsEAPLlrqdbRICIiIiIKOA4YQYoYYECdvHSto0FEREREFHDs80SKGM2lWkeBiIiIiEgbLDyREkazWesoEBERERFpg4UnIiIiIiIiz4xFhVpHQREWnjSms8I2EREREZFqos6d0zoKirDwpDFBb+MzEhERERGpJCIvR+soKMLCk8ZKyqxaR4GIiIiISBMROTlaR0ERFp40VmoRtI4CEREREZEmSho11joKirDwpLHCkjKto0BEREREpAlTnbpaR0ERFp40xgEjiIiIiChcGYz6ygyz8KQ1nd0wRERERESq0VlNAgtPGjOzzxMRERERhSmBhSdSYs+5fK2jQERERESkERaeSAGLwJonIiIiIgpPBSaL1lFQhIUnjbHLExERERGFqz0XCrSOgiIsPGnMYOAlICIiIqLwZNU6Agox564xI6ueiIiIiChMGXXWg4WFJ42x7ERERERE4arGsf+0joIiLDxpzGDkJSAiIiKi8BRZZtI6Coow566xCJ2NbU9EREREpBZBZ/3/9RXbEMSyExERERGFK4POMsMsPGnMCJ31kiMiIiIiUovOurDoK7YhqMbZE1pHgYiIiIhIGyw8kRIcbY+IiIiIwpWgs7ywpoWnCxcu4O2330br1q3Rrl07DBgwAKWlpQCAU6dO4cUXX0Tz5s3x4IMPYu3atQ7brl+/Hh07dkSzZs3w/PPP49SpU1ocAhEREREReYkDRsgkCALefvttFBcXY9q0afjxxx+xcuVKDB06FIIgoEePHkhNTcWcOXPw6KOPomfPnjh79iwA4OzZs+jRowc6d+6M2bNno1q1anjzzTchCPrrP3Q2r1TrKBARERERaUJvA0ZEarXjo0ePYseOHVi3bh1SU1MBAG+//Ta+++473H777Th16hRmzJiB+Ph41KtXDxs2bMCcOXPw1ltvYdasWWjSpAlefvllAMCAAQNw2223YfPmzWjTpo1Wh+SVi4X6GtueiIiIiEgtAvs8yVOjRg2MGzfOVnCqUFBQgJ07d6JRo0aIj4+3/d6yZUvs2LEDALBz5060atXKtiwuLg6NGze2LdcTvZW2iYiIiIjUorc+T5rVPCUnJ6Ndu3a2v61WK6ZOnYqbb74Z6enpqFmzpsP61atXx/nz5wHA43IltC67GHXWzpOIiIiISDUGo+b5cUB+mUCzwpOz77//Hvv27cPs2bPx66+/Ijo62mF5dHQ0TKbyJm7FxcVulytRvXqS95FWQVR00FwCIiIiIqKAiomLRmqqtvlxJYIi5/79999j0qRJ+PHHH1G/fn3ExMQgJyfHYR2TyYTY2FgAQExMjEtByWQyITk5WfG+MzPzoeU4EzUvntZu50REREREGio1WZCRka91NGAwyKtU0bzw9M033+C3337D999/j/vvvx8AUKtWLRw+fNhhvYyMDFtTvVq1aiEjI8NlecOGDRXvXxCgaeEppoyj7RERERFReLIajJrmxZXStMPNiBEjMGPGDAwZMgQPPfSQ7fdmzZph7969KCkpsf2WlpaGZs2a2ZanpaXZlhUXF2Pfvn225XpyRcZZraNARERERKQJvQ2eplnh6ciRIxg1ahRee+01tGzZEunp6bb/Wrdujdq1a6NXr144dOgQxo4di127dqFr164AgC5dumDbtm0YO3YsDh06hF69eqFOnTq6G6YcAGDU1w1DRERERKQWDlUu0/Lly2GxWDB69Gi0bdvW4b+IiAiMGjUK6enp6Ny5M/744w+MHDkSl19+OQCgTp06GD58OObMmYOuXbsiJycHI0eO1F3JFQCsxgito0BERERERDIYBEFPrQzVl5Gh7YARf73RGy/MHaFdBIiIiIiINPL3wHFo9fITWkcDBgNkjfqnr3qyEGSNYM0TEREREYWn7OIyraOgCAtPGrNGaD7gIRERERGRJnJKLVpHQREWnjSWEBfteSUiIiIiohBk4IARpMRlVeK1jgIRERERkTZ0NuAbC09aY58nIiIiIgpXrHkiJQwsPBERERFRmDLobM5TFp40JrDwREREREThSmd5YRaeNFZm4CUgIiIiovBkZJ8nUuJErknrKBARERERaYKj7ZEiVp3dMEREREREamHhiRSJiOIkuUREREQUngQOGEFKcLQ9IiIiIgpXMZH6yguz8KSx6NhoraNARERERKSJK6vFax0FRVh40lhiXIzWUSAiIiIi0oS+Gu2x8KQ9nVVVEhERERGpxWwRtI6CIiw8acxqZOGJiIiIiMLTiaxCraOgCAtPGkuIjdI6CkREREREmoiK0FdxRF+xDUGRUSw8EREREVF4uiIlVusoKMLCk9bY54mIiIiIwpRVX12eWHjSmoGFJyIiIiIKUxZBX6UnFp40xklyiYiIiChcWa1WraOgCAtPWouI1DoGRERERESaEHTWbo+FJ40Z2WyPiIiIiMKUhYUnUsIg6KuqkoiIiIhILWUWfeWFWXjSWITOOskREREREamlrIyFJ1LAaLVoHQUiIiIiIk2YLfrKC7PwpLEInd0wRERERERqsbDZHikRYSnTOgpERERERJpgnydSxMCaJyIiIiIKU2Vl+soLs/CkMaHMrHUUiIiIiIg0USMhSusoKMLCk8aSIw1aR4GIiIiISBN1kmK0joIiLDxpzGAyaR0FIiIiIiJNCDqb85SFJ40ZzGy2R0REREThyWrV15ynLDxpzMA+T0REREQUpopNHDCCFBAiIrWOAhERERGRJi7mFmsdBUVYeNJYQcvWWkeBiIiIiEgT0RFax0AZFp40JkTqa3hGIiIiIiK11EyI1joKirDwpDF9dZEjIiIiIlLPDTXitY6CIiw8ac3AeZ6IiIiIKDxFGfWVF2bhiYiIiIiINKKvdlgsPGlMX7cLEREREZF6SjlUORERERERkWfFpfqa85SFJ40J7PNEREREROFK0Fc7LBaeNKav24WIiIiISD1Wi1XrKCjCwhMREREREWlCYM0TERERERGRZ4KVNU+khL4K20REREREqmHNExERERERkQwC+zyREhxtj4iIiIjClSCw8EREREREROSR1cpme4qZTCZ07NgRmzZtsv126tQpvPjii2jevDkefPBBrF271mGb9evXo2PHjmjWrBmef/55nDp1KtDRJiIiIiIiX7DZnjKlpaV4//33cejQIdtvgiCgR48eSE1NxZw5c/Doo4+iZ8+eOHv2LADg7Nmz6NGjBzp37ozZs2ejWrVqePPNN3XX4QwABI4YQURERERhis32FDh8+DCeeOIJnDx50uH3jRs34tSpU/j6669Rr149dOvWDc2bN8ecOXMAALNmzUKTJk3w8ssv4/rrr8eAAQNw5swZbN68WYvDICIiIiIiLwhstiff5s2b0aZNG8ycOdPh9507d6JRo0aIj4+3/dayZUvs2LHDtrxVq1a2ZXFxcWjcuLFtORERERERBb/q8VFaR0GRSC13/swzz4j+np6ejpo1azr8Vr16dZw/f17WciW0H+xO8wgQEREREWkiIcqIkiDIDsstE2haeJJSXFyM6Ohoh9+io6NhMplkLVeievUk7yOqguy8Ak33T0RERESklcSEGCSmapsfVyIoC08xMTHIyclx+M1kMiE2Nta23LmgZDKZkJycrHhfmZn50HKciZzsIu12TkRERESkoYK8IpRk5GsdDRgM8ipVgrLwVKtWLRw+fNjht4yMDFtTvVq1aiEjI8NlecOGDRXvSxCgaeEpdet67XZORERERKQhwSpomhdXSvOhysU0a9YMe/fuRUlJie23tLQ0NGvWzLY8LS3Ntqy4uBj79u2zLdeT1BLtS9pERERERNrQUckJQVp4at26NWrXro1evXrh0KFDGDt2LHbt2oWuXbsCALp06YJt27Zh7NixOHToEHr16oU6deqgTZs2GsdcOUH7ESuIiIiIiLQRE6N1DBQJysJTREQERo0ahfT0dHTu3Bl//PEHRo4cicsvvxwAUKdOHQwfPhxz5sxB165dkZOTg5EjR8LAgggRERERkW6Y2t+tdRQUMQiCnloZqi8jQ9sBI2JmTEPy2921iwARERERkUYyj56GNVH5oG9qMxiAVBmj/gVlzRMREREREYUBnbUcY+GJiIiIiIhIBhaetKaz0jYRERERkVoE6CsvzMITERERERGRDCw8acyYlaV1FIiIiIiItKGzVlgsPGksav0araNAREREREQysPCktcgorWNARERERKQN1jyREkJUpNZRICIiIiLSBgtPpEgEC09ERERERHrAwpPWIll4IiIiIqIwxZonUkJg4YmIiIiISBdYeNIam+0RERERUbhizRMpEhmhdQyIiIiIiEgGFp40xmZ7RERERBS2WPNEigiC1jEgIiIiIiIZWHjSmMFq1ToKRERERETaYM0TERERERFR6GHhSWtstkdERERE4Yo1T6QIC09EREREFK5YeCJFWHgiIiIiItIFFp40Zq1WXesoEBERERFpgzVPpAjneSIiIiIi0gUWnrTGocqJiIiIKFyx5okUsVq0jgERERERkTZ0VpHAwpPWrBwwgoiIiIjCU9T6tVpHQREWnjRm4Gh7RERERBSmDAUFWkdBERaetKazqkoiIiIiIrUIsbFaR0ERFp60xsITEREREYUpITZO6ygowsKT1lh4IiIiIqJwFceaJ1KChSciIiIiClOseSJlBBaeiIiIiCg8sc8TKWJp1ETrKBARERERaYI1T6SItVYtraNARERERKQN9nkiJYT4BK2jQERERESkCdY8kSLm1jdrHQUiIiIiIm1ER2sdA0VYeNJaRITWMSAiIiIi0obBoHUMFGHhiYiIiIiISAYWnoiIiIiIiGRg4YmIiIiIiEgGFp6IiIiIiIhkYOGJiIiIiIi0IQhax0ARFp6IiIiIiEgTEYcOah0FRVh4CgLmW9tqHQUiIiIiooATIiO1joIiLDwFAcsVV2gdBSIiIiKigBNq1NA6Coqw8BQECr/sj3V1m2JH7fpaR4WCQPFzL2kdBQoRxU//n9ZRICIicktITNI6Coqw8BQEhJo18exT36Lrs4O0jgoFgcI+X2gdBQoRBT8M0zoKLl7s+qXPYZjatUf+gO99j0yIyp0wVeso6I6p/V0B36f5f21Q8NlXAdtfwRffBGxfWrFcdbXWUXBhqXOl7d8LGt6hYUyCmMGgdQwUYeEpiJRFiLf5FFS6qayp6leLljz+lOphaiFv7MSA7OfJpwd4XEeoVh1F3d8KQGyUK+n6pCb7tVx1NQq+8XzupOR/P1S9yIgou+56dcOrd506AUVGIvvPf9QJSyV5sQk+h5E75w+UvNJNhdhow+r0ldXU9nbfw6xRszK8jo/4HF4wsCYli/5e2uEh1fdlukNe4clatarsMIve+cDt8rLGTVD89nvIHT9Zdphyme682+U3c7vbUdawser7ChaWOlciZ96fLr+bmzTVIDaVcqfNsv37QmI10XWyFy5VL9134s8WCCWdOtv+nf/dEJQ1uMFv+womLDzpQMaFXFUeqtxJ030Ow5qc4vC3+eZbZW0XbBk458SktOOjAdnvpqtuxPRm93teMQiH7Szp1Bn5o35RLTwhXn4mOmvrLhS//LrX+ypr3MTrbcUIMTEOf+csWelxm5yZ82SFnbU+Ddkbtjn8VnqvjHtGQlnrNl5v6xCHu++VfQzunKxyGUojolSIEZA7fZZLQcQfnNM9uUrvvR/pF3JdfjdYrbZ/W2pdhtypvysKt+Dzr1HyaGeH33Lm/gnzTS2R+9tsWWFkrd6oeqHfIT5zFiJz43bZ66efz4EQF+fwm0UiI6b2R7vsRf9ASJF3jT1dq7xho23/9vThs/Dz8lon0133ytq3EparrkbxC6+4/J7/3RDV96Wlom5vInfyDGQcPIGstD2wXnmVyzq5f/zt8pul1mUOf4sVNtViadgIWSvXo+/PyzC1xYMuy0se64KyNje7pPtqKGvYCAU/jVI9XAAofulV5A8ZYfvb3O4OWGtf7pd9BRsWnoKUEB8PwPOXK7lyf5sNg8nk8rv5f8oyVtn/bnT423K9vH5aZa3boOSJp21/m9rejtIHOkqun34+x+U3ITbW5TfTHXei8N0PZcUBAB5/ZiAK3/8YBYN/clwQoJFeBj3SCCe6vee5MCxSeCrp3NVPsSovyJTe/4Dbdcw331a+roxzVfyK54KOEBPt8ltZ/QYofbiT7e+cPxYjc/elIUwlMiLFT/+fS5wyDp9y+NtarbrH+EgRq7HNnfsnCvr2q/zBKW7OX3fLGtwA8x13etxX+tGzsIhkaC3XXOvym7llK7cZ5ezFKzzuTwmhWnWY77wb6RfzkLV8LXKn/S6aOfMYDgy4+f0ZKOn8uM9xMt1zPzKdrrXD8nbtfd4HABjKyrzarvDrbwGDwZaeV7J7vqOjy/+TUPTaG6K/CylVHP62NLgBOYtXwnT3fbLiZmnYSNZ6FQr69FW0vrndHbBeW89zPGrWQv7QkYDRCMEY4bBMSEhAzuw/kDvtdxS9+bbtd2vNWori4knZ/9rA6nQ+3a2bfvKi5HJTx0cgxMRAiIqCUEW6lspy+RUQKmrWXO4PFURGwHL1NQ4/WatWU+1jii+KXu/u/cZWKwoGD3X4ydThwfJzLfGOcO5Pk3HgGCx2H9TST15Engq1f/k/jnD5LXfiNACApXETPPdAC1x5U2PM/GeP43Yj1fso6azgy/5+CTfv5/Eo6PcdEOH4zAbjh19/0HXhqbS0FL1790arVq3Qtm1bTJgwQesoqab0wYeRfuwcCi+9sEwKa0ay1mx2+Nt0931AaanH7cwtW7ldbr38CuSOn2L7u+z6BvIjZZew5c6c576Nq9GIzC27kDtlJvJ++RXWqlWRO901o1jS5QkU9f4CWWs2I2vFOo9R2HJlExR9+hkQJf3lu+SxLgAAyxV1UPrgw5Lr5cxb5HF/zu68PhWvdr1Vxhcm1wSotMsTKOr5ruJ9OjPdfCtKHu2M4mefh6ndHchatxUZx88hf9hoycxw6UOPoOSFlwHIK4gUvf6m6O+F739s+7cQ7Vh7k/3HEmQvX4vSS02OLLUvh/nmW2Gt+EIo9WKsURMZpzMcf3OqKRASEiXj6lAIElH83Asuv5W1boPSRzrZ7aDyeuUPGY7s1Rsc1s/+dxNglJHcJkrH01nu9NluM8plN1U+y56ageYN/9nj/iq+kgOA5camMN3bAYWffwlzsxai6xd1exO5035H/sAfXO6roug45A8ZjnznjxjeEDmvJV2eQM6Mucj7ZSIK+g1E7uQZkpvnLJFRyLSIF56cv167LK9XURB2unftap6sVauJfrwp+GYASro8gcKvXZurClWrwtSh8mNH5qYdbuNh36QPKP8aLYdgl04KCu5Ne7nTfoe5ZSvJptE5y/5FyTPPSW5vvr09TPd2ACwW229lbt5TJi+n/hCqVPG4ju0+EvmQB5RnnoXEJGQcPImMw6cBo/Q7rujDTyv/MBjc1gjlTp+FvJFjJZdbU6rAfGMzh99Kuj4JS92rHde7qq68dMhO+rlsRevLIbeAL8pgsL2LAIh+FLYn9oFJqFYdgv15iI2FkJgkq0mj8zs4Y/8xZK3dgvwfhqHkqWcdlpnuuBOmhyrzEClxURjauQnuanaVLW9hbtVa9sfb3PFTYL6ppcNvFR9iTXfdY/utoG8/WKtWRd7YiTDLrFGzptZA4bsfwpqYhJw/Fntc33Rfh/J8lP15NACwsvAU9AYNGoQ9e/Zg0qRJ6Nu3L0aMGIHFiz1f9GCUFOv48Jhb3wwkVDZrKrRPaD2wplQRbe4gmsg4fSXI+Wt5+QvbrjanpPPjSD+dYWt+Ynr4URS//BoK3/9I5IuqSHyql2e2zS3sHvqoKBT2+tz2p7nl/1y+8FvrXg3T/Q+g9NHOyDxwHGaxfgGX4m9pcAMsTW50WFTQpy+y1m31GL8Khb0+R9FrbyB/+BjkjZ2I7CWrHOJU2sGxut0i0jzAFi03X5JF993baZAIqa83dgWI0vs6IP1Mpvj+3TWJi4tD/i+/ouDHEcids9BWeyhUrYaC738U/VJV8uQzti9MYpkMc+ubHf52zqwB5YWjok8/q/whJhZFb78PS63LkL18DcpuvgWIiUFppy7I+WOxSwHE/tiLn3vR9u+yho1EMwSWy2oDKD+3Qi3xL9XZC5eiuMfbyNy80yGjkT/ge2T/sQQ5v89H0Ye9RLeVLPyLXbtL68ptUiV7XzIVftUfptsra74sV16FrFWV59d66VzZy9yyy3YOpdYRklMc2vNXyBs9DoXfDITp3g4oefk1h4x3VEVBJD4eJc+/5PGDDYDyAtjz5RkmOU2Y80ePg/mueyBUq47i19+EqYNrU5kKZTe1Aq51rdlzWEeigJg3Ud7ADC7NtwQBub9Oh7lpc+T/PL58H061i8XdeiB/9DjXL7sofx5Nd9+H7MUrkHH4FKwiNZMWu9qZzO37UPD51+W/X1EHeaPL9+nuvjLdcSey1m6pjLKXtbemezsg5+8VKO3URXwFu496Budnxy5+FvtarMhI5I0YI/pRIHfeIocO+vaKurl+1MnakAYAsprtubuP8sZOrCwExsUBcXGi/agK+g1E5tbdKPk/x48yzrVpBV98A9PtdyJzyy6Y7rkfpSJNFUu6PIGi7m8ha91W5Cxfg5wFfyNv7ERkpu1BWcv/OdQ82Z+T3Omuz6wkkfuv+P9cPygpYb7zbpcPGiVdnnD427ngJ8VdSwhr1arSBTUFaap9wbTw496O+69eHZb6DVDy3ItARITDoBzu0of8YaOQ/8Mw5E6d6XbfFf37cmbMhenhR1HWxLGQnLN4BfKHjkTemMrKA0v9+sj874TDM1cR7/wBg5Ez17VfWObewyjq/QUyD58S7Y5R1six6btQ8UHI5TzKKzyJtSTSE90WnoqKijBr1iz06dMHjRs3xr333otXX30V06ZN0zpqXpnx+s3431VVsOmPf5E/dGT5g2gvJsalCUr6uWzk/zAM1tQayFq+1tZvp/iNHgAqXxQVbePNbcozuJar6jqEk/338vLtXnq1/AvY6HEoss/MG43lzUrsHpKCgT+g6NPP3X7FMrf8H0rvuQ85c8of1LJW/3NYbmlwAzL2H0P+90PL25ELVrFgynmZebRvVjijqfuvXUXvfYTC/oOA6GiUduoCoWZNhwKekJjk0FHZXdMRa63LgKVLbX+XXXe95Nccc6vWKHrnA+SNnYisjZdqpKQKT3bNh/Km/u5QgybYveRKH3gIRa9KdKj3cC6LX3kdxc+/jKJuPcS3EdnevllZ2TXXAomJLhmVsptvcfhbiIlG4WdfImv3QZTZfzU1GGC++VbXJi/2haeXX0f2kpUo6P8dSh9zbM5YUUjI2robGUfPoOjShwDnZmIV7cwBwHr1NcjasgtFPd+F6bZ2KHn+ZZTdfAvM7e9yW0tZeTCu10us2Zzp7vts8RCiopA/ZDgsl5fP82bfXBEA8kb9AiEiArm/TkdZ4xudg3LbPKL4RdcaxNIHyjN+1tQayErbA0ujxsgbOxFFb78P8+3tUfhxbxQ/8xzSz2Yh4+AJWOVmXmrWRMlTz9rSH3OzFih1ygi5G6wmd9IMFHz+NTL2HpGszS15+TUUfP0t8oaNRs4fS2TFS46Cz750+c2+FqfkkceQtW4rzG1ucVkPgPyv+CKFJ9ODHZGz7F/RZprm5o6FNXNLx7QTUVGAwYCym1q51LJWyJs0HZbLapdnqqKjUfzWu+VNLrfvg6WR5y/s5latYb36GpQ88TSKXu+O0kceQ+GnnyFngWv/EWcWJf0eHM6h4z1daH99nM5h6RNPo/ArkSZJBgOy1mwurykdOdLhA1/hNwNRYtd/MP+7IbbaQU/N9jwN6lHaqYtLHC0NGyFr7RaHgoJgNJbXADmH71QwK+75DnJnL3B4DrMXLnXom2O+5TYUftUfQs2atr9LO3Wx9fux1q3cj6GkuHK75pUfMk3t7kDWxm3IdtNvUxApQGWt2eyQYa9gP3pgxQcPMc7Hm//DMOROnIb0o2eRfjHP8WOPyP1U8PW3KLuhIYrekd9s34HIsyskVw5QUtC3H/6/vTuPi6rc/wD+GZgYQERQkF/SvWYZhIVsKiqYaaY3l7S0utc0bbMF03LL9OaGhVtqLiVdc+1mZhaFN1Pp5jUzyTQptxAlU1MBBVlmgZn5/v44cJhh0TGFcfDzfr14vZjnbM9zvnNmzvec5zyTm1OI3JxCFGzaCsPwp1Hw0UbA0xP6hNEAYNeVtIIhYRQK334HF77eecnht8W3CYxDh1e7KFFSfoHx4vLVyP8yDYWr/o3cnEKUVdxZsjlPyjt2CtLED8bBQ+268Vpurv7bofpxE5GbUwjj0yNq7Aauvndr2C/nf/wFpv4Pqa+tgc0ru5raJK/WZgEwOzg4R172mWsyUI6zuNZP+to4cuQIzGYzoqIqv2RiYmKwbNkyWK1WuF3hrWlnu6tFE7z7aFuIAMaOkZedP/fcReX29dDhyhUsjQaFy96H9uDL6lXSkimJKH2gL8rKu++If1PlYPP0QmBw+QErAnNMe+TmFNa+sUudbOt00CeMhsagh+HxYWh6X2WXiaLFy+xODGo6YKVZM/UWfGnX7vD8dIN6MlkT8fKCxmCodbqtqtvLbmr/AZy/5Rv49+p2yYfgpVkzGPs/DM/PP4Xh+QSYb78Dga1uhjkkFPD0xIX/7cZNe/dA+9M+eK1diZJJU+CRthXF8xbCv0ss8r/5DpbAIPXLzVZp127Q/rQPFz9WujDaXiWqqa+8Nej/AHNZ7Q3WaFAyZgK81qxAyeSpsN7yF1hCw9B4/Mv2bbpcIqrTKX3KReCdvBQAUBZn0xXGZvmCjanwXPcBiqe/Ac/19gOSlMxIgndy9QdVTb0egG7LZhiudERB23qLwBwVA7PN3cy8Q8eh2/IljBWDgXh42N0BLFr0LrRHDkN76AAKF71bLekCgJIpM/5cfWxUnGibo9vhwu591bo5Fs+aB8utt8I08DFY7ghRjl+zudoVXtOgx5T3hFYLWK2wzJwG95xzl62WJfgWFCfNq1ZuHP4MrLf8Vf08AJQTvor3nW03IvX950jiCGXfKivR19ilyfDUs/CZ/k+YvBrhrG8AZj1Q2d1XmjeH4aWXAQBlNj+UaPnrrTA+9g+U9ii/6OHtDVOVbjFXwtI8CO455yDe3tDo9TAMHgrDqDFVO9TZ3cUxt42A5Y4Q6F8ZB+/FC6qvs4ZnekSjqXYHxdT/IXj9u/KZipqSybKOnaHNPg4AKEixT1AKUr6Ez7TJ8Hq/9q5bVZlj2uPCz79ecp6SydPQZPhgGJ58Bl4rlwMoH2jgmREwDC+/mLYkWZ1fb9Pt9lLy076tsdw48FF4bvwY+pEvQ3x8oCkosH/A32a/5Z7Ks38W7EouoDVqBMOoV9AooDFKN30J3ebKpFxTW/ffKnfUi+a9jcbjRsNyayuUTJrypwcUsISEKn8tguH+x+ka7yABANzdYW3iB7eLBbWuyxzbERfXfwbdZ5/gph3bKz/raiE2oxXadrGXgAD1/8JlK9QfKC2ekgifGZUXDPXPjwQA5J0+D5hMCGxZecHQEnonLKF34nxsJ+hSPoXPtMnKdmLa4cLOPdClpsDw3IsofaA3dBvWQ/vzfmizjtrVr/if0+EzcyqK3loEeHvbdXGDtvLz8OIHH6PxKyOh/+dUVFwqMDw/Eoby+tW+Ay5xF0RT/Ryx6O2laPzskzCMegUm2wFZvLxQPKfy+C95fTqMjw2GJaSGxxY0GpiuYnQ7/ZgJyoXLRjX3HilrHwuvtasA2McXUO5+up09U60XTlXWm1ugLKYdNEVFMD34EEwPPlRtnvwt38B73iyUTJ2pJPs2x835/Ycrkyw3N+R//S1gMkH8/FEyYRLEyxOmPv3hsXMHtPt+hOfnn1avhLs7rDWcF7kKl02ecnNz4e/vDw+bD9eAgACYTCYUFBSgadOah4Os6noYWr6iDperizWw8gNPY9uXumJBnQcs0TGVJwMeN8EcF29/cuDra/fa0uauy2637J6ul5xHP025Te3+6xG17Hz2aYhP42rbvvDzEYhOV+P6SubOhzkyCqUPDqh1ewWpX6HRtNfhsXMHAKWLbU3zWoL+D2Xl67Hcdjvcjx9D1AtD8M7td6jzW6JjkJdbqK6nNsX/WomSBYsgjZV9l3euANBooNEA1jZtYGrTBqahw1CS+Kbypf3KOHUb1vBwQGpef+GGFOWk+aabqk03vjgSjeYqzzpYAwOhHzMBlohIaGxOwKpdzPb1heG1f8IwcbJSPwBwr/4FoXF3d+x9r9EobS0rA3Q6tY7FcxfCr18vlEyaAvM9XVF8j/3vVqgx0WhQsDkNjV94FiUzZ6nbLFqxFvpjWbDcGfanjz+Npoa4BwbANOSJ2mOp80DB/3Yp3YRs2uOIioTPdvti+xnj7Y3zh4/DLeccrKGh6rqt5V3M7Lbl7w9D+R1NtfymWj6KK8rd3ZB/8CjcDx6A/72dK5et0oiCTVthjoiERlv9SjG07igrf07G0bYXvb8ajYf+A/qpMxyLVaNauvF6e6nH2s4yCzxvqqF+VVib+sMw4TWH6nvxk8/R+PmnYerbH6ZH/15jXS/+Zys8/70WhmefV+5GNGpU+T5q1Qo4riQuGg1wcf2n8Nj6FYzPvahMb9wY+Wk74DP5VdyUbtOd1N8fF/YdgHh6oVkbJZEyvDwWug3rYfrH42o9St6YDXPHThDvRvBathTFc+ZXq6P+jVmw3toKpv4PQVN1P3rqUHp/LzV5ulbfW2V9+uL8kWxI06aVydNtrWB8YaRD7xHjw4MgAYEwvPQy3A8egLlDrPIsYy3HV/Gid2B86lmYo2PUK9a285XFdYFH2lZYbm4BTZUBZcxR0er/tu0v+HIb/Horo9UZnk+o9n0qN99st5zpiSeh2/qV+lpdl81dB1PvvjANexJlPXspFz/KR9esbZ8Ynn3+sjHJzzisPOvm5lbregq2bYfP+Fegf3XSJddX+vAglD48yKEYibs7NBYL9NNn2q0zL7dQSS4qvisAGBNeAnQeymAft9yifufB3Q3wrhwJUfybVu7f4GAYE15Cae8+cM86CnN8FwCAIfRVAEBZj54o69ETTXpV3kmqWNY4+hWYhg2H+PlXa4t+zAR4bNsC4+NDYW3bFhe/3uHwuVJlRavPW7T4XeXz2yZZVr+vb2+Ni/9VEv9LbsLdDdawsCv6DrkiPrV3uy997B8o0rqjLKZ9tbaVlj+vfdl6ubvh4uavlfiXJ0FVl7FEx6CovHunBoDx8SfgPX8OSh/oA42H/UU1S9uIynX4NFK/34xtlbtQNSVPGg3sLq5fD+fiwJW8t1zUZ599Jvfee69d2e+//y4hISFy5swZJ9Wqjv3xh0iPHiIbN179uvbuFRkzRiQ/v/Z5fv9d2ZbF4tg6zWaRiAiRbt1ErNarr+OlBAaKACInTtiXf/edyNSpIqWllWVGo4grvicKC5X9r9dXlh09qrR7+PDKsi+/FGnTRuSHH6qv4/RpZf6wMJE5c5T9lpl59XUzmaqXvfGGsq2vv7769ddmwACRTp0cf09eK2Vlyn57+22RffsqyzMzRbKy6q8eVqvIffeJ3H9/5TGWlKTs9+XL626b9enZZ5X2pKZe2XJXU8+TJ0UGDhTZsePS8xkMIl27KvVbuNB+2gsviPz1ryIXL9bNPrNaRRYsEPnmm2u/bhGRV15R2pWefvl5t2wRGT1a+Wy9lnJzRWbMEMnOrnn69u0ix49XLw8IUOp+8GD1aRcuiDzyiMgXX1SWBQcr8589az/v6tUivr4in39++bquXSvi73/594yzFRSI/PLLtVnXhx+KPPig8h6/Uh99pOzzvn0dX+bPHkfDhinbeuutyrLDh0W2bq18ffasSFycEnNyTGnpn4vJN9+IdO8usnix8rm5apVSrteLTJwosmvXNa1mfdCIuOa4gps3b8bMmTPx3XeVI6wdO3YMvXv3Rnp6OvwcGDkHAM6fL3L6yIoaDdCsWeProi5XzWqt5bbANWYwQFNYWOtAAM5WpzE1GpUroQ7uY83FAmW0Oa1WvdJYZ8rv6tSpum7DJVwXx2oN7dcU5F9yWGSXIgLN+fN2XYvq0jWNqRPfm9eEwaAMduBqSkrgdj7P7lmiS8ZVRPkcramt5XeHHOLq8a5nbtnHlW6af/KnQRw+Vi0WuB/LUp55Znyua9fFd2oN9bkcl+22FxQUhPz8fJjNZmjLD8Tc3Fx4enrC19f3MktXUi5P1FUtr8z1VJc/raIfcV23w9ML4ulV99u5SnUSU135MyUOrld8/Wzm19TtPvPQ1UNM6rgNDnDusVq9/dLE3+n75NrRQJoF1Ht7rk1Mnf/evCou8JlaI+9GsHg3qrHuNcdVU3tbNW5XsA9cPN71zHJr+fOEV7nPLnusurlXPuPF+LgEVzv/da1RFWyEhYVBq9Vi//79atnevXsRHh7ucoNFEBERERHR9c9lswwvLy8MGDAA06ZNw88//4y0tDSsWLECTzzxhLOrRkREREREDZDLdtsDgNdeew3Tpk3DsGHD4OPjg5deegk9e17FL1cTERERERHVwqWTJy8vL8yePRuzZ892dlWIiIiIiKiBc9lue0RERERERPWJyRMREREREZEDmDwRERERERE5gMkTERERERGRA5g8EREREREROYDJExERERERkQOYPBERERERETmAyRMREREREZEDmDwRERERERE5gMkTERERERGRA7TOroCzaTTOrkFlHa6HutC1wZg2TIxrw8OYNkyMa8PDmDY811tMHa2HRkSkbqtCRERERETk+thtj4iIiIiIyAFMnoiIiIiIiBzA5ImIiIiIiMgBTJ6IiIiIiIgcwOSJiIiIiIjIAUyeiIiIiIiIHMDkiYiIiIiIyAFMnoiIiIiIiBzA5ImIiIiIiMgBTJ6czGQyYdKkSWjXrh3i4+OxYsUKZ1eJalFaWoq+ffsiPT1dLTt58iSGDx+OyMhI9O7dGzt37rRbZteuXejbty8iIiLwxBNP4OTJk3bTV61ahS5duiAqKgqTJk2CwWCol7YQcO7cOYwaNQodOnRAly5dkJSUBJPJBIBxdVUnTpzA008/jaioKNx7771Yvny5Oo0xdX0jRozAxIkT1deHDh3CI488goiICAwcOBAHDhywm3/Tpk3o0aMHIiIikJCQgAsXLqjTRATz5s1Dx44d0aFDB8yZMwdWq7Xe2nKj27ZtG0JDQ+3+Ro0aBYBxdVWlpaWYPn062rdvj86dO2P+/PkQEQANMKZCTjVjxgzp16+fHDhwQLZu3SpRUVGyefNmZ1eLqjAajZKQkCAhISGye/duERGxWq3Sr18/GTt2rGRlZcmyZcskIiJCTp8+LSIip0+flsjISHn//fclMzNTRo8eLX379hWr1SoiIl999ZXExMTIf//7X8nIyJDevXvL9OnTndbGG4nVapVHH31UnnnmGcnMzJQ9e/bI/fffL7NmzWJcXZTFYpGePXvK2LFjJTs7W7Zv3y7R0dHyxRdfMKYNwKZNmyQkJEReffVVEREpKSmRuLg4mTVrlmRlZUliYqJ07txZSkpKREQkIyND2rZtK5999pkcPnxYhgwZIiNGjFDX9/7770vXrl1lz5498v3330t8fLwsX77cKW27Eb3zzjvy3HPPSU5Ojvp38eJFxtWFvf7669KzZ0/JyMiQXbt2SWxsrKxbt65BxpTJkxOVlJRIeHi4ejIuIrJ06VIZMmSIE2tFVR09elQefPBB6devn13ytGvXLomMjFQ/AEREhg0bJosWLRIRkYULF9rFUq/XS1RUlLr84MGD1XlFRPbs2SNt27YVvV5fH826oWVlZUlISIjk5uaqZampqRIfH8+4uqhz587J6NGjpaioSC1LSEiQqVOnMqYuLj8/X+655x4ZOHCgmjxt2LBBunfvria4VqtV7r//ftm4caOIiIwfP16dV0Tkjz/+kNDQUPn9999FRKRr167qvCIiKSkp0q1bt/pq0g1v7Nix8tZbb1UrZ1xdU35+vrRp00bS09PVsuTkZJk4cWKDjCm77TnRkSNHYDabERUVpZbFxMQgIyPD+bckSfXDDz8gNjYW69evtyvPyMhAmzZt4O3trZbFxMRg//796vR27dqp07y8vHDXXXdh//79sFgs+OWXX+ymR0ZGoqysDEeOHKnbBhECAwOxfPlyBAQE2JUXFxczri6qefPmWLhwIXx8fCAi2Lt3L/bs2YMOHTowpi5u9uzZ6N+/P1q3bq2WZWRkICYmBhqNBgCg0WgQHR1da0xvvvlmtGjRAhkZGTh37hzOnDmD9u3bq9NjYmJw+vRp5OTk1E+jbnDHjh3DrbfeWq2ccXVNe/fuhY+PDzp06KCWjRgxAklJSQ0ypkyenCg3Nxf+/v7w8PBQywICAmAymVBQUOC8ipGdwYMHY9KkSfDy8rIrz83NRfPmze3KmjVrhrNnz152emFhIUwmk910rVYLPz8/dXmqO76+vujSpYv62mq14oMPPkDHjh0Z1wage/fuGDx4MKKiotCrVy/G1IV9//33+PHHH/Hiiy/alV8upjk5ObVOz83NBQC76RUXUhjTuiciyM7Oxs6dO9GrVy/06NED8+bNQ2lpKePqok6ePIng4GCkpKTgb3/7G+677z4sXboUVqu1QcZU67QtEwwGg13iBEB9XVpa6owq0RWoLX4VsbvUdKPRqL6ubXmqP3PnzsWhQ4fwySefYNWqVYyri1u0aBHy8vIwbdo0JCUl8Vh1USaTCVOnTsWUKVPg6elpN+1yMTUajVcUU3731p8//vhDjd/ChQtx6tQpzJw5E0ajkXF1UXq9HidOnMBHH32EpKQk5ObmYsqUKfDy8mqQMWXy5EQ6na5a8CteV/2ioOuPTqerdoewtLRUjV1t8fX19YVOp1NfV51e9Q4X1a25c+di9erVWLBgAUJCQhjXBiA8PByAcvI9btw4DBw4sNroeIzp9W/JkiW4++677e4SV6gtZpeLqZeXl93JV9X4MqZ1Lzg4GOnp6WjSpAk0Gg3CwsJgtVoxfvx4dOjQgXF1QVqtFsXFxXjrrbcQHBwMQEmS161bh5YtWza4mLLbnhMFBQUhPz8fZrNZLcvNzYWnpyd8fX2dWDNyRFBQEPLy8uzK8vLy1NvLtU0PDAyEn58fdDqd3XSz2YyCggIEBgbWfeUJAJCYmIiVK1di7ty56NWrFwDG1VXl5eUhLS3Nrqx169YoKytDYGAgY+qC/vOf/yAtLQ1RUVGIiopCamoqUlNTERUVdVXHaVBQEACoXYJs/2dM64efn5/6DAwA3H777TCZTFd1rDKuzhMYGAidTqcmTgDQqlUrnDlzpkEeq0yenCgsLAxarVZ9aA5QHroLDw+HmxtDc72LiIjAwYMH1dvKgBK/iIgIdfrevXvVaQaDAYcOHUJERATc3NwQHh5uN33//v3QarW48847668RN7AlS5bgo48+wvz589GnTx+1nHF1TadOncLIkSNx7tw5tezAgQNo2rQpYmJiGFMXtHbtWqSmpiIlJQUpKSno3r07unfvjpSUFEREROCnn35Sf0dGRLBv375aY3rmzBmcOXMGERERCAoKQosWLeym7927Fy1atKj27AVde99++y1iY2Pt7gYfPnwYfn5+iImJYVxdUEREBEwmE7Kzs9Wy48ePIzg4uGEeq84b6I9ElHHx+/TpIxkZGbJt2zaJjo6WLVu2OLtaVAvbocrNZrP07t1bXn75ZcnMzJTk5GSJjIxUfzvm5MmTEh4eLsnJyepvx/Tr108drnPTpk0SHR0t27Ztk4yMDOnTp48kJiY6rW03kqysLAkLC5MFCxbY/c5ITk4O4+qizGazPPzww/LUU0/J0aNHZfv27dK5c2dZtWoVY9pAvPrqq+qQxkVFRdKxY0dJTEyUo0ePSmJiosTFxanD0e/bt0/uuusu+fjjj9XfjnnuuefUdSUnJ0t8fLzs3r1bdu/eLfHx8bJixQqntOtGU1RUJF26dJExY8bIsWPHZPv27RIfHy/vvfce4+rCRowYIY899pgcPnxYduzYIR07dpTVq1c3yJgyeXIyvV4vEyZMkMjISImPj5eVK1c6u0p0CbbJk4jIb7/9Jo8//rjcfffd0qdPH/nuu+/s5t++fbv07NlT2rZtK8OGDVN/t6BCcnKydOrUSWJiYuS1114To9FYL+240SUnJ0tISEiNfyKMq6s6e/asJCQkSHR0tMTFxcm7776rJkCMqeuzTZ5ElB/XHDBggISHh8ugQYPk4MGDdvNv3LhRunbtKpGRkZKQkCAXLlxQp5nNZnnzzTelXbt2EhsbK3PnzlXfK1T3MjMzZfjw4RIZGSlxcXGyePFidf8zrq6psLBQxo8fL5GRkdKpU6cGHVONSPl9NCIiIiIiIqoVH6whIiIiIiJyAJMnIiIiIiIiBzB5IiIiIiIicgCTJyIiIiIiIgcweSIiIiIiInIAkyciIiIiIiIHMHkiIiIiIiJyAJMnIiIiIiIiBzB5IiIilzZ06FAsXrz4Ty0bGhqK9PT0a1wjIiJqqJg8EREREREROYDJExERERERkQOYPBERUYPw6aefYujQoVi0aBFiY2PRrl07JCUlQUTUeZYsWYJOnTohNjYWGzZssFu+tLQUM2fORGxsLGJjYzFu3DgUFBQAADZs2IC7774bJ06cAAAcO3YM4eHhSEtLq7f2ERGR8zF5IiKiBuOnn35CdnY21q1bh9dffx1r1qzBrl27AADr16/HmjVr8Oabb2LVqlXYuHGj3bLz58/HgQMH8K9//Qtr1qxBcXExRo8eDQAYNGgQoqKi1GRsypQp6NmzJ3r06FHvbSQiIudh8kRERA2GxWJBYmIibrvtNvTv3x933nknfvnlFwDAxx9/jGHDhqFbt24ICwvDzJkz1eUMBgM++OADTJ8+HW3btkVoaCjmzJmDH374Ab/++is0Gg1mzJiBXbt2Ydy4ccjOzsbkyZOd1UwiInISrbMrQEREdK00a9YMPj4+6msfHx+YzWYASle7hIQEdVrr1q3h7e0NADh58iTKysrw97//3W59VqsVv/32G0JDQ9GqVSuMGDECixcvxuzZs9G0adN6aBEREV1PmDwREVGD4eHhUa3M9pkn2/8BQKtVvgYtFgsA4MMPP1QTqgrNmjVT/z9y5Ajc3d2Rnp6OAQMGXKtqExGRi2C3PSIiuiHccccdahc+ADh16hQKCwsBAH/5y1/g7u6OgoICtGzZEi1btoSPjw+SkpJw/vx5AEBaWhp27tyJZcuWITU1Fd9//71T2kFERM7D5ImIiG4IQ4YMwZo1a7BlyxZkZmZi8uTJcHNTvgZ9fHzwyCOPYNq0aUhPT0dWVhYmTJiAEydO4JZbbkFxcTESExPxwgsv4J577sGQIUMwdepUmEwmJ7eKiIjqE5MnIiK6IfTv3x+jRo1CYmIiBg8ejLi4OPj6+qrTJ06ciE6dOmHUqFF49NFHodVq8d5778Hd3R0LFiyAp6cnnnzySQDAyJEjodfrsXTpUmc1h4iInEAjVTuAExERERERUTW880REREREROQAJk9EREREREQOYPJERERERETkACZPREREREREDmDyRERERERE5AAmT0RERERERA5g8kREREREROQAJk9EREREREQOYPJERERERETkACZPREREREREDmDyRERERERE5ID/B7VdIFlQl5TnAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 1000x500 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAEtEAAAn6CAYAAABcU5rDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzdd3jV9fk//juEBBJAkK0MUaAOhoLbD4ILUEBUFPeuxWqdpQ5abd1ardui1lpQHHUPFHATUVEcqDhAoIosAdmQQALk94c/8/VNAiQhIRx8PK6L6zqv+7zGfcgZ7z/O9TxphYWFhQEAAAAAAAAAAAAAAAAAAAAAAAAppFpVNwAAAAAAAAAAAAAAAAAAAAAAAABlJUQLAAAAAAAAAAAAAAAAAAAAAACAlCNECwAAAAAAAAAAAAAAAAAAAAAAgJQjRAsAAAAAAAAAAAAAAAAAAAAAAICUI0QLAAAAAAAAAAAAAAAAAAAAAACAlCNECwAAAAAAAAAAAAAAAAAAAAAAgJQjRAsAAAAAAAAAAAAAAAAAAAAAAICUI0QLAAAAAAAAAAAAAAAAAAAAAACAlCNECwAAAAAAAAAAAAAAAAAAAAAAgJQjRAsAAAAAAAAAAAAAAAAAAAAAAICUI0QLAAAAAAAAAAAAAAAAAAAAAACAlCNECwAAAAAAAAAAAAAAAAAAAAAAgJQjRAsAAAAAAAAAAAAAAAAAAAAAAICUI0QLAAAAAAAAAAAAAAAAAAAAAACAlCNECwAAAAAAAAAAAAAAAAAAAAAAgJQjRAsAAAAAAAAAAAAAAAAAAAAAAICUI0QLAAAAAAAAAAAAAAAAAAAAAACAlCNECwAAAAAAAAAAAAAAAAAAAAAAgJQjRAsAAAAAAAAAAAAAAAAAAAAAAICUI0QLAAAAAAAAAAAAAAAAAAAAAACAlCNECwAAAAAAAAAAAAAAAAAAAAAAgJQjRAsAAAAAAAAAAAAAAAAAAAAAAICUI0QLAAAAAAAAAAAAAAAAAAAAAACAlCNECwAAAAAAAAAAAAAAAAAAAAAAgJQjRAsAAAAAAAAAAAAAAAAAAAAAAICUI0QLAAAAAAAAAAAAAAAAAAAAAACAlCNECwAAAAAAAAAAAAAAAAAAAAAAgJQjRAsAAAAAAAAAAAAAAAAAAAAAAICUU72qGwAAAAAAAAAAAAC2TF9//XV89dVXMX/+/FizZk3UqlUrGjRoENttt120bds2MjMzq7pFImLVqlUxZcqUmDZtWsyZMyfy8vIiLS0t6tSpE/Xr148dd9wxtttuu0hLS9sk/Sxfvjy+/vrrmD59eixatCjy8vIiIyMjsrOzY9ttt41WrVpFq1atNlk/AAAAAAAAAMDmS4gWAAAAAAAAAMBm4oMPPohTTz21xPtq1qwZY8eOjezs7Ao77/LLL4/nnnuuWL1Zs2bx5ptvVtg5rNvaf4O99torhg0bVur1eXl5kZWVVRmtVZmSXgdvvPFGNG/evIo6ojyeffbZGDRo0CY9c9KkSRERcffdd8c999xTVPeeVjXee++9uOaaa+Lbb79d55w333wzmjVrtgm7qlolfe5W5fvbypUrY9SoUTFy5Mj44IMPIjc3d73za9euHQcccED07t07unXrFunp6RXaz5IlS+L555+PESNGxIQJE2LVqlXrnV+vXr3o0qVLHH744dGtWzeBWgAAAAAAAADwKyVECwAAAAAAAAAgBaxYsSJGjx4dvXr1qpD98vPz4/XXX6+Qvdj08vLyYvDgwbFo0aK49tprq7odgIThw4fH5Zdfvt4QpK222upXFaC1OVm1alU8+uij8cADD8S8efNKvW7ZsmXx0ksvxUsvvRStWrWKc889N/r27bvR4VWrV6+Of//73/HAAw/E0qVLS71u0aJFRf20adMmLr300ujWrdtG9QIAAAAAAAAApJ5qVd0AAAAAAAAAAAClM2rUqArb6+233y5TUAWbj7feeit69+4d//rXv6KgoKCq2wFImDNnTlx55ZXrDdCKiNhpp502UUf80tSpU+Poo4+OG264oUwBWmv77rvv4tJLL41TTz01Zs2aVe59Fi9eHCeffHLcdtttG3VdMmXKlBgwYEBcd911sWbNmnLvAwAAAAAAAACknupV3QAAAAAAAAAAAKWTk5MTubm5kZ2dvdF7vfzyyxXQEZvaddddF8OGDavqNgDW6cEHH4y8vLxEbccdd4wzzzwzWrduHWlpabFw4cKoWbNmFXX465WTkxMXXXRR5ObmFrsvMzMz9tprr9h///2jWbNm0bBhw6hevXosXrw4pkyZEh9//HGMHj068vPzE+vGjRsXffv2jXvvvTf23HPPMvWTn58fZ555ZnzxxReJelpaWnTu3Dn222+/aNu2bTRo0CBq1aoV+fn5sXTp0pgyZUp8+umn8eabb8bKlSsTa4cNGxa5ublxww03lKkXAAAAAAAAACB1CdECAAAAAAAAAEgRK1asiNGjR0evXr02ap/c3Nx46623KqgrNqVJkyZVdQtQKv369Yt+/fqVev7ll18ezz33XKL2xhtvRPPmzSu6NSrZuHHjEuPGjRvH448/HrVq1aqijoiIeP311+Oiiy6KgoKCRD07OztOPfXUOOuss6JOnTolru3SpUucfvrpsXjx4njooYdiyJAhiSCupUuXxllnnRV33313dO3atdQ93XbbbcUCtDp16hTXXntttG3bdp3runTpEhERixcvjttvvz3++9//RmFhYdH9zzzzTHTq1Cn69+9f6l4AAAAAAAAAgNRVraobAAAAAAAAAABg3erWrZsYjxo1aqP3fOuttyIvL2+j92Hj3XTTTTFp0qSif8OGDavqliDlnX/++YnX1ZtvvlnVLf2qzJo1KzHu2bOnAK0qNmHChPjTn/5ULECrU6dOMWrUqLj44ovXGaD1S3Xr1o0LLrggXnzxxWjfvn3ivhUrVsRFF10UU6dOLVVPM2fOjEceeSRR+7//+794+OGH1xugtXY/V111VVx55ZXF7rvtttti+fLlpdoHAAAAAAAAAEhtQrQAAAAAAAAAADZjhxxySGKck5MTubm5G7Xnyy+/nBjvuuuuG7UfAPxs7eCiVq1aVU0jREREbm5u/PGPfywWnnnkkUfGww8/HE2aNCnzni1atIjHHnss9t1330R9+fLlcf7550d+fv4G93j22WcToV41a9aMv//975GZmVnmfk466aTo1atXorZgwYIYMWJEmfcCAAAAAAAAAFKPEC0AAAAAAAAAgM3YQQcdFDVr1iwar1ixIkaPHl3u/ZYuXRpjxowpGrdv3z5atmy5MS0CQJFVq1YlxllZWVXUCRERd999d3z//feJ2iGHHBI33nhjuQKrflajRo249957o23bton61KlTY+jQoRtc/+677ybGXbt2jUaNGpW7n4svvrhY7a233ir3fgAAAAAAAABA6hCiBQAAAAAAAACwGcvOzo5u3bolaqNGjSr3fq+99lrk5+cXjXv37l3uvQBgQ9LS0qq6hV+tOXPmxKOPPpqoNWzYMK6//vqoVm3jvz6alZUV//jHP6J69eqJ+r333hsLFy5c79qpU6cmxi1atNioXlq2bBkdOnRI1CZOnLhRewIAAAAAAAAAqaH6hqcAAAAAAAAAAFCVDjvssHjllVeKxjk5OZGbmxvZ2dll3mvEiBFFt9PS0qJXr17x1VdfVUifBQUF8dVXX8Xs2bNj8eLFsWjRoigsLIysrKxo1KhR7LDDDtG2bdtIT0/f6LMKCwtjypQp8dVXX8X8+fNj1apV0bhx49h+++2jY8eOlRrasmjRovj000/j+++/j+XLl8dWW20VDRs2jN122y2aNGlSaeemuiVLlsRnn30W06ZNi2XLlkX9+vVjm222iT322COysrIq5cz58+fH559/Hj/++GMsXLgwatasGQ0bNoztt98+dt5550o5c3OyevXq+Oabb2LSpEmxcOHCyM/Pj7p168bWW28drVq1ih133LGqW0wJs2bNik8//TRmz54d+fn5UadOndh+++2jc+fOG3zurly5Mj755JOYMmVKLFu2LGrVqhVNmjSJzp07R6NGjSqkv6VLl8b48eNj3rx5MX/+/MjMzIwGDRoUhQpVRFhSVVmzZk189dVXMXXq1KLn8NZbbx0NGjSIjh07RsOGDSv8zIkTJ8b48eNj2bJl0bJly9hrr71i6623rvBzNoXHHnssVq5cmaidffbZUa9evQo7Y6eddop+/frFk08+WVTLzc2NZ555Js4666x1rsvNzU2MFy1atNG9dOjQISZMmBARERkZGcXCvQAAAAAAAACALZNvCAAAAAAAAAAAbOYOOOCAyM7OLgqcWLFiRYwePTp69epVpn0WLlwYY8eOLRrvvvvu0bRp043qLS8vL1588cV45ZVXYvz48cVCMdZWt27d6NGjR5xxxhnRunXrcp338MMPxxNPPBEzZ84scc62224bxx57bPz2t7+NzMzMmDBhQhxzzDFF9zdr1izefPPNEtfefffdcc899xSNBw0aFKeffnpERIwfPz7uvffeGDNmTKxZs6bY2rS0tGjXrl2ceeaZ0bt371I9nssvvzyee+65ovFee+0Vw4YNS8xZX9DRc889l1gfETFp0qTE+JRTTolx48YVjY866qi46aabStVfRMSMGTPi4IMPTtQefvjh2HvvvUu1fsKECXHfffdFTk5OFBQUFLu/du3a0adPn7jwwgujfv36pe5rXVavXh1PP/10PPPMMzFhwoQS/1YREY0bN46ePXvG73//+0oJ4omIuOCCCxIBeHXr1o133nknMjMzy7zXcccdF59++mnReL/99oshQ4aUOPebb76Jhx9+OEaNGhVLly5d554NGzaMLl26xIknnhi77rprmXvaXK39Oi7La/6qq66KE044ISIixo4dG3feeWeMHz++xLVZWVlxzDHHxIUXXhh16tRJ3LdgwYIYPHhwPPPMM+t8X/y///u/uPjii6NDhw5lenw/GzlyZDz22GPxySefxKpVq0qcU69evTjooIPi3HPPjRYtWpTrnA056KCD1vl+HPHT++igQYMStRtvvDH69eu3zjWTJ0+O//znP/Haa6+t8zmclpYWu+yySxx99NFx7LHHRkZGRqn6Xdf7/LJly+Ivf/lLjBo1KjE/IyMjevfuHRdccEE0a9asVGdsDtasWRPPPvtsopadnZ34PKwoAwYMiKeeeioKCwuLao8//vh6Q7Rq166dCM56++23Y+XKlVGjRo1y93HeeefFmWeeGVtvvXXUrl273PsAAAAAAAAAAKkldX9iDgAAAAAAAADgVyIrKysOOOCARG3tkI/SeOWVVxJBK6UNelqX119/PXr27Bl//etf4913391ggFZExOLFi+Opp56Kvn37xj//+c8ynTd+/Pg47LDD4rbbbltvYMusWbPijjvuiH79+sXkyZPLdEZJ1qxZE3//+9/jhBNOiJycnHWGMhUWFsYXX3wRf/zjH+OUU06JZcuWbfTZqSw/Pz+uueaa6N+/f7z++uslBmhFRCxbtiz++9//xuGHHx7vvvvuRp350UcfRZ8+feKvf/1rfPbZZ+v8W0VEzJ07N4YNGxbdu3dfZxjVxjr66KMT48WLF0dOTk6Z95k2bVoiQCsi1hlAdOedd8aRRx4ZTz311HoDtCIifvzxx3j++efj2GOPjT/96U+leg3/GuTn58eNN94YZ5xxxjoDtCJ+CvUbNmxYHHXUUYn3pLFjx0avXr1i2LBh6/0/fffdd+OEE06I559/vkz9TZkyJY499ti46KKLYty4cesM0IqIWLRoUTz77LNx2GGHxS233BKrV68u01mbWm5ublx55ZVx+OGHx7PPPrve53BhYWF8+eWXcc0118Shhx66Ue8fq1evjvPOO6/Ez9aCgoJ4/vnnE2GEqWDChAkxd+7cRO2ggw6K7OzsCj+rRYsWseeeeyZqM2bMiIkTJ65zzdoBkfPmzYvrr78+EcRVVg0aNIgWLVoI0AIAAAAAAACAXxkhWgAAAAAAAAAAKaBXr16J8dtvvx15eXll2uPll18uul29evU49NBDy93P0KFD4w9/+EPMmTOnXOtXrVoVd911VwwdOrRU899666045ZRTYvbs2aU+Y/LkyXHaaafF//73v3L1+LNBgwbFf/7znzIFe4wbNy7OOuus9YbbbMlWrlwZv/vd7+LRRx8t9f/bjz/+GOecc0589NFH5Trz5ZdfjjPOOKPMf+/c3Ny46aab4oorrqjwv1eXLl2iUaNGidrw4cPLvM8LL7yQGNepUye6d+9ebN51110XgwcPLldQ0vDhw+Oss86K/Pz8Mq/dkhQWFsZll10WQ4cOLfVzd/r06XHuuedGQUFB5OTkxO9+97tYuHBhqdYWFBTEFVdcERMmTCjV/Pfffz9OOOGE+Oyzz0o1/5fn/Pvf/45zzz13sw1LmzNnTvTr1y+efPLJMgcpzZgxIwYMGBCPPvpouc4eOnRojB07dp33Z2RkxCGHHFKuvavKe++9V6y27777Vtp5Bx54YLHamDFj1jn/4IMPLlZ74okn4owzzohPPvmkQnsDAAAAAAAAALZs1au6AQAAAAAAAAAANqxr165Rq1atWL58eURE5OXlxVtvvVUsXGtd5s6dmwgn2meffaJ+/frl6mXs2LFx0003Fau3b98+evbsGTvuuGNsvfXWUb169Vi8eHFMnTo1cnJy4p133ok1a9Yk1tx5553Ru3fvYkFDv/T111/HhRdeGAUFBYl6gwYN4sgjjyx6LIsWLYrx48fHc889FzNnzoyIiPnz58cVV1xRrscZ8VOgxy9DmRo3bhxHHXVU7L777tGgQYNYsmRJTJo0Kf773//Gd999l1g7fvz4ePLJJ+PEE08s9/kRET179iy6PW7cuEQ4T7NmzaJ9+/YbtX9luOKKK+L9998vVt9///2jV69e0apVq4iImDZtWowaNSpGjx4dET+Fb919991lPu/111+PgQMHFgveadWqVfTp0yd23XXXaNCgQSxfvjymTZsWb7zxRowePTox/6mnnooaNWrElVdeWebz1yU9PT2OPPLIeOCBB4pqb731VixdujTq1KlT6n1efPHFxLhXr15Rs2bNRG306NExbNiwRK1WrVpxxBFHxB577BHbbrttZGVlRW5ubnz77bfx2muvxVtvvZWY//HHH8fQoUNjwIABpe5tS/PQQw8lXsstW7aM4447Ln7zm99EgwYN4ocffohXX301XnjhhcTzZ+LEiXH77bfH448/XvRe1bBhwzjmmGNi9913j/r168f8+fPjvffeiyeffDIRZFVQUBC33XZbDBkyZL29TZgwIc4666xi74WNGzeOvn37xu677x6NGjWKlStXxowZMyInJydee+21xPzRo0fHH//4x7jvvvs25r8poWvXrrFgwYKi8SuvvJK4v3379tGsWbNEbe3x0qVL43e/+118++23xfbv0qVL9OjRI1q1ahW1atWKefPmxbhx42L48OExb968onmrVq2Ka665JjIzM6N///6l7n/+/PnxyCOPrHdOly5dyvSa3Rx88cUXxWodO3astPP23HPPYrX1hb0dffTRce+99xYLnBs7dmyMHTs2WrduHYcddlh069Yt2rdvH9Wq+c1YAAAAAAAAAKBkQrQAAAAAAAAAAFJAjRo14qCDDorhw4cX1UaNGlXqEK2RI0cmAqz69OlTrj7WrFkT119/fSI8plq1avG3v/0tjj/++BLX7LvvvnHyySfH559/HhdeeGHMmjWr6L7c3NwYOXJknHrqqSWuXb16dVx66aWxcuXKRL1Xr15x1VVXRd26dRP1Ll26xIABA+KOO+6I//znPxERkZ+fX67HGhFFAVppaWlx1llnxQUXXBCZmZmJOfvtt1+ceuqpcf3118ejjz6auG/o0KEbHaJ11113Fd0+5ZRTYty4cUXjvfbaq8RAs6r0+uuvFwt9ql27dtx2223RrVu3RL1z585x1FFHxdixY+OPf/xjLFiwoFgQ1obMmjUr/vznPyfWZWRkxGWXXRYnnnhipKenJ+bvtdde0b9///jss8/ikksuiWnTphXd98gjj8Tee+8dPXr0KFMP63PUUUclQrTy8/Nj1KhRpQ75+fjjj2P69OmJWr9+/YrN+9e//pUY77DDDjFkyJBo2rRpsbmdO3eOo48+OnJycuLCCy+MvLy8ovuGDh0aZ555ZlSv/uv8atkvA7QuuuiiOPvssxPhPe3atYuDDz449t577xg0aFBi7YMPPlh0u2/fvnH11VdHdnZ2Yk63bt2if//+cfrppycCoN57772YMWNGNG/evMS+li5dGhdffHEiECstLS3OPvvsOPfcc6NGjRqJ+XvssUcceeSRMXXq1LjssstiwoQJRfe99dZbMWTIkDjjjDNK8T+yYVdddVVivOOOOybGJ510UonP2V+67LLLYtKkSYlas2bN4uabb4499tij2PwDDzwwzjvvvLj99tuLhcdde+210a5du9hll11K1f9jjz2WCDXba6+9Ypdddom8vLz46quvYsKECXHYYYeVaq/NyZQpUxLj9PT0ogDDyvCb3/wm0tLSEu/FU6dOXef82rVrx9VXXx0XXHBBifdPnTo17rnnnrjnnnuibt26sfvuu8cee+wRe+yxR+yyyy6RkZFR4Y8BAAAAAAAAAEhNfpoLAAAAAAAAACBFrB2Y9fbbbyfCb9ZnxIgRRbczMzOje/fu5erh3XffjcmTJydqZ5555joDtH6pY8eOceuttxarv/fee+tc8+KLL8Y333yTqPXt2zduvfXWYgFaP6tRo0Zcdtll8cc//nGDPZXWxRdfHH/605+KBWj9LD09Pf7617/GXnvtlahPmzZtvSEiW5rCwsK48847E7WMjIx48MEHiwVo/dK+++4bDz/8cGy11VZlPvOmm26KxYsXF42rV68e9913X5xyyinFArR+adddd41HH320WKjMDTfcEKtWrSpzH+vSunXr6NSpU6K2dsjY+rzwwguJ8Q477BC77bZborZw4cL4+OOPE7XrrruuxACtX+rWrVtccsklidr8+fOL7fVrNHDgwDjnnHMSAVq/1K9fv9hzzz1LvO+QQw6JW265pViA1s/atGkTl112WbH6+PHj19nP4MGDi4WpXXfddXHxxRcXC9D6pdatW8dDDz0UnTt3TtTvuuuuxOumKn3yySfxxhtvJGotWrSIxx57rMQArZ/VqlUrrrjiimLv9StXrozrr7++1OcvW7YsIiLq1asXjz76aAwbNiwGDRoU11xzTTz99NPxzDPPxMEHH1yGR7R5+OGHHxLj+vXrr/MzrCLUqFEjGjdunKit/ZxdW8+ePeOKK66ItLS09c5bvHhxvPnmm3HzzTfHscceG3vuuWecddZZMWTIkPj22283uncAAAAAAAAAILUJ0QIAAAAAAAAASBFdunRJhAzl5eXF6NGjN7hu5syZ8emnnxaNu3XrFrVr1y5XD6NGjUqMs7Oz4+yzzy71+s6dO8f222+fqK0d9PFLQ4YMSYybN28eV1111TqDbX5pwIAB8X//93+l7m1d2rZtW+rHOGDAgGK1iRMnbnQPqeLDDz8sFnp29tlnFwt9Kknbtm3j0ksvLdN506dPj9deey1R+/3vfx9dunQp1fpGjRrFP/7xj0Rt9uzZMXLkyDL1sSH9+vVLjD/66KP1Pu9/lp+fX+w1t/ZeET+9xtfWrl27UvXWv3//xPtBnTp14vvvvy/V2i1Vq1at4owzztjgvMMOO6xYLSMjI/72t79tcG3Pnj0jIyMjUVtX4N6yZcviySefTNSOOuqoOOaYYzZ4TsRPYVO333571KxZs6iWm5sbjz/+eKnWV7a77rorMU5PT49//OMfGwyB+9nZZ58dBx54YKL20UcflTkM7t577y0xtKt9+/bl/sysKsuWLYsVK1Ykag0aNKj0c+vVq5cYFxQURG5u7nrXnHLKKfGvf/2r1H/viJ+uf8aMGRM33XRTHHroodGnT5948MEHY+nSpeVpGwAAAAAAAABIcUK0AAAAAAAAAABSRGZmZhx88MGJWmnCfl5++eXEuFevXuXuoWPHjtGvX7/Yc889o2nTpnHIIYckgr1Ko02bNonxugI2Jk6cGJMmTUrUfvvb30atWrVKdU5aWlpcdNFFZeqtJMcee2yp53bq1KlYbf78+RvdQ6p46aWXEuMaNWrE6aefXur1xxxzTLRo0aLU85944olYs2ZN0TgrKyvOPPPMUq+PiOjQoUPst99+idozzzxTpj02pFevXokAozVr1sTw4cM3uG706NGxePHionF6enocccQRxeatHcYUETF+/PhS9ZaZmRn33HNPPPXUU/H+++/HRx99FP379y/V2i3VCSecUOL/6dp22mmnYrX9998/GjduvMG1mZmZ0axZs0RtyZIlJc4dPnx4LFu2LFH7wx/+sMEzfqlp06Zx+OGHJ2oV/Twvj4ULF8b777+fqPXs2bNUwXu/VFIA31NPPVXq9fvvv3907ty5TGduzvLy8orVsrKyKv3c7OzsYrXly5dvcF3Xrl1j5MiRMXDgwDKFaf1s8uTJcfPNN8chhxwSw4YNi8LCwjLvAQAAAAAAAACkLiFaAAAAAAAAAAAp5LDDDkuM33777RLDMn7pl0Fb2dnZcdBBB5X7/OOOOy5uvPHGeOSRRyInJyduueWWMu+xdghWQUFBifPeeeedxDg9Pb1YCMyGdOzYMX7zm9+UrcG17LHHHqWeW7t27ahdu3aitqG/z5Zk7TCcrl27Rp06dUq9Pi0tLfr27Vvq+R988EFivOeee5Y6ZO2X1n5NfPrpp7Fq1aoy77MutWvXjh49eiRqpQnReuGFFxLjLl26lBjQ1KJFi0hPT0/ULrvssvj8889L1d++++4bHTt2jK233rpU87d0e+65Z6nmlfT/VVKQ3rrUq1cvMV7Xe8Xaz/PWrVuXKWzuZ2s/z7///vuYM2dOmfepSB988EGxwKPyhLjtsMMOsddeeyVq48aNK/X6Aw44oMxnbs5Kev9a+z2iMvwy1PBnpQ20ys7OjgEDBsRbb70VDz30UJx88snRvHnzMp2/aNGiuO666+LMM8+MpUuXlmktAAAAAAAAAJC6hGhRKaZNmxbt27ePHXfcMe6+++4q7eWUU06JHXfcsUL+VfVjAQAAAAAAAID99tsvEbySl5cXo0ePXuf8b7/9Nr766qui8UEHHRQ1a9asxA7XbeXKlfHuu+/G5MmTE/WSQjcifgoy+qXWrVuXKZDpZ507dy7zmp9Vq1Yt2rZtW6Y12dnZiXFFhjFtzhYvXhzTpk1L1Dp27FjmfUobWpaXlxdff/11orbddtuV+byIiJ133rnY3r983VSEfv36JcaTJk2Kb775Zp3zFy1aFDk5Oevd42clhePNmTMn+vfvH6eddloMGzas2N+Gddthhx1KNS8zM7NYrWXLlqU+JyMjIzFeV9jQJ598khiX93m+yy67bHDvTe3DDz9MjKtXrx677757ufbae++9E+OZM2fGDz/8UKq1ZQk/SwVZWVnFasuWLav0cxcvXlysVtZgw2rVqsU+++wTV155Zbzxxhvx6quvxjXXXBO9e/cuMUSwJO+9916cdtppv6oQSwAAAAAAAAD4Nate1Q2w5Vm9enX8+c9/XuevxAIAAAAAAAAA5ZeRkRGHHHJIPP3000W1UaNGxWGHHVbi/Jdffjkx7tOnT6X2FxGRn58fM2bMiOnTp8d3330XU6ZMia+//jomTpxY4vcJ1hUc8+233ybGv/nNb8rVz9oBSWWRnZ1dLOhmQ0objLOlKSmkqTx/s5122qlU87777rtiz6d33303LrjggjKfmZubW6w2Y8aMcoWArcs+++wTzZo1i5kzZxbVXnzxxfjTn/5U4vwRI0YkHl+9evWKBWX90rnnnhtvv/12rFy5MlF///334/3334+IiBYtWkSXLl2iS5cusc8++0Tt2rU35iFtkWrVqlViAFFplSXoLy0tbYNzlixZEnPmzEnUJk6cWK7neUnvRTNmzCjzPhVp9uzZiXHr1q2jRo0a5dqrffv2xWozZ86Mpk2bbnBtWcMSN3clvbaXLFlS6eeufUZ6enqZQ7TWtt1228V2220Xxx13XET8dG0wduzYePfdd2Ps2LGxfPnyEtd9+eWXce2118YNN9ywUecDAAAAAAAAAJs/IVpUuGuuuSY++uijqm6jUpT3VxwBAAAAAAAAoCL16tUrEaKVk5MTeXl5JQa/jBw5suh2vXr1okuXLhXaS35+fowZMybGjRsXkyZNiu+++y5++OGHCgmOmjt3bmJcr169cu2z9dZbl7uHiggZ+rWEaK3994oo3/99/fr1IyMjY4M/4LZo0aJitf/973/xv//9r8xnlmTx4sUVss/P0tLS4qijjop77rmnqPbSSy/FwIEDSwxTevHFFxPjww8/PDIzM9e5/y677BI33XRTXHrppev8v5s+fXo8/vjj8fjjj0dGRkbsueeeccghh0TPnj2jYcOG5XxkW5bs7OyNWl+9esV+Ja+k5+GsWbNi1qxZlbb/prT267hRo0bl3qt+/frFaqV5fFlZWet9baWi6tWrxzbbbJMIKSvpPbMi5efnFwvRatGiRYWfs/3228f2228fJ554YuTn58ebb74ZQ4YMiU8//bTY3GeffTZOOumkaNeuXYX3AQAAAAAAAABsPqpVdQNsWW688cb473//W9VtJAwbNiwmTZpU5n9nnHFGYp/jjz8++vbtW0WPAgAAAAAAAAD+n3322ScRFpKXlxejR48uNm/ixIkxZcqUonH37t0jIyOjQnpYsWJFDB48OPbff/8499xzY+jQoTF27NiYPXv2BkOjShtWkpubmxiXN9ymTp065VoXEZGenl7utb82a/+9IiJq1apVrr1Ks66yw3/WDoOpCEcddVQiMGv27Nnx4YcfFps3bdq0GD9+fLG1G/JzwN6uu+66wbkFBQXx3nvvxTXXXBNdu3aN8847r8ICyFLZ5hamVNnBR5XxPC+LtR/fxgQXlvReX5r3ia222qrcZ27O2rZtmxjn5uZW6mv8q6++ilWrViVqrVu3rrTzIn56vR566KHxxBNPxA033FDs9VtYWBiPP/54pfYAAAAAAAAAAFQ9IVpUiGXLlsX5558fQ4cOrepWKsTIkSNjyJAhRePddtstrrzyyirsCAAAAAAAAAD+n/T09OjevXuiNmrUqGLzRowYkRj37t27Qs6fPn16HHnkkXHnnXeWKuClXr160aVLlxg4cGCMGDGi1H1Ur149MV6xYkV52o38/PxyraNsfhkOtbFq1KixwTkFBQUVdl5JKuN507x589h7770TtRdffLHYvLVrO+64Y7Rr165UZ+y0007x5JNPxn//+984+eSTo0mTJhtcs3r16njttdeib9++Amc2M6n4PC+LtUMXNxTCuD6rV68uVitNEOLanzVbik6dOhWrffzxx5V23qefflqs1r59+0o7b21HH310XH/99cXq77777ibrAQAAAAAAAACoGlvmtz/YpL7++uu48MILY9q0aVXdSoX44Ycf4q9//WvRuHbt2vGPf/xji/2yFAAAAAAAAACpqVevXvHEE08UjXNyciIvLy+ysrKKar8M0WrUqFGx8J7yWLBgQZx44okxd+7cYvdlZGTETjvtFDvttFO0bt06tt9++2jTpk00b948Ma+0ISl169ZNBGctX768XD0vXbq0XOv4yapVq0o175fPvZ+V9/++NH/rrbbaqljtgQceiK5du5brzE2lX79+8f777xeNX3nllfjrX/8amZmZRbUXXnih2Jqy6tSpU3Tq1CmuvPLK+Prrr2PMmDExduzY+OSTT9YZSFdQUBBXX3111K1bN3r16lXmM6l4JT3Pr7rqqjjhhBOqoJuKV7du3cS4vO/zESW/35T0vvRr0bVr17jzzjsTtbFjx0b//v0r5bySwqq6detWrDZ58uR44IEHYv78+TFv3ryYP39+3H777bHXXnttdA99+/aNhx56KL744oui2qxZs2L58uVRq1atjd4fAAAAAAAAANg8SQWi3BYsWBD33HNPPPHEE4kvS9avXz8WLFhQhZ1tnD//+c+xZMmSovGgQYOiRYsWVdgRAAAAAAAAABS31157RaNGjWLevHkREZGXlxc5OTlx6KGHRkTEhAkTYvr06UXzDz300KhWrdpGn3v11VcXC9DaZptt4qKLLooePXpEdnb2BvdYV4DP2ho2bBhz5swpGs+YMaNszf7/Zs+eXa51W6o1a9aUaX5p/16NGzcuVps/f36Zzor4KbQrNzd3g/PWDt+JiMR3PjZXPXr0iGuuuSaWLVsWET/1nJOTE927d4+IiE8++STx2s3IyIi+fftu1Jk777xz7LzzzjFgwIDIz8+PTz75JHJycuK1115LnBXxU8jdtddeG4ccckgi2IuqkarP89JaOyTs58+08ihpbYMGDcq9X6pr165dNG/ePPHZ+eqrr8bcuXNLfL/eGN9//3288847iVrTpk1jl112KTZ30aJFxYICP/vsswoJ0YqI2G+//RIhWhERy5YtE6IFAAAAAAAAAFuwjf9mJL9K7777bvTo0SMeffTRRIDWPvvsE//+97+rsLON88ILLyR+EW/vvfeOY445pgo7AgAAAAAAAICSVatWLXr06JGovfLKK0W3R44cmbivd+/eG33mzJkz49VXX03Utt1223jqqafiyCOPLFWAVkSU+se5OnTokBhPnDixdI2u5auvvirXui1VQUFBmeaX9u+1/fbbF6t9/fXXZTorImLq1KmlCvpq1qxZsdp3331X5vM2taysrOjVq1ei9svX1fDhwxP3HXDAAVG/fv0KOz8zMzP22WefuOyyy+L111+Pe++9N+rVq5eYs2DBghg7dmyFnUn51a9fv9h7ayo8z0urZcuWifHUqVNLHdy3ti+//LJY7df844lpaWlx/PHHJ2oFBQXx6KOPVvhZw4YNK/a+ffzxx0daWlqxudtss02x2scff1xhvTRt2rRYTYAWAAAAAAAAAGzZhGhRLpMnT46lS5cWjbOysmLQoEExZMiQEn/9sDwmTZoUd955Zxx//PGx//77R/v27WPvvfeO3r17x1//+tfIycmpkHN+tmzZsrjllluKxhkZGXH11VdX6BkAAAAAAAAAUJHWDuIZPXp0rFy5MiIiRo0aVVRv1qxZdOrUaaPPe+ONN4qFZJxzzjnRqFGjMu3zzTffJMbrCkzq3LlzYrx48eL49NNPy3RWfn5+vP/++2Vas6XJyMhIjHNzc8u0/n//+1+p5tWpUyfatm2bqH344YdlOisi4vPPPy/VvEaNGhUL4Pnoo4/KfF5ExLfffhuPPfZY5OTkxJQpU8r8f1RW/fr1S4xHjx4dq1atilWrViVeuxERRx11VKn2XLJkSXz66afx7LPPxhdffFHqXg466KC47rrritWnTJlS6j2oPOnp6bHrrrsmauV9nv/4448xbNiweOONN2LixImJ739VlbXf51etWlXuQKUPPvggMW7YsGGZP5+2NP379486deokakOHDo3JkydX2BlffvllPP7444lazZo147jjjitxfvPmzaNBgwaJ2ttvvx3ff/99hfQze/bsxLh+/fpRu3btCtkbAAAAAAAAANg8CdFio6SlpUWfPn3ipZdeitNPPz2qVdv4p9S8efNi4MCBccQRR8TgwYNj/PjxMXfu3CgoKIhFixbFlClT4oknnogBAwZE//79y/Slv/W5//77Y968eUXjk08+ucRfSAUAAAAAAACAzcXuu+8eTZo0KRrn5ubGmDFj4vPPP4+ZM2cW1Xv37l0h582YMaNYbbfddivTHh9++GEsWrQoUVu9enWJcw888MDIyspK1J566qkynffaa6/FwoULy7RmS1OrVq3E+JffjyiNcePGlXru/vvvX2ztL5+LpfHiiy+Weu4ee+xR7Lzp06eX6byIn743cvXVV8eAAQOid+/e0alTp1KHeZVHp06dEt9LWbJkSYwbNy7ef//9WLBgQVG9YcOG0a1btw3ud9RRR8Wee+4Zxx13XAwaNCiefvrpMvWz9t8tIiIvL69Me1B51n6ef//99+UKqHv88cfjuuuui3PPPTeOOOKI2GOPPYqFtm1qu+++e7FaWd/nI34KfRs/fnyitvfee5e7ry1FvXr14txzz03UVqxYERdffHGsWLFio/fPy8uLgQMHRkFBQaL+u9/9LurXr7/Odd27d0+MV69eHYMHD97oflavXh2vvvpqorbnnntu9L4AAAAAAAAAwOZNiBblkpGREYcffng8++yzceutt0bz5s0rZN+JEydG//7946WXXorCwsINzv/888/j5JNPjtdff32jzp0zZ048/PDDReOSvjwEAAAAAAAAAJubtLS06NmzZ6L22muvFQuQqKgQrfz8/GK1soRwrF69Om699dZi9bXDN3621VZbRa9evRK1Z599tlhQyrosXbo0br755lL3lwrS09PLvKZhw4aJ8TfffJMIalqfOXPmxOjRo0t9Vr9+/RLjwsLCuP3220u9/uOPPy5TONDRRx+dGK9evTruuOOOUq+PiJg8eXKx4K5mzZpFx44dy7RPWa39f1XSa7dv375RvXr1De7VqlWrxHjUqFGxcuXKUvdS0vNh7ecNVefII48s9tq/44471hlAWJL58+fH0KFDE7WsrKzo2rVrRbRYbk2aNCkW4vbqq6/GZ599VqZ9/v73vxer9enTZ6N621KccsopsdNOOyVqkydPjnPOOSeWLVtW7n2XLVsWZ599dnz77beJesuWLeN3v/vdeteecMIJkZaWlqg999xz8eijj5a7n4iI//znPzFt2rRE7cgjj9yoPQEAAAAAAACAzZ8QLcrlpJNOin/84x+xyy67VNiec+fOjd/+9rcxe/bsolrr1q3j+uuvjzfffDMmTJgQY8eOjQcffDDxBeC8vLy46KKLyvzFqV+67777El/qPeuss2KrrbYq934AAAAAAAAAsKmsHTI1evToeOWVV4rGrVu3LhaeUV5NmjQpVvvlWeuzZs2auPrqq0sMwFpfENeAAQMiMzMzsc/5558fkydPXu95y5Yti9///vfxww8/lKq/VPHL/4uIn743sSHt2rVLjAsKCuKRRx7Z4Lr8/Py4/PLLyxTG1LZt2zjggAMSteHDh8ezzz67wbULFiyIQYMGleqH1362xx57xG677ZaovfTSS4kfU1uf3NzcGDhwYLEwotNPP73UPZTXEUcckQhGev311+PNN99MzFk7aGtdevTokRgvXLgw7rzzzlL38vjjjxer7bHHHqVeT+Vq3rx5HHrooYnaRx99FLfcckup1q9evTouvfTSYoFJxx13XGRnZ1dYn+V15plnJsarV6+OgQMHxpw5c0q1/v7774+33347Udt+++2LvRf9WmVkZMTdd99d7Ptw7733Xpx66qkxc+bMMu85c+bMOPXUU+ODDz5I1LOzs+Puu++OGjVqrHf9TjvtFEcccUSx+jXXXBPXXXdd5ObmlqmfwsLCGDp0aNx2222Jert27eLAAw8s014AAAAAAAAAQOoRosVm49JLL40ff/yxaHzsscfGCy+8EMccc0w0a9YsMjMzo379+tGlS5e466674o477oiMjIyI+OnLnRdddFGZft32Z/PmzYtnnnmmaNygQYM4+eSTN/4BAQAAAAAAAMAmsNtuu8W2225bNF60aFF8//33ReO1Q7Y2xj777FOs9tBDD8Xrr7++3nXfffdd/Pa3v40nnniixPsLCgoiPz+/xPtatWoV55xzTqI2b968OPbYY+PBBx+MpUuXFtvrlVdeiSOOOCI++uij9faVitYOQZk6deoG1xxwwAFRrVrya0L33ntvDB8+fJ1rZs2aFWeddVa89957Ze7xkksuKRb29Ze//CUefPDBWLNmTYlrpkyZEqecckpMmzatzOcNGjSo6DskP7v++uvjxhtvjOXLl69z3fTp0+O0006LSZMmJeotW7aM448/vsx9lFWTJk2iS5cuReO5c+fGvHnzisbt27ePtm3blmqv7t27J94HIiIefPDBuPvuu2PVqlXrXfv444/Hv//970Rt9913jzZt2pTqbDaNiy++OOrUqZOoDRkyJAYOHBgLFixY57oFCxbEOeecE++8806iXrdu3Tj77LMrpdey2m+//eLggw9O1KZPnx4nnHDCet/Hc3Nz4/rrry8WnJSWlhZ/+9vfir3v/Zq1bNky/vnPfxYLTfvyyy+jV69eceeddxYLWSvJsmXL4s4774zDDjssvvzyy8R9GRkZcfPNN5c6uPPPf/5zNG/evFh92LBh0b1797j33ntj1qxZG+xn5MiRcdxxx8WNN96Y+IzJyMiIq6++OtLS0krVDwAAAAAAAACQuqpXdQMQ8dMvI44dO7Zo3K1bt7jmmmvW+wWWww47LBYsWBDXXHNNRPz05c3nnnsuTjjhhDKd/fDDDyd+MfWMM86IrKysMj4CAAAAAAAAAKgaaWlpceihh8Z//vOfEu/v06dPhZ212267RYcOHWLChAlFtYKCgvjDH/4QBx98cPTo0SNatWoVNWvWjCVLlsTkyZPj7bffjrfffjsRbJGdnR25ubmJvefNmxfNmjUr8dzf/e53MX78+Hj77beLarm5uXHzzTfH7bffHrvsskvUr18/li5dGt98800sWbIksb5BgwYxf/78onEqB2qsHZQ0efLk+Mtf/hL9+vWLrKys+PHHH6NLly6J8JiGDRtGnz594sUXXyyqrVmzJv70pz/F008/HUcccUS0bNkyatSoEd9//33k5OTEyJEji4LNsrOzo1WrVvHVV1+Vqsc2bdrEoEGD4uqrr06cd/PNN8fzzz8fRx99dOyyyy6RlZUVs2bNirfeeiteeumlKCgoKDovPz9/g+FPP9ttt93iT3/6U9x4442J+tChQ2P48OHRp0+f2HvvvaNRo0YRETFjxowYM2ZMvPzyy4nvjEREZGZmxu23314sBKyy9OvXL3JyctZ5X2lVr149rrjiijj33HMT9XvuuSdeeOGFOPzww2PXXXeNBg0aRHp6eixevDgmTpwYI0aMiM8//zyxJiMjIy6//PKyPxgqVYsWLeLGG2+M8847L1F/6aWXYvTo0dG7d+/Yb7/9Ypttton09PSYPXt2jB07Nl588cViYYNpaWlx0003Rf369TflQ1ivm266KY488siYOXNmUW3mzJlx0kknxf777x89evSI7bffvuh9bty4cTF8+PCYO3dusb0uvPDC2HfffTdl+xtl7QCx8thrr71i2LBhG5zzn//8J37/+9/HokWLiuorVqyIwYMHx7///e/Yd999Y//9949tttkmGjVqFIWFhfHjjz/GrFmzYsyYMfH++++XGHqZnZ0dd999dyIYcEPq1q0b999/f5x++umJAMGIiB9//DHuuOOOuOOOO6JVq1ax4447xjbbbBNZWVmRm5sbCxYsiBkzZsSECRNK/KyoVq1aXHfdddGhQ4dS9wMAAAAAAAAApC4hWmwW1v4CzyWXXFKqL6wed9xxcf/998ecOXMiIuKxxx4rU4hWfn5+PPXUU0Xj7OzsOO6440q9HgAAAAAAAAA2B4cddliJIVrt2rWLVq1aVdg5aWlpcfXVV8dJJ50UeXl5ifveeOONeOONNza4x9577x1//vOf44gjjkjUJ0yYsM4QrYyMjLjnnnvi7LPPTvxIV8RPIV6fffbZOs+7/PLL45tvvolnn302sV+q2n333YvVnn766Xj66aeLxiNHjowddtghMWfgwIExZsyYWLhwYaL+/vvvx/vvv7/O8zIyMuL222+PF154odQhWhERJ554YsyfPz/uueeeRP2bb74pFnb1S2lpaXHzzTfHpZdeWuoQrYiI008/PVasWBF33HFHFBYWFtXnz58fDz30UDz00EMb3KNmzZpxxx13RPv27Ut97sY66KCDol69eolAm4ifwrzKGoB38MEHx4ABA+Jf//pXoj59+vQYPHhwqfaoVq1aXH311dGxY8cync2m0b1797jpppviyiuvLAqdi4hYtmxZPPHEE/HEE09scI9q1arFVVddFQcddFBltlpmW221VTz00ENx9tlnx9SpUxP3jRkzJsaMGVOqfc4///w455xzKqPFLUKnTp3ixRdfjMsuu6zY52l+fn7k5OSsM9hvXTp37hzXX399sc+d0mjTpk089thjcdFFF8WXX35Z4pzvvvsuvvvuu1LvmZ2dHddff3306tWrzP0AAAAAAAAAAKmp2oanQOUqLCxMfBlzu+22i7Zt25ZqbfXq1aNbt25F48mTJ8eCBQtKffbIkSMTXw496qijYquttir1egAAAAAAAADYHHTs2DGaN29erN67d+8KP6tdu3YxePDgqFevXpnW1a5dOwYNGhRDhw6NnXbaKRo3bpy4f0OhHTVq1IgHH3wwBg0aFNnZ2Rs8b9ttt4377rsvzjjjjFi9enWxvVJVt27dokuXLuudM2nSpGK1pk2bxkMPPRQtW7Ys9VkNGjSIBx54IA444ICythkRP4XZ3HLLLVG7du1Szc/MzIyrrroqunfvXq7zfv/738c999wTTZs2LfPatm3bxrBhw+LAAw8s19nllZmZGYcffnix+iGHHBJ169Yt834DBw6Myy+/PGrWrFnmtQ0bNox77703jj766DKvZdM56qijYujQoeUKLNpmm23i/vvv32x/ZLBFixbxxBNPRO/evUv1A4y/tO2228a//vWvOO+88yqpuy1HkyZNYsiQIXHrrbduVNBmq1at4vrrr49HH320XM/Hn7Vs2TL++9//xsCBA8t8bbG2gw8+OF544QUBWgAAAAAAAADwKyNEiyr37bffJn5Ns6Qv9a7PTjvtVHS7sLAwPv/881Kv/eWvzEZEnHDCCWU6GwAAAAAAAAA2F2sHRqSlpVVaiMR+++0XL774Ypx00klRq1at9c5t3bp1nH/++fHaa6/F6aefHtWq/fR1lT59+iTmvfzyyzF//vz17pWenh6nn356jB49Om644YY46KCDYocddoitttoqatSoEc2bN48DDzww/v73v8eIESOKApFWrFiR2CcrK6usD3mzcs8990S/fv3WGTIzceLEEus77rhjDB8+PC655JL1Bp5stdVWceaZZ8aIESNi33333ahe+/btG6+++mqcdtpp6wxHSU9Pj65du8ZTTz0Vxx9//Eadd8ghh8Rrr70Wf/nLX6Jdu3YbDOLp0KFDXHfddfHcc89Fx44dN+rs8urXr1+x2lFHHVXu/c4444x46aWX4rTTTouGDRtucH6bNm3i0ksvjVdffbXcgWlsWnvssUe89NJL8fe//z123333qF69+nrnt2nTJi6//PIYMWJEdO3adRN1WT516tSJ2267LZ555pk47LDDok6dOuud3759+7j66qvjlVdeSfwYI+uXlpYWffr0iREjRsR9990Xffr02eD/dURE3bp144gjjoj77rsvRo4cGcccc0zR5/rGyMzMjAEDBsSbb74ZN910U3Tr1q1U/UT8FBJ54oknxvPPPx+DBw8uU1gkAAAAAAAAALBlSCssLCys6ibYssyYMSMOPvjgovF5550X559//jrnjx07Nk4//fQKO/+6666L/v37b3DevHnzomvXrrFmzZqI+OkLVc8880yF9QEAAAAAAAAAvwb5+fnx9ddfx+TJk2Px4sWxatWqqFevXjRo0CA6duwYjRs3ruoW44wzzoj33nuvaNyzZ8+46667qrCjivHDDz/ERx99FLNnz46CgoKoVatWNG3aNHbZZZdo0aLFBtf/73//i4kTJ8bcuXNjxYoVUbdu3Wjbtm3suuuukZGRUeH95ufnxxdffBHffPNNLF68OLKzs6Np06ax6667VtrzZMGCBfH555/Hjz/+GAsXLozCwsKoU6dObLvtttGhQ4eoX79+pZy7uSgsLIzvv/8+Jk6cGD/++GMsX748Vq9eHbVq1YpmzZpFu3btomnTplXdJhtp2bJlMX78+Jg3b14sXLgwVq1aFbVr144mTZpEhw4dokmTJlXdYrmtWrUqJkyYENOnT48FCxZEXl5e1K5dO5o3bx7t2rXbLD5jthSFhYUxbdq0mDRpUsyfPz+WLVsWERG1a9eOhg0bxo477hgtW7bcYDhhRVmzZk189913MX369Pjhhx9i+fLlsWLFikhPT49atWrFtttuG23bti3V5x0AAAAAAAAAsGVb/0/QwSawePHiCt1v0aJFpZr3yiuvFAVoRWzcL3gCAAAAAAAAwK9VZmZm7LrrrrHrrrtWdSvrNGfOnMR4Swldadq0afTp06fc63fYYYfYYYcdKrCj9cvMzIzOnTtH586dN9mZ9evXjwMOOGCTnbe5SUtLi+222y622267qm6FSlS7du3Yf//9q7qNSlG9evXo1KlTdOrUqapb2eKlpaVFq1atolWrVlXdSkREVKtWbZN/TgEAAAAAAAAAqUmIFlVu1apVFbrfypUrSzXvrbfeKrqdlpYW3bt3r9A+AAAAAAAAAICNM3v27Lj44otju+22i1atWsV2220XBx98cNSoUaPUeyxYsCC+++67RG3HHXes4E4BAAAAAAAAAACAqiBEiyq31VZbJcZnnXVWXHLJJZV65ooVK+LDDz8sGnfo0CGaNGlSqWcCAAAAAAAAAGVTp06dGD9+fIwfP76o9uCDD0aXLl1KvcfTTz8dq1evTtR22223imoRAAAAAAAAAAAAqELVqroBaNCgQWK8YMGCSj/z448/jpUrVxaNDzzwwEo/EwAAAAAAAAAom9q1a0fz5s0TtSeffLLU66dOnRr33Xdfota2bdto27ZthfQHAAAAAAAAAAAAVC0hWlS5tm3bRs2aNYvGn3/+eZnWz5kzJ77//vsoKCgo9ZpPPvkkMd57773LdCYAAAAAAAAAsGn06NEjMX7llVfirrvuilWrVq133UcffRSnnXZaLF++PFE/66yzKrxHAAAAAAAAAAAAoGpUr+oGIDMzMzp37hzvvfdeRERMmTIlvv7669h5551Ltf6SSy6JDz74IKpVqxaNGjWKu+++O3bdddf1rvn000+LbmdkZESHDh3K3T8AAAAAAAAAUHnOPPPMeOqpp2Lp0qVFtX/+858xfPjwOPzww6Njx47RoEGDSE9Pj8WLF8eUKVPirbfeinfffbfYXgcccEAcccQRm7J9AAAAAAAAAAAAoBIJ0WKzcNxxxxWFaEVE3HDDDTF06NBIT09f77o333wzPvjgg4iIWLNmTRQUFMQuu+yywfO+/vrrotvbb799ZGZmlrNzAAAAAAAAAKAyNWrUKG688ca4+OKLo6CgoKj+/fffxz//+c9S77PHHnvErbfeGmlpaZXRJgAAAAAAAAAAAFAFqlV1AxAR0aNHj2jbtm3ReNy4cXHppZfGypUr17nmiy++iMsvvzxRO/vssyMjI2O9Z/34448xf/78ovEOO+xQzq4BAAAAAAAAgE2he/fu8cADD0SzZs3KvDY9PT3OPPPMGDJkSNSuXbsSugMAAAAAAAAAAACqSvWqbgAiIqpVqxZ33HFH9O/fP3JzcyMi4qWXXopPP/00zjjjjNh///2jadOmsXz58vjuu+/imWeeiRdeeCHxC7OdO3eOk046aYNnfffdd4lxkyZNKvSxAAAAAAAAAAAVb999940RI0bEE088Ec8//3x89dVX653foEGD6N69e5x22ml+YAsAAAAAAAAAAAC2UEK02Gy0adMmBg8eHBdddFEsWrQoIiJmzJgR11577QbX7rzzznH33XdHRkbGBufOnj07MW7YsGG5+gUAAAAAAAAANq2aNWvGaaedFqeddlosWLAgvvzyy5g5c2YsXbo0Vq1aFVlZWdG4ceNo06ZNtG3bNtLS0qq6ZQAAAAAAAAAAAKASCdFis7LvvvvGU089Fddff32MHj16g/OrVasWxx9/fAwcODBq165dqjMWLFiQGNeqVas8rQIAAAAAAAAAVah+/fqx//77V3UbAAAAAAAAAAAAQBUSosVmp2XLlnH//ffHl19+Ga+++mp88MEHMWvWrFi0aFFERNStWzfatGkTe+65ZxxxxBHRrFmzMu2fm5ubGGdmZlZU6wAAAAAAAAAAAAAAAAAAAAAAwCaSVlhYWFjVTQAAAAAAAAAAAAAAAAAAAAAAAEBZVKvqBgAAAAAAAAAAAAAAAAAAAAAAAKCshGgBAAAAAAAAAAAAAAAAAAAAAACQcoRoAQAAAAAAAAAAAAAAAAAAAAAAkHKEaAEAAAAAAAAAAAAAAAAAAAAAAJByhGgBAAAAAAAAAAAAAAAAAAAAAACQcoRoAQAAAAAAAAAAAAAAAAAAAAAAkHKEaAEAAAAAAAAAAAAAAAAAAAAAAJByhGgBAAAAAAAAAAAAAAAAAAAAAACQcoRoAQAAAAAAAAAAAAAAAAAAAAAAkHKEaAEAAAAAAAAAAAAAAAAAAAAAAJByhGgBAAAAAAAAAAAAAAAAAAAAAACQcoRoAQAAAAAAAAAAAAAAAAAAAAAAkHKEaAEAAAAAAAAAAAAAAAAAAAAAAJByqld1A6SOpUvzoqBgTVW3AQCwTunpaVG3bnbRePHi3Fi9urAKOwIA2DDXMABAqnH9AgCkGtcvAECqcf0CAKQi1zAAQKpx/QIApBrXL2zO1n5+bmpCtCi1NWsKY/VqIVoAwOasWmK0erXrFwAgFbiGAQBSjesXACDVuH4BAFKN6xcAIBW5hgEAUo3rFwAg1bh+YXNWbcNTttjTAQAAAAAAAAAAAAAAAAAAAAAAoByEaAEAAAAAAAAAAAAAAAAAAAAAAJByhGgBAAAAAAAAAAAAAAAAAAAAAACQcoRoAQAAAAAAAAAAAAAAAAAAAAAAkHKEaAEAAAAAAAAAAAAAAAAAAAAAAJByhGgBAAAAAAAAAAAAAAAAAAAAAACQcoRoAQAAAAAAAAAAAAAAAAAAAAAAkHKEaAEAAAAAAAAAAAAAAAAAAAAAAJByhGgBAAAAAAAAAAAAAAAAAAAAAACQcoRoAQAAAAAAAAAAAAAAAAAAAAAAkHKEaAEAAAAAAAAAAAAAAAAAAAAAAJByhGgBAAAAAAAAAAAAAAAAAAAAAACQcoRoAQAAAAAAAAAAAAAAAAAAAAAAkHKEaAEAAAAAAAAAAAAAAAAAAAAAAJByhGgBAAAAAAAAAAAAAAAAAAAAAACQcoRoAQAAAAAAAAAAAAAAAAAAAAAAkHKEaAEAAAAAAAAAAAAAAAAAAAAAAJByhGgBAAAAAAAAAAAAAAAAAAAAAACQcoRoAQAAAAAAAAAAAAAAAAAAAAAAkHKEaAEAAAAAAAAAAAAAAAAAAAAAAJByhGgBAAAAAAAAAAAAAAAAAAAAAACQcoRoAQAAAAAAAAAAAAAAAAAAAAAAkHKEaAEAAAAAAAAAAAAAAAAAAAAAAJByhGgBAAAAAAAAAAAAAAAAAAAAAACQcoRoAQAAAAAAAAAAAAAAAAAAAAAAkHKEaAEAAAAAAAAAAAAAAAAAAAAAAJByhGgBAAAAAAAAAAAAAAAAAAAAAACQcoRoAQAAAAAAAAAAAAAAAAAAAAAAkHKEaAEAAAAAAAAAAAAAAAAAAAAAAJByhGgBAAAAAAAAAAAAAAAAAAAAAACQcoRoAQAAAAAAAAAAAAAAAAAAAAAAkHKEaAEAAAAAAAAAAAAAAAAAAAAAAJByhGgBAAAAAAAAAAAAAAAAAAAAAACQcoRoAQAAAAAAAAAAAAAAAAAAAAAAkHKEaAEAAAAAAAAAAAAAAAAAAAAAAJByhGgBAAAAAAAAAAAAAAAAAAAAAACQcoRoAQAAAAAAAAAAAAAAAAAAAAAAkHKEaAEAAAAAAAAAAAAAAAAAAAAAAJByhGgBAAAAAAAAAAAAAAAAAAAAAACQcoRoAQAAAAAAAAAAAAAAAAAAAAAAkHKEaAEAAAAAAAAAAAAAAAAAAAAAAJByhGgBAAAAAAAAAAAAAAAAAAAAAACQcoRoAQAAAAAAAAAAAAAAAAAAAAAAkHKEaAEAAAAAAAAAAAAAAAAAAAAAAJByhGgBAAAAAAAAAAAAAAAAAAAAAACQcoRoAQAAAAAAAAAAAAAAAAAAAAAAkHKEaAEAAAAAAAAAAAAAAAAAAAAAAJByhGgBAAAAAAAAAAAAAAAAAAAAAACQcoRoAQAAAAAAAAAAAAAAAAAAAAAAkHKEaAEAAAAAAAAAAAAAAAAAAAAAAJByhGgBAAAAAAAAAAAAAAAAAAAAAACQcoRoAQAAAAAAAAAAAAAAAAAAAAAAkHKEaAEAAAAAAAAAAAAAAAAAAAAAAJByhGgBAAAAAAAAAAAAAAAAAAAAAACQcoRoAQAAAAAAAAAAAAAAAAAAAAAAkHKEaAEAAAAAAAAAAAAAAAAAAAAAAJByhGgBAAAAAAAAAAAAAAAAAAAAAACQcoRoAQAAAAAAAAAAAAAAAAAAAAAAkHKEaAEAAAAAAAAAAAAAAAAAAAAAAJByhGgBAAAAAAAAAAAAAAAAAAAAAACQcoRoAQAAAAAAAAAAAAAAAAAAAAAAkHKEaAEAAAAAAAAAAAAAAAAAAAAAAJByhGgBAAAAAAAAAAAAAAAAAAAAAACQcoRoAQAAAAAAAAAAAAAAAAAAAAAAkHKEaAEAAAAAAAAAAAAAAAAAAAAAAJByhGgBAAAAAAAAAAAAAAAAAAAAAACQcoRoAQAAAAAAAAAAAAAAAAAAAAAAkHKEaAEAAAAAAAAAAAAAAAAAAAAAAJByhGgBAAAAAAAAAAAAAAAAAAAAAACQcoRoAQAAAAAAAAAAAAAAAAAAAAAAkHKEaAEAAAAAAAAAAAAAAAAAAAAAAJByhGgBAAAAAAAAAAAAAAAAAAAAAACQcoRoAQAAAAAAAAAAAAAAAAAAAAAAkHKEaAEAAAAAAAAAAAAAAAAAAAAAAJByhGgBAAAAAAAAAAAAAAAAAAAAAACQcoRoAQAAAAAAAAAAAAAAAAAAAAAAkHKEaAEAAAAAAAAAAAAAAAAAAAAAAJByhGgBAAAAAAAAAAAAAAAAAAAAAACQcoRoAQAAAAAAAAAAAAAAAAAAAAAAkHKEaAEAAAAAAAAAAAAAAAAAAAAAAJByhGgBAAAAAAAAAAAAAAAAAAAAAACQcoRoAQAAAAAAAAAAAAAAAAAAAAAAkHKEaAEAAAAAAAAAAAAAAAAAAAAAAJByhGgBAAAAAAAAAAAAAAAAAAAAAACQcoRoAQAAAAAAAAAAAAAAAAAAAAAAkHKEaAEAAAAAAAAAAAAAAAAAAAAAAJByhGgBAAAAAAAAAAAAAAAAAAAAAACQcoRoAQAAAAAAAAAAAAAAAAAAAAAAkHKEaAEAAAAAAAAAAAAAAAAAAAAAAJByhGgBAAAAAAAAAAAAAAAAAAAAAACQcoRoAQAAAAAAAAAAAAAAAAAAAAAAkHKEaAEAAAAAAAAAAAAAAAAAAAAAAJByhGgBAAAAAAAAAAAAAAAAAAAAAACQcoRoAQAAAAAAAAAAAAAAAAAAAAAAkHKEaAEAAAAAAAAAAAAAAAAAAAAAAJByhGgBAAAAAAAAAAAAAAAAAAAAAACQcoRoAQAAAAAAAAAAAAAAAAAAAAAAkHKEaAEAAAAAAAAAAAAAAAAAAAAAAJByhGgBAAAAAAAAAAAAAAAAAAAAAACQcoRoAQAAAAAAAAAAAAAAAAAAAAAAkHKEaAEAAAAAAAAAAAAAAAAAAAAAAJByhGgBAAAAAAAAAAAAAAAAAAAAAACQcoRoAQAAAAAAAAAAAAAAAAAAAAAAkHKEaAEAAAAAAAAAAAAAAAAAAAAAAJByhGgBAAAAAAAAAAAAAAAAAAAAAACQcoRoAQAAAAAAAAAAAAAAAAAAAAAAkHKEaAEAAAAAAAAAAAAAAAAAAAAAAJByhGgBAAAAAAAAAAAAAAAAAAAAAACQcoRoAQAAAAAAAAAAAAAAAAAAAAAAkHKEaAEAAAAAAAAAAAAAAAAAAAAAAJByhGgBAAAAAAAAAAAAAAAAAAAAAACQcoRoAQAAAAAAAAAAAAAAAAAAAAAAkHKEaAEAAAAAAAAAAAAAAAAAAAAAAJByhGgBAAAAAAAAAAAAAAAAAAAAAACQcoRoAQAAAAAAAAAAAAAAAAAAAAAAkHKEaAEAAAAAAAAAAAAAAAAAAAAAAJByqld1A782a9asiXfeeSdeffXV+Oyzz2Lu3LmxfPnyqFevXrRt2za6du0a/fv3j9q1a1d1qwAAAAAAAAAAAAAAAAAAAAAAAJstIVqb0Jdffhl/+9vfYsKECcXumzdvXsybNy/ee++9GDx4cFxzzTVx2GGHVUGXAAAAAAAAAAAAAAAAAAAAAAAAm79qVd3Ar0VOTk4cf/zxJQZorW3JkiVx0UUXxbBhwzZBZwAAAAAAAAAAAAAAAAAAAAAAAKlHiNYm8OGHH8Z5550X+fn5RbWuXbvG0KFDY+zYsfHJJ5/EI488EgcddFBi3Q033BAfffTRpm4XAAAAAAAAAAAAAAAAAAAAAABgsydEq5Ll5ubGJZdcUhSglZaWFldffXU88MADse+++0b9+vWjVq1aseeee8a9994bf/jDH4rWrlmzJm644Yaqah0AAAAAAAAAAAAAAAAAAAAAAGCzJUSrkj388MMxe/bsovG5554bxx9//DrnX3DBBbH77rsXjb/88suYMGFCpfYIAAAAAAAAAAAAAAAAAAAAAACQaoRoVaJVq1bFo48+WjRu3bp1nHPOORtcd+qppybGY8aMqfDeAAAAAAAAAAAAAAAAAAAAAAAAUln1qm5gSzZu3LiYO3du0XjAgAGRkZGxwXVdunSJRo0aRd26daN+/fqRnZ1dmW0CAAAAAAAAAAAAAAAAAAAAAACkHCFalSgnJ6fodlZWVvTs2bNU62rXrh3vvPNOZbUFAAAAAAAAAAAAAAAAAAAAAACQ8qpVdQNbsk8++aTodqdOnSIrK6sKuwEAAAAAAAAAAAAAAAAAAAAAANhyCNGqJIWFhTFp0qSi8c4771yF3QAAAAAAAAAAAAAAAAAAAAAAAGxZqld1A1uqOXPmxMqVK4vGzZo1K7o9b968ePnll+P111+P6dOnx/z586NevXqxww47xEEHHRTHHHNM1K5duyraBgAAAAAAAAAAAAAAAAAAAAAASAlCtCrJDz/8kBg3bNgw1qxZEw8//HDccccdkZeXl7h/3rx5MW/evPjggw/i/vvvj0GDBkXfvn03ZcsbVK1aWqSnV6vqNgAA1ik9Pa2EsesXAGDz5hoGAEg1rl8AgFTj+gUASDWuXwCAVOQaBgBINa5fAIBU4/qFzdnaz89NTYhWJVm0aFFiXLNmzRg4cGCMGDFig2sXLFgQl1xySXz//fdx3nnnVVKHZVenTlZVtwAAUCZ162ZXdQsAAGXmGgYASDWuXwCAVOP6BQBINa5fAIBU5BoGAEg1rl8AgFTj+gX+HyFalWT58uWJ8eDBg+PTTz+NiIiGDRvGWWedFQceeGBsu+22sXz58vj888/j4Ycfjnfeeadozd133x3NmzePI488chN2DgAAAAAAAAAAAAAAAAAAAAAAsPlLKywsLKzqJrZEzz//fFx22WXF6rvvvnv885//jK233rrEdQ8++GDcfPPNRePs7Ox44403on79+pXWKwAAAAAAAAAAAAAAAAAAAAAAQKqpXtUN/Jo0a9Ys7r333qhbt+465/z2t7+Nb7/9Np566qmIiMjNzY2HHnooLr744k3V5jotXZoXBQVrqroNAIB1Sk9Pi7p1s4vGixfnxurVMmMBgM2baxgAINW4fgEAUo3rFwAg1bh+AQBSkWsYACDVuH4BAFKN6xc2Z2s/Pzc1IVqVJDMzs1jtD3/4w3oDtH52wQUXxPPPPx8FBQUREfHaa69tFiFaa9YUxurVQrQAgM1ZtcRo9WrXLwBAKnANAwCkGtcvAECqcf0CAKQa1y8AQCpyDQMApBrXLwBAqnH9wuas2oanbLGnb8Fq1aqVGKenp0fPnj1LtbZx48bRsWPHovHUqVNjwYIFFdofAAAAAAAAAAAAAAAAAAAAAABAKhOiVUkaNGiQGG+77bZRu3btUq/fcccdE+O5c+dWSF8AAAAAAAAAAAAAAAAAAAAAAABbAiFalaRZs2aJcVZWVpnWb7XVVonxkiVLNronAAAAAAAAAAAAAAAAAAAAAACALYUQrUqy9dZbR8OGDYvGP/74Y5nW5+bmJsZlDeECAAAAAAAAAAAAAAAAAAAAAADYkgnRqkS77rpr0e2FCxeWKUhr+vTpiXGLFi0qrC8AAAAAAAAAAAAAAAAAAAAAAIBUJ0SrEnXt2rXodmFhYYwaNapU6/Lz82P8+PFF41atWkW9evUquj0AAAAAAAAAAAAAAAAAAAAAAICUJUSrEvXs2TNq1KhRNB4yZEjk5eVtcN3zzz8fixYtKhr36NGjMtoDAAAAAAAAAAAAAAAAAAAAAABIWUK0KtHWW28dxxxzTNF4xowZce2118aaNWvWuWbatGlxyy23FI0zMjLixBNPrNQ+AQAAAAAAAAAAAAAAAAAAAAAAUo0QrUp2/vnnR+PGjYvGzzzzTFxwwQXxww8/FJs7duzYOOmkk2LJkiVFtd/+9rexzTbbbJJeAQAAAAAAAAAAAAAAAAAAAAAAUkX1qm5gS7f11lvHfffdF2eeeWYsWrQoIiJee+21GD16dOy3336xww47xOrVq2P8+PExYcKExNq99torzjvvvCroGgAAAAAAAAAAAAAAAAAAAAAAYPMmRGsTaNeuXTzyyCPxhz/8IaZNmxYREQUFBZGTkxM5OTklrjnwwAPjtttui4yMjE3ZKgAAAAAAAAAAAAAAAAAAAAAAQEqoVtUN/Fq0bds2XnrppfjjH/8Y22677TrntWnTJm6++ea47777Ijs7exN2CAAAAAAAAAAAAAAAAAAAAAAAkDqqV3UDvyaZmZlx9tlnx9lnnx1ffPFFTJkyJX788cdYs2ZNNGrUKDp06BBt2rSp6jYBAAAAAAAAAAAAAAAAAAAAAAA2e0K0qkj79u2jffv2Vd0GAAAAAAAAAAAAAAAAAAAAAABASqpW1Q0AAAAAAAAAAAAAAAAAAAAAAABAWQnRAgAAAAAAAAAAAAAAAAAAAAAAIOUI0QIAAAAAAAAAAAAAAAAAAAAAACDlCNECAAAAAAAAAAAAAAAAAAAAAAAg5QjRAgAAAAAAAAAAAAAAAAAAAAAAIOUI0QIAAAAAAAAAAAAAAAAAAAAAACDlCNECAAAAAAAAAAAAAAAAAAAAAAAg5QjRAgD4/9i5nxCpCz6O49+dHXZZAxXdQiGkhfIPCR3sUIjURUoiKigrMjoEHQIJIQjCQxB06NApFepQIuihU9SxDtFepDQqYodwISTaYP2TVD7Z5O5zG9rKsudx5zef3dfrNN/h92O+hzl8T28AAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEKfd9ALLyQMPPFCdTud/endycrKuv/76a7wRAAAAAAAAAAAAAAAAAAAAAABAplbTCywX3W63pqenm14DAAAAAAAAAAAAAAAAAAAAAABgSRDR6pPp6enqdrtNrwEAAAAAAAAAAAAAAAAAAAAAALAktJteYLnodDoL5g8//LBuvPHGhrYBAAAAAAAAAAAAAAAAAAAAAADI1mp6geViamqq93nlypUCWgAAAAAAAAAAAAAAAAAAAAAAAP8HEa0+6XQ6vc+bNm1qcBMAAAAAAAAAAAAAAAAAAAAAAIB8Ilp98vuI1ubNmxvcBAAAAAAAAAAAAAAAAAAAAAAAIJ+IVh98//339cMPP/TmTZs2NbcMAAAAAAAAAAAAAAAAAAAAAADAEiCi1QedTmfBvHnz5oY2AQAAAAAAAAAAAAAAAAAAAAAAWBpEtPpgamqq93l4eLg2btzY4DYAAAAAAAAAAAAAAAAAAAAAAAD52k0vsBx0Op3e54mJiRodHa0TJ07Ue++9VydOnKjvvvuufv3111q7dm1t3Lix7r777nrwwQdrxYoVDW4NAAAAAAAAAAAAAAAAAAAAAAAwuES0+uD3Ea3R0dF64okn6tNPP/3TczMzMzUzM1MfffRRHTx4sF544YW6//77+7kqAAAAAAAAAAAAAAAAAAAAAABABBGtRXbx4sU6ffp0b/7qq6+u6r3Z2dl6/vnn69SpU7Vv377FWu9fabWGani41fQaAABXNDw89Bez+wUAGGxuGAAgjfsFAEjjfgEA0rhfAIBEbhgAII37BQBI435hkP3x/9lvQ/Pz8/ONbrDEffbZZ/XYY48t+K7VatWuXbvq4YcfrltuuaVWrVpVs7Ozdfz48Xrrrbfq66+/XvD8/v3768knn+zn2gAAAAAAAAAAAAAAAAAAAAAAAANNRGuRHTt2rF566aXevHr16nrttddq+/btf/n83NxcvfLKK3XkyJHed+12u95///2amJhY7HUBAAAAAAAAAAAAAAAAAAAAAAAitJpeYKm74YYbateuXbV169YaHx+v119//YoBraqqVqtV+/fvr3vuuaf33W+//VYHDhzox7oAAAAAAAAAAAAAAAAAAAAAAAARhubn5+ebXoI/m5mZqZ07d1a3262qqtHR0frkk09qdHS0sZ1+/PE/1e3ONfb7AAD/ZHh4qFatWtGbL1y4WJcvO3cBgMHmhgEA0rhfAIA07hcAII37BQBI5IYBANK4XwCANO4XBtkf/5/91m7sl/lb69evrzvuuKM+/vjjqqq6dOlSnTx5su68887Gdpqbm6/Ll0W0AIBB1lowXb7sfgEAErhhAIA07hcAII37BQBI434BABK5YQCANO4XACCN+4VB1vrnR5bsr/O3brvttgXzt99+29AmAAAAAAAAAAAAAAAAAAAAAAAAg0VEa4CtXbt2wXz+/PmGNgEAAAAAAAAAAAAAAAAAAAAAABgsIloDbH5+fsE8MjLS0CYAAAAAAAAAAAAAAAAAAAAAAACDpd30Akvdzz//XGfPnq0zZ87U2NhYbdmy5arfPXfu3IJ59erV13g7AAAAAAAAAAAAAAAAAAAAAACATCJai+jUqVN133339eZt27bV0aNHr/r9L7/8csF86623XrPdAAAAAAAAAAAAAAAAAAAAAAAAkrWaXmApu+mmm2pkZKQ3f/HFF3XhwoWrevf8+fN1/Pjx3jw+Pl4333zzNd8RAAAAAAAAAAAAAAAAAAAAAAAgkYjWImq327Vjx47e3O1265133rmqd99444365ZdfevMjjzxSQ0ND13xHAAAAAAAAAAAAAAAAAAAAAACARCJai+zRRx9dMB86dKimp6f/9p0PPvig3n777d68cuXK2rNnz2KsBwAAAAAAAAAAAAAAAAAAAAAAEElEa5HdddddtWPHjt78008/1VNPPVWTk5N/erbb7dabb75Zzz33XM3NzfW+f/HFF2t8fLwv+wIAAAAAAAAAAAAAAAAAAAAAACRoN73AcvDqq6/W448/Xt98801VVc3OztbTTz9dW7ZsqW3bttV1111XMzMzNTk5WefOnVvw7rPPPlsPPfRQA1sDAAAAAAAAAAAAAAAAAAAAAAAMLhGtPlizZk0dPny49u3bVydPnux9PzU1VVNTU3/5zsjISO3du7eeeeaZfq0JAAAAAAAAAAAAAAAAAAAAAAAQo9X0AsvFunXr6siRI/Xyyy/XxMTEFZ8bGxure++9t959910BLQAAAAAAAAAAAAAAAAAAAAAAgCtoN73ActJut2v37t21e/fuOn36dH3++ed19uzZunTpUq1Zs6bWrVtXt99+e42NjTW9KgAAAAAAAAAAAAAAAAAAAAAAwEAT0WrIhg0basOGDU2vAQAAAAAAAAAAAAAAAAAAAAAAEKnV9AIAAAAAAAAAAAAAAAAAAAAAAADwb4loAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAD/ZeeOWbO+1zgO301M4BSKb8BNMCBV+gK6+Uo6WAWJOBVLKR1E0JKl6FjcxLHQsZJNcBJHxUmk0C4ttIJCQ/QMB3JoOYeS0+o/n5zr2n7wJM93eIZ7+gAAAAAAAAAAAAAAAAA5IloAAAAAAAAAAAAAAAAAAAAAAADkiGgBAAAAAAAAAAAAAAAAAAAAAACQI6IFAAAAAAAAAAAAAAAAAAAAAABAjogWAAAAAAAAAAAAAAAAAAAAAAAAOSJaAAAAAAAAAAAAAAAAAAAAAAAA5IhoAQAAAAAAAAAAAAAAAAAAAAAAkCOiBQAAAAAAAAAAAAAAAAAAAAAAQI6IFgAAAAAAAAAAAAAAAAAAAAAAADkiWgAAAAAAAAAAAAAAAAAAAAAAAOSIaAEAAAAAAAAAAAAAAAAAAAAAAJAjogUAAAAAAAAAAAAAAAAAAAAAAECOiBYAAAAAAAAAAAAAAAAAAAAAAAA5IloAAAAAAAAAAAAAAAAAAAAAAADkiGgBAAAAAAAAAAAAAAAAAAAAAACQI6IFAAAAAAAAAAAAAAAAAAAAAABAjogWAAAAAAAAAAAAAAAAAAAAAAAAOSJaAAAAAAAAAAAAAAAAAAAAAAAA5IhoAQAAAAAAAAAAAAAAAAAAAAAAkCOiBQAAAAAAAAAAAAAAAAAAAAAAQI6IFgAAAAAAAAAAAAAAAAAAAAAAADkiWgAAAAAAAAAAAAAAAAAAAAAAAOSIaAEAAAAAAAAAAAAAAAAAAAAAAJAjogUAAAAAAAAAAAAAAAAAAAAAAECOiBYAAAAAAAAAAAAAAAAAAAAAAAA5IloAAAAAAAAAAAAAAAAAAAAAAADkiGgBAAAAAAAAAAAAAAAAAAAAAACQI6IFAAAAAAAAAAAAAAAAAAAAAABAjogWAAAAAAAAAAAAAAAAAAAAAAAAOSJaAAAAAAAAAAAAAAAAAAAAAAAA5IhoAQAAAAAAAAAAAAAAAAAAAAAAkCOiBQAAAAAAAAAAAAAAAAAAAAAAQI6IFgAAAAAAAAAAAAAAAAAAAAAAADkiWgAAAAAAAAAAAAAAAAAAAAAAAOSIaAEAAAAAAAAAAAAAAAAAAAAAAJAjogUAAAAAAAAAAAAAAAAAAAAAAECOiBYAAAAAAAAAAAAAAAAAAAAAAAA5IloAAAAAAAAAAAAAAAAAAAAAAADkiGgBAAAAAAAAAAAAAAAAAAAAAACQI6IFAAAAAAAAAAAAAAAAAAAAAABAjogWAAAAAAAAAAAAAAAAAAAAAAAAOSJaAAAAAAAAAAAAAAAAAAAAAAAA5IhoAQAAAAAAAAAAAAAAAAAAAAAAkCOiBQAAAAAAAAAAAAAAAAAAAAAAQI6IFgAAAAAAAAAAAAAAAAAAAAAAADkiWgAAAAAAAAAAAAAAAAAAAAAAAOSIaAEAAAAAAAAAAAAAAAAAAAAAAJAjogUAAAAAAAAAAAAAAAAAAAAAAECOiBYAAAAAAAAAAAAAAAAAAAAAAAA5IloAAAAAAAAAAAAAAAAAAAAAAADkiGgBAAAAAAAAAAAAAAAAAAAAAACQI6IFAAAAAAAAAAAAAAAAAAAAAABAjogWAAAAAAAAAAAAAAAAAAAAAAAAOSJaAAAAAAAAAAAAAAAAAAAAAAAA5IhoAQAAAAAAAAAAAAAAAAAAAAAAkCOiBQAAAAAAAAAAAAAAAAAAAAAAQI6IFgAAAAAAAAAAAAAAAAAAAAAAADkiWgAAAAAAAAAAAAAAAAAAAAAAAOSIaAEAAAAAAAAAAAAAAAAAAAAAAJAjogUAAAAAAAAAAAAAAAAAAAAAAECOiBYAAAAAAAAAAAAAAAAAAAAAAAA5IloAAAAAAAAAAAAAAAAAAAAAAADkiGgBAAAAAAAAAAAAAAAAAAAAAACQI6IFAAAAAAAAAAAAAAAAAAAAAABAjogWAAAAAAAAAAAAAAAAAAAAAAAAOSJaAAAAAAAAAAAAAAAAAAAAAAAA5IhoAQAAAAAAAAAAAAAAAAAAAAAAkCOiBQAAAAAAAAAAAAAAAAAAAAAAQI6IFgAAAAAAAAAAAAAAAAAAAAAAADkiWgAAAAAAAAAAAAAAAAAAAAAAAOSIaAEAAAAAAAAAAAAAAAAAAAAAAJAjogUAAAAAAAAAAAAAAAAAAAAAAECOiBYAAAAAAAAAAAAAAAAAAAAAAAA5IloAAAAAAAAAAAAAAAAAAAAAAADkiGgBAAAAAAAAAAAAAAAAAAAAAACQI6IFAAAAAAAAAAAAAAAAAAAAAABAjogWAAAAAAAAAAAAAAAAAAAAAAAAOSJaAAAAAAAAAAAAAAAAAAAAAAAA5IhoAQAAAAAAAAAAAAAAAAAAAAAAkCOiBQAAAAAAAAAAAAAAAAAAAAAAQI6IFgAAAAAAAAAAAAAAAAAAAAAAADkiWgAAAAAAAAAAAAAAAAAAAAAAAOSIaAEAAAAAAAAAAAAAAAAAAAAAAJAjogUAAAAAAAAAAAAAAAAAAAAAAECOiBYAAAAAAAAAAAAAAAAAAAAAAAA5IloAAAAAAAAAAAAAAAAAAAAAAADkiGgBAAAAAAAAAAAAAAAAAAAAAACQI6IFAAAAAAAAAAAAAAAAAAAAAABAjogWAAAAAAAAAAAAAAAAAAAAAAAAOSJaAAAAAAAAAAAAAAAAAAAAAAAA5IhoAQAAAAAAAAAAAAAAAAAAAAAAkCOiBQAAAAAAAAAAAAAAAAAAAAAAQI6IFgAAAAAAAAAAAAAAAAAAAAAAADkiWgAAAAAAAAAAAAAAAAAAAAAAAOSIaAEAAAAAAAAAAAAAAAAAAAAAAJAjogUAAAAAAAAAAAAAAAAAAAAAAECOiBYAAAAAAAAAAAAAAAAAAAAAAAA5IloAAAAAAAAAAAAAAAAAAAAAAADkiGgBAAAAAAAAAAAAAAAAAAAAAACQI6IFAAAAAAAAAAAAAAAAAAAAAABAjogWAAAAAAAAAAAAAAAAAAAAAAAAOSJaAAAAAAAAAAAAAAAAAAAAAAAA5IhoAQAAAAAAAAAAAAAAAAAAAAAAkCOiBQAAAAAAAAAAAAAAAAAAAAAAQI6IFgAAAAAAAAAAAAAAAAAAAAAAADkiWgAAAAAAAAAAAAAAAAAAAAAAAOSIaAEAAAAAAAAAAAAAAAAAAAAAAJAjogUAAAAAAAAAAAAAAAAAAAAAAECOiBYAAAAAAAAAAAAAAAAAAAAAAAA5IloAAAAAAAAAAAAAAAAAAAAAAADkiGgBAAAAAAAAAAAAAAAAAAAAAACQI6IFAAAAAAAAAAAAAAAAAAAAAABAjogWAAAAAAAAAAAAAAAAAAAAAAAAOSJaAAAAAAAAAAAAAAAAAAAAAAAA5IhoAQAAAAAAAAAAAAAAAAAAAAAAkCOiBQAAAAAAAAAAAAAAAAAAAAAAQI6IFgAAAAAAAAAAAAAAAAAAAAAAADkiWgAAAAAAAAAAAAAAAAAAAAAAAOSIaAEAAAAAAAAAAAAAAAAAAAAAAJAjogUAAAAAAAAAAAAAAAAAAAAAAECOiBYAAAAAAAAAAAAAAAAAAAAAAAA5IloAAAAAAAAAAAAAAAAAAAAAAADkiGgBAAAAAAAAAAAAAAAAAAAAAACQI6IFAAAAAAAAAAAAAAAAAAAAAABAjogWAAAAAAAAAAAAAAAAAAAAAAAAOSJaAAAAAAAAAAAAAAAAAAAAAAAA5IhoAQAAAAAAAAAAAAAAAAAAAAAAkCOiBQAAAAAAAAAAAAAAAAAAAAAAQI6IFgAAAAAAAAAAAAAAAAAAAAAAADkiWgAAAAAAAAAAAAAAAAAAAAAAAOSIaAEAAAAAAAAAAAAAAAAAAAAAAJAjogUAAAAAAAAAAAAAAAAAAAAAAECOiBYAAAAAAAAAAAAAAAAAAAAAAAA5IloAAAAAAAAAAAAAAAAAAAAAAADkiGgBAAAAAAAAAAAAAAAAAAAAAACQI6IFAAAAAAAAAAAAAAAAAAAAAABAjogWAAAAAAAAAAAAAAAAAAAAAAAAOSJaAAAAAAAAAAAAAAAAAAAAAAAA5IhoAQAAAAAAAAAAAAAAAAAAAAAAkCOiBQAAAAAAAAAAAAAAAAAAAAAAQI6IFgAAAAAAAAAAAAAAAAAAAAAAADkiWgAAAAAAAAAAAAAAAAAAAAAAAOSIaAEAAAAAAAAAAAAAAAAAAAAAAJAjogUAAAAAAAAAAAAAAAAAAAAAAECOiBYAAAAAAAAAAAAAAAAAAAAAAAA5IloAAAAAAAAAAAAAAAAAAAAAAADkiGgBAAAAAAAAAAAAAAAAAAAAAACQI6IFAAAAAAAAAAAAAAAAAAAAAABAjogWAAAAAAAAAAAAAAAAAAAAAAAAOSJaAAAAAAAAAAAAAAAAAAAAAAAA5IhoAQAAAAAAAAAAAAAAAAAAAAAAkCOiBQAAAAAAAAAAAAAAAAAAAAAAQI6IFgAAAAAAAAAAAAAAAAAAAAAAADkiWgAAAAAAAAAAAAAAAAAAAAAAAOSIaAEAAAAAAAAAAAAAAAAAAAAAAJAjogUAAAAAAAAAAAAAAAAAAAAAAECOiBYAAAAAAAAAAAAAAAAAAAAAAAA5IloAAAAAAAAAAAAAAAAAAAAAAADkiGgBAAAAAAAAAAAAAAAAAAAAAACQI6IFAAAAAAAAAAAAAAAAAAAAAABAjogWAAAAAAAAAAAAAAAAAAAAAAAAOSJaAAAAAAAAAAAAAAAAAAAAAAAA5IhoAQAAAAAAAAAAAAAAAAAAAAAAkCOiBQAAAAAAAAAAAAAAAAAAAAAAQI6IFgAAAAAAAAAAAAAAAAAAAAAAADkiWgAAAAAAAAAAAAAAAAAAAAAAAOSIaAEAAAAAAAAAAAAAAAAAAAAAAJAjogUAAAAAAAAAAAAAAAAAAAAAAECOiBYAAAAAAAAAAAAAAAAAAAAAAAA5IloAAAAAAAAAAAAAAAAAAAAAAADkiGgBAAAAAAAAAAAAAAAAAAAAAACQI6IFAAAAAAAAAAAAAAAAAAAAAABAjogWAAAAAAAAAAAAAAAAAAAAAAAAOSJaAAAAAAAAAAAAAAAAAAAAAAAA5IhoAQAAAAAAAAAAAAAAAAAAAAAAkCOiBQAAAAAAAAAAAAAAAAAAAAAAQI6IFgAAAAAAAAAAAAAAAAAAAAAAADkiWgAAAAAAAAAAAAAAAAAAAAAAAOSIaAEAAAAAAAAAAAAAAAAAAAAAAJAjogUAAAAAAAAAAAAAAAAAAAAAAECOiBYAAAAAAAAAAAAAAAAAAAAAAAA5IloAAAAAAAAAAAAAAAAAAAAAAADkiGgBAAAAAAAAAAAAAAAAAAAAAACQI6IFAAAAAAAAAAAAAAAAAAAAAABAjogWAAAAAAAAAAAAAAAAAAAAAAAAOSJaAAAAAAAAAAAAAAAAAAAAAAAA5IhoAQAAAAAAAAAAAAAAAAAAAAAAkCOiBQAAAAAAAAAAAAAAAAAAAAAAQI6IFgAAAAAAAAAAAAAAAAAAAAAAADkiWgAAAAAAAAAAAAAAAAAAAAAAAOSIaAEAAAAAAAAAAAAAAAAAAAAAAJAjogUAAAAAAAAAAAAAAAAAAAAAAECOiBYAAAAAAAAAAAAAAAAAAAAAAAA5IloAAAAAAAAAAAAAAAAAAAAAAADkiGgBAAAAAAAAAAAAAAAAAAAAAACQI6IFAAAAAAAAAAAAAAAAAAAAAABAjogWAAAAAAAAAAAAAAAAAAAAAAAAOSJaAAAAAAAAAAAAAAAAAAAAAAAA5IhoAQAAAAAAAAAAAAAAAAAAAAAAkCOiBQAAAAAAAAAAAAAAAAAAAAAAQI6IFgAAAAAAAAAAAAAAAAAAAAAAADkiWgAAAAAAAAAAAAAAAAAAAAAAAOSIaAEAAAAAAAAAAAAAAAAAAAAAAJAjogUAAAAAAAAAAAAAAAAAAAAAAECOiBYAAAAAAAAAAAAAAAAAAAAAAAA5IloAAAAAAAAAAAAAAAAAAAAAAADkiGgBAAAAAAAAAAAAAAAAAAAAAACQI6IFAAAAAAAAAAAAAAAAAAAAAABAjogWAAAAAAAAAAAAAAAAAAAAAAAAOSJaAAAAAAAAAAAAAAAAAAAAAAAA5IhoAQAAAAAAAAAAAAAAAAAAAAAAkCOiBQAAAAAAAAAAAAAAAAAAAAAAQI6IFgAAAAAAAAAAAAAAAAAAAAAAADkiWgAAAAAAAAAAAAAAAAAAAAAAAOSIaAEAAAAAAAAAAAAAAAAAAAAAAJAjogUAAAAAAAAAAAAAAAAAAAAAAECOiBYAAAAAAAAAAAAAAAAAAAAAAAA5IloAAAAAAAAAAAAAAAAAAAAAAADkiGgBAAAAAAAAAAAAAAAAAAAAAACQI6IFAAAAAAAAAAAAAAAAAAAAAABAjogWAAAAAAAAAAAAAAAAAAAAAAAAOSJaAAAAAAAAAAAAAAAAAAAAAAAA5IhoAQAAAAAAAAAAAAAAAAAAAAAAkCOiBQAAAAAAAAAAAAAAAAAAAAAAQI6IFgAAAAAAAAAAAAAAAAAAAAAAADkiWgAAAAAAAAAAAAAAAAAAAAAAAOSIaAEAAAAAAAAAAAAAAAAAAAAAAJAjogUAAAAAAAAAAAAAAAAAAAAAAECOiBYAAAAAAAAAAAAAAAAAAAAAAAA5IloAAAAAAAAAAAAAAAAAAAAAAADkiGgBAAAAAAAAAAAAAAAAAAAAAACQI6IFAAAAAAAAAAAAAAAAAAAAAABAjogWAAAAAAAAAAAAAAAAAAAAAAAAOSJaAAAAAAAAAAAAAAAAAAAAAAAA5IhoAQAAAAAAAAAAAAAAAAAAAAAAkCOiBQAAAAAAAAAAAAAAAAAAAAAAQI6IFgAAAAAAAAAAAAAAAAAAAAAAADkiWgAAAAAAAAAAAAAAAAAAAAAAAOSIaAEAAAAAAAAAAAAAAAAAAAAAAJAjogUAAAAAAAAAAAAAAAAAAAAAAECOiBYAAAAAAAAAAAAAAAAAAAAAAAA5IloAAAAAAAAAAAAAAAAAAAAAAADkiGgdEI8ePZr3339/NjY2ZmNjY77//vulJwEAAAAAAAAAAAAAAAAAAAAAABxYIloHwG+//TaffPLJ7OzsLD0FAAAAAAAAAAAAAAAAAAAAAAAgQUTrAPjqq6/myZMnS88AAAAAAAAAAAAAAAAAAAAAAADIENFa2IMHD+bWrVtLzwAAAAAAAAAAAAAAAAAAAAAAAEgR0VrQixcv5vLly/Pq1aulpwAAAAAAAAAAAAAAAAAAAAAAAKSIaC3oyy+/nGfPni09AwAAAAAAAAAAAAAAAAAAAAAAIEdEayH37t2bO3fuzMzMysrKfPjhhwsvAgAAAAAAAAAAAAAAAAAAAAAA6BDRWsCvv/46n3322d77o48+mg8++GC5QQAAAAAAAAAAAAAAAAAAAAAAADEiWgu4cuXK/PjjjzMzc/z48bl06dKygwAAAAAAAAAAAAAAAAAAAAAAAGJEtN6y7777br799tuZmVldXZ1r167N+vr6wqsAAAAAAAAAAAAAAAAAAAAAAABaRLTeop9++mm++OKLvffZs2fn9OnTCy4CAAAAAAAAAAAAAAAAAAAAAABoEtF6iz7//PP5+eefZ2bmxIkTc+HChYUXAQAAAAAAAAAAAAAAAAAAAAAANB1ZesD/i2+++Wa2t7dnZmZtbW2uX78+6+vrC6/an5WVd2Z1VXcNADi4Vlff+Q9v9wsAcLC5YQCAGvcLAFDjfgEAatwvAECRGwYAqHG/AAA17hcOsj/+Pt82Ea234IcffpirV6/uvc+dOzcnT55ccNH/5r33/rH0BACAfTl69N2lJwAA7JsbBgCocb8AADXuFwCgxv0CABS5YQCAGvcLAFDjfoF/k5N7w16/fj2ffvrpPH/+fGZmTp48OefPn194FQAAAAAAAAAAAAAAAAAAAAAAQJuI1ht2+/btuX///szMrK2tzbVr12ZtbW3hVQAAAAAAAAAAAAAAAAAAAAAAAG1Hlh5wmD19+nS2trb23hcuXJiNjY0FF/01z5+/nJ2dV0vPAAD4r1ZX35mjR9/de//yy4vZ3X294CIAgD/nhgEAatwvAECN+wUAqHG/AABFbhgAoMb9AgDUuF84yP74+3zbRLTekN3d3bl8+fK8fPlyZmZOnTo1H3/88cKr/ppXr17P7q6IFgBwkK387rW7634BAArcMABAjfsFAKhxvwAANe4XAKDIDQMA1LhfAIAa9wsH2cqff+TQfvsh9vXXX8/Dhw9nZmZ9fX2uX78+q6urC68CAAAAAAAAAAAAAAAAAAAAAAA4HES03oDHjx/PjRs39t4XL16c48ePL7gIAAAAAAAAAAAAAAAAAAAAAADgcDmy9IDD6O7du7Ozs7P33tramq2trX39jzNnzvzuvb29PceOHftb9gEAAAAAAAAAAAAAAAAAAAAAANStLD0AAAAAAAAAAAAAAAAAAAAAAAAA9ktECwAAAAAAAAAAAAAAAAAAAAAAgJwjSw84jDY3N2dzc3Nff3Pjxo25efPm3nt7e3uOHTv2d08DAAAAAAAAAAAAAAAAAAAAAAA4FFaWHgAAAAAAAAAAAAAAAAAAAAAAAAD7JaIFAAAAAAAAAAAAAAAAAAAAAABAjogWAAAAAAAAAAAAAAAAAAAAAAAAOSJaAAAAAAAAAAAAAAAAAAAAAAAA5IhoAQAAAAAAAAAAAAAAAAAAAAAAkCOiBQAAAAAAAAAAAAAAAAAAAAAAQM6RpQfwL5ubm7O5ubn0DAAAAAAAAAAAAAAAAAAAAAAAgISVpQcAAAAAAAAAAAAAAAAAAAAAAADAfoloAQAAAAAAAAAAAAAAAAAAAAAAkCOiBQAAAAAAAAAAAAAAAAAAAAAAQI6IFgAAAAAAAAAAAAAAAAAAAAAAADkiWgAAAAAAAAAAAAAAAAAAAAAAAOSIaAEAAAAAAAAAAAAAAAAAAAAAAJAjogUAAAAAAAAAAAAAAAAAAAAAAECOiBYAAAAAAAAAAAAAAAAAAAAAAAA5IloAAAAAAAAAAAAAAAAAAAAAAADkiGgBAAAAAAAAAAAAAAAAAAAAAACQI6IFAAAAAAAAAAAAAAAAAAAAAABAjogWAAAAAAAAAAAAAAAAAAAAAAAAOSJaAAAAAAAAAAAAAAAAAAAAAAAA5IhoAQAAAAAAAAAAAAAAAAAAAAAAkCOiBQAAAAAAAAAAAAAAAAAAAAAAQI6IFgAAAAAAAAAAAAAAAAAAAAAAADkiWgAAAAAAAAAAAAAAAAAAAAAAAOSIaAEAAAAAAAAAAAAAAAAAAAAAAJAjogUAAAAAAAAAAAAAAAAAAAAAAECOiBYAAAAAAAAAAAAAAAAAAAAAAAA5IloAAAAAAAAAAAAAAAAAAAAAAADkiGgBAAAAAAAAAAAAAAAAAAAAAACQI6IFAAAAAAAAAAAAAAAAAAAAAABAjogWAAAAAAAAAAAAAAAAAAAAAAAAOSJaAAAAAAAAAAAAAAAAAAAAAAAA5IhoAQAAAAAAAAAAAAAAAAAAAAAAkCOiBQAAAAAAAAAAAAAAAAAAAAAAQI6IFgAAAAAAAAAAAAAAAAAAAAAAADkiWgAAAAAAAAAAAAAAAAAAAAAAAOSIaAEAAAAAAAAAAAAAAAAAAAAAAJAjogUAAAAAAAAAAAAAAAAAAAAAAECOiBYAAAAAAAAAAAAAAAAAAAAAAAA5IloAAAAAAAAAAAAAAAAAAAAAAADkiGgBAAAAAAAAAAAAAAAAAAAAAACQI6IFAAAAAAAAAAAAAAAAAAAAAABAjogWAAAAAAAAAAAAAAAAAAAAAAAAOSJaAAAAAAAAAAAAAAAAAAAAAAAA5IhoAQAAAAAAAAAAAAAAAAAAAAAAkCOiBQAAAAAAAAAAAAAAAAAAAAAAQI6IFgAAAAAAAAAAAAAAAAAAAAAAADkiWgAAAAAAAAAAAAAAAAAAAAAAAOSIaAEAAAAAAAAAAAAAAAAAAAAAAJAjogUAAAAAAAAAAAAAAAAAAAAAAECOiBYAAAAAAAAAAAAAAAAAAAAAAAA5IloAAAAAAAAAAAAAAAAAAAAAAADkiGgBAAAAAAAAAAAAAAAAAAAAAACQI6IFAAAAAAAAAAAAAAAAAAAAAABAjogWAAAAAAAAAAAAAAAAAAAAAAAAOSJaAAAAAAAAAAAAAAAAAAAAAAAA5IhoAQAAAAAAAAAAAAAAAAAAAAAAkCOiBQAAAAAAAAAAAAAAAAAAAAAAQI6IFgAAAAAAAAAAAAAAAAAAAAAAADkiWgAAAAAAAAAAAAAAAAAAAAAAAOSIaAEAAAAAAAAAAAAAAAAAAAAAAJAjogUAAAAAAAAAAAAAAAAAAAAAAECOiBYAAAAAAAAAAAAAAAAAAAAAAAA5IloAAAAAAAAAAAAAAAAAAAAAAADkiGgBAAAAAAAAAAAAAAAAAAAAAACQI6IFAAAAAAAAAAAAAAAAAAAAAABAjogWAAAAAAAAAAAAAAAAAAAAAAAAOSJaAAAAAAAAAAAAAAAAAAAAAAAA5IhoAQAAAAAAAAAAAAAAAAAAAAAAkCOiBQAAAAAAAAAAAAAAAAAAAAAAQI6IFgAAAAAAAAAAAAAAAAAAAAAAADkiWgAAAAAAAAAAAAAAAAAAAAAAAOSIaAEAAAAAAAAAAAAAAAAAAAAAAJAjogUAAAAAAAAAAAAAAAAAAAAAAECOiBYAAAAAAAAAAAAAAAAAAAAAAAA5IloAAAAAAAAAAAAAAAAAAAAAAADkiGgBAAAAAAAAAAAAAAAAAAAAAACQI6IFAAAAAAAAAAAAAAAAAAAAAABAjogWAAAAAAAAAAAAAAAAAAAAAAAAOSJaAAAAAAAAAAAAAAAAAAAAAAAA5IhoAQAAAAAAAAAAAAAAAAAAAAAAkCOiBQAAAAAAAAAAAAAAAAAAAAAAQI6IFgAAAAAAAAAAAAAAAAAAAAAAADkiWgAAAAAAAAAAAAAAAAAAAAAAAOSIaAEAAAAAAAAAAAAAAAAAAAAAAJAjogUAAAAAAAAAAAAAAAAAAAAAAECOiBYAAAAAAAAAAAAAAAAAAAAAAAA5IloAAAAAAAAAAAAAAAAAAAAAAADkiGgBAAAAAAAAAAAAAAAAAAAAAACQI6IFAAAAAAAAAAAAAAAAAAAAAABAjogWAAAAAAAAAAAAAAAAAAAAAAAAOSJaAAAAAAAAAAAAAAAAAAAAAAAA5IhoAQAAAAAAAAAAAAAAAAAAAAAAkCOiBQAAAAAAAAAAAAAAAAAAAAAAQI6IFgAAAAAAAAAAAAAAAAAAAAAAADkiWgAAAAAAAAAAAAAAAAAAAAAAAOSIaAEAAAAAAAAAAAAAAAAAAAAAAJAjogUAAAAAAAAAAAAAAAAAAAAAAECOiBYAAAAAAAAAAAAAAAAAAAAAAAA5IloAAAAAAAAAAAAAAAAAAAAAAADkiGgBAAAAAAAAAAAAAAAAAAAAAACQI6IFAAAAAAAAAAAAAAAAAAAAAABAjogWAAAAAAAAAAAAAAAAAAAAAAAAOSJaAAAAAAAAAAAAAAAAAAAAAAAA5IhoAQAAAAAAAAAAAAAAAAAAAAAAkCOiBQAAAAAAAAAAAAAAAAAAAAAAQI6IFgAAAAAAAAAAAAAAAAAAAAAAADkiWgAAAAAAAAAAAAAAAAAAAAAAAOSIaAEAAAAAAAAAAAAAAAAAAAAAAJAjogUAAAAAAAAAAAAAAAAAAAAAAECOiBYAAAAAAAAAAAAAAAAAAAAAAAA5IloAAAAAAAAAAAAAAAAAAAAAAADkiGgBAAAAAAAAAAAAAAAAAAAAAACQI6IFAAAAAAAAAAAAAAAAAAAAAABAjogWAAAAAAAAAAAAAAAAAAAAAAAAOSJaAAAAAAAAAAAAAAAAAAAAAAAA5IhoAQAAAAAAAAAAAAAAAAAAAAAAkCOiBQAAAAAAAAAAAAAAAAAAAAAAQI6IFgAAAAAAAAAAAAAAAAAAAAAAADkiWgAAAAAAAAAAAAAAAAAAAAAAAOSIaAEAAAAAAAAAAAAAAAAAAAAAAJAjogUAAAAAAAAAAAAAAAAAAAAAAECOiBYAAAAAAAAAAAAAAAAAAAAAAAA5IloAAAAAAAAAAAAAAAAAAAAAAADkiGgBAAAAAAAAAAAAAAAAAAAAAACQI6IFAAAAAAAAAAAAAAAAAAAAAABAjogWAAAAAAAAAAAAAAAAAAAAAAAAOSJaAAAAAAAAAAAAAAAAAAAAAAAA5IhoAQAAAAAAAAAAAAAAAAAAAAAAkCOiBQAAAAAAAAAAAAAAAAAAAAAAQI6IFgAAAAAAAAAAAAAAAAAAAAAAADkiWgAAAAAAAAAAAAAAAAAAAAAAAOSIaAEAAAAAAAAAAAAAAAAAAAAAAJAjogUAAAAAAAAAAAAAAAAAAAAAAECOiBYAAAAAAAAAAAAAAAAAAAAAAAA5IloAAAAAAAAAAAAAAAAAAAAAAADkiGgBAAAAAAAAAAAAAAAAAAAAAACQI6IFAAAAAAAAAAAAAAAAAAAAAABAjogWAAAAAAAAAAAAAAAAAAAAAAAAOSJaAAAAAAAAAAAAAAAAAAAAAAAA5IhoAQAAAAAAAAAAAAAAAAAAAAAAkCOiBQAAAAAAAAAAAAAAAAAAAAAAQI6IFgAAAAAAAAAAAAAAAAAAAAAAADkiWgAAAAAAAAAAAAAAAAAAAAAAAOSIaAEAAAAAAAAAAAAAAAAAAAAAAJAjogUAAAAAAAAAAAAAAAAAAAAAAECOiBYAAAAAAAAAAAAAAAAAAAAAAAA5IloAAAAAAAAAAAAAAAAAAAAAAADkiGgBAAAAAAAAAAAAAAAAAAAAAACQI6IFAAAAAAAAAAAAAAAAAAAAAABAjogWAAAAAAAAAAAAAAAAAAAAAAAAOSJaAAAAAAAAAAAAAAAAAAAAAAAA5IhoAQAAAAAAAAAAAAAAAAAAAAAAkCOiBQAAAAAAAAAAAAAAAAAAAAAAQI6IFgAAAAAAAAAAAAAAAAAAAAAAADkiWgAAAAAAAAAAAAAAAAAAAAAAAOSIaAEAAAAAAAAAAAAAAAAAAAAAAJAjogUAAAAAAAAAAAAAAAAAAAAAAECOiBYAAAAAAAAAAAAAAAAAAAAAAAA5IloAAAAAAAAAAAAAAAAAAAAAAADkiGgBAAAAAAAAAAAAAAAAAAAAAACQI6IFAAAAAAAAAAAAAAAAAAAAAABAjogWAAAAAAAAAAAAAAAAAAAAAAAAOSJaAAAAAAAAAAAAAAAAAAAAAAAA5IhoAQAAAAAAAAAAAAD8k507DbKqvPMH/jvdzd52IwIqiwaNjigoKqLGSBRFAiQmaspkBgeXmMRKTMUkZeJSJmoqycy4DZN1yiExTpJxSYwxIrgPOhMdccE2Im5BtgajAt0iNN19+/xfWNy/CHazdN9zT/fnU3WL59zzO8/53qp+8fDmCwAAAAAAAEDuKNECAAAAAAAAAAAAAAAAAAAAAAAgd5RoAQAAAAAAAAAAAAAAAAAAAAAAkDtKtAAAAAAAAAAAAAAAAAAAAAAAAMgdJVoAAAAAAAAAAAAAAAAAAAAAAADkjhItAAAAAAAAAAAAAAAAAAAAAAAAckeJFgAAAAAAAAAAAAAAAAAAAAAAALmjRAsAAAAAAAAAAAAAAAAAAAAAAIDcUaIFAAAAAAAAAAAAAAAAAAAAAABA7ijRAgAAAAAAAAAAAAAAAAAAAAAAIHeUaAEAAAAAAAAAAAAAAAAAAAAAAJA7SrQAAAAAAAAAAAAAAAAAAAAAAADIHSVaAAAAAAAAAAAAAAAAAAAAAAAA5I4SLQAAAAAAAAAAAAAAAAAAAAAAAHJHiRYAAAAAAAAAAAAAAAAAAAAAAAC5o0QLAAAAAAAAAAAAAAAAAAAAAACA3FGiBQAAAAAAAAAAAAAAAAAAAAAAQO4o0QIAAAAAAAAAAAAAAAAAAAAAACB3lGgBAAAAAAAAAAAAAAAAAAAAAACQO0q0AAAAAAAAAAAAAAAAAAAAAAAAyB0lWgAAAAAAAAAAAAAAAAAAAAAAAOSOEi0AAAAAAAAAAAAAAAAAAAAAAAByR4kWAAAAAAAAAAAAAAAAAAAAAAAAuaNECwAAAAAAAAAAAAAAAAAAAAAAgNxRogUAAAAAAAAAAAAAAAAAAAAAAEDuKNECAAAAAAAAAAAAAAAAAAAAAAAgd5RoAQAAAAAAAAAAAAAAAAAAAAAAkDtKtAAAAAAAAAAAAAAAAAAAAAAAAMgdJVoAAAAAAAAAAAAAAAAAAAAAAADkjhItAAAAAAAAAAAAAAAAAAAAAAAAckeJFgAAAAAAAAAAAAAAAAAAAAAAALmjRAsAAAAAAAAAAAAAAAAAAAAAAIDcUaIFAAAAAAAAAAAAAAAAAAAAAABA7ijRAgAAAAAAAAAAAAAAAAAAAAAAIHeUaAEAAAAAAAAAAAAAAAAAAAAAAJA7SrQAAAAAAAAAAAAAAAAAAAAAAADIHSVaAAAAAAAAAAAAAAAAAAAAAAAA5I4SLQAAAAAAAAAAAAAAAAAAAAAAAHJHiRYAAAAAAAAAAAAAAAAAAAAAAAC5o0QLAAAAAAAAAAAAAAAAAAAAAACA3FGiBQAAAAAAAAAAAAAAAAAAAAAAQO4o0QIAAAAAAAAAAAAAAAAAAAAAACB3lGgBAAAAAAAAAAAAAAAAAAAAAACQO0q0AAAAAAAAAAAAAAAAAAAAAAAAyB0lWgAAAAAAAAAAAAAAAAAAAAAAAOSOEi0AAAAAAAAAAAAAAAAAAAAAAAByR4kWAAAAAAAAAAAAAAAAAAAAAAAAuaNECwAAAAAAAAAAAAAAAAAAAAAAgNxRogUAAAAAAAAAAAAAAAAAAAAAAEDuKNECAAAAAAAAAAAAAAAAAAAAAAAgd5RoAQAAAAAAAAAAAAAAAAAAAAAAkDtVWQfYFevWrYtnn3023njjjWhoaIimpqb4yle+UrxfV1cXhxxySFRWVmaYEgAAAAAAAAAAAAAAAAAAAAAAgM6WuxKt5ubm+MMf/hC//e1v4+WXX440Tbe4/94Sra9+9avR2toaX/rSl2LGjBnKtAAAAAAAAAAAAAAAAAAAAAAAALqJXJVo1dXVxUUXXRSrVq3aqjwrIiJJkuK6tbU13njjjWhra4sf/vCHcd9998W//du/xaBBg0oZGQAAAAAAAAAAAAAAAAAAAAAAgC5QkXWA7fXAAw/EjBkzigVa7y3Meu96s1WrVkVbW1skSRJpmsZTTz0V559/fmzYsKGUsQEAAAAAAAAAAAAAAAAAAAAAAOgCuSjRev755+Piiy+OlpaW4ndDhw6NM888M6644opI03SrZ/r06RMTJkwoFm6laRovvPBCXH/99aWMDgAAAAAAAAAAAAAAAAAAAAAAQBfIRYnWVVddFRs3bowkSaKqqiquuOKKeOihh+Lqq6+OGTNmbPOZoUOHxs033xw//elPo6amplik9V//9V+xatWqEv8CAAAAAAAAAAAAAAAAAAAAAAAAOlPZl2jNnz8/6urqitfXXnttzJgxIyorK7fr+UmTJsXs2bOjqqoqkiSJtra2+OMf/9hVcQEAAAAAAAAAAAAAAAAAAAAAACiBsi/RevDBByMiIkmSmDJlSkyZMmWH9xgzZkyceuqpkaZpREQsWLCgUzMCAAAAAAAAAAAAAAAAAAAAAABQWmVfovX0008X12eeeeZO7/OZz3ymuH7llVd2KRMAAAAAAAAAAAAAAAAAAAAAAADZKvsSrTfeeKO4Pvjgg3d6n3333TciItI0jYaGhl3OBQAAAAAAAAAAAAAAAAAAAAAAQHbKvkRrw4YNxXV1dfVO77MrzwIAAAAAAAAAAAAAAAAAAAAAAFBeyr5Ea/fddy+u33jjjZ3eZ/Xq1RERkSRJDBw4cFdjAQAAAAAAAAAAAAAAAAAAAAAAkKGyL9EaNmxYcf3444/v9D6PPvroNvcEAAAAAAAAAAAAAAAAAAAAAAAgf8q+ROsjH/lIcT179uwoFAo7vEdzc3P88pe/LF4fffTRnZINAAAAAAAAAAAAAAAAAAAAAACAbJR9idbHP/7xSJIkIiJeffXVuPrqq3fo+TRN49JLL40VK1YUvzvllFM6NSMAAAAAAAAAAAAAAAAAAAAAAAClVfYlWgceeGBMmzYt0jSNiIjbbrstLrjggnj11Vc7fHbx4sVxzjnnxD333BMREUmSxMc+9rEYPXp0l2YGAAAAAAAAAAAAAAAAAAAAAACga1VlHWB7XHrppfHUU0/F66+/HhER8+fPj/nz58c+++wTI0aM2GL2uuuuizVr1kRdXV288sorERHFAq7a2tq4/PLLSxseAAAAAAAAAAAAAAAAAAAAAACATpeLEq3BgwfHz3/+8/j85z8fb731ViRJEmmaxtKlS2PZsmXFuTRN4z/+4z+K64iIJEkiIqJfv34xa9asGDlyZOl/AAAAAAAAAAAAAAAAAAAAAAAAAJ2qIusA2+uggw6KO++8M4455pitCrKSJCl+Ntu8TtM0DjjggPjd734XRx99dOmDAwAAAAAAAAAAAAAAAAAAAAAA0Omqsg6wI4YMGRI33XRTPPnkk/HrX/86Hn/88Vi3bt02Z/v27RtHHHFEfPazn41TTjlli4ItAAAAAAAAAAAAAAAAAAAAAAAA8i1XJVqbjR8/PsaPHx8REUuWLInVq1dHY2NjtLa2Rk1NTeyxxx5xwAEHRK9evTJOCgAAAAAAAAAAAAAAAAAAAAAAQFfIZYnWe40aNSpGjRqVdQwAAAAAAAAAAAAAAAAAAAAAAABKqCLrAAAAAAAAAAAAAAAAAAAAAAAAALCjlGgBAAAAAAAAAAAAAAAAAAAAAACQO1VZB6ivr8/kvcOGDcvkvQAAAAAAAAAAAAAAAAAAAAAAAOy6zEu0Jk2aFEmSlPSdSZLEokWLSvpOAAAAAAAAAAAAAAAAAAAAAAAAOk/mJVqbpWmadQQAAAAAAAAAAAAAAAAAAAAAAAByoixKtLa3QCtJkh16bkfnAQAAAAAAAAAAAAAAAAAAAAAAyIfMS7QuvPDC7Zp75ZVXYt68eZEkSaRpGn379o0TTzwxDjvssBg1alRUV1dHnz59Yv369bF69er4y1/+EvPmzYs333wzkiSJysrK+OY3vxmHHHJIF/8iAAAAAAAAAAAAAAAAAAAAAAAAulqSpmmadYiOLF68OM4+++xobGyMiIh/+Id/iK9//etRXV3d7nOtra1x0003xaxZs6K1tTX69u0bP//5z+Poo48uRexup6FhQzQ3F7KOAQDwgSorK2LQoAHF6zVr3olCoS3DRAAAHXOGAQDyxvkFAMgb5xcAIG+cXwCAPHKGAQDyxvkFAMgb5xfK2fv/PkutIrM3b6fm5ua4+OKLo6GhISIiLr300rjiiis6LNCKiKiqqorzzz8/rrvuuoiI2Lhx4xZ7AQAAAAAAAAAAAAAAAAAAAAAAkE9lX6I1Z86cePnllyNJkvjYxz4WM2fO3OE9TjnllPjUpz4VERFvvPFG/P73v+/smAAAAAAAAAAAAAAAAAAAAAAAAJRQ2Zdo/elPfyquzz777J3e53Of+1xxfd999+1SJgAAAAAAAAAAAAAAAAAAAAAAALJV9iVar776anE9ZsyYnd7nwAMPLK6XL1++S5kAAAAAAAAAAAAAAAAAAAAAAADIVtmXaL311lvFde/evXd6nzRNi/82Njbuci4AAAAAAAAAAAAAAAAAAAAAAACyU/YlWgMGDCiuX3311Z3e5/nnny+ua2trdykTAAAAAAAAAAAAAAAAAAAAAAAA2Sr7Eq0DDjiguL7jjjt2ep+bb745IiKSJImDDz54l3MBAAAAAAAAAAAAAAAAAAAAAACQnbIv0Tr++OMjIiJN07jlllviscce2+E9brnllnjggQeK15MnT+60fAAAAAAAAAAAAAAAAAAAAAAAAJRe2ZdonX766dGvX79IkiRaW1vjy1/+ctx6663b9Wxzc3Nce+21cfXVV0eSJBERseeee8anPvWprowMAAAAAAAAAAAAAAAAAAAAAABAF6vKOkBHhgwZEhdccEHccMMNkSRJbNy4Ma688sr493//95gyZUqMHTs2RowYEQMGDIiIiLfffjtee+21WLhwYcydOzcaGxsjTdOIiEiSJK688sro3bt3lj8JAAAAAAAAAAAAAAAAAAAAAACAXVT2JVoREV/84hfjhRdeiHnz5kWSJJGmadTX18dNN93U7nNpmkaSJMVnLr744jjhhBNKkhkAAAAAAAAAAAAAAAAAAAAAAICuU5F1gO2RJElcf/318cUvfjEqKiqK30W8W5S1rc/mmTRNo7q6Oq6//vo477zzMvsNAAAAAAAAAAAAAAAAAAAAAAAAdJ5clGhFRFRUVMQ3vvGN+NOf/hSnn356DBgwoFiWtS1pmsbuu+8eX/jCF+K+++6LadOmlTAtAAAAAAAAAAAAAAAAAAAAAAAAXakq6wA7ar/99osf/OAHcdVVV0VdXV0sXrw4VqxYEe+8805ERAwYMCBGjhwZY8aMiTFjxkRFRW56wgAAAAAAAAAAAAAAAAAAAAAAANhOuSvR2qxXr15x5JFHxpFHHpl1FAAAAAAAAAAAAAAAAAAAAAAAAEqsIusAAAAAAAAAAAAAAAAAAAAAAAAAsKOUaAEAAAAAAAAAAAAAAAAAAAAAAJA7SrQAAAAAAAAAAAAAAAAAAAAAAADInaqsA3Rk9OjRnb5nkiSxaNGiTt8XAAAAAAAAAAAAAAAAAAAAAACA0ij7Eq00TbOOAAAAAAAAAAAAAAAAAAAAAAAAQJkp+xKtiIgkSXa4TCtJki2ulXEBAAAAAAAAAAAAAAAAAAAAAAB0H2VfonXaaaft0Hxzc3OsW7culi1bFsuXL4+Idwu1hg0bFldddVX079+/K2ICAAAAAAAAAAAAAAAAAAAAAABQQmVfovXDH/5wp59duXJl3HDDDXH33XfHqlWrYtasWXHTTTdFdXV1JyYEAAAAAAAAAAAAAAAAAAAAAACg1CqyDtCVhg8fHtdee21cdNFFkaZpPP/88/H9738/61gAAAAAAAAAAAAAAAAAAAAAAADsom5dorXZBRdcEEceeWSkaRp33nln1NXVZR0JAAAAAAAAAAAAAAAAAAAAAACAXdAjSrQiIs4666zi+s4778wuCAAAAAAAAAAAAAAAAAAAAAAAALusx5RoHX744cX1ggULMkwCAAAAAAAAAAAAAAAAAAAAAADAruoxJVqDBg2KiIg0TeP111/POA0AAAAAAAAAAAAAAAAAAAAAAAC7oseUaNXX1xfXLS0tGSYBAAAAAAAAAAAAAAAAAAAAAABgV/WYEq05c+YU10OGDMkwCQAAAAAAAAAAAAAAAAAAAAAAALuqKusApfDMM8/EL37xi0iSJCIixo4dm3EiAAAAAAAAAAAAAAAAAAAAAAAAdkXZl2jV19fv8DOtra2xYcOGeP311+PBBx+Mu+66KzZt2hRpmkaSJPHxj3+8C5ICAAAAAAAAAAAAAAAAAAAAAABQKmVfojVp0qRIkmSX9thcnpUkSYwePTomT57cSekAAAAAAAAAAAAAAAAAAAAAAADIQtmXaG2WpulOPbe5PCtN0xg0aFBcc801nZwMAAAAAAAAAAAAAAAAAAAAAACAUqvIOsD22NkCrc3PVlZWxpQpU+LWW2+N/fffvxOTAQAAAAAAAAAAAAAAAAAAAAAAkIWqrAN05MILL9yp56qqqmLAgAGx9957x4QJE6KmpqaTkwEAAAAAAAAAAAAAAAAAAAAAAJCVbluiBQAAAAAAAAAAAAAAAAAAAAAAQPdVkXUAAAAAAAAAAAAAAAAAAAAAAAAA2FFVWQcopZUrV8aLL74YGzdujOnTp2cdBwAAAAAAAAAAAAAAAAAAAAAAgJ1U9iVao0ePjoiIJEli0aJFO73P2rVr46STTookSWLEiBFKtAAAAAAAAAAAAAAAAAAAAAAAAHKs7Eu00jTtlH1qamqK+7355pudsicAAAAAAAAAAAAAAAAAAAAAAADZqMg6QKm89tprxXWhUMguCAAAAAAAAAAAAAAAAAAAAAAAALusKusAr732WixcuHC7Zu+8884d3r+trS3WrVsXt99+e/G7PfbYY4f3AQAAAAAAAAAAAAAAAAAAAAAAoHxkXqI1aNCg+Jd/+ZdYu3Ztu3Npmsall1660+9J0zQiIpIkiSOOOGKn9wEAAAAAAAAAAAAAAAAAAAAAACB7FVkHqKmpiW984xvFkqs0Tbf4vNf7723PZ7MkSSIioqqqKs4999zS/UAAAAAAAAAAAAAAAAAAAAAAAAA6XeYlWhERn/nMZ2LcuHFblWZ1hvcWao0cOTJ+/OMfx5gxYzr9PQAAAAAAAAAAAAAAAAAAAAAAAJROVdYBNvvRj34US5Ys2eK7NE3j7LPPjoiIJEniV7/61Q7tmSRJVFZWRv/+/WPo0KExaNCgTssLAAAAAAAAAAAAAAAAAAAAAABAdsqmRGvIkCExZMiQbd5LkiQiIiZMmFDKSAAAAAAAAAAAAAAAAAAAAAAAAJSpiqwDbI80TbOOAAAAAAAAAAAAAAAAAAAAAAAAQBmpyjpARxYvXpx1BAAAAAAAAAAAAAAAAAAAAAAAAMpMRdYBAAAAAAAAAAAAAAAAAAAAAAAAYEcp0QIAAAAAAAAAAAAAAAAAAAAAACB3qrIOcOedd25x/elPf7rd+53l/e8BAAAAAAAAAAAAAAAAAAAAAAAgPzIv0brkkksiSZLi9fvLrd5/v7Mo0QIAAAAAAAAAAAAAAAAAAAAAAMivzEu0NkvTtN2yrDRNd/kdSZJ0+B4AAAAAAAAAAAAAAAAAAAAAAADKX0XWASI6LsjqjAKtztwHAAAAAAAAAAAAAAAAAAAAAACAbFVlHeDmm2/epfsAAAAAAAAAAAAAAAAAAAAAAAD0PJmXaE2YMGGX7gMAAAAAAAAAAAAAAAAAAAAAANDzVGQdAAAAAAAAAAAAAAAAAAAAAAAAAHaUEi0AAAAAAAAAAAAAAAAAAAAAAAByR4kWAAAAAAAAAAAAAAAAAAAAAAAAuVOVdYCdtX79+ti4cWMUCoVoa2vb4eeHDRvWBakAAAAAAAAAAAAAAAAAAAAAAAAohVyVaD3wwANxxx13xOOPPx4bN27c6X2SJIlFixZ1YjIAAAAAAAAAAAAAAAAAAAAAAABKKRclWs3NzfG1r30t/vu//zsiItI0zTYQAAAAAAAAAAAAAAAAAAAAAAAAmarIOsD2+O53vxsPP/xwsTwrSZKMEwEAAAAAAAAAAAAAAAAAAAAAAJClqqwDdOSFF16IO++8s1iclaZpDBo0KMaPHx/Dhw+Pfv36RUVFLrrAAAAAAAAAAAAAAAAAAAAAAAAA6CRlX6J11113RZqmxRKtc845J77+9a9Hnz59Mk4GAAAAAAAAAAAAAAAAAAAAAABAVsq+ROvPf/5zcT1p0qS45JJLMkwDAAAAAAAAAAAAAAAAAAAAAABAOajIOkBHVq9eXVyfe+65GSYBAAAAAAAAAAAAAAAAAAAAAACgXJR9iVZTU1NxfdBBB2WYBAAAAAAAAAAAAAAAAAAAAAAAgHJR9iVagwcPLq6rqqoyTAIAAAAAAAAAAAAAAAAAAAAAAEC5KPsSrVGjRhXXr732WnZBAAAAAAAAAAAAAAAAAAAAAAAAKBtlX6I1ZcqU4nru3LkZJgEAAAAAAAAAAAAAAAAAAAAAAKBclH2J1tSpU2PPPfeMiIhf//rXsXz58owTAQAAAAAAAAAAAAAAAAAAAAAAkLWyL9Gqrq6Oq6++OpIkiQ0bNsS5554bixYtyjoWAAAAAAAAAAAAAAAAAAAAAAAAGarKOsD2+NjHPhY33HBDfOtb34oVK1bEGWecEePHj4+jjz469ttvv9htt92ib9++O7TnUUcd1UVpAQAAAAAAAAAAAAAAAAAAAAAA6GplX6J1wgknFNdJkkRERJqm8eSTT8aTTz65U3smSRKLFi3qjHgAAAAAAAAAAAAAAAAAAAAAAABkoOxLtFavXl0sz4qILdYR7xZqAQAAAAAAAAAAAAAAAAAAAAAA0LOUfYlWhKIsAAAAAAAAAAAAAAAAAAAAAAAAtlT2JVo//OEPs44AAAAAAAAAAAAAAAAAAAAAAABAmSn7Eq3TTjst6wgAAAAAAAAAAAAAAAAAAAAAAACUmYqsAwAAAAAAAAAAAAAAAAAAAAAAAMCOUqIFAAAAAAAAAAAAAAAAAAAAAABA7ijRAgAAAAAAAAAAAAAAAAAAAAAAIHeqsg7Qkfr6+k7Zp6KiInr37h29e/eO6urqTtlzZ7S2tsa9994b999/f9TV1cWaNWuiUCjE4MGDY8yYMTF58uSYOnVq9OrVK7OMAAAAAAAAAAAAAAAAAAAAAAAA5a7sS7QmTZoUSZJ06p5VVVUxZMiQOPDAA2PChAnxyU9+MoYMGdKp79iWhQsXxre+9a1YunTpVvfq6+ujvr4+7rvvvpg1a1b88z//c4wfP77LMwEAAAAAAAAAAAAAAAAAAAAAAORRRdYBtleapp32aWlpifr6+pg/f35cc801MXny5Ljxxhu7NP+DDz4YM2bM2GaB1vutWLEiZs6cGb/5zW+6NBMAAAAAAAAAAAAAAAAAAAAAAEBe5aJEK03TiIhIkmSLT0e2d76pqSmuv/76uPLKKzsr8hZeeumluOiii6K1tbX43QknnBA33XRTPPXUU1FXVxd//OMfY+bMmVFZWRkREYVCIb7//e/HY4891iWZAAAAAAAAAAAAAAAAAAAAAAAA8qwq6wAd+d3vfhcREX/+85/j+uuvjyRJIk3TqKysjGOPPTYOP/zwGDVqVNTU1ESaprF+/fpYvnx51NXVxSOPPBLNzc3FAq1jjjkmDjzwwGhqaoo1a9bEokWLor6+vrjnrbfeGocddlicdtppnfobvvOd70Rzc3Px+sILL4yvfvWrW8wcdNBBcfnll8exxx4bF154YRQKhSgUCnHZZZfFvffeG7179+7UTAAAAAAAAAAAAAAAAAAAAAAAAHlW9iVaY8aMiaeeeip+8pOfFMuuTj755Lj88stj7733bvfZhoaGuP766+PWW2+NJEnihRdeiMsuuywOPPDAiIhI0zTmzp0bV199dTQ0NESapnHNNdfE9OnTO6206plnnolnnnmmeH3sscduVaD1XpMmTYoZM2bEzTffHBER9fX18eCDD8bUqVM7JQ8AAAAAAAAAAAAAAAAAAAAAAEB3UJF1gI5s2rQpLr300ti0aVNERJx77rnx4x//uMMCrYiI2trauOqqq+KSSy6JNE2jsbExLr744mhra4uIiCRJYtq0aTF79uzo27dvRESsXbs25s6d22n577777i2uv/jFL3b4zBlnnLHF9WOPPdZpeQAAAAAAAAAAAAAAAAAAAAAAALqDsi/Ruuuuu2LZsmWRJEkcdthh8e1vf3uH9zjnnHPi+OOPjzRN46WXXoq77rpri/uHHHJIzJgxo3j9yCOP7HLuzZ599tniurq6Oo4++ugOnxk1atQW18uXL++0PAAAAAAAAAAAAAAAAAAAAAAAAN1B2ZdozZ07t7g+//zzd3qfs88+u7i+5557tro/efLk4nrx4sU7/Z73u+2222Lu3Llxww03xLe//e2orKzs8JmmpqZOez8AAAAAAAAAAAAAAAAAAAAAAEB3VJV1gI68+uqrxfX48eN3ep9DDz20uN5WSdZ+++0XERFpmsbrr7++0+95v4qKithvv/2K+2+PRYsWbXG97777dloeAAAAAAAAAAAAAAAAAAAAAACA7qAi6wAdeeutt4rr/v377/Q+ffv2jYh3S7LWrVu31f0BAwYU101NTTv9ns4we/bsLa5POumkjJIAAAAAAAAAAAAAAAAAAAAAAACUp7Iv0Xpvcdby5ct3ep9ly5ZFRESSJFFTU7PV/fcWa/Xu3Xun37MrNm3aFN/5znfi0UcfLX53xBFHxPHHH59JHgAAAAAAAAAAAAAAAAAAAAAAgHJV9iVaH/rQh4rrP/3pTzu9zz333FNc77XXXlvdr6+vj4h3S7Z23333nX7PjigUCtHU1BQvvfRSzJ49O6ZOnRq33npr8f7w4cPjRz/6UUmyAAAAAAAAAAAAAAAAAAAAAAAA5ElV1gE6cswxx0RdXV2kaRo33XRTTJs2LQ488MAd2mPJkiXxy1/+MpIkiYiIj370o1vN3HfffcX1AQccsGuht9N5550Xjz/++DbvnXjiifHd7343Bg8eXJIs26OiIonKyrLvXQMAerDKymQb184vAEB5c4YBAPLG+QUAyBvnFwAgb5xfAIA8coYBAPLG+QUAyBvnF8rZ+/8+S63sS7TOOOOMmD17drS1tUVTU1Oce+65MWvWrBg/fvx2PV9XVxdf+9rXoqmpKdI0jaqqqvjkJz+5xczy5cvjtttuK14fc8wxnfobPsiqVau2+X11dXWMHj060jQtSY7ttdtu/bKOAACwQ2pr+2cdAQBghznDAAB54/wCAOSN8wsAkDfOLwBAHjnDAAB54/wCAOSN8wv8f0labk1N2/CDH/wgbr755kiSJNI0jYqKijj55JPj1FNPjXHjxsXgwYO3mF+9enU899xzcffdd8eDDz4Yra2tERGRJEn84z/+Y1x22WXF2WuuuSb+8Ic/xNq1ayNN0+jVq1c88MADseeee3bpb0rTNA499NBobm7+wJlevXrFBRdcEF/5ylciSbJtWwMAAAAAAAAAAAAAAAAAAAAAACgnuSjRamlpifPOOy8WLFhQLNJ6b6lUnz59orq6OgqFQqxfv75YmhURxdk0TeO4446Ln/3sZ9G7d++IiFizZk185CMf2WKvs88+Oy655JKS/Kb/+7//i7/7u7+LgQMHRmNjYyxcuDB++9vfxv/8z/9sMXvWWWfFFVdc0eWZAAAAAAAAAAAAAAAAAAAAAAAA8iIXJVoREZs2bYrLLrss5syZUyy96ij65vKsiIjTTz89rrzyymKBVkREXV1dnHnmmcW5o446Kn7xi19Er169uu6HbIdf//rX8b3vfW+L72688caYOHFiRone9fbbG6OlpS3TDAAA7amsTKK2tn/xuqFhQxQKuTjuAgA9mDMMAJA3zi8AQN44vwAAeeP8AgDkkTMMAJA3zi8AQN44v1DO3v/3WWpVmb15B/Xp0yeuu+66+NSnPhU//elPY+HChVvc31axVpqmceSRR8aFF14Yxx577FZ7rlixIiIi9txzzzjzzDPjC1/4QuYFWhERZ511VtTX18fs2bOL35VDiVZbWxqFghItAKCcVWxxVSg4vwAAeeAMAwDkjfMLAJA3zi8AQN44vwAAeeQMAwDkjfMLAJA3zi+Us4qOR7pQkr63dSpHlixZEo888kg899xzsWzZsmhsbIyIiNra2th7771j3Lhx8dGPfjQ+/OEPf+AeDQ0N0dzcHEOGDClV7O22fv36OO6446KpqSkiIiorK+PJJ5+M/v2za1xraNgQzc2FzN4PANCRysqKGDRoQPF6zZp3/OcPACh7zjAAQN44vwAAeeP8AgDkjfMLAJBHzjAAQN44vwAAeeP8Qjl7/99nqVVl9uZdNGrUqBg1atQu7VFbW9tJaTpfdXV1jBs3Lh5//PGIiCgUCrF06dIYPXp0xskAAAAAAAAAAAAAAAAAAAAAAACyV5F1gJ6iUCjEpk2bduiZwYMHb3Hd1NTUmZEAAAAAAAAAAAAAAAAAAAAAAAByS4lWF3rttdfi7LPPjpNOOikOPfTQ+NGPfrRDz69bt26L6z322KMT0wEAAAAAAAAAAAAAAAAAAAAAAORXjynRStM0li9fHrfffnucccYZJXnnwIED4/HHH48VK1ZEa2trPPzww9v9bEtLSzz77LPF6/79+8dee+3VFTEBAAAAAAAAAAAAAAAAAAAAAABypyrrADtiwYIFcffdd8eLL74YjY2N0dLSEmmaRpqmW82maRptbW3R0tISTU1NsXHjxm3OdaWBAwfGIYccEs8//3xERLzyyivx5z//OT7ykY90+Oxtt90Wb7/9dvF64sSJ0bt37y7LCgAAAAAAAAAAAAAAAAAAAAAAkCe5KNFqbW2Nb33rWzF37tzid7tSiJUkSWfE2i6f+9zn4oorriheX3311XH77bfHbrvt9oHPPPfcc3HttdcWr5MkifPPP79LcwIAAAAAAAAAAAAAAAAAAAAAAORJRdYBtsc//dM/xT333BNpmhbLs5Ik2eHPZn379i1Z9jPOOCMOOeSQ4vWSJUti5syZ8fLLL281WygU4rbbbouZM2fGhg0bit+fddZZMXbs2JLkBQAAAAAAAAAAAAAAAAAAAAAAyIOqrAN0pL6+Pm655ZZiCdbmIq3q6uoYMGBAvPnmm1EoFKKysjIGDx4chUIh3nnnndi4cWNEvFu2laZpJEkSRx99dHz2s5+NiRMnlix/ZWVlzJo1K2bMmBGvv/56REQsWrQoPvnJT8b48ePjkEMOiT59+sTq1avjsccei7/97W9bPD9p0qS49NJLS5YXAAAAAAAAAAAAAAAAAAAAAAAgD8q+ROuOO+6I1tbWYonWxz/+8fjmN78ZI0eOjIiIL3/5y/HQQw9FmqZx++23x9ChQyMi4m9/+1vcf//98a//+q+xfv36SNM0Fi9eHIcffnhUV1eX9DeMHDky/vM//zMuuuiiWLRoUUS8Wwa2YMGCWLBgwTafSZIkPv/5z8fXv/71qKysLGVcAAAAAAAAAAAAAAAAAAAAAACAsleRdYCOPPnkk8X1wQcfHDfccEOxQCsi4phjjomId0upHn300eL3Q4cOjRkzZsSdd94ZI0eOjCRJorGxMb73ve+VLvx77LvvvnHrrbfG5ZdfHiNGjPjAuV69esUpp5wSv//97+Piiy+Oqqqy7zkDAAAAAAAAAAAAAAAAAAAAAAAoubJvaHrttdeK65kzZ0aSJFvcHzt2bHG9YMGCOOOMM7a4P3z48Ljuuuvi7//+76O1tTUefvjhWLx4cRx00EFdmntbevfuHTNnzoyZM2fGq6++Gs8991ysWbMmWlpaYuDAgTFixIg44ogjol+/fiXPBgAAAAAAAAAAAAAAAAAAAAAAkCdlX6K1du3a4vrII4/c6v4BBxxQXP/lL3/Z5h5jx46NyZMnx9y5cyMiYt68eZmUaL3X/vvvH/vvv3+mGQAAAAAAAAAAAAAAAAAAAAAAAPKqIusAHWltbS2uhw4dutX96urqGDp0aKRpGq+99toW8+/16U9/urh+/vnnOz0nAAAAAAAAAAAAAAAAAAAAAAAApVP2JVrV1dXFdWVl5TZnRowYERERhUIhli5dus2ZD3/4w8X1X//6105MCAAAAAAAAAAAAAAAAAAAAAAAQKmVfYnWwIEDi+t169Ztc2ZziVZExJIlS7Y5M3To0IiISNM0GhoaOi0fAAAAAAAAAAAAAAAAAAAAAAAApVf2JVr77LNPcf3CCy9sc2bkyJHF9YsvvrjNmebm5uK6qampk9IBAAAAAAAAAAAAAAAAAAAAAACQhbIv0TrqqKOK6zvuuGObM/vvv39x/cQTT2xz5r0FXP379++kdAAAAAAAAAAAAAAAAAAAAAAAAGSh7Eu0Jk6cWFzPnTs3fv7zn281M3bs2IiISNM0nnzyyVi8ePFWMzfffHNERCRJEnvvvXcXpQUAAAAAAAAAAAAAAAAAAAAAAKAUyr5E66CDDorjjjsu0jSNNE1j1qxZ8YlPfCJ+85vfFGdGjhwZBx98cCRJEoVCIb70pS/FI488Eps2bYrVq1fHd77znbjvvvuK84cffngWPwUAAAAAAAAAAAAAAAAAAAAAAIBOUvYlWhERF198cfTv3z+SJIk0TeOVV16JW265ZYuZc845J9I0jSRJ4vXXX48vfelLMW7cuDjxxBPj9ttv32L29NNPL2V8AAAAAAAAAAAAAAAAAAAAAAAAOlkuSrQOOuigmDVrVlRXV0dERJIkMWLEiC1mTj311DjuuOOKRVppmhY/m59JkiQ+/elPx6GHHlry3wAAAAAAAAAAAAAAAAAAAAAAAEDnyUWJVkTE8ccfH/PmzYszzzwzampqtirRioiYNWtWTJw4cavirM1lWpMnT46rrrqq1NEBAAAAAAAAAAAAAAAAAAAAAADoZEm6uXEqRwqFQjQ0NMSgQYO2ef/BBx+Mu+66K5YsWRJpmsaHP/zhOPXUU+PEE08scdLupaFhQzQ3F7KOAQDwgSorK2LQoAHF6zVr3olCoS3DRAAAHXOGAQDyxvkFAMgb5xcAIG+cXwCAPHKGAQDyxvkFAMgb5xfK2fv/PkutKrM374LKysoPLNCKiDjppJPipJNOKmEiAAAAAAAAAAAAAAAAAAAAAAAASqki6wAAAAAAAAAAAAAAAAAAAAAAAACwo5RoAQAAAAAAAAAAAAAAAAAAAAAAkDtVWQeYNWtWJu/92te+lsl7AQAAAAAAAAAAAAAAAAAAAAAA2HWZl2j97Gc/iyRJSv5eJVoAAAAAAAAAAAAAAAAAAAAAAAD5lXmJ1mZpmm5x3VXFWmmaZlLaBQAAAAAAAAAAAAAAAAAAAAAAQOcpmxKt9xZbpWm6VakWAAAAAAAAAAAAAAAAAAAAAAAAbFY2JVoR75ZnJUkShx12WEybNi1Gjx6ddSQAAAAAAAAAAAAAAAAAAAAAAADKUOYlWnvssUe89dZbERGRJElERNTV1UVdXV2MGjUqpk2bFtOnT49Ro0ZlGRMAAAAAAAAAAAAAAAAAAAAAAIAyUpF1gEcffTR++ctfxmc+85moqamJNE2LnyVLlsRPfvKTmDZtWpx++ukxe/bsqK+vzzoyAAAAAAAAAAAAAAAAAAAAAAAAGUvSNE2zDrFZa2tr/O///m/MmTMnHnzwwXjnnXeK95IkKa7HjRsX06dPj6lTp8Yee+yRRdQeqaFhQzQ3F7KOAQDwgSorK2LQoAHF6zVr3olCoS3DRAAAHXOGAQDyxvkFAMgb5xcAIG+cXwCAPHKGAQDyxvkFAMgb5xfK2fv/PkutrEq03qu5uTnmz58fc+bMifnz58fGjRuL9zYXalVUVMSECRNi+vTpMWXKlNhtt92yitsjKNECAMqd//wBAHnkDAMA5I3zCwCQN84vAEDeOL8AAHnkDAMA5I3zCwCQN84vlDMlWtth48aN8dBDD8WcOXPi0UcfjZaWluK9zYVaVVVVcdxxx8UnPvGJOOmkk6Jfv35Zxe22lGgBAOXOf/4AgDxyhgEA8sb5BQDIG+cXACBvnF8AgDxyhgEA8sb5BQDIG+cXylnWJVpVmb15B/Tr1y+mT58e06dPj/Xr18f9998fc+bMiccffzxaW1sjIqKlpSXmz58f8+fPj759+8YJJ5wQ06dPj4kTJ0bv3r0z/gUAAAAAAAAAAAAAAAAAAAAAAAB0plyUaL1XdXV1nHbaaXHaaafF2rVr47777os5c+bEk08+GW1t77bjbdy4MebNmxfz5s2L6urqOPnkk2PatGlx3HHHRUVFRca/AAAAAAAAAAAAAAAAAAAAAAAAgF2VpGmaZh2iM7zxxhsxb968uOeee2LhwoXx3p+VJElEROy+++5xyimnxPTp0+Ooo47KKmpuNTRsiObmQtYxAAA+UGVlRQwaNKB4vWbNO1EotGWYCACgY84wAEDeOL8AAHnj/AIA5I3zCwCQR84wAEDeOL8AAHnj/EK5ai20xQOvvBn/+NH9M8vQbUq03mvVqlUxd+7cuPfee6Ouri7e/xMrKipi0aJFGaXLLyVaAEC5858/ACCPnGEAgLxxfgEA8sb5BQDIG+cXACCPnGEAgLxxfgEA8sb5hXLU2NQSF93xfDQV2uL+b3wssxwVmb25C+29995x3nnnxa233hq/+tWv4kMf+lAkSRJJkkREbFWqBQAAAAAAAAAAAAAAAAAAAAAAwPb51RPL47lVjVnHiKqsA3SFV155Je699964//7748UXX8w6DgAAAAAAAAAAAAAAAAAAAAAAQLfQ1FKIW5+pzzpGRHSjEq2XX3455s2bF/PmzYu//vWvERGRpmlERCRJUlz369cvJk2alFlOAAAAAAAAAAAAAAAAAAAAAACAvHp2ZWNsam3LOkZE5LxEq6PirM369u0bEydOjGnTpsUJJ5wQffr0ySQvAAAAAAAAAAAAAAAAAAAAAABAnj2xbG3WEYpyV6K1vcVZvXv3jokTJ8bUqVPjxBNPjH79+mWSFwAAAAAAAAAAAAAAAAAAAAAAoLtYsGxd1hGKclGitb3FWVVVVfHRj340pk2bFpMmTYoBAwZkkhcAAAAAAAAAAAAAAAAAAAAAAKC7WbexJRa/vj7rGEVlW6L18ssvx9y5c2PevHmxZMmSiNh2cVZlZWUcd9xxMXXq1Dj55JOjuro6k7wAAAAAAAAAAAAAAAAAAAAAAADd2VPL10WadYj3KKsSrZdeeinmzZu3XcVZRx99dEybNi0mT54cNTU1meQFAAAAAAAAAAAAAAAAAAAAAADoKZ5Yui7rCFvIvERre4uzKioqYsKECTF16tSYPHly7L777pnkBQAAAAAAAAAAAAAAAAAAAAAA6ImeWLY26whbyLxE69RTT40kSYrFWe+VJEmMHz8+pk2bFlOmTIlBgwZlkBAAAAAAAAAAAAAAAAAAAAAAAKBnq29oihXrmrKOsYXMS7Q221ykVVFREUcccURMnTo1pkyZEoMHD846GgAAAAAAAAAAAAAAAAAAAAAAQI+2YNnarCNspWxKtCLeLdLq06dPrFixIm688ca48cYbu+w9Dz/8cJfsDQAAAAAAAAAAAAAAAAAAAAAA0N08sXRd1hG2UlYlWhERTU1N0dTUFGmadtk7kiTpsr0BAAAAAAAAAAAAAAAAAAAAAAC6k7Y0jQXL1mUdYytlV6K1WVcVXXVlORcAAAAAAAAAAAAAAAAAAAAAAEB38+qb78TajS1Zx9hK5iVaw4YNyzoCAAAAAAAAAAAAAAAAAAAAAAAAH+CJpeuyjrBNmZdoPfTQQ1lHAAAAAAAAAAAAAAAAAAAAAAAA4AM8sWxt1hG2qSLrAAAAAAAAAAAAAAAAAAAAAAAAAJSnlkJbPL28IesY26RECwAAAAAAAAAAAAAAAAAAAAAAgG36y6q3o6m1LesY26RECwAAAAAAAAAAAAAAAAAAAAAAgG16YunarCN8ICVaAAAAAAAAAAAAAAAAAAAAAAAAbNMTy9ZlHeEDKdECAAAAAAAAAAAAAAAAAAAAAABgK+s3tcbzqxqzjvGBlGgBAAAAAAAAAAAAAAAAAAAAAACwladXNEQhzTrFB1OiBQAAAAAAAAAAAAAAAAAAAAAAwFYWLFvX7v2kNDE+kBItAAAAAAAAAAAAAAAAAAAAAAAAtvLE0rXt3h81uH+JkmybEi0AAAAAAAAAAAAAAAAAAAAAAAC28Ob6TfHXtza0OzNmr5oSpdk2JVoAAAAAAAAAAAAAAAAAAAAAAABs4Yll6zqcGTtMiRYAAAAAAAAAAAAAAAAAAAAAAABlZEEHJVq9K5P4u6EDShPmAyjRAgAAAAAAAAAAAAAAAAAAAAAAoChN03hi6dp2Zw4bXht9qipLlGjblGgBAAAAAAAAAAAAAAAAAAAAAABQtHTtxvjb+uZ2ZybsM7A0YdqhRAsAAAAAAAAAAAAAAAAAAAAAAICiJ5au63DmqH137/ogHVCiBQAAAAAAAAAAAAAAAAAAAAAAQNGCZWvbvb9bn6o4aGh1idJ8MCVaAAAAAAAAAAAAAAAAAAAAAAAAREREoS2NJ5eva3dm/D4Do7IiKU2gdijRAgAAAAAAAAAAAAAAAAAAAAAAICIiFr/+dqzfVGh3ZsI+A0sTpgNKtAAAAAAAAAAAAAAAAAAAAAAAAIiIiCeWretw5iglWgAAAAAAAAAAAAAAAAAAAAAAAJSTJ5aubff+nrv1iX1271eiNO1TogUAAAAAAAAAAAAAAAAAAAAAAEA0tRTi2frGdmcm7DMwkiQpUaL2KdECAAAAAAAAAAAAAAAAAAAAAAAgnl3ZGC2FtN2ZCfvuXqI0HVOiBQAAAAAAAAAAAAAAAAAAAAAAQDyxbG2HM+P3Gdj1QbaTEi0AAAAAAAAAAAAAAAAAAAAAAADiiaXr2r2//+D+MXhA79KE2Q5KtAAAAAAAAAAAAAAAAAAAAAAAAHq4dRtb4sW/rW93ZsI+u5cozfZRogUAAAAAAAAAAAAAAAAAAAAAANDDPbV8XaQdzEzYd2Apomw3JVoAAAAAAAAAAAAAAAAAAAAAAAA93BNL17V7v7IiicNH1JYmzHZSogUAAAAAAAAAAAAAAAAAAAAAANDDPbFsbbv3x+y1WwzoXVWiNNtHiRYAAAAAAAAAAAAAAAAAAAAAAEAPtqqxKVasa2p3ZsK+A0sTZgco0QIAAAAAAAAAAAAAAAAAAAAAAOjBnlnR0OHMhH12L0GSHaNECwAAAAAAAAAAAAAAAAAAAAAAoAfrqESrX6+KOGTv3UqUZvsp0QIAAAAAAAAAAAAAAAAAAAAAAOjBFq5sv0Rr7N410auy/Cqryi8RAAAAAAAAAAAAAAAAAAAAAAAAJbF2Q3O8tmZjuzPjRtSWKM2OUaIFAAAAAAAAAAAAAAAAAAAAAADQQz27srHDmXHDa0qQZMcp0QIAAAAAAAAAAAAAAAAAAAAAAOihFnZQolVZkcTYvZVoAQAAAAAAAAAAAAAAAAAAAAAAUEYWrmxo9/7oPaujb6/KEqXZMUq0AAAAAAAAAAAAAAAAAAAAAAAAeqCNLYVY/Lf17c4cNqy2RGl2nBItAAAAAAAAAAAAAAAAAAAAAACAHugvqxqj0Ja2O3P4iJoSpdlxSrQAAAAAAAAAAAAAAAAAAAAAAAB6oIUrGjucOWxYbQmS7BwlWgAAAAAAAAAAAAAAAAAAAAAAAD3QMysb2r0/alD/GNi/V4nS7DglWgAAAAAAAAAAAAAAAAAAAAAAAD1Ma6Et/rKqsd2ZcSNqSpRm5yjRAgAAAAAAAAAAAAAAAAAAAAAA6GFefOOd2NjS1u7MuOG1JUqzc5RoAQAAAAAAAAAAAAAAAAAAAAAA9DDPrmzocEaJFgAAAAAAAAAAAAAAAAAAAAAAAGXlmRXtl2gNre4de9f0KVGanaNECwAAAAAAAAAAAAAAAAAAAAAAoAdJ0zSeXdnY7sy44bWRJEmJEu0cJVoAAAAAAAAAAAAAAAAAAAAAAAA9yNK1G2PtxpZ2Z8aNqC1Rmp2nRAsAAAAAAAAAAAAAAAAAAAAAAKAHWbiiocOZw4cr0QIAAAAAAAAAAAAAAAAAAAAAAKCMLKxvbPf+bn2qYr/B/UuUZucp0QIAAAAAAAAAAAAAAAAAAAAAAOhBFq5oaPf+YcNroiJJSpRm5ynRAgAAAAAAAAAAAAAAAAAAAAAA6CHeWL8pVjY0tTtz2LCaEqXZNUq0AAAAAAAAAAAAAAAAAAAAAAAAeoiFKxs7nDl8RG0Jkuw6JVoAAAAAAAAAAAAAAAAAAAAAAAA9xMIVDe3e712ZxOg9dytRml2jRAsAAAAAAAAAAAAAAAAAAAAAAKCHWLiy/RKtQ/baLXpX5aOeKh8pAQAAAAAAAAAAAAAAAAAAAAAA2CXrN7XGy2+80+7MuBG1JUqz65RoAQAAAAAAAAAAAAAAAAAAAAAA9ADP1jdG2sHMuOFKtAAAAAAAAAAAAAAAAAAAAAAAACgjz65saPd+EhGHDqspTZhOoEQLAAAAAAAAAAAAAAAAAAAAAACgB1i4ov0SrQOGDIjqPlUlSrPrlGgBAAAAAAAAAAAAAAAAAAAAAAB0c82tbfH86rfbnTl8RG2J0nQOJVoAAAAAAAAAAAAAAAAAAAAAAADd3Auvvx3NhbTdmcOGK9ECAAAAAAAAAAAAAAAAAAAAAACgjDyzoqHDmXHDa0qQpPMo0QIAAAAAAAAAAAAAAAAAAAAAAOjmnq1vbPf+8Nq+MaS6T4nSdA4lWgAAAAAAAAAAAAAAAAAAAAAAAN1YW5rGsyvbL9EaN6K2RGk6jxItAAAAAAAAAAAAAAAAAAAAAACAbuyvb26Itze1tjtz+PCaEqXpPEq0AAAAAAAAAAAAAAAAAAAAAAAAurFnVjZ0OHPY8NoSJOlcSrQAAAAAAAAAAAAAAAAAAAAAAAC6sYUr2i/RGtS/V+y7e78Spek8SrQAAAAAAAAAAAAAAAAAAAAAAAC6qTRNY+HK9ku0DhteG0mSlChR51GiBQAAAAAAAAAAAAAAAAAAAAAA0E2tatwUf1vf3O7MuOE1JUrTuZRoAQAAAAAAAAAAAAAAAAAAAAAAdFMLVzZ0ODNueG0JknQ+JVoAAAAAAAAAAAAAAAAAAAAAAADdVEclWv16VcSBQ6tLlKZzKdECAAAAAAAAAAAAAAAAAAAAAADophauaGz3/ti9a6KqIilRms6lRAsAAAAAAAAAAAAAAAAAAAAAAKAbWrehJZas2dDuzLgRtSVK0/mUaAEAAAAAAAAAAAAAAAAAAAAAAHRDz9Y3dDgzbnhNCZJ0DSVaAAAAAAAAAAAAAAAAAAAAAAAA3dDClY3t3q+sSGLs3kq0AAAAAAAAAAAAAAAAAAAAAAAAKCMLVza0e3/0ntXRt1dlidJ0PiVaAAAAAAAAAAAAAAAAAAAAAAAA3czGlkK88Pr6dmcOG1ZbojRdQ4kWAAAAAAAAAAAAAAAAAAAAAABAN/P8qrej0Ja2O3P4iJoSpekaSrQAAAAAAAAAAAAAAAAAAAAAAAC6mWdWNHQ4c9iw2hIk6TpKtAAAAAAAAAAAAAAAAAAAAAAAALqZp1esa/f+qEH9Y2D/XqUJ00WUaAEAAAAAAAAAAAAAAAAAAAAAAHQjza1t8dyqt9udOXxEbYnSdB0lWgAAAAAAAAAAAAAAAAAAAAAAAN3I86vfjk2tbe3OHKFECwAAAAAAAAAAAAAAAAAAAAAAgHLy9Ip1Hc4cMVKJFgAAAAAAAAAAAAAAAAAAAAAAAGXk6eUN7d7fZ/d+MaS6T4nSdB0lWgAAAAAAAAAAAAAAAAAAAAAAAN1ES6Etnq1vbHfm8BG1JUrTtZRoAQAAAAAAAAAAAAAAAAAAAAAAdBOLVr8dm1rb2p05QokWAAAAAAAAAAAAAAAAAAAAAAAA5eTpFQ0dzijRAgAAAAAAAAAAAAAAAAAAAAAAoKx0VKI1rLZv7FXTt0RpupYSLQAAAAAAAAAAAAAAAAAAAAAAgG6gtdAWdSsb2505ckRtidJ0PSVaAAAAAAAAAAAAAAAAAAAAAAAA3cDiv62PDS2FdmeOGKlECwAAAAAAAAAAAAAAAAAAAAAAgDLy9PKGDmeOGDGw64OUiBItAAAAAAAAAAAAAAAAAAAAAACAbuDpFe2XaO21W58YVtu3RGm6nhItAAAAAAAAAAAAAAAAAAAAAACAnCu0pbFwZfslWkeMrC1RmtJQogUAAAAAAAAAAAAAAAAAAAAAAJBzL72xPt5pLrQ7c+SIgaUJUyJKtAAAAAAAAAAAAAAAAAAAAAAAAHLuqeUNHc4cMbK2BElKR4kWAAAAAAAAAAAAAAAAAAAAAABAzj29fF2794dW947htX1LE6ZElGgBAAAAAAAAAAAAAAAAAAAAAADkWKEtjYUrG9udOXxEbSRJUqJEpaFECwAAAAAAAAAAAAAAAAAAAAAA4P+xc6dBdtb3neh/pze1lt4ktdSoJSFAsgAtgFhMGNvINl5iQEySyY0dV5h7ZyhTXLsSJzOZVOLlxiHMMJU7NzU3w8z4DvYUceykkngcMNgYGCNiNgexaGGRJZDQ2hJqqRdJ3VJ3n3NfJIMjGz+Plj7/c06fz+eVnuf/bdVXp4+q/q++NWz7oWMxfGI8M7NmUWeaMgkZ0QIAAAAAAAAAAAAAAAAAAAAAAKhhz+8eyM1cubCj/EUSM6IFAAAAAAAAAAAAAAAAAAAAAABQw17cM5h5PmdmSyzump6oTTpGtAAAAAAAAAAAAAAAAAAAAAAAAGpUsVTKHdFas7AjCoVCokbpGNECAAAAAAAAAAAAAAAAAAAAAACoUW8cOh6Do+OZmTULOxK1ScuIFgAAAAAAAAAAAAAAAAAAAAAAQI16Yc9AbmbNIiNaAAAAAAAAAAAAAAAAAAAAAAAAVJHndw9mnndNb44LZs9I1CYtI1oAAAAAAAAAAAAAAAAAAAAAAAA1qFQqxYt7ske01izqiEKhkKhRWka0AAAAAAAAAAAAAAAAAAAAAAAAatCOw8fjyMhYZmbNwo5EbdIzogUAAAAAAAAAAAAAAAAAAAAAAFCDXtg9mJtZs7Cz/EUqxIgWAAAAAAAAAAAAAAAAAAAAAABADXphT/aIVkdrU1w4d0aiNukZ0QIAAAAAAAAAAAAAAAAAAAAAAKgxpVIpnt89kJm5YmFHNBQKaQpVgBEtAAAAAAAAAAAAAAAAAAAAAACAGvPmkZE4fHwsM7NmUWeaMhViRAsAAAAAAAAAAAAAAAAAAAAAAKDGvLBnMDezZmFHgiaVY0QLAAAAAAAAAAAAAAAAAAAAAACgxryweyDzvG1aUyydOzNNmQoxogUAAAAAAAAAAAAAAAAAAAAAAFBDSqVSvLhnMDNzeW97NDYUEjWqDCNaAAAAAAAAAAAAAAAAAAAAAAAANWTPwGgcPHoyM3Plos40ZSrIiBYAAAAAAAAAAAAAAAAAAAAAAEANeWHPQG5mzaKO8hepMCNaAAAAAAAAAAAAAAAAAAAAAAAANeSFPYOZ5zNbGuNd3bMStakcI1oAAAAAAAAAAAAAAAAAAAAAAAA1olQqxQu7s0e0Lu/tiMaGQqJGlWNECwAAAAAAAAAAAAAAAAAAAAAAoEbsGxqNvuETmZk1CzsStaksI1oAAAAAAAAAAAAAAAAAAAAAAAA14oXdg7mZKxcZ0QIAAAAAAAAAAAAAAAAAAAAAAKCKvLAne0RrRnNjLJ/flqhNZRnRAgAAAAAAAAAAAAAAAAAAAAAAqBF5I1qre9ujqaGQqE1lGdECAAAAAAAAAAAAAAAAAAAAAACoAX1Do7FvcDQzs2ZhR6I2lWdECwAAAAAAAAAAAAAAAAAAAAAAoAa8sGcwN2NECwAAAAAAAAAAAAAAAAAAAAAAgKqSN6LV2tQQl/a0JWpTeUa0AAAAAAAAAAAAAAAAAAAAAAAAasCmfUOZ56sXtEdzY/1MS9XPvxQAAAAAAAAAAAAAAAAAAAAAAKBGDY6MxY7+45mZKxZ2JGpTHYxoAQAAAAAAAAAAAAAAAAAAAAAAVLkt+4dzM5f1tidoUj2MaAEAAAAAAAAAAAAAAAAAAAAAAFS5TfsGM88bChEreoxoAQAAAAAAAAAAAAAAAAAAAAAAUEU27RvKPF/WPStmtDQmalMdjGgBAAAAAAAAAAAAAAAAAAAAAABUsfFiKbbsH87MrF7QnqhN9TCiBQAAAAAAAAAAAAAAAAAAAAAAUMW2v3U0RseLmRkjWgAAAAAAAAAAAAAAAAAAAAAAAFSVjXuHcjOX9RrRAgAAAAAAAAAAAAAAAAAAAAAAoIps2pc9otU9qyV62qYlalM9jGgBAAAAAAAAAAAAAAAAAAAAAABUsbwRrdUL2qNQKCRqUz2MaAEAAAAAAAAAAAAAAAAAAAAAAFSpA8Mnom/4RGZm9YL2RG2qixEtAAAAAAAAAAAAAAAAAAAAAACAKrV531BuxogWAAAAAAAAAAAAAAAAAAAAAAAAVWVjzojWtKaGWD5vVqI21cWIFgAAAAAAAAAAAAAAAAAAAAAAQJXalDOiden8WdHcWJ9zUvX5rwYAAAAAAAAAAAAAAAAAAAAAAKhyo2MTsfXg0czMqgUdidpUHyNaAAAAAAAAAAAAAAAAAAAAAAAAVeiVA8MxUSxlZlYvaE/UpvoY0QIAAAAAAAAAAAAAAAAAAAAAAKhCm/YO5WZWL2hL0KQ6GdECAAAAAAAAAAAAAAAAAAAAAACoQpv2ZY9oLe6aHl0zWhK1qT5GtAAAAAAAAAAAAAAAAAAAAAAAAKpMqVTKHdFavaA9UZvqZEQLAAAAAAAAAAAAAAAAAAAAAACgyrx5ZCQGR8czM0a0AAAAAAAAAAAAAAAAAAAAAAAAqCqb9g3lZoxoAQAAAAAAAAAAAAAAAAAAAAAAUFXyRrRmTWuMC+bMSNSmOhnRAgAAAAAAAAAAAAAAAAAAAAAAqDJ5I1qrzmuPhkIhUZvqZEQLAAAAAAAAAAAAAAAAAAAAAACgigyOjMWO/uOZmdUL2hO1qV5GtAAAAAAAAAAAAAAAAAAAAAAAAKrIlv3DuZnLeo1oGdECAAAAAAAAAAAAAAAAAAAAAACoIpv2DWaeNxQiVvQY0TKiBQAAAAAAAAAAAAAAAAAAAAAAUEU27RvKPF/WPStmtDQmalO9jGgBAAAAAAAAAAAAAAAAAAAAAABUifFiKbbsH87MrF7QnqhNdTOiBQAAAAAAAAAAAAAAAAAAAAAAUCW2v3U0RseLmRkjWn/PiBYAAAAAAAAAAAAAAAAAAAAAAECV2Lh3KDdzWa8RrQgjWgAAAAAAAAAAAAAAAAAAAAAAAFVj077sEa3uWS3R0zYtUZvqZkQLAAAAAAAAAAAAAAAAAAAAAACgSuSNaK1e0B6FQiFRm+pmRAsAAAAAAAAAAAAAAAAAAAAAAKAKHBg+EX3DJzIzqxe0J2pT/YxoAQAAAAAAAAAAAAAAAAAAAAAAVIHN+4ZyM0a0fsyIFgAAAAAAAAAAAAAAAAAAAAAAQBXYmDOiNa2pIZbPm5WoTfUzogUAAAAAAAAAAAAAAAAAAAAAAFAFNuWMaF06f1Y0N5qO+l98EgAAAAAAAAAAAAAAAAAAAAAAABU2OjYRWw8ezcysWtCRqE1tMKIFAAAAAAAAAAAAAAAAAAAAAABQYa8cGI6JYikzs3pBe6I2tcGIFgAAAAAAAAAAAAAAAAAAAAAAQIVt2juUm1m9oC1Bk9phRAsAAAAAAAAAAAAAAAAAAAAAAKDCNu3LHtFa3DU9uma0JGpTG4xoAQAAAAAAAAAAAAAAAAAAAAAAVFCpVMod0Vq1oD1Rm9phRAsAAAAAAAAAAAAAAAAAAAAAAKCC3jwyEoOj45mZy4xo/RQjWgAAAAAAAAAAAAAAAAAAAAAAABW0ad9Qbma1Ea2fYkQLAAAAAAAAAAAAAAAAAAAAAACggvJGtGZNa4wL5sxI1KZ2GNECAAAAAAAAAAAAAAAAAAAAAACooLwRrVXntUdDoZCoTe0wogUAAAAAAAAAAAAAAAAAAAAAAFAhgyNjsaP/eGZm9YL2RG1qixEtAAAAAAAAAAAAAAAAAAAAAACACtmyfzg3c1mvEa13YkQLAAAAAAAAAAAAAAAAAAAAAACgQjbtG8w8byhErOgxovVOjGgBAAAAAAAAAAAAAAAAAAAAAABUyEt7hzLPl3XPihktjYna1BYjWgAAAAAAAAAAAAAAAAAAAAAAABUwODIWG/cOZmZWL2hP1Kb2GNECAAAAAAAAAAAAAAAAAAAAAACogCffOBwTpeyMEa2fzYgWAAAAAAAAAAAAAAAAAAAAAABABazffijzvKEQce2SrkRtao8RLQAAAAAAAAAAAAAAAAAAAAAAgMRGxybimZ1HMjNXLOyIzunNiRrVHiNaAAAAAAAAAAAAAAAAAAAAAAAAiT2z80icGC9mZtYunZuoTW0yogUAAAAAAAAAAAAAAAAAAAAAAJDY+u2HcjNrl85J0KR2GdECAAAAAAAAAAAAAAAAAAAAAABIaHyiGD94/XBm5pL5s6KnvTVRo9pkRAsAAAAAAAAAAAAAAAAAAAAAACCh5/cMxvCJ8czM2qVzE7WpXUa0AAAAAAAAAAAAAAAAAAAAAAAAElq/7VBuZu2yOQma1DYjWgAAAAAAAAAAAAAAAAAAAAAAAIkUS6V44vX+zMzirulxwewZiRrVLiNaAAAAAAAAAAAAAAAAAAAAAAAAibzSNxxvHT2ZmVm7dG4UCoVEjWqXES0AAAAAAAAAAAAAAAAAAAAAAIBEHt/Wn5t5/7I5CZrUPiNaAAAAAAAAAAAAAAAAAAAAAAAACZRKpVi//VBmpntWS1za05aoUW0zogUAAAAAAAAAAAAAAAAAAAAAAJDAjsPHY9eRkczM9RfNiYZCIVGj2mZECwAAAAAAAAAAAAAAAAAAAAAAIIH12/pzM2uXzU3QZGowogUAAAAAAAAAAAAAAAAAAAAAAJDA+u2HMs/bW5viyoUdidrUPiNaAAAAAAAAAAAAAAAAAAAAAAAAZdY3NBqvHjiamXnPhbOjqdE01OnySQEAAAAAAAAAAAAAAAAAAAAAAJTZE9v7czNrl85N0GTqMKIFAAAAAAAAAAAAAAAAAAAAAABQZuu3H8o8n9bUED+3pCtRm6nBiBYAAAAAAAAAAAAAAAAAAAAAAEAZDYyMxYt7BjMzP7ekK1qbGxM1mhqMaAEAAAAAAAAAAAAAAAAAAAAAAJTRD17vj4lSdmbt0rlpykwhRrQAAAAAAAAAAAAAAAAAAAAAAADKaP32/szzxkLEey6cnajN1GFECwAAAAAAAAAAAAAAAAAAAAAAoExGxibih28eycysWdQZHdObEzWaOoxoAQAAAAAAAAAAAAAAAAAAAAAAlMkzOw7HifFiZmbt0rmJ2kwtRrQAAAAAAAAAAAAAAAAAAAAAAADK5PHt/bmZtUvnJGgy9RjRAgAAAAAAAAAAAAAAAAAAAAAAKIOxiWI8+Ub2iNaKnraY1zYtUaOpxYgWAAAAAAAAAAAAAAAAAAAAAABAGTy/eyCOnpjIzFy/dE6iNlOPES0AAAAAAAAAAAAAAAAAAAAAAIAyWL+9Pzfz/qVzEzSZmoxoAQAAAAAAAAAAAAAAAAAAAAAATLJiqRRP5IxoLZk9PZbMmZGo0dRjRAsAAAAAAAAAAAAAAAAAAAAAAGCSbdk/HIeOnczMrF06N1GbqcmIFgAAAAAAAAAAAAAAAAAAAAAAwCRbv+1QbmbtMiNa58KIFgAAAAAAAAAAAAAAAAAAAAAAwCQqlUqxfnv2iNa8WS1x6fxZiRpNTUa0AAAAAAAAAAAAAAAAAAAAAAAAJtEb/cdj98BoZmbt0rlRKBQSNZqajGgBAAAAAAAAAAAAAAAAAAAAAABMovXbD+Vm1i6bk6DJ1GZECwAAAAAAAAAAAAAAAAAAAAAAYBKt39afed7R2hRXLOxMU2YKM6IFAAAAAAAAAAAAAAAAAAAAAAAwSfqPnYzXDh7NzLznojnR1FBI1GjqMqIFAAAAAAAAAAAAAAAAAAAAAAAwSZ7fPZCbef/SOeUvUgeMaAEAAAAAAAAAAAAAAAAAAAAAAEySv9s1kHne3FiId5/flabMFGdECwAAAAAAAAAAAAAAAAAAAAAAYJJsyBnRWr2gPVqbG9OUmeKMaAEAAAAAAAAAAAAAAAAAAAAAAEyCfYOjsXdwNDNz9eLONGXqgBEtAAAAAAAAAAAAAAAAAAAAAACASbBh10Bu5qpFnWXvUS+MaAEAAAAAAAAAAAAAAAAAAAAAAEyC53YPZJ5Pb26IFT1tacrUASNaAAAAAAAAAAAAAAAAAAAAAAAA56hUKsWGXQOZmSsWdkRTo+mnyeKTBAAAAAAAAAAAAAAAAAAAAAAAOEc7D4/EoWMnMzNXL+5K1KY+GNECAAAAAAAAAAAAAAAAAAAAAAA4R8/tGsjNXL2os+w96okRLQAAAAAAAAAAAAAAAAAAAAAAgHO0YfdA5nlHa1MsmzczTZk6YUQLAAAAAAAAAAAAAAAAAAAAAADgHEwUS/F8zojWlYs6o6FQSFOoThjRAgAAAAAAAAAAAAAAAAAAAAAAOAfb3joaQ6PjmZmrFnemKVNHjGgBAAAAAAAAAAAAAAAAAAAAAACcg+d2DeRmrl7UWfYe9caIFgAAAAAAAAAAAAAAAAAAAAAAwDnYsHsg87x7VkucP3t6mjJ1xIgWAAAAAAAAAAAAAAAAAAAAAADAWRqbKMaLewYzM1ct6oxCoZCoUf0wogUAAAAAAAAAAAAAAAAAAAAAAHCWXukbjpGxYmbmqsWdacrUGSNaAAAAAAAAAAAAAAAAAAAAAAAAZ+m5XQO5mauNaJWFES0AAAAAAAAAAAAAAAAAAAAAAICzlDeitbCzNc5rb01Tps4Y0QIAAAAAAAAAAAAAAAAAAAAAADgLo2MTsXn/UGbmqkWdacrUISNaAAAAAAAAAAAAAAAAAAAAAAAAZ2HjvqEYmyhlZq5e3JmmTB0yogUAAAAAAAAAAAAAAAAAAAAAAHAWnts1kJu5clFn2XvUKyNaAAAAAAAAAAAAAAAAAAAAAAAAZ2FDzojWRXNnxJyZLWnK1CEjWgAAAAAAAAAAAAAAAAAAAAAAAGfo6InxePXAcGbm6sVdidrUJyNaAAAAAAAAAAAAAAAAAAAAAAAAZ+j53YNRLGVnrlrUmaRLvTKiBQAAAAAAAAAAAAAAAAAAAAAAcIY27B7IPG8oRKxZ2JGmTJ0yogUAAAAAAAAAAAAAAAAAAAAAAHCGNuwayDy/eH5btLU2pSlTp4xoAQAAAAAAAAAAAAAAAAAAAAAAnIHDx0/G9kPHMjNXL+5MU6aOGdECAAAAAAAAAAAAAAAAAAAAAAA4Axt2DeRmrl7UWfYe9c6IFgAAAAAAAAAAAAAAAAAAAAAAwBnYsHsgrgPhHwABAABJREFU87y5sRCX9banKVPHjGgBAAAAAAAAAAAAAAAAAAAAAACcgQ27BjLPV53XHq3NjWnK1DEjWgAAAAAAAAAAAAAAAAAAAAAAAKepb2g0dg+MZmauWtyZpkydM6IFAAAAAAAAAAAAAAAAAAAAAABwmp7bNZCbuXpRZ9l7YEQLAAAAAAAAAAAAAAAAAAAAAADgtG3YPZB5Pr25IVac15amTJ0zogUAAAAAAAAAAAAAAAAAAAAAAHAaSqVSPLdrIDNzeW9HNDead0rBpwwAAAAAAAAAAAAAAAAAAAAAAHAa3jwyEm8dPZmZuXpxZ5oyGNECAAAAAAAAAAAAAAAAAAAAAAA4HRt2DeRmjGilY0QLAAAAAAAAAAAAAAAAAAAAAADgNGzYPZB53t7aFMu6Z6UpgxEtAAAAAAAAAAAAAAAAAAAAAACAPMVSKTbsGsjMrFnYEY0NhTSFMKIFAAAAAAAAAAAAAAAAAAAAAACQZ9tbx2JwdDwzc/XirkRtiDCiBQAAAAAAAAAAAAAAAAAAAAAAkGvDroHczNWLO8vegx8zogUAAAAAAAAAAAAAAAAAAAAAAJDjuZwRrbkzW2LJ7OlpyhARRrQAAAAAAAAAAAAAAAAAAAAAAAAyjU8U48U9g5mZqxZ3RqFQSNSICCNaAAAAAAAAAAAAAAAAAAAAAAAAmZ7bPRDHxyYyM1cv6kxThrcZ0QIAAAAAAAAAAAAAAAAAAAAAAMjwwOa+3MxVizvLX4RTGNECAAAAAAAAAAAAAAAAAAAAAAD4GQaOj8X67f2ZmUWdrbGgozVRI/4XI1oAAAAAAAAAAAAAAAAAAAAAAAA/w3dePRDjxVJm5qOXzEvUhn/MiBYAAAAAAAAAAAAAAAAAAAAAAMA7KJVKcf/mvsxMISJuXtmTphCnMKIFAAAAAAAAAAAAAAAAAAAAAADwDl7uG443+o9nZt59flec196aqBH/mBEtAAAAAAAAAAAAAAAAAAAAAACAd3D/5r7czLpVPQma8E6MaAEAAAAAAAAAAAAAAAAAAAAAAPyEkbGJeHTrW5mZjtamuP6iOYka8ZOMaAEAAAAAAAAAAAAAAAAAAAAAAPyEx7a+FcdOTmRmfv7S+dHSZMqpUnzyAAAAAAAAAAAAAAAAAAAAAAAAP+H+zX25mVtW9iRows9iRAsAAAAAAAAAAAAAAAAAAAAAAOAf2dl/PDbuG8rMrOhpi6XdMxM14p0Y0QIAAAAAAAAAAAAAAAAAAAAAAPhHHtjSl5tZt6onQROyGNECAAAAAAAAAAAAAAAAAAAAAAD4B+MTxXjolQOZmdamhvjw8u5EjfhZjGgBAAAAAAAAAAAAAAAAAAAAAAD8gx+8cTgOHx/LzHxweXfMmtaUqBE/ixEtAAAAAAAAAAAAAAAAAAAAAACAf/DAlr7czC0rexI0IY8RLQAAAAAAAAAAAAAAAAAAAAAAgIg4OHwint5xODOzuGt6XN7bnqgRWYxoAQAAAAAAAAAAAAAAAAAAAAAARMRDrxyIYik7c8vKnigUCmkKkcmIFgAAAAAAAAAAAAAAAAAAAAAAUPeKpVI8sKUvM9NYiPjYivmJGpHHiBYAAAAAAAAAAAAAAAAAAAAAAFD3Xtg9GHsGRjMz77lwTsyd2ZKoEXmMaAEAAAAAAAAAAAAAAAAAAAAAAHXv/i19uZl1q3oSNOF0GdECAAAAAAAAAAAAAAAAAAAAAADq2vDoeDy+7VBmZu7MlrjugtmJGnE6jGgBAAAAAAAAAAAAAAAAAAAAAAB17eHXDsaJ8WJm5sYV86OpoZCoEafDiBYAAAAAAAAAAAAAAAAAAAAAAFDXHtjcl5tZt7InQRPOhBEtAAAAAAAAAAAAAAAAAAAAAACgbm09cDReO3g0M7NmYUcs7pqeqBGny4gWAAAAAAAAAAAAAAAAAAAAAABQt+7f0pebuWVVT4ImnCkjWgAAAAAAAAAAAAAAAAAAAAAAQF0aHZuIh189mJmZ2dIYH1g2N1EjzoQRLQAAAAAAAAAAAAAAAAAAAAAAoC6t394fwyfGMzMfvWRetDY3JmrEmTCiBQAAAAAAAAAAAAAAAAAAAAAA1KX7t/TlZtat7EnQhLNhRAsAAAAAAAAAAAAAAAAAAAAAAKg7ewZGYsOugczMsu6Zccn8WWkKccaaKl2gnhSLxVi/fn08/vjj8dJLL8XBgwfj6NGjMXPmzJg9e3Zcfvnl8b73vS8+8pGPRGNjY6XrAgAAAAAAAAAAAAAAAAAAAADAlPXgywdyM7es7IlCoZCgDWfDiFYiGzZsiM997nOxc+fOnzobHByMwcHB2LFjR3zrW9+KRYsWxR/8wR/Eddddl74oAAAAAAAAAAAAAAAAAAAAAABMccVSKR7KGdFqaSzERy+Zl6gRZ6Oh0gXqwTe/+c249dZb33FA653s3r07brvttvjGN75R3mIAAAAAAAAAAAAAAAAAAAAAAFCHNuwaiL7hE5mZtUvnRsf05kSNOBtNlS4w1T377LPxxS9+MSYmJt5+9+53vztuvfXWuPzyy6OjoyOGhobixRdfjK997Wvx7LPPRkTExMRE3HnnndHb2xvXX399peoDAAAAAAAAAAAAAAAAAAAAAMCU8+DLB3Iz61b2JGjCuWiodIGpbHx8PO68884YHx9/+91v/dZvxZ/+6Z/GDTfcEHPnzo3m5uaYM2dO3HDDDXHffffFr//6r7+dLRaL8aUvfSlOnjxZifoAAAAAAAAAAAAAAAAAAAAAADDlHD0xHt/fdigzM29WS1y1uDNNIc6aEa0yeuKJJ2L79u1vP990001x++23Z/7Mpz/96bjxxhvfft67d29897vfLVtHAAAAAAAAAAAAAAAAAAAAAACoJ49tfStOjBczMzetmB+NDYVEjThbRrTK6Hvf+94pz5/+9KdP6+fuuOOOU56feOKJSesEAAAAAAAAAAAAAAAAAAAAAAD17NsvH8jN3LiiJ0ETzpURrTLauHHj23/u7e2NCy+88LR+btmyZTFr1qy3n3fu3DnZ1QAAAAAAAAAAAAAAAAAAAAAAoO68efh4bNo3lJm5vLc9FndNT9SIc2FEq0xKpVJ0dHREd3d3NDQ0RG9v7xn9/LRp097+89BQ9n84AAAAAAAAAAAAAAAAAAAAAAAg34MvH8jN3LRifoImTIamSheYqgqFQvzlX/5lRESMjY3FsWPHTvtnBwYG4vDhw28/z549e9L7AQAAAAAAAAAAAAAAAAAAAABAPZkoluI7r2SPaLU2NcQNy7sTNeJcNVS6QD1obm6Ozs7O084/+uijUSqV3n6+8MILy9AKAAAAAAAAAAAAAAAAAAAAAADqx9/tOhIHj57MzHzgXXNjZktTokacKyNaVebkyZNx7733nvLuAx/4QIXaAAAAAAAAAAAAAAAAAAAAAADA1PDtLQdyMzev6EnQhMliRKvK3HPPPbFz5863nxcsWBBr166tWB8AAAAAAAAAAAAAAAAAAAAAAKh1Q6Nj8cT2Q5mZBe3TYs2ijkSNmAxNlS7Ajz366KPx5S9/+ZR3v/EbvxEtLS0VanSqhoZCNDbaXQMAqldjY+Ednt1fAIDq5g4DANQa9xcAoNa4vwAAtcb9BQCoRe4wAECtcX8BAGqN+8vkeOxHh+LkRCkzc9PKnmhuakzUaGr4ye9naoVSqZT9WyWJZ555Jm6//fY4ceLE2+9uuOGGuOeeeyrYCgAAAAAAAAAAAAAAAAAAAAAAat8t9zwVG3cPZGZ+8G/eH4tmz0hTiElhTq4KPP3003HHHXecMqB1/vnnx913313BVgAAAAAAAAAAAAAAAAAAAAAAUPu2HRjOHdC69sLZBrRqkBGtCnv44YfjU5/6VIyMjLz9rru7O+69995oa2urYDMAAAAAAAAAAAAAAAAAAAAAAKh9f/38ntzML1+5KEETJltTpQvUs/vuuy/uvvvuKBaLb7/r7u6O++67LxYvXlzBZu9seHgkxsaK+UEAgAppbCxER8ePl30HB4/HxESpgo0AAPK5wwAAtcb9BQCoNe4vAECtcX8BAGqROwwAUGvcXwCAWuP+cm7Gi8X4Zs6I1ozmxri2tz0OHz6WqNXU8ZPfz9SMaFXAxMRE3HXXXfH1r3/9lPe9vb3x1a9+NZYsWVKZYjmKxVJMTBjRAgCqWcMpTxMT7i8AQC1whwEAao37CwBQa9xfAIBa4/4CANQidxgAoNa4vwAAtcb95Vw89UZ/HDp2MjNzw/K50dJY8LmelYb8SBkZ0Urs6NGj8dnPfjZ+8IMfnPJ+2bJlce+990ZPT0+FmgEAAAAAAAAAAAAAAAAAAAAAwNTy7S0HcjM3rbD7U6uMaCV08ODBuO2222Lr1q2nvL/mmmvinnvuifb29go1AwAAAAAAAAAAAAAAAAAAAACAqWVgZCz+9vX+zMzCzta4vNf2T61qqHSBerFnz574+Mc//lMDWjfddFN85StfMaAFAAAAAAAAAAAAAAAAAAAAAACT6HuvHozxYikzc9OK+VEoFBI1YrI1VbpAPdi/f3/ceuutsXfv3lPe33777fGbv/mb/gMBAAAAAAAAAAAAAAAAAAAAAMAke/DlA5nnhYi48dL5acpQFka0yuzYsWNx2223nTKg1dDQEJ///Ofjk5/8ZAWbAQAAAAAAAAAAAAAAAAAAAADA1LTtraPx2sGjmZmrF3dGT3trokaUgxGtMrvzzjtj+/btbz83NjbG3XffHevWratgKwAAAAAAAAAAAAAAAAAAAAAAmLoefPlAbubmlT0JmlBODZUuMJU99thj8a1vfeuUd7/7u79rQAsAAAAAAAAAAAAAAAAAAAAAAMpkfKIY333lYGZmZktjrF06J1EjysWIVpmUSqX4kz/5k1PeffjDH45f+7Vfq1AjAAAAAAAAAAAAAAAAAAAAAACY+p7acTiOjIxlZj58cXe0NjcmakS5NFW6wFT11FNPxWuvvXbKu0ceeSSWL19+Vn/f1q1bJ6MWAAAAAAAAAAAAAAAAAAAAAABMad/eciA3c/OKngRNKLeGSheYqtavX1/pCgAAAAAAAAAAAAAAAAAAAAAAUFcOHz8ZT+44nJk5v2t6rDyvLVEjysmIVpns3r270hUAAAAAAAAAAAAAAAAAAAAAAKCuPPzqwZgoljIzN6/siUKhkKgR5dRU6QJT1Ze//OVKVwAAAAAAAAAAAAAAAAAAAAAAgLpRKpXi/s19mZmGQsTHLp2XqBHl1lDpAgAAAAAAAAAAAAAAAAAAAAAAAOdqy/7heKP/eGbm2iVd0T1rWqJGlJsRLQAAAAAAAAAAAAAAAAAAAAAAoObdv7kvN3PTip4ETUjFiBYAAAAAAAAAAAAAAAAAAAAAAFDTjp0cj0e2HszMdLQ2xfUXzUnUiBSMaAEAAAAAAAAAAAAAAAAAAAAAADXtsa1vxchYMTPzsUvnR0uT2aWpxG8TAAAAAAAAAAAAAAAAAAAAAACoafdvPpCbWbeqJ0ETUjKiBQAAAAAAAAAAAAAAAAAAAAAA1Kw3+o/F5v1DmZlV57XF0rkzEzUiFSNaAAAAAAAAAAAAAAAAAAAAAABAzbp/c19uZt3KngRNSM2IFgAAAAAAAAAAAAAAAAAAAAAAUJNOjhfjO68czMxMb26ID13cnagRKRnRAgAAAAAAAAAAAAAAAAAAAAAAatLfvt4fAyNjmZkPLe+OmS1NiRqRkhEtAAAAAAAAAAAAAAAAAAAAAACgJt2/pS83c8uq8xI0oRKMaAEAAAAAAAAAAAAAAAAAAAAAADVn/9Bo/HDnkczMBbNnxKrz2hI1IjUjWgAAAAAAAAAAAAAAAAAAAAAAQM15cMuBKOVkblnVE4VCIUkf0jOiBQAAAAAAAAAAAAAAAAAAAAAA1JSJYike2NKXmWlqKMTHLp2XqBGVYEQLAAAAAAAAAAAAAAAAAAAAAACoKX+360j0DZ/IzFy/dE50zWhJ1IhKMKIFAAAAAAAAAAAAAAAAAAAAAADUlAc29+VmblnVk6AJlWRECwAAAAAAAAAAAAAAAAAAAAAAqBlHjp+M9dv7MzPz26bFNYu7EjWiUoxoAQAAAAAAAAAAAAAAAAAAAAAANeO7rx6M8WIpM7Nu5fxobCgkakSlGNECAAAAAAAAAAAAAAAAAAAAAABqQqlUir/Z3JeZKUTEzSt70hSiooxoAQAAAAAAAAAAAAAAAAAAAAAANWHL/uHY0X88M/Pu87vivPbWRI2oJCNaAAAAAAAAAAAAAAAAAAAAAABATbh/c19u5pZVPQmaUA2MaAEAAAAAAAAAAAAAAAAAAAAAAFXv2MnxeGTrwcxMR2tTvO+iOYkaUWlGtAAAAAAAAAAAAAAAAAAAAAAAgKr32Na3YmSsmJm5ccX8aGkyrVQv/KYBAAAAAAAAAAAAAAAAAAAAAICqd//mvtzMupU9CZpQLYxoAQAAAAAAAAAAAAAAAAAAAAAAVe31Q8di8/7hzMyq89riorkzEzWiGhjRAgAAAAAAAAAAAAAAAAAAAAAAqtoDW/pyM+tW9iRoQjUxogUAAAAAAAAAAAAAAAAAAAAAAFStk+PFeOjlA5mZ6c0N8aGLuxM1oloY0QIAAAAAAAAAAAAAAAAAAAAAAKrW377eH4Oj45mZDy+fFzNbmhI1oloY0QIAAAAAAAAAAAAAAAAAAAAAAKrWNzftz82sW9WToAnVxogWAAAAAAAAAAAAAAAAAAAAAABQlX508Ghs2DWQmblgzoxYdV5bmkJUFSNaAAAAAAAAAAAAAAAAAAAAAABAVfrzF/bmZm5Z2ROFQiFBG6qNES0AAAAAAAAAAAAAAAAAAAAAAKDqHDp2Mr732sHMTEtjIT526bxEjag2RrQAAAAAAAAAAAAAAAAAAAAAAICq89cv7YuxiVJm5ucvmR9dM1oSNaLaGNECAAAAAAAAAAAAAAAAAAAAAACqyujYRHxz4/7c3Mev7E3QhmplRAsAAAAAAAAAAAAAAAAAAAAAAKgqD796MAZGxjIz157fFUvnzkzUiGpkRAsAAAAAAAAAAAAAAAAAAAAAAKgapVIpvvHC3tzcJ67sTdCGamZECwAAAAAAAAAAAAAAAAAAAAAAqBrPvnkkdvQfz8xcMHtG/NySrkSNqFZGtAAAAAAAAAAAAAAAAAAAAAAAgKrxjef35mY+fmVvFAqFBG2oZka0AAAAAAAAAAAAAAAAAAAAAACAqvBG/7F4dueRzExHa1N87JJ5iRpRzYxoAQAAAAAAAAAAAAAAAAAAAAAAVeHPn9+bm/mlyxdEa3NjgjZUOyNaAAAAAAAAAAAAAAAAAAAAAABAxR05fjK+++rBzExTQyF++bLzEjWi2hnRAgAAAAAAAAAAAAAAAAAAAAAAKu6bG/fHifFiZuYjF3fH3FnTEjWi2hnRAgAAAAAAAAAAAAAAAAAAAAAAKurkeDH+6qV9ublPXLkwQRtqhREtAAAAAAAAAAAAAAAAAAAAAACgoh7ZejAOHx/LzFy1qCOWz5uVqBG1wIgWAAAAAAAAAAAAAAAAAAAAAABQMaVSKb7x/N7c3CeuXJigDbXEiBYAAAAAAAAAAAAAAAAAAAAAAFAxG3YPxLa3jmVmFndNj/dcODtRI2qFES0AAAAAAAAAAAAAAAAAAAAAAKBivvH83tzMx9f0RkOhkKANtcSIFgAAAAAAAAAAAAAAAAAAAAAAUBFvHj4eT75xODPT3toUN62Yn6gRtcSIFgAAAAAAAAAAAAAAAAAAAAAAUBF/8cLe3Mw/XXVeTG9uTNCGWmNECwAAAAAAAAAAAAAAAAAAAAAASG5wZCwefPlAZqaxoRD/2xULEjWi1hjRAgAAAAAAAAAAAAAAAAAAAAAAkvvWpv0xOl7MzNzwrrkxv21aokbUGiNaAAAAAAAAAAAAAAAAAAAAAABAUuMTxfirl/bl5n71yoUJ2lCrjGgBAAAAAAAAAAAAAAAAAAAAAABJPfajQ3Hw6MnMzOW97XFpT1uiRtQiI1oAAAAAAAAAAAAAAAAAAAAAAEAyxVIpvvbc7tzcr165MEEbapkRLQAAAAAAAAAAAAAAAAAAAAAAIJnv/+hQ/OitY5mZ3o7WeN9FcxI1olYZ0QIAAAAAAAAAAAAAAAAAAAAAAJIYL5bivz61Mzf3K2t6o7GhUP5C1DQjWgAAAAAAAAAAAAAAAAAAAAAAQBLfeeVAvHlkJDMzs6Ux1q2cn6gRtcyIFgAAAAAAAAAAAAAAAAAAAAAAUHYnx4vx355+Mzf3iTW9MbOlKUEjap0RLQAAAAAAAAAAAAAAAAAAAAAAoOy+tWl/9A2fyMx0tDbFJ69amKgRtc6IFgAAAAAAAAAAAAAAAAAAAAAAUFYjYxPx1R/uys3982sWxaxpTQkaMRUY0QIAAAAAAAAAAAAAAAAAAAAAAMrqL17YG4ePj2Vmume1xC9fviBRI6YCI1oAAAAAAAAAAAAAAAAAAAAAAEDZDI2Oxdee25Ob+5fXLo7W5sYEjZgqjGgBAAAAAAAAAAAAAAAAAAAAAABl82cb9sTwifHMTG9Ha6xb2ZOoEVOFES0AAAAAAAAAAAAAAAAAAAAAAKAs+o+djD9/fm9u7lPXnR/NjSaRODO+MQAAAAAAAAAAAAAAAAAAAAAAQFn89x/uitHxYmbmwjkz4iMXz0vUiKnEiBYAAAAAAAAAAAAAAAAAAAAAADDp9g+Nxjc37s/N3fFPlkRjQyFBI6YaI1oAAAAAAAAAAAAAAAAAAAAAAMCk+29PvxnjxVJm5tKetrh+6ZxEjZhqjGgBAAAAAAAAAAAAAAAAAAAAAACTamf/8XjolQO5uf/zPUuiUCgkaMRUZEQLAAAAAAAAAAAAAAAAAAAAAACYVF9+emcUS9mZqxZ1xDWLO5P0YWoyogUAAAAAAAAAAAAAAAAAAAAAAEya1w4Mx2M/OpSbu+M9F0ShUEjQiKnKiBYAAAAAAAAAAAAAAAAAAAAAADBp/stTO3Mz771wdqxe0F7+MkxpRrQAAAAAAAAAAAAAAAAAAAAAAIBJ8eKewXh6x5HMTCEi7njPkiR9mNqMaAEAAAAAAAAAAAAAAAAAAAAAAOesVCrFf35yR27uwxd3x7LuWQkaMdUZ0QIAAAAAAAAAAAAAAAAAAAAAAM7ZMzuPxEt7hzIzjYWI269bkqYQU54RLQAAAAAAAAAAAAAAAAAAAAAA4JwMjozFf3j89dzculU9sahreoJG1AMjWgAAAAAAAAAAAAAAAAAAAAAAwFk7OV6M377/5dh1ZCQz19JYiH957fmJWlEPjGgBAAAAAAAAAAAAAAAAAAAAAABnpVQqxZ2P/Che3DuUm/1nly+I+W3TErSiXhjRAgAAAAAAAAAAAAAAAAAAAAAAzsr/9/Sb8fCrB3NzM5ob43+/ZlGCRtQTI1oAAAAAAAAAAAAAAAAAAAAAAMAZe/Dlvrj32V2nlb31moXRNaOlzI2oN0a0AAAAAAAAAAAAAAAAAAAAAACAM7Jh10Dc9ci208pesbAj/vnVi8rciHpkRAsAAAAAAAAAAAAAAAAAAAAAADhtO/qPx28/8HKMF0u52cVd0+OP1l0aTY3mjph8vlUAAAAAAAAAAAAAAAAAAAAAAMBp6T92Mj77PzbH0RMTudnO6c3xH39xZXRMb07QjHpkRAsAAAAAAAAAAAAAAAAAAAAAAMg1OjYR/+pvXo59Qydysy2Nhfi/b7k0FnZOT9CMemVECwAAAAAAAAAAAAAAAAAAAAAAyFQsleKL390aL/cNn1b+Sz9/cVzW21HmVtQ7I1oAAAAAAAAAAAAAAAAAAAAAAECm//eJHfH4tkOnlf3Mey+IG5Z3l7kRGNECAAAAAAAAAAAAAAAAAAAAAAAy/PVL++Lrz+85rew/XdUTt169sMyN4O8Z0QIAAAAAAAAAAAAAAAAAAAAAAN7RUzsOxx99f/tpZa89vyt+54NLo1AolLkV/D0jWgAAAAAAAAAAAAAAAAAAAAAAwE/ZPzQan3/o1SiW8rNL586Mf3fzJdHUaNaIdHzbAAAAAAAAAAAAAAAAAAAAAACAU4wXS/GFh16LoycmcrNzZ7bEH//Cipg1rSlBM/gxI1oAAAAAAAAAAAAAAAAAAAAAAMApvvrsm7Fx31BubnpzQ/zxL6yInvbWBK3gVEa0AAAAAAAAAAAAAAAAAAAAAACAt724ZzC+8uyu3FxDIeKuGy+Ji+e3JWgFP82IFgAAAAAAAAAAAAAAAAAAAAAAEBERQ6Nj8YXvvBbFUn72t9ZeFO+9aE75S8HPYEQLAAAAAAAAAAAAAAAAAAAAAACIUqkUdz2yLQ4Mn8jN3rxifvzKmt4EreBnM6IFAAAAAAAAAAAAAAAAAAAAAADE32zui+9vO5SbW9w1Pf71B5YmaATZjGgBAAAAAAAAAAAAAAAAAAAAAECd29F/PP7D46/n5poaCnHXjRfHjJbGBK0gmxEtAAAAAAAAAAAAAAAAAAAAAACoYyfGi/G5h16NE+PF3Oxn3ntBXDy/LUEryGdECwAAAAAAAAAAAAAAAAAAAAAA6th/+sGO2PbWsdzctUu64hNX9iZoBKfHiBYAAAAAAAAAAAAAAAAAAAAAANSpp944HH/xwt7c3OwZzfH7H10eDYVCglZweoxoAQAAAAAAAAAAAAAAAAAAAABAHTp09ER86eGtp5X9vz66PObMbClzIzgzRrQAAAAAAAAAAAAAAAAAAAAAAKDOFEul+P2Ht8aRkbHc7K9e2RvXXTA7QSs4M0a0AAAAAAAAAAAAAAAAAAAAAACgznx9w5744ZsDubnl82bFp99zQfkLwVkwogUAAAAAAAAAAAAAAAAAAAAAAHXklb7huOfJnbm51qaG+MMbL46WJlNFVCffTAAAAAAAAAAAAAAAAAAAAAAAqBNHT4zH5x96NSaKpdzsv/7ARbFk9owEreDsGNECAAAAAAAAAAAAAAAAAAAAAIA6UCqV4q5HtsXugdHc7A3vmhvrVvYkaAVnz4gWAAAAAAAAAAAAAAAAAAAAAADUgb96aV889qO3cnM9bdPi9z70rigUCglawdkzogUAAAAAAAAAAAAAAAAAAAAAAFPcy33D8cfr38jNNRQi/vDGi6OttSlBKzg3RrQAAAAAAAAAAAAAAAAAAAAAAGAKGxwZi9/99isxXizlZm+79vy4rLcjQSs4d0a0AAAAAAAAAAAAAAAAAAAAAABgiiqWSvH7D2+N/UMncrNX9LbH/3Ht4gStYHIY0QIAAAAAAAAAAAAAAAAAAAAAgCnqz57bE0++cTg3N3tGc9x10yXR1FBI0AomhxEtAAAAAAAAAAAAAAAAAAAAAACYgl7YMxD/+ckdublCRNz5sYuje9a08peCSWRECwAAAAAAAAAAAAAAAAAAAAAAppj+Yyfjcw++FhOl/Oynrjs/rjm/q/ylYJIZ0QIAAAAAAAAAAAAAAAAAAAAAgClkoliKL3zntTh07GRu9trzu+JfXLs4QSuYfEa0AAAAAAAAAAAAAAAAAAAAAABgCrn3mTfjuV0Dubl5s1riDz62PBoKhfKXgjIwogUAAAAAAAAAAAAAAAAAAAAAAFPEszsPx1ee3ZWba2woxL+96ZLomtGSoBWUhxEtAAAAAAAAAAAAAAAAAAAAAACYAg4Mn4gvfGdrlE4j+5n3XhCX9XaUvROUkxEtAAAAAAAAAAAAAAAAAAAAAACoceMTxfi9B1+NgZGx3OzapXPik1f2JmgF5WVECwAAAAAAAAAAAAAAAAAAAAAAatx/+sHO2LRvKDe3oKM1vviR5VEoFBK0gvIyogUAAAAAAAAAAAAAAAAAAAAAADXs6R2H4+vP78nNNTcW4u6bL4m21qYEraD8jGgBAAAAAAAAAAAAAAAAAAAAAECNGh2biH//P7efVvZfvf+iuGR+W5kbQTpGtAAAAAAAAAAAAAAAAAAAAAAAoEbd93e7Y9/gaG7uIxd3xy+uPi9BI0jHiBYAAAAAAAAAAAAAAAAAAAAAANSg3UdG4k+f252bWzJ7evzeh94VhUIhQStIx4gWAAAAAAAAAAAAAAAAAAAAAADUmFKpFH/0/e1xcqKUmWttaoi7b740ZrQ0JmoG6RjRAgAAAAAAAAAAAAAAAAAAAACAGvP49v54ZueR3Nxn3ntBXDR3ZoJGkJ4RLQAAAAAAAAAAAAAAAAAAAAAAqCEjYxPx/zz+em7uXd0z45cuX5CgEVSGES0AAAAAAAAAAAAAAAAAAAAAAKgh9z6zKw4Mn8jN/c4Ny6KpoZCgEVSGES0AAAAAAAAAAAAAAAAAAAAAAKgRb/Qfi68/vyc3d8vKnli9oD1BI6gcI1oAAAAAAAAAAAAAAAAAAAAAAFADSqVS3P3otpgoljJzHa1N8Zn3XpCoFVSOES0AAAAAAAAAAAAAAAAAAAAAAKgBD2zcFxt2DeTmPv3eC6JzRnP5C0GFGdECAAAAAAAAAAAAAAAAAAAAAIAqNzQ6Fn/40Ku5uZXntcUtq3oSNILKM6IFAAAAAAAAAAAAAAAAAAAAAABV7o8f/VG8NXwiM9NQiPidDy6NhkIhUSuoLCNaAAAAAAAAAAAAAAAAAAAAAABQxV7ZNxT3Pb0zN/dLly2Ii+e3lb8QVAkjWgAAAAAAAAAAAAAAAAAAAAAAUKWKpVJ84f4tUSxl52bPaI47/smSJJ2gWhjRAgAAAAAAAAAAAAAAAAAAAACAKvXtLX3x/JtHcnO//r4Lo621KUEjqB5GtAAAAAAAAAAAAAAAAAAAAAAAoAoNjozFf1z/Rm7uit72+Nil8xI0gupiRAsAAAAAAAAAAAAAAAAAAAAAAKrQf3lqZwyMjGVmGgsR/+aDy6JQKCRqBdXDiBYAAAAAAAAAAAAAAAAAAAAAAFSZl/uG439s3J+b+5U1vbG0e2aCRlB9jGgBAAAAAAAAAAAAAAAAAAAAAEAVGS+W4u5Ht0UpJ9c9qyU+dd35STpBNTKiBQAAAAAAAAAAAAAAAAAAAAAAVeQvX9wbrx08mpv77PUXxsyWpgSNoDoZ0QIAAAAAAAAAAAAAAAAAAAAAgCrRNzQa//Wpnbm5axZ3xoeWd5e/EFQxI1oAAAAAAAAAAAAAAAAAAAAAAFAFSqVS/Pv/uT1GxoqZuaaGQvz2B5dGoVBI1AyqkxEtAAAAAAAAAAAAAAAAAAAAAACoAt/fdiiefONwbu7Xrl4YS2bPSNAIqpsRLQAAAAAAAAAAAAAAAAAAAAAAqLDh0fH4o++/nptb1Dk9/sW7FydoBNXPiBYAAAAAAAAAAAAAAAAAAAAAAFTYPU/uiP5jJ3Nzv/eRd0Vrc2OCRlD9jGgBAAAAAAAAAAAAAAAAAAAAAEAFbdw7GN/cuD8394tX9Ma7z+9K0AhqgxEtAAAAAAAAAAAAAAAAAAAAAACokLGJYvzbR7fl5rpmNMfnbrwkQSOoHUa0AAAAAAAAAAAAAAAAAAAAAACgQv5sw554o/94bu5zN14ac2ZNS9AIaocRLQAAAAAAAAAAAAAAAAAAAAAAqIBdR0bi3mfezM1dd9Gc+KU1vQkaQW0xogUAAAAAAAAAAAAAAAAAAAAAAImVSqX4d49ti5MTpcxcS2Mh7vqFVVEoFBI1g9phRAsAAAAAAAAAAAAAgP+fnfuMrvwsz8X97L3Vy2ik6cXTe3HvvWGD7aHZISSQ/M9JThLg2PQS+oGADSF0Q05OEkglgEOotsEVG7dxw21602j6SCNpJI269DsfIPwJB3u2NHtvtev6Is2s93nee9Ya7XmX1/INAAAAAABAgd2x8XA82dB63HP/47z5sXBqZf4DwRikRAsAAAAAAAAAAAAAAAAAAAAAAAqotbMvPv/THcc9t3BKRfx/58wrQCIYm5RoAQAAAAAAAAAAAAAAAAAAAABAAX3hwZ1xtLv/uOc+cOXSKM6oCYIX46cDAAAAAAAAAAAAAAAAAAAAAAAK5ImGlrh9w6HjnnvtybPi1Lk1BUgEY5cSLQAAAAAAAAAAAAAAAAAAAAAAKIDuvoG45e5txz03pbIkbrxoYQESwdimRAsAAAAAAAAAAAAAAAAAAAAAAArgfz+8O/a0dh/33LsuWxzVZUUFSARjmxItAAAAAAAAAAAAAAAAAAAAAADIs289vS/+9am9xz13wcK6uHLZ1AIkgrFPiRYAAAAAAAAAAAAAAAAAAAAAAOTRXZsPx2fv33Hcc2VF6XjvFUsilUoVIBWMfUq0AAAAAAAAAAAAAAAAAAAAAAAgT9bXt8RH79wSSRZn/+yCBTG7pizvmWC8UKIFAAAAAAAAAAAAAAAAAAAAAAB5sOFge7znBxuif/D4FVrLp1fF60+fU4BUMH4o0QIAAAAAAAAAAAAAAAAAAAAAgByrb+6Mt//HC9HVN3jcsyWZVHz46mVRlE4VIBmMH0q0AAAAAAAAAAAAAAAAAAAAAAAghxo7euKt33k+Wrv6jns2nYr4xLUrY/n0qgIkg/FFiRYAAAAAAAAAAAAAAAAAAAAAAORIW3df3PSd5+NAW09W599/5dK4bOnUPKeC8UmJFgAAAAAAAAAAAAAAAAAAAAAA5EB330C887sbYkdTZ1bn33zBgnj1ybPynArGLyVaAAAAAAAAAAAAAAAAAAAAAABwgvoHk3j/jzbFs/vbsjr/u6fNjv9+zkl5TgXjmxItAAAAAAAAAAAAAAAAAAAAAAA4AUmSxM13bY2HdjZndf7qFdPinZctjlQqledkML4p0QIAAAAAAAAAAAAAAAAAAAAAgBNw68/q44cbDmV19tz5tfHRly+PtAItOGFKtAAAAAAAAAAAAAAAAAAAAAAAYJi+8dTe+Kcn9mR1dvXM6vj0K1dFcUb1D+SCnyQAAAAAAAAAAAAAAAAAAAAAABiGJxpa4osP7Mzq7Pza8vjCa9ZERUkmz6lg4lCiBQAAAAAAAAAAAAAAAAAAAAAAQ3SovSc++KPNMZgc/+z0qpL48g1rY3JFcf6DwQSiRAsAAAAAAAAAAAAAAAAAAAAAAIagb2Aw3v/DjdHS1Xfcs5PKiuJL16+NWZPKCpAMJhYlWgAAAAAAAAAAAAAAAAAAAAAAMASf/+nOeP5A+3HPlRal43OvXh2Lp1YWIBVMPEq0AAAAAAAAAAAAAAAAAAAAAAAgS3duOhS3PbP/uOcyqYhPrVsZp8ypKUAqmJiUaAEAAAAAAAAAAAAAAAAAAAAAQBa2Nx6LT961Lauzb790cVy4aEqeE8HEpkQLAAAAAAAAAAAAAAAAAAAAAACOo6OnP977gw3R0z943LNXr5gWv3va7AKkgolNiRYAAAAAAAAAAAAAAAAAAAAAALyEwSSJ/3XnltjT2n3cs4umVMQHr1oWqVSqAMlgYlOiBQAAAAAAAAAAAAAAAAAAAAAAL+GfHt8TD+w4ctxzlSWZ+MtXrory4kwBUgFKtAAAAAAAAAAAAAAAAAAAAAAA4EU8vrsl/vrh+qzOfvTly2N+XUV+AwG/okQLAAAAAAAAAAAAAAAAAAAAAAB+i4Nt3fGh2zfHYHL8s3941ty4bOnU/IcCfkWJFgAAAAAAAAAAAAAAAAAAAAAA/Ibe/sF4/482RUtX33HPnnlSTbz5woUFSAX8OiVaAAAAAAAAAAAAAAAAAAAAAADwGz7/0x3xwoH2456bVlUSn7h2ZRSlUwVIBfw6JVoAAAAAAAAAAAAAAAAAAAAAAPBr7th4KP792QPHPVeUTsWn1q2KKZUlBUgF/CYlWgAAAAAAAAAAAAAAAAAAAAAA8EuP726JT961Nauz77h0UZw8e1KeEwEvRokWAAAAAAAAAAAAAAAAAAAAAABExNN7W+Od39sQvQPJcc9evWJa/M6pswuQCngxSrQAAAAAAAAAAAAAAAAAAAAAAJjwnt/fFu/4jw3R0z943LOLp1bEB69aFqlUqgDJgBejRAsAAAAAAAAAAAAAAAAAAAAAgAlt86H2eOt/PB+dfQPHPVtZkolPr1sV5cWZAiQDXooSLQAAAAAAAAAAAAAAAAAAAAAAJqztjcfixn9/Pjp6jl+gFRHxv16+PObXVeQ5FZANJVoAAAAAAAAAAAAAAAAAAAAAAExIu450xltuey6Odvdndf5/nDsvLl06Nc+pgGwp0QIAAAAAAAAAAAAAAAAAAAAAYMLZ09IVb7ntuWjp6svq/OtPnxN/ev78PKcChkKJFgAAAAAAAAAAAAAAAAAAAAAAE8qBtu54y23PRdOx3qzOX3/KrHjnpYsilUrlORkwFEq0AAAAAAAAAAAAAAAAAAAAAACYMA6198Sbv/1cHGzvyer8datnxHuvWKJAC0YhJVoAAAAAAAAAAAAAAAAAAAAAAEwITcd64y23PRf7jnZndf6q5dPiQ1cti7QCLRiVlGgBAAAAAAAAAAAAAAAAAAAAADDuNR3rjf9523PR0NKV1fnLlk6Nj71ieWTSCrRgtCoa6QAAAAAAAAAAAAAAAAAAAAAAAJAvO5qOxTef3hd3bjocPf2DWc1cuKguPnntiijKpPOcDjgRSrQAAAAAAAAAAAAAAAAAAAAAABhXBpMkHq1viX97am+s3906pNmz502OT61bFcUKtGDUU6IFAAAAAAAAAAAAAAAAAAAAAMC40N03ELdvPBTffHpf1Dd3DXn+tLk18dlXr47SIgVaMBYo0QIAAAAAAAAAAAAAAAAAAAAAYEw73N4T335mf3zvuQNxtLt/WDvWzpoUn3/N6igrzuQ4HZAvSrQAAAAAAAAAAAAAAAAAAAAAABiTDrZ1x1cfqo+7tjTGwGAy7D0rZ1TFF1+7JipLVPLAWOInFgAAAAAAAAAAAAAAAAAAAACAMWdbY0e8+dvPxdHu/hPas2RqZXzp+rVRXaaOB8YaP7UAAAAAAAAAAAAAAAAAAAAAAIwprZ198a7vbTjhAq0LF9XFR65eFpPLi3OUDCgkJVoAAAAAAAAAAAAAAAAAAAAAAIwZ/YNJfPD2TXGgrWfYO848qSZef/rcuHhxXaRSqRymAwpJiRYAAAAAAAAAAAAAAAAAAAAAAGPGXz+0Kx5vaB3yXHEmFVevmB6vP31OLJ9elftgQMEp0QIAAAAAAAAAAAAAAAAAAAAAYEy4e0tj/NMTe4c0U1teHNefMiuuP3V2TK0syVMyYCQo0QIAAAAAAAAAAAAAAAAAAAAAYNTb3ngsPv7jLVmfXzK1Mn7v9Dlx9crpUVqUzmMyYKQo0QIAAAAAAAAAAAAAAAAAAAAAYFQ72tUX7/7+hujuHzzu2dUzq+MtFy6Is+ZNjlQqVYB0wEhRogUAAAAAAAAAAAAAAAAAAAAAwKg1MJjEh+/YHPuOdh/37Jyasvjia9dETXlxAZIBIy090gEAAAAAAAAAAAAAAAAAAAAAAODF/M0j9fFofctxz5UVpeMzr1qlQAsmECVaAAAAAAAAAAAAAAAAAAAAAACMSvdta4qvr9+T1dkPX70slk6rynMiYDRRogUAAAAAAAAAAAAAAAAAAAAAwKiz88ix+NidW7I6+8Yz58ZVK6bnOREw2ijRAgAAAAAAAAAAAAAAAAAAAABgVOno6Y/3fH9jdPYNHPfsWfMmx/+8aGEBUgGjjRItAAAAAAAAAAAAAAAAAAAAAABGjcEkiQ/fsTkaWrqOe3bWpNK4+dqVUZROFSAZMNoo0QIAAAAAAAAAAAAAAAAAAAAAYNT4u0d3x0M7m497rrQoHZ955eqYXFFcgFTAaFQ00gEAAAAAAAAAAAAAAAAAAAAAACBJkrjtmQPxt482ZHX+Ay9bGstnVOU5FTCaKdECAAAAAAAAAAAAAAAAAAAAAGBEdfYOxCfv2hp3bWnM6vzrT58T16yakedUwGinRAsAAAAAAAAAAAAAAAAAAAAAgBGzo+lY/PkPN0Z9c1dW50+fWxNvu3hhnlMBY4ESLQAAAAAAAAAAAAAAAAAAAAAARsQdGw/FLXdvi+7+wazOT68qiVvWrYyiTDrPyYCxQIkWAAAAAAAAAAAAAAAAAAAAAAAF1dM/GJ+7f0f8x3MHsp4pyaTiL1+1OuoqSvKYDBhLlGgBAAAAAAAAAAAAAAAAAAAAAFAwe1u74v0/3BSbD3cMae59Vy6N1TOr85QKGIuUaAEAAAAAAAAAAAAAAAAAAAAAUBAPbD8S/+vHm6OjZyDrmVREvO2SRfHKNTPzFwwYk5RoAQAAAAAAAAAAAAAAAAAAAACQV/2DSfz1Q7vin57YO6S5yeXF8YlrVsQ5C2rzlAwYy5RoAQAAAAAAAAAAAAAAAAAAAACQN82dvfHnP9gYP9/XNqS5k2dPipuvWxkzqkvzlAwY65RoAQAAAAAAAAAAAAAAAAAAAACQF00dPfHm256L+uauIc294Yy5ceNFC6Iok85TMmA8UKIFAAAAAAAAAAAAAAAAAAAAAEDONXb0xJu+/Vw0tGRfoFVZkomPvHx5XL50ah6TAeOFEi0AAAAAAAAAAAAAAAAAAAAAAHLqcHtPvPm2oRVoLZtWGZ9atypOqi3PYzJgPFGiBQAAAAAAAAAAAAAAAAAAAABAzhxq74k3f/vZ2NPanfXMq9fOjHddtjjKijN5TAaMN0q0AAAAAAAAAAAAAAAAAAAAAADIiYNt3fHm256LvVkWaJUWpeP9Vy6Na1fPyHMyYDxSogUAAAAAAAAAAAAAAAAAAAAAwAk72NYdb/r2c7HvaHYFWvNqy+PT61bFkmmVeU4GjFdKtAAAAAAAAAAAAAAAAAAAAAAAOCEHflmgtT/LAq1VM6vjy9eviUllxXlOBoxnSrQAAAAAAAAAAAAAAAAAAAAAABi2/Ue7403ffjYOtPVkdX7NrOr48vVro6pU/Q1wYnyKAAAAAAAAAAAAAAAAAAAAAAAwLPuOdsWbvvVcHGzPrkBr7azq+JICLSBHfJIAAAAAAAAAAAAAAAAAAAAAADBke1u74k3ffi4OZVmgdfLsSfHF165RoAXkjE8TAAAAAAAAAAAAAAAAAAAAAACGpKGlK9787WfjcEdvVudPmT0pvnj9mqgsUXkD5I5PFAAAAAAAAAAAAAAAAAAAAAAAsvbA9iPxsR9vifae/qzOnzZnUnz+tQq0gNzzqQIAAAAAAAAAAAAAAAAAAAAAwHH1DwzGVx+qj39+cm/WM6fNrYkvvGZNVJRk8pgMmKiUaAEAAAAAAAAAAAAAAAAAAAAA8JIOt/fEB2/fFM/sa8t65oyTauLzr1kT5cUKtID8UKIFAAAAAAAAAAAAAAAAAAAAAMCLWl/fEh+6Y3O0dvVlPXPmvMnx+VevjjIFWkAeKdECAAAAAAAAAAAAAAAAAAAAAOD/MTCYxN8/tjv+7tGGSIYwd9a8yfE5BVpAASjRAgAAAAAAAAAAAAAAAAAAAADgv2ju7I0P3745Hm9oHdLcOfMnx1+9SoEWUBhKtAAAAAAAAAAAAAAAAAAAAAAA+JWf7z0aH7x9UzR29A5p7pVrZsT7rlgaJUXpPCUD+K+UaAEAAAAAAAAAAAAAAAAAAAAAEINJEv/yxN746kO7YiDJfq60KB1/fuWSuG71zPyFA/gtlGgBAAAAAAAAAAAAAAAAAAAAAExw3X0D8ZE7t8T925qGNDe/tjw+9cpVsWRqZZ6SAbw4JVoAAAAAAAAAAAAAAAAAAAAAABNYW3dfvOt7G+KZfW1Dmrtq+bT4wFVLo7JEjQ0wMnz6AAAAAAAAAAAAAAAAAAAAAABMUIfbe+Kt//F87GjqzHqmOJOKd166OK4/ZVakUqk8pgN4aUq0AAAAAAAAAAAAAAAAAAAAAAAmoPojnXHTd56Pg+09Wc/MrimLT61bGStnVOcxGUB2lGgBAAAAAAAAAAAAAAAAAAAAAEwwz+9vi3d894U42t2f9cwli6fER16+LCaVFecxGUD2lGgBAAAAAAAAAAAAAAAAAAAAAEwgD+9sjvf9cGP09A9mdT6Tirjx4kXxhjPmRCqVynM6gOwp0QIAAAAAAAAAAAAAAAAAAAAAmCBu33Ao/uInW2Igye781MqS+NS6lXHKnJr8BgMYBiVaAAAAAAAAAAAAAAAAAAAAAADjXJIk8S9P7o0vPbgr65l5teXx5evXxuyasjwmAxg+JVoAAAAAAAAAAAAAAAAAAAAAAOPYYJLEFx/YGd94al/WM6tnVscXXrMmJlcU5zEZwIlRogUAAAAAAAAAAAAAAAAAAAAAME71DQzGx368JX6yuTHrmfMW1ManX7kqyoszeUwGcOKUaAEAAAAAAAAAAAAAAAAAAAAAjEOtnX3xwds3xeMNrVnPvGLl9PjI1cuiKJPOXzCAHFGiBQAAAAAAAAAAAAAAAAAAAAAwzjy9tzU+dPvmaOzozXrmjWfOjZsuXhjpVCqPyQByR4kWAAAAAAAAAAAAAAAAAAAAAMA4MTCYxD883hD/55HdMZhkP/e2SxbFG8+cm79gAHmgRAsAAAAAAAAAAAAAAAAAAAAAYBxoOtYbH71jczze0Jr1TCadio9cvSyuWTUjf8EA8kSJFgAAAAAAAAAAAAAAAAAAAADAGPf47pb48B2bo7mzL+uZ8uJ0fGrdqjh/YV0ekwHkjxItAAAAAAAAAAAAAAAAAAAAAIAxqn8wib97dHd87bGGSIYwN7m8OL7wmtWxetakvGUDyDclWgAAAAAAAAAAAAAAAAAAAAAAY9Dh9p740B2b4+d7jw5pbvak0vji9WtjQV1FnpIBFIYSLQAAAAAAAAAAAAAAAAAAAACAMeaRXc3x0Tu3RGtX35DmLlxUFx99+fKYXF6cp2QAhaNECwAAAAAAAAAAAAAAAAAAAABgjOjo6Y+/fXR3fOOpfUOay6RTcdNFC+P3z5gTqVQqT+kACkuJFgAAAAAAAAAAAAAAAAAAAADAKNc/mMT3njsQ/+eR3dHS1Tek2dmTSuPm61bG6lmT8pQOYGQo0QIAAAAAAAAAAAAAAAAAAAAAGKWSJImHdzXHlx7YFbuaO4c8f9nSqfHhq5ZFdZmqGWD88ckGAAAAAAAAAAAAAAAAAAAAADAKbT3cEV94YGc80dA65NniTCrefsni+J1TZ0Uqlcp9OIBRQIkWAAAAAAAAAAAAAAAAAAAAAMAo0tjRE3/9UH38aMOhSIYxf9LksrjlulWxfEZVzrMBjCZKtAAAAAAAAAAAAAAAAAAAAAAARoGuvoH45yf2xD8/sTe6+weHteOq5dPi/S9bGlWlqmWA8c8nHQAAAAAAAAAAAAAAAAAAAADACEqSJO7cdDi+/OCuaDrWO6wdpUXpePdli+NVa2dGKpXKcUKA0UmJFgAAAAAAAAAAAAAAAAAAAADACOnpH4yb794ad2w8POwda2ZVxwevWhZLplbmMBnA6KdECwAAAAAAAAAAAAAAAAAAAABgBDQd6433fn9DPH+gfVjzsyaVxo0XLYyXLZ8WqVQqx+kARj8lWgAAAAAAAAAAAAAAAAAAAAAABbblUEe86/sb4lB7z5BnK0sy8UfnzIvfPX1OlBal85AOYGxQogUAAAAAAAAAAAAAAAAAAAAAUED3bW2Mj965Jbr7B4c0l0lFvPaU2fEn582L2oqSPKUDGDuUaAEAAAAAAAAAAAAAAAAAAAAAFECSJPH3jzXE3zyye8izFy2qi7devCgWTKnIQzKAsUmJFgAAAAAAAAAAAAAAAAAAAABAnnX3DcTHf7I17t7SOKS5ZdMq4+2XLoqz5tXmKRnA2KVECwAAAAAAAAAAAAAAAAAAAAAgjw6398S7v78hNh3qyHqmpqwo3nbJorhm1YzIpFN5TAcwdinRAgAAAAAAAAAAAAAAAAAAAADIkw0H2+Pd39sQTcd6s55ZPLUiPvvq1TGnpjyPyQDGPiVaAAAAAAAAAAAAAAAAAAAAAAB58JNNh+Mv7toaPf2DWc9ctKgu/uLaFVFZohoG4Hh8UgIAAAAAAAAAAAAAAAAAAAAA5NCx3v74ys/q47Zn9g9p7g/POinecuGCyKRTeUoGML4o0QIAAAAAAAAAAAAAAAAAAAAAyJH19S3xybu3xoG2nqxnijOp+NBVy+KaVTPymAxg/FGiBQAAAAAAAAAAAAAAAAAAAABwgtq7++MLD+yIH7xwaEhzdRXF8ZlXrY6TZ0/KUzKA8UuJFgAAAAAAAAAAAAAAAAAAAADACXhg+5H41D3boulY75Dmlk2rjM++enXMnFSWp2QA45sSLQAAAAAAAAAAAAAAAAAAAACAYWjt7Iu/un97/GRz45BnL10yJT5+zYooL87kIRnAxKBECwAAAAAAAAAAAAAAAAAAAABgCJIkiXu2NsVn7t0eLV19Q57/43PnxZ+ePz/SqVQe0gFMHEq0AAAAAAAAAAAAAAAAAAAAAACy1NTRE5++d3v8dPuRIc+WFqXjw1cti6tXTs9DMoCJR4kWAAAAAAAAAAAAAAAAAAAAAEAW7tvaGJ+4a1u09/QPefbUOZPiQ1cti/l1FXlIBjAxKdECAAAAAAAAAAAAAAAAAAAAADiO/3h2f9xyz/Yhz5UXp+PGixbGDafOjnQqlYdkABOXEi0AAAAAAAAAAAAAAAAAAAAAgJfwb0/vi8/dv2PIc2fPmxwfvGpZzK4py0MqAJRoAQAAAAAAAAAAAAAAAAAAAAC8iH9Y3xBfeah+SDNVpZl4+yWL4pVrZkYqlcpPMACUaAEAAAAAAAAAAAAAAAAAAAAA/KYkSeJvH90df/tow5DmLlpUF39+5dKYXl2ap2QA/CclWgAAAAAAAAAAAAAAAAAAAAAAvyZJkrj1Z7vin57Ym/VMTVlRvOfyJXHVimmRSqXymA6A/6RECwAAAAAAAAAAAAAAAAAAAADgl5Ikic/evyO+9fP9Wc9cuWxavOeKxVFXUZLHZAD8JiVaAAAAAAAAAAAAAAAAAAAAAAARMZgk8al7tsV3nzuY1flURLzvyiVx/Smz8xsMgN9KiRYAAAAAAAAAAAAAAAAAAAAAMOH1DybxiZ9sids3Hs7qfDoV8ZGrl8e1q2fkORkAL0aJFgAAAAAAAAAAAAAAAAAAAAAwofUPDMZH7twSd29pzOp8JhXx8WtWxFUrpuc5GQAvRYkWAAAAAAAAAAAAAAAAAAAAADBh9fYPxgdv3xQ/3X4kq/NF6VTcct3KuHTp1DwnA+B4lGgBAAAAAAAAAAAAAAAAAAAAABNSQ0tX3HL31nhyz9GszpdkUvGXr1wdFyyqy3MyALKhRAsAAAAAAAAAAAAAAAAAAAAAmFA6evrja481xL89vS/6B5OsZsqK0vHZV6+Os+fX5jkdANlSogUAAAAAAAAAAAAAAAAAAAAATAiDSRK3bzgUt/5sVzR39mU9V1mSic+/Zk2cNrcmj+kAGColWgAAAAAAAAAAAAAAAAAAAADAuPf8/rb4q/t3xMaD7UOaqy4tii9dvybWzJqUp2QADJcSLQAAAAAAAAAAAAAAAAAAAABg3Grs6Ilbf7Yr7th4eMizNWVFcesNa2PFjOo8JAPgRCnRAgAAAAAAAAAAAAAAAAAAAADGnZ7+wfjGU3vj6+sboqtvcMjzdRXF8ZXfOTmWTK3MQzoAckGJFgAAAAAAAAAAAAAAAAAAAAAwbiRJEvdva4ovPbgr9h3tHtaOGdWlcev1a2PBlIocpwMgl5RoAQAAAAAAAAAAAAAAAAAAAABjXpIksX53S3z1ofrYdKhj2HvWrZ4Rb71kUUwuL85hOgDyQYkWAAAAAAAAAAAAAAAAAAAAADCmPbvvaHz1ofp4eu/RYe9YO6s63nX5klg9szqHyQDIJyVaAAAAAAAAAAAAAAAAAAAAAMCYtOVwR/zvh+vjoZ3Nw94xraokbrxoYbx85fRIp1I5TAdAvinRAgAAAAAAAAAAAAAAAAAAAADGlN3NnfE3j+yOu7c0DntHcSYVbzxzbvy3s+dFRUkmh+kAKBQlWgAAAAAAAAAAAAAAAAAAAADAmHCwrTv+7tGG+NGGgzGQDH/PpUumxNsuWRRzJ5fnLhwABadECwAAAAAAAAAAAAAAAAAAAAAY1br7BuL/PLI7vvnzfdF3Au1Zi6ZUxDsvWxznzK/NYToARooSLQAAAAAAAAAAAAAAAAAAAABg1DrU3hPv+f6G2HSoY9g7JpUVxZ+eNz+uP3V2FKVTOUwHwEhSogUAAAAAAAAAAAAAAAAAAAAAjErP72+L9/xgYxw51jus+fLidPzeGXPjjWfMjeoyVSsA441PdgAAAAAAAAAAAAAAAAAAAABg1PnRhoNx893bom8gGfJscSYVN5wyO/7bOSdFXUVJHtIBMBoo0QIAAAAAAAAAAAAAAAAAAAAARo3+wSS+/ODO+MZT+4Y8m0lFXLd6ZvyP8+bFzElleUgHwGiiRAsAAAAAAAAAAAAAAAAAAAAAGBXau/vjA7dvisfqW4Y8+7Ll0+JPz58fC+oq8pAMgNFIiRYAAAAAAAAAAAAAAAAAAAAAMOLqmzvjXd/bEA0tXUOau3BRXbzpggWxfHpVnpIBMFop0QIAAAAAAAAAAAAAAAAAAAAARtQju5rjg7dvio6egaxnlk6rjPddsSROmVOTx2QAjGZKtAAAAAAAAAAAAAAAAAAAAACAEZEkSfzrU/viyw/ujMEk+7krlk2Nj758eZQXZ/IXDoBRT4kWAAAAAAAAAAAAAAAAAAAAAFBw3X0D8al7tsXtGw8Pae7Pzp8ff3zuvEilUnlKBsBYoUQLAAAAAAAAAAAAAAAAAAAAACioR+ub4y/v3R57W7uznikvTsfHXrEiLls6NY/JABhLlGgBAAAAAAAAAAAAAAAAAAAAAAXR1NETn/vpzrh7S+OQ5mZNKo3Pvnp1LJ1WladkAIxFSrQAAAAAAAAAAAAAAAAAAAAAgLwaGEziO8/uj68+VB/HegeGNHva3Jr49LqVUVtRkqd0AIxVSrQAAAAAAAAAAAAAAAAAAAAAgLzZdKg9brl7W2w61DHk2deePCveffniKM6k85AMgLFOiRYAAAAAAAAAAAAAAAAAAAAAkHMdPf3xvx+uj9ue2R+DydBmM+lUvPuyxXHDqbPzEw6AcUGJFgAAAAAAAAAAAAAAAAAAAACQM0mSxD1bm+Jz9++IpmO9Q56vKSuKT61bFWfOm5z7cACMK0q0AAAAAAAAAAAAAAAAAAAAAICcaGjpis/ctz0eq28Z1vyK6VVxy7qVMXdyeY6TATAeKdECAAAAAAAAAAAAAAAAAAAAAE5IR09/fO2xhvi3p/dF/2Ay5PmK4kz82QXz43WnzYmidCoPCQEYj5RoAQAAAAAAAAAAAAAAAAAAAADDMpgkccfGQ3Hrz+rjyLHeYe24fOnUeOdli2NGdWmO0wEw3inRAgAAAAAAAAAAAAAAAAAAAACGbMOBtvjMfTtiw8H2Yc3PrimL916+JC5YVJfjZABMFEq0AAAAAAAAAAAAAAAAAAAAAICsNR3rja/8bFf8aMOhYc0XpVPxB2fNjT86Z16UFWdynA6AiUSJ1iiwe/fuuPbaa6Ovry9uvPHGuOmmm0Y6EgAAAAAAAAAAAAAAAAAAAADj3OZD7bHzSGckSURtRXHUVRRHbUVJ1JYXR0lR+v853zcwGN98el/8/WMNcax3YFh3nj63Jv78yqWxcErFicYHACVaI21gYCA+8IEPRF9f30hHAQAAAAAAAAAAAAAAAAAAAGACaOvui/f/cFM83tD6omeqSjNR98tCrV8UbJXEk3tao6Gla1h3Ti4vjrdfsiiuWTU9UqnUMJMDwH+lRGuEffzjH48nn3xypGMAAAAAAAAAAAAAAAAAAAAAMAH09g/GW7/zQmw42P6S5zp6BqKjp2vYpVn/KRURr1o7M268aGHUlBef0C4A+E1KtEbQLbfcEt/85jdHOgYAAAAAAAAAAAAAAAAAAAAAE8Tnf7rjuAVaubJ21qR49+WLY9XM6oLcB8DEo0RrBHR0dMT73//+uOuuu0Y6CgAAAAAAAAAAAAAAAAAAAAATxI83HY5/f/ZA3u+ZWlkSN128MF6xcnqkUqm83wfAxKVEq8A2bdoUb3vb22L37t0jHQUAAAAAAAAAAAAAAAAAAACACWLXkc64+e6teb2jOJOK3z9jbvz3c06KyhK1JgDkn39tCqS5uTluvfXW+Na3vhX9/f2/+v26urpobm4ewWQAAAAAAAAAAAAAAAAAAAAAjGddfQPxvh9ujK6+wbzdcdGiunjHpYvjpNryvN0BAL9JiVYBPPzww/G2t70t2tvb/8vvn3vuufHe9743Xvva145QMgAAAAAAAAAAAAAAAAAAAADGsyRJ4ua7t8WuI5152T+/tjzedfniOG9BXV72A8BLUaJVANu2bfsvBVrl5eXx9re/Pf7wD/8w9u/fP4LJAAAAAAAAAAAAAAAAAAAAABjPvvvcgfjxpsM531tZkok/OW9+vO602VGcSed8PwBkQ4lWAaVSqbj22mvjHe94R8ydO3ek4wAAAAAAAAAAAAAAAAAAAAAwjm061B5/df+OrM5+7BXLY/n0qmjp7Ivmzt5ffO3qi5b//L6zL4529UVFSSbOW1gXrzt1dkypLMnznwAAXpoSrQIoLi6OdevWxR/90R/FqlWrRjoOAAAAAAAAAAAAAAAAAAAAAONcW3df/PkPN0XfQHLcs793+py4ZtWMAqQCgNxSolUAb3jDG+INb3jDSMcAAAAAAAAAAAAAAAAAAAAAYAJIkiQ+9uOtsf9o93HPrp01KW66eGEBUgFA7qVHOgAAAAAAAAAAAAAAAAAAAAAAkDv/8uTeeHDHkeOeqykripuvWxHFGRUkAIxNRSMdgLEjnU5FxqMHABjFMpnUb/m19wsAMLp5wwAAY433CwAw1ni/AABjjfcLADAWecMAAGON9wsw3j29pzW+8rNdxz2XiohPrlsVc2or8h8KOCHeL4xmv/n3s9CUaJG16urykY4AADAkNTX+ow0AMPZ4wwAAY433CwAw1ni/AABjjfcLADAWecMAAGON9wswnjS298QHfrQpBpLjn73piqVx3Rkn5T8UkHPeL/D/U6IFAAAAAAAAAAAAAAAAAAAAAKPU0a6+eGJXc+xs6oievsHoHRiM3v5f+/pr32891B6H23uOu/PCJVPjbVcsLUB6AMgvJVoAAAAAAAAAAAAAAAAAAAAAMArd8fyB+ND3XojmY7052zljUml84fWnRiadytlOABgpSrTIWnt7V/T1DY50DACAF5XJpKKmpuJXvz56tDMGBpIRTAQAcHzeMADAWOP9AgCMNd4vAMBY4/0CAIxF3jAAwFjj/QKMFd98am/85b3bc7ozk4q45bpVke7tj+bm/pzuBvLH+4XR7Df/fhaaEi2yNjiYxMCAEi0AYDRL/5dfDQx4vwAAY4E3DAAw1ni/AABjjfcLADDWeL8AAGORNwwAMNZ4vwCj39fXN8RXH6rP+d4bL14Ua2dV+9yDMcf7hdEsffwjeaRECwAAAAAAAAAAAAAAAAAAAABGgSRJ4taf1cc/PbEn57svXTIl3nDGnJzvBYCRpEQLAAAAAAAAAAAAAAAAAAAAAEbYYJLEZ+7dHv/+7IGc755TUxYfuXp5pFKpnO8GgJGkRAsAAAAAAAAAAAAAAAAAAAAARlD/YBKf+MmWuH3j4ZzvLsmk4tPrVkV1mZoRAMYf/7oBAAAAAAAAAAAAAAAAAAAAwAjp7R+MD92xOe7f1pTz3TVlRfGZV62O5TOqcr4bAEYDJVoAAAAAAAAAAAAAAAAAAAAAMAK6+wbiPT/YGI/Vt2R1Pp2KmF9XESWZdJRkUlGcSUdJJh3FmVSUFKWjOJOO4nQqyoszsXpWdZy7oDbqKkry/KcAgJGjRAsAAAAAAAAAAAAAAAAAAAAACqyjpz/e+d0X4uf72rI6n0mn4i+uWREvWz4tz8kAYOxQogUAAAAAAAAAAAAAAAAAAAAABdTa1Rdv/c7zselQR1bnSzKp+PQrV8WFi6bkORkAjC1KtAAAAAAAAAAAAAAAAAAAAACgAAYGk3jhQFvcfPe22HmkM6uZiuJMfPbVq+PMeZPzGw4AxiAlWgAAAAAAAAAAAAAAAAAAAACQJ919A/FEQ2s8sONI/GzHkWju7Mt6trq0KL50/ZpYM2tSHhMCwNilRAsAAAAAAAAAAAAAAAAAAAAAcqi1qy8e3tkcD+w4Eo/VN0dX3+CQd9RVFMetN6yNpdOq8pAQAMYHJVoAAAAAAAAAAAAAAAAAAAAAcIIOtffEfdua4sHtTfHzvUdjIBn+rulVJfGV3zk5FtRV5C4gAIxDSrRG2Ny5c2PLli0jHQMAAAAAAAAAAAAAAAAAAACAYejo6Y9bf7Yrvvf8wRgYPIHmrF+aO7ksvvo7J8esSWU5SAcA45sSLQAAAAAAAAAAAAAAAAAAAAAYhkfrm+MTP9kahzt6c7Jv0ZSK+MoNa2NqVWlO9gHAeKdECwAAAAAAAAAAAAAAAAAAAACGoKOnP77wwM74/vMHc7Zz5Yyq+NL1a2NyeXHOdgLAeKdECwAAAAAAAAAAAAAAAAAAAACy9Fh9c/zFT7bG4Y7enO28dtX0ePflS6KqVBUIAAyFfzkBAAAAAAAAAAAAAAAAAAAA4Dg6evrjCw/sjO8/fzAn+2ZWl8YlS6bEK1bNiNUzq3OyEwAmGiVaAAAAAAAAAAAAAAAAAAAAAPASHqtvjk/ctS0Otfec0J5l0yrjkiVT4pIlU2PZtMpIpVI5SggAE5MSLQAAAAAAAAAAAAAAAAAAAAD4LTp6+uMLD+yM7z9/cFjzmVTEaXNr4pIlU+PixVNidk1ZjhMCwMSmRAsAAAAAAAAAAAAAAAAAAAAAfk1X30Dcv60pvvpQfRxq7xny/GlzJsWrT54VFyysi5ry4jwkBAAilGgBAAAAAAAAAAAAAAAAAAAAQAwMJvHUnta4Y+OhuH/bkejsGxjyjvLidLz14kXx2lNmRTqVykNKAODXKdECAAAAAAAAAAAAAAAAAAAAYMLa3nQs7tx4KH686XAc7ugd9p4zT6qJD129LObUlOcwHQDwUpRoAQAAAAAAAAAAAAAAAAAAADChNB3rjbs2H447Nh6OLYc7TmhXeXE6brp4UVx/yqxIp1I5SggAZEOJFgAAAAAAAAAAAAAAAAAAAADjXv/AYDy440h8/4WDsb6+JQaSE995xkk18eGrl8WcmvITXwYADJkSLQAAAAAAAAAAAAAAAAAAAADGrcaOnvjecwfju88fiMaO3pzsLC9Ox40XLYobTp0V6VQqJzsBgKFTogUAAAAAAAAAAAAAAAAAAADAuJIkSTy152j8+7P746fbmmIgyd3uM06qiQ9dtSzmTi7P3VIAYFiUaAEAAAAAAAAAAAAAAAAAAAAwLnT09MftGw7Fvz+7P+qbu3K6u7IkE2+5cEHccOrsSKdSOd0NAAyPEi0AAAAAAAAAAAAAAAAAAAAAxrQthzviO8/ujzs3Ho7u/sGc7l41szquWTk9XrFqekwqK87pbgDgxCjRAgAAAAAAAAAAAAAAAAAAAGBM2nq4Iz730x3x1J6jOd07s7o0XrFqelyzckYsmFKR090AQO4o0QIAAAAAAAAAAAAAAAAAAABgTOnpH4yvPbY7/vGJvTEwmORkZ2VJJq5cNi1esWp6nDa3JtKpVE72AgD5o0QLAAAAAAAAAAAAAAAAAAAAgDHjuf1t8Rc/2RL1zV0nvCuTijhvYV28YuX0uHjxlCgrzuQgIQBQKEq0AAAAAAAAAAAAAAAAAAAAABj1OnsH4q8fro9vPb0vkhPcNbumLK4/eVZct2ZG1FWU5CQfAFB4SrQAAAAAAAAAAAAAAAAAAAAAGNXW17fEzXdvjf1tPcPekYqICxfVxQ2nzo5zF9RGOpXKXUAAYEQo0QIAAAAAAAAAAAAAAAAAAABgVGrr7osvPrAzfvDCoWHvqC0vjletnRmvOXlWzK4py2E6AGCkKdECAAAAAAAAAAAAAAAAAAAAYNS5f1tTfPre7XHkWO+w5k+ZPSluOHV2XL50apQUpXOcDgAYDZRoAQAAAAAAAAAAAAAAAAAAADBqNHf2xmfu3R73bG0a8mwmFbFuzcx43WmzY+m0qjykAwBGEyVaAAAAAAAAAAAAAAAAAAAAAIwK63e3xEfu2BzNnX1Dnl02rTI+fPWyWDGjOg/JAIDRSIkWAAAAAAAAAAAAAAAAAAAAACOqfzCJv32kPr6+fk8kQ5wtzqTiT86bH39w5twoyqTzkg8AGJ2UaAEAAAAAAAAAAAAAAAAAAAAwYg62dceH79gcz+xrG/Ls2lmT4sNXL4uFUyrykAwAGO2UaAEAAAAAAAAAAAAAAAAAAAAwIh7ccSQ+/uMtcbS7f0hz5cXp+J8XLowbTp0dmXQqT+kAgNFOiRYAAAAAAAAAAAAAAAAAAAAABdU3MBi3/mxXfOOpfUOePXve5PjgVctidk1ZHpIBAGOJEi0AAAAAAAAAAAAAAAAAAAAACmZva1d84EebYtOhjiHNVZcWxdsvXRTrVs+IVCqVp3QAwFiiRAsAAAAAAAAAAAAAAAAAAACAgrh7S2N88q6tcax3YEhzFy+eEu+/cklMrSrNUzIAYCxSogUAAAAAAAAAAAAAAAAAAABAXiRJEkeO9cbOI51x15bG+P7zB4c0X5xJxTsuXRw3nDIrUqlUnlICAGOVEi0AAAAAAAAAAAAAAAAAAAAATshgksSBtu6oP9IVO48ci/rmzth1pCt2NR+Ljp6BYe2cV1seN1+3MpZPr8pxWgBgvFCiBQAAAAAAAAAAAAAAAAAAAMCQdPT0x+MNrfHorubYdKgj6ps7o6d/MGf7X7FyerzvyiVRWaIaAwB4cV4KAAAAAAAAAAAAAAAAAAAAALykJEliV3NnPLyzOR7Z1Rw/39cWA4NJzu8pK0rHe69YEtetnhGpVCrn+wGA8UWJFgAAAAAAAAAAAAAAAAAAAAD/j66+gXiyoTUe3vWL4qwDbT15vW/J1Mq4+bqVsXBKRV7vAQDGDyVaAAAAAAAAAAAAAAAAAAAAAESSJFHf3BWP7W6JR3Y1x9N7WqN3ICnI3defMivefsmiKCvOFOQ+AGB8UKIFAAAAAAAAAAAAAAAAAAAAMEE1dvTEEw2t8fjulni8oTUaO3oLen9lSSY+dNWyuHL5tILeCwCMD0q0AAAAAAAAAAAAAAAAAAAAACaIjp7+eHrv0V+VZu060jliWVbNrI5PXrsi5k4uH7EMAMDYpkQLAAAAAAAAAAAAAAAAAAAAYBzbeeRY3L25MR5vaI0NB9piIBmZHKmImDO5LJZNq4pXrp0Z5y2ojXQqNTJhAIBxQYkWAAAAAAAAAAAAAAAAAAAAwDj07L6j8Q+P74mHdjYX9N6idCrm1ZbHwikVsaCuIhb98uu82vIoK84UNAsAML4p0QIAAAAAAAAAAAAAAAAAAAAYJ5IkiUfrW+If1jfEz/e15f2+VESsmTUpzl0wOZZNq4oFUypibk1ZFGXSeb8bAECJFgAAAAAAAAAAAAAAAAAAAMAYNzCYxH3bmuIfH98TWw535PWumrKiOG9hXVywsC7OnV8bkyuK83ofAMCLUaIFAAAAAAAAAAAAAAAAAAAAMEb19g/GHRsPxT8/uTcaWrryds/KGVVx/i+Ls1bNrI5MOpW3uwAAsqVECwAAAAAAAAAAAAAAAAAAAGCM6ewdiO8+dyC+8dTeONzRm/P9NWVFcda82jh/YW2ct7AuplaW5PwOAIATpUQLAAAAAAAAAAAAAAAAAAAAYIzo7R+M257ZH19f3xBHu/tztre0KB2nzpkU58yvjbPn1cbS6ZWRTqVyth8AIB+UaAEAAAAAAAAAAAAAAAAAAACMcoNJEndvboyvPrQr9rf1nPC+VESsnFkdZ8+bHGfPnxwnz66J0qL0iQcFACggJVoAAAAAAAAAAAAAAAAAAAAAo9hTe1rjiw/sjE2HOk5oTyYV8bIV0+OypVPjjLk1UVNenKOEAAAjQ4kWAAAAAAAAAAAAAAAAAAAAwCi088ix+PKDu+Khnc0ntKe0KB2vWjMz3njW3Jg1qSxH6QAARp4SLQAAAAAAAAAAAAAAAAAAAIBRpKmjJ/7mkd3xgxcOxmAy/D2VJZl43Wmz4/Wnz4m6ipLcBQQAGCWUaAEAAAAAAAAAAAAAAAAAAACMsIHBJNp7+uNbT++Lf3lyb3T3Dw57V11Fcfze6XPihlNnR1WpagkAYPzy0gEAAAAAAAAAAAAAAAAAAADIoSRJYn9bd2w7fCy2NnbE/qPdcax3ILr7B6O7byC6+wajq28guvoGoqf/F9/3DiQnfO/sSaXxxrNOinWrZ0RZcSYHfxIAgNFNiRYAAAAAAAAAAAAAAAAAAADAMPX0D8auI8di6y8Ls7Y2HottjR3R0TNQsAzzasvjj8+dF1ctnxZFmXTB7gUAGGlKtAAAAAAAAAAAAAAAAAAAAACy1NbdF3dvaYxn97XF1saOqD/SGQPJyGSpLS+OPzl/frxm7UzlWQDAhKRECwAAAAAAAAAAAAAAAAAAAOA4+gYG41+f3Bt//1hDdPcPjmiW0qJ0vOGMOfEHZ50UVaWqIwCAictLCAAAAAAAAAAAAAAAAAAAAOAlPLP3aNxyz7bYeaRzRHOkImLdmhnxZ+cviOnVpSOaBQBgNFCiBQAAAAAAAAAAAAAAAAAAAPBbHO3qiy8/uCu+/8LBkY4S5y+sjZsuWhRLplWOdBQAgFFDiRYAAAAAAAAAAAAAAAAAAADAr0mSJO7YeDi+8MDOaO3qG9Esy6dXxVsvXhhnz68d0RwAAKOREi0AAAAAAAAAAAAAAAAAAACAX6pv7oxP37s9nmxoHdEcS6dVxhvPnBsvXzk90qnUiGYBABitlGgBAAAAAAAAAAAAAAAAAAAAE15P/2D8w/qG+Mcn9kTfQJKzvSWZVCyeWhmza8qirDgT5UXpX3wtTkd5cSZKi37x/a//3rza8phWVZqzDAAA45USLQAAAAAAAAAAAAAAAAAAAGBCGkyS2NfaHc8faIu/f6whGlq6TmhfbXlxLJteGcumVcWy6VWxdFplzK+riKJ0KkeJAQD4dUq0AAAAAAAAAAAAAAAAAAAAgHFvYDCJ3S2dsflQR2w53PGrr8d6B4a9c2FdRVyzanosm14Vy6ZVxpTKkkilFGYBABSKEi0AAAAAAAAAAAAAAAAAAABgXEmSJPa0dscze4/G5l8WZm1r7Iju/sGc7C8tSscfnzsv3njm3CjOpHOyEwCAoVOiBQAAAAAAAAAAAAAAAAAAAIx5bd198WRDazy2uyXW17fE/raevNxz7vzaeN+VS2Lu5PK87AcAIHtKtAAAAAAAAAAAAAAAAAAAAIAxp39gMF440P6L0qzdLbHxYHsMJvm7b0plSbzz0kXxsuXTIpVK5e8iAACypkQLAAAAAAAAAAAAAAAAAAAAGBP2H+2Oh3Y2x/rdLfHUntY41juQ9ztTEXH9KbPiLRcujOoyNQ0AAKOJ1xkAAAAAAAAAAAAAAAAAAAAwqm040BZfW78nHtxxpKD3Lp1WGR942dJYM2tSQe8FACA7SrQAAAAAAAAAAAAAAAAAAACAUSdJknh679H4+vqGWL+7taB3lxen48/OXxC/e/qcKEqnCno3AADZU6IFAAAAAAAAAAAAAAAAAAAAjBpJksSj9S3x9fUN8cy+toLdW16cjmXTquKCRXWxbs3MmFpZUrC7AQAYHiVaAAAAAAAAAAAAAAAAAAAAwIgbTJJ4cPuR+Nr6hth0qCOvd1WVZmLF9KpYPr06VsyoihXTq+Kk2vLIpFN5vRcAgNxSogUAAAAAAAAAAAAAAAAAAACMmIHBJO7Z0hhfW98QO4905nx/ZUkm1s6eFCumV8WKGVWxfHpVzKkpi1RKYRYAwFinRAsAAAAAAAAAAAAAAAAAAAAouCRJ4sebD8ffPdoQDS1dOdubSUWsnjUpzp1fG+csqI1VM6ujKK0wCwBgPFKiBQAAAAAAAAAAAAAAAAAAABTU9qZj8Zf3bIuf72vLyb6TJpfF2fNr49z5tXHmvMlRVapOAQBgIvDqAwAAAAAAAAAAAAAAAAAAAAriWG9//O0jDfHNp/fGQDL8PZlUxIWLpsT5C2vj7Pm1MXdyee5CAgAwZijRAgAAAAAAAAAAAAAAAAAAAPIqSZK4Z2tTfP6nO6Kxo3fYe4ozqVi3emb8wVlzFWcBAKBECwAAAAAAAAAAAAAAAAAAAMif+ubO+My92+PxhtZh7ygtSsdrTp4VbzxzbsyoLs1dOAAAxjQlWgAAAAAAAAAAAAAAAAAAAEDOdfcNxNfWN8Q/P7E3+geTYe2oLMnEDafOjt8/Y07UVZTkOCEAAGOdEi0AAAAAAAAAAAAAAAAAAAAgZ5IkiQd3HInP3r8jDrT1DGvHpLKieP3pc+J3T5sdk8qKc5wQAIDxQokWAAAAAAAAAAAAAAAAAAAAcMKaOnri/u1H4q7Nh+OZfW3D2lFbXhxvPHNuXH/qrKgsUYkAAMBL82IEAAAAAAAAAAAAAAAAAAAAhuVgW3fcv/1I3Le1MZ7d1xbJMPekUxGvO21O/Nn586OqVBUCAADZ8XIEAAAAAAAAAAAAAAAAAAAAsrb/aHfct60p7tvaGM8faD/hfSfPnhTvu2JJLJtelYN0AABMJEq0AAAAAAAAAAAAAAAAAAAAgN9qMEnicHtP7G7pik0H2+O+bU2x6VBHTnZPLi+Omy5eGNetnhHpVConOwEAmFiUaAEAAAAAAAAAAAAAAAAAAMAE19rVFw0tXdHQ0hkNLV2xu7krGlq6Yk9rV/T0D+b0rlREvObkWfGWCxdETXlxTncDADCxKNECAAAAAAAAAAAAAAAAAACACabpWG/84PmD8Wh9c+w60hlHu/sLcu/KGVXxviuXxuqZ1QW5DwCA8U2JFgAAAAAAAAAAAAAAAAAAAEwQe1u74l+e3Bs/fOFg9A4kBbu3urQo3nLhgnjNybMik04V7F4AAMY3JVoAAAAAAAAAAAAAAAAAAAAwzm1r7Ih/fHxP3L2lMQYL150VxZlUXLd6RrzpggVRV1FSuIsBAJgQlGgBAAAAAAAAAAAAAAAAAADAOPXM3qPxj0/siYd2NhfszuJMKs6ZXxtXLJsaFy+eEpPKigt2NwAAE4sSLQAAAAAAAAAAAAAAAAAAABhHkiSJh3c1xz+s3xPP7m8ryJ0lmVScv7AuLl82NS5aNCWqStUZAACQf16dAAAAAAAAAAAAAAAAAAAAMMYNJknsaemKZ/e1xTd/vi+2NR7L+51lRem4YFFdXL50alywqC4qS1QYAABQWF6gAAAAAAAAAAAAAAAAAAAAMIb0DyZR39wZWw51xObDHbHlUHtsOXwsOvsG8npvOhUxa1JZrJlVHZcvnRrnLayL8uJMXu8EAICXokQLAAAAAAAAAAAAAAAAAAAARqkkSWJ707F44UB7bDncEZsPdcT2pmPR0z+YtzvrKopjfm15zKutiHm15TG/7hffz6kpi5KidN7uBQCAoVKiBQAAAAAAAAAAAAAAAAAAAKNIe3d/rN/dEo/sao5H61ui6VhvXu87c97kuG7VjFgwpSLmTS6P6jJVBAAAjA1ergAAAAAAAAAAAAAAAAAAADCCkiSJrY3H4pFdzfHIruZ4fn9bDCT5v/fSJVPiv519UqyeNSn/lwEAQB4o0QIAAAAAAAAAAAAAAAAAAIACa+/uj/W7W+KRXc3xaH1LNB3rLci9mXQqXrFyevzhWSfFwikVBbkTAADyRYkWAAAAAAAAAAAAAAAAAAAA5FnTsd54dt/ReGZfWzy772hsPdwRA0nh7i8tSser186MN545N2ZOKivcxQAAkEdKtAAAAAAAAAAAAAAAAAAAACCHkiSJhpaueHZfW/x839F4dt/R2NPaPSJZqkuL4nWnzY7XnzYnJlcUj0gGAADIFyVaAAAAAAAAAAAAAAAAAAAAcILqj3TGI/XN8cy+tnh239Fo7uwbsSyVJZlYMaMqLl0yNdatmRGVJaoFAAAYn7x0AQAAAAAAAAAAAAAAAAAAYBh2HjkW925pinu3NcaOps4RyTCprChWTK+KFTOqYvn0qlgxozrmTi6LdCo1InkAAKCQlGgBAAAAAAAAAAAAAAAAAABAFpIkiR1HOuPeLY1x79am2NVc2OKsyeXFsWpm1S9Ls6pjxYyqmFldGimFWQAATFBKtAAAAAAAAAAAAAAAAAAAAOBFJEkS2xqPxb3bmuLeLY2xu6WrYHenUxFrZk2K8xfWxgUL62LZ9KpIK8wCAIBfUaIFAAAAAAAAAAAAAAAAAAAAvyZJkth6+Fjcs7Ux7tvWFA0FLM6qqyiO8xbWxfkLauOc+bVRU15csLsBAGCsUaIFAAAAAAAAAAAAAAAAAADAhJckSWw+3BH3bGmK+7Y1xt7W7oLcm05FrJ01Kc5fWBfnL6yNZdOrIp1KFeRuAAAY65RoAQAAAAAAAAAAAAAAAAAAMCElSRIvHGiLuzcdjnu3NcX+o/kvzirOpGL1zOo4ZU5NnDanJk6ePSmqy/yv/wAAMBxe0gAAAAAAAAAAAAAAAAAAAEwYSZLE0w0tccdzB+LOFw7GvtauvN5XVZqJU2bXxKlzJsWpc2pi5czqKC1K5/VOAACYKJRoAQAAAAAAAAAAAAAAAAAAMG41dfTExkMdselge2w61BEbD7VHS2df3u6rLMnE+Qvr4rS5vyjOWjy1MtKpVN7uAwCAiUyJFgAAAAAAAAAAAAAAAAAAAONCa2dfbDzUHpsOtcemg78ozGrs6M37vdWlRXHxkilx5bKpcfa82igpSuf9TgAAQIkWAAAAAAAAAAAAAAAAAAAAY1Rv/2A8tKs57tvaGM/tb4sDbT0Fu3tSWVFcumRKXL5sWpw9b3IUZxRnAQBAoSnRAgAAAAAAAAAAAAAAAAAAYMxIkiSe298Wd246HHdvaYy27v6C3V1TVhSXLp0aVy6bGmeeNDmKFGcBAMCIUqIFAAAAAAAAAAAAAAAAAADAqLe3tSvu3Hg47th0KPa2dhfs3snlxXHZ0ilxxbJpccbcGsVZAAAwiijRAgAAAAAAAAAAAAAAAAAAYFRq6+6Le7Y0xu0bD8dz+9sKdm9dRXFctnRqXLFsapw2d3IUpVMFuxsAAMieEi0AAAAAAAAAAAAAAAAAAABGjQNt3fFEQ2s8tLM5Htp5JPoGkoLcO6WyJC7/ZXHWqXNqIqM4CwAARj0lWgAAAAAAAAAAAAAAAAAAAIyYxo6eeHJPazzVcDSe2NMa+492F+zu6dWlcfnSqXHZ0in/l73/Drrszu/DzM8556Y3dQ4AZjAZmAGGIikxiBIpM6xEkRRty1ovyy5btry2y2G3VrZkW17JaSXLQbbWpbWtde1q12U5yaVaZZKiKIm0SNqkmURyIoCZwSSEzv3Gm845+8e59w2NRqMBdPfbjX6eqjO/cNL33jf0uY3+fSbf9JTgLAAAeNQI0QIAAAAAAAAAAAAAAAAAAOCBub47zS9/9WZ+6as38ktfuZEvX997IPftlUWeOb+W55/YyLd99Fy+8f2n8oknNnLjxm7qunkgNQAAAPeWEC0AAAAAAAAAAAAAAAAAAADesbppszWe58Z4lpt7s9wcz4+0m+N5bi72XdmZ5uVr9z80qyqSj5xby3MX1/PcxY0898RGPnZuLcNemaoqc+bM2n2vAQAAuP+EaAEAAAAAAAAAAAAAAAAAAJAk2RrP87NfuprPv76Trcks41mT8bzJeFZnPG+yN6szOTQez+pM6/a4y06SfOTsan7guQv5Le8/mY9fWM+oXx13SQAAwH0mRAsAAAAAAAAAAAAAAAAAAOAxNm/a/MLL1/M3Pv16/t4Xrjw0oVh348xqPz/w3IX80HMX8+yFtRRFcdwlAQAAD5AQLQAAAAAAAAAAAAAAAAAAgMfQC5e286OfeT1/87OXcm13dtzl3LVhr8z3fOxsfvD5i/mtHzydXik4CwAAHldCtAAAAAAAAAAAAAAAAAAAAB4TV3am+YnPXsqPfub1vHh557jLuWtFkm95+mR+8PmL+b5nzmV9aKk8AAAgRAsAAAAAAAAAAAAAAAAAAOA97crONL/0lRv58c++np9/+Xqa9rgrujsr/TLf/L6T+bYPnMrv+vj5PHFidNwlAQAADxkhWgAAAAAAAAAAAAAAAAAAAO8RddPmpSs7+fVXNve3V26Oj7usuzLslflNT53Itz19Kt/y9Ml88omN9KryuMsCAAAeYkK0AAAAAAAAAAAAAAAAAAAAHlFb43k+9dpmfu3rXWDWp1/dyu6sPu6y7kqvLPKbntzItzx9Kt/6gVP5hidPZNgTmgUAANw9IVoAAAAAAAAAAAAAAAAAAAAPse3JPK/cHOfrN8d5ZbF9/eY4X7uxl69c30t73AXeRlUkJ1f6OTnq5+RK70h7erWfZ8+v5xvfdyIr/eq4SwUAAB5hQrQAAAAAAAAAAAAAAAAAAAAeAq/cHOeXvnIjX76+l1du7u2HZt0cz4+lnk8+sZFza4OM+mVGvapr+1VGvcNtt291UC1Cs3o5tdLP2qBKURTHUjcAAPD4EKIFAAAAAAAAAAAAAAAAAABwTG7uzfJ3XricH/vMpfzaK5vHXU6ePjXKDz1/MT/0/MU8dXJ03OUAAADckRAtAAAAAAAAAAAAAAAAAACAB2g6b/KzX7qWH//M6/m5L13LrG6PtZ6NYS/f/4nz+aHnL+Y3PbmRoiiOtR4AAIC7JUQLAAAAAAAAAAAAAAAAAADgPmvaNr/+9c382Gdfz9/+/JVsTebHWk9VFvntHzqd3/PJi/muj5zNsFceaz0AAADvhBAtAAAAAAAAAAAAAAAAAACA++Tla7v58c9eyt/8zOt5ZXNyrLX0qyKffGIj3/fs+fzuT5zPmdXBsdYDAADwbgnRAgAAAAAAAAAAAAAAAAAAuIeu7U7ztz53OT/+2Uv5zGtbx1bHmdV+vvGpE/vbJy5uZNgrj60eAACAe02IFgAAAAAAAAAAAAAAAAAAwLs0ntX5e1+4mh/7zKX8/MvXUrcP9v5lkXz03NqR0Kz3nRylKIoHWwgAAMADJEQLAAAAAAAAAAAAAAAAAADgHaibNr/81Rv5sc9eyk+9cCW7s/q+33PYK/O+k6M8dXK033707Fo++eRG1oeWjwMAAI8Xn4IAAAAAAAAAAAAAAAAAAADuwt6szqWtSS5tT/K/ful6fuJzl3Jpe3rP7zPslfmGJzfyvpOjvO/kSp46FJp1ZrWfoiju+T0BAAAeRUK0AAAAAAAAAAAAAAAAAACAx1rdtLmyM82lrUkub09yeXuaS9vTXNnp+su5nWl932ooknzLB07lh567kO995lzWh5aCAwAAvBWfnAAAAAAAAAAAAAAAAAAAgPe06bzJ61uTvLo5zmubXfvq1iSvbY7z6uYkl7YmmTftsdT20XOr+aHnLuZ3P3chFzeGx1IDAADAo0qIFgAAAAAAAAAAAAAAAAAA8J7Qtm1e25rkU69u5VOvbuazr23lqzfGubIzPe7Sjji3NsgPPHchP/jchTx7Yf24ywEAAHhkCdECAAAAAAAAAAAAAAAAAAAeSTvTeT772nZ+49XNfPrVrXzqta1cfcgCs5ZW+mW+75lz+cHnL+Zbnz6VqiyOuyQAAIBHnhAtAAAAAAAAAAAAAAAAAADgoTeZN/nS1Z187vXtfOq1rXz61a188epOmva4K3tzVZH81g+dzg8+dzHf/bGzWelXx10SAADAe4oQLQAAAAAAAAAAAAAAAAAA4KFyfXeaFy7t5IXL23nh8k5evLydl6/upn6IA7MOe+7ien7w+Yv5/o+fz9m1wXGXAwAA8J4lRAsAAAAAAAAAAAAAAAAAADg2V7Yn+dWvb+aFS9tdaNalnVzZmR53WW/bkyeG+YHnLuQHn7uYD59dPe5yAAAAHgtCtAAAAAAAAAAAAAAAAAAAgAdqb1bnp168kh/99Ov5xa/cSHvcBb1DT2wM81s/dDo/9PyFfPP7TqYsiuMuCQAA4LEiRAsAAAAAAAAAAAAAAAAAALjvmrbNr37tZv7Gp1/P333hSnZn9XGX9KZW+mXOrw9zfn2Qc2uDXFgf5tz6IOfXh7mwPsi59UHOrQ0z7JXHXSoAAMBjTYgWAAAAAAAAAAAAAAAAAABw33zl+l5+9DOv58c/83pe3ZwcdzkpkpxbH+SJjVGePDHMEye69skTozxxYpiLG8OsDaoURXHcpQIAAPAWhGgBAAAAAAAAAAAAAAAAAAB31LZtLm9P8+Xru6mbNkVRpCySsihSFEmZRbuYT1Hk869v5W98+lJ+49XNY6l52Cvz3MX1fPKJE/nIudX9oKyLG8P0q/JYagIAAODeEqIFAAAAAAAAAAAAAAAAAADc1mub4/zNz17Kj3/2Ur54dfe4y7mjD55eyTc8dSLf8MRGvuHJjXzs3Fp6wrIAAADe04RoAQAAAAAAAAAAAAAAAAAA+zbHs/ztF67kb372Un71azePu5zbOr3Sz/NPbOSTT3aBWZ98YiMnRv3jLgsAAIAHTIgWAAAAAAAAAAAAAAAAAAA85ibzJj/3xav58c9eys996VpmdXvcJSVJyiL5wOmVPHt+Pc+cX8uzF9bz7Pm1nF0bpCiK4y4PAACAYyZECwAAAAAAAAAAAAAAAAAAHkPjWZ1PvbqVv/nZS/k7L17O9qQ+1np6ZZHnn9jIs+fX8syF9Xz8/Fo+em4to351rHUBAADw8BKiBQAAAAAAAAAAAAAAAAAA72Ft2+bVzUlevLyTl65s56XLO3npyk6+cn0vTXvc1SXPP7GR3/P8xXz/J87n1Er/uMsBAADgESJECwAAAAAAAAAAAAAAAAAAHgFt22betJnWTWZ1m1nd3NJvM6+bjOdNvnp9Ly9d2cmLl3fyhSs72ZnWx13+ERfWB/mB5y7m93zyQj5ydu24ywEAAOARJUQLAAAAAAAAAAAAAAAAAAAeQq/cHOenX7qSn/nC1bxweSeb4/lxl/SuDHtlvveZc/nh5y/mWz9wKlVZHHdJAAAAPOKEaAEAAAAAAAAAAAAAAAAAwEOgbdu8dGUnP/3i1fz0S1fywuWd4y7pXeuVRb7xqRP5PZ+8mO975lzWh5Y3AwAAcO/4lAkAAAAAAAAAAAAAAAAAAMekbtr8+iub+emXruSnX7qaV26Oj7uk2xpURX7HR8/mBz5xId/8/pMpkrRt0qRN03YBYMu2TdK0bZLk4vowvao81toBAAB47xKiBQAAAAAAAAAAAAAAAAAAD9CVnWl+45XN/OwXr+ZnvnAt1/dmx13SbRVJvuXpk/nB5y7m+549l/WhpckAAAA8XHxSBQAAAAAAAAAAAAAAAACA+2Qyb/L5S9v51Kub+dSrW/nUq5t5dXNy3GXd0TPn1/KDz13I93/iQi5uDI+7HAAAAHhTQrQAAAAAAAAAAAAAAAAAAOA2buzO8unXt3JtZ5peVWTYqzKsygx6RQZVmVGvyqDXjYdVmWGvys3xbD8s61OvbuXzl7Yzb9rjfilv6amTo/zOZ8/nB5+7kI+dXzvucgAAAOCuCNECAAAAAAAAAAAAAAAAAIAk03mTX39lM7/w5ev5hS9fz+de387DH3/19vSrIh8+s5pnzq/lY+fX88y5tXz0/FrOrvZTFMVxlwcAAABvixAtAAAAAAAAAAAAAAAAAAAeS23b5kvXdvPzL1/P//blG/nlr97IeN4cd1n3zBMbw3zs/Fo+dm5tEZq1lg+cWkmvKo+7NAAAALgnhGgBAAAAAAAAAAAAAAAAAPCe1rZttibzXN+d5fruLK9sjvOLX7mRX/jy9Vzenh53eW9ppV/mt33oTH77h0/n5Kiffq9MvywyqMr0qyL9qlxsXX9QFVnpVxn1q+MuHQAAAO4rIVoAAAAAAAAAAAAAAAAAADzSvnZjL7/29c1c2p50QVl7s1zfneba7iw39rrgrHnTHneZb8uplX7+gY+eyfd87Fy+7QOnBGIBAADAbQjRAgAAAAAAAAAAAAAAAADgkTOrm/zdF67kL/79V/Jrr2wedzn3xFMnhvmeZ87luz92Nt/01MlUZXHcJQEAAMBDTYgWAAAAAAAAAAAAAAAAAACPjEtbk/ylX381f/nXX8213dlxl/Ou9MoiH7+wnu/88Jl898fO5pnzaykKwVkAAABwt4RoAQAAAAAAAAAAAAAAAADwUGvbNr/ytZv5i3//lfz0i1dSt8dd0Tvz1IlhPvnkiXzDkxv5TU+eyLMX1jPslcddFgAAADyyhGgBAAAAAAAAAAAAAAAAAPBQ2pnO8+OfuZS/+PdfyRev7h5bHUWSokiatxHetdIv88knNvINi9CsTz55IufWBvetRgAAAHgcCdECAAAAAAAAAAAAAAAAAOCeGs/qvLo5ySub47x6c5xXN8d55eYkr26Oc3M8S5GkKotuK7q2txiXxbJNPvXqVnam9bG8hg+eXsl3fOh0vv2Dp/MtT5/M2qCXedNmMq8znTeZzJtM60Pjuptr2uTixjAfPrOaqiyOpXYAAAB4XAjRAgAAAAAAAAAAAAAAAADgTbVtm2ndZnsy77ZpnZ1Fu5y7ujPdD8l6dXOca7uz4y77bTs56uXbP3g6v/WDp/JbP3g6T5wYveGYXlmkN+hlbXAMBQIAAABvIEQLAAAAAAAAAAAAAAAAAOAxVDdtruxM8/rW5Mj22uY4l7an2RzPsj3pgrLmTXvc5d5za4Mqn7i4nt/6wdP5jg+dzscvrKcsiuMuCwAAAHgbhGgBAAAAAAAAAAAAAAAAALyHXdmZ5le+eiOfv7Sd1zYPwrIub09Sv8eysYa9Mh88vZIzq4OcXu1320r/6Hi1G6/0q+MuFwAAAHiXhGgBAAAAAAAAAAAAAAAAALyHXN+d5pe/ejO/9NUb+ZWv3syXru0ed0n33QdOr+Qf/ean8sPPX8zGyPJZAAAAeFz4WwAAAAAAAAAAAAAAAAAAgEfYjb1ZfuVrN/PLX7mRX/7ajXzhyns/NCtJyiL5ro+czY9881P5tg+eSlkUx10SAAAA8IAJ0QIAAAAAAAAAAAAAAAAAOEab41n+ty/fyP/68rX8/a9v5rXNcYqiSL8q0i/Lrq0Ot2X6Zbf/5niely7vpD3uF/EAnRz18nu/8cn877/pyTx5YnTc5QAAAADHSIgWAAAAAAAAAAAAAAAAAMADVDdtPv3aVn7+5Wv5+Zev59OvbaV5QwpWm8k8SeoHX+BD6vknNvIj3/xUfufHz2fYK4+7HAAAAOAhIEQLAAAAAAAAAAAAAAAAAOA+e31rsh+a9b995UY2x/PjLumBqcoiT2wM8+TJUZ46MczFjWF6ZZm6aVO3bdce6s8X46btksU+dGY13/L0qTz/xMYxvxIAAADgYSNECwAAAAAAAAAAAAAAAADgXZg3ba7tTHN5Z5or25Nc3j7af+XmOF++vnfcZd4X/arI+qCX9WGViye6kKwnT4zy1MlRnjwxypMnhjm/PkxVFsddKgAAAPAeJEQLAAAAAAAAAAAAAAAAAOAuXN2Z5jOvbeXTr23lpcs7ubQIybq2O03THnd1797aoMrFjeH+dn59kI1RP2uDKuvDXtYX7f542MuwVx532QAAAMBjTIgWAAAAAAAAAAAAAAAAAMAttifzfOa1rW57fTufeW0rr29Njrusd6VfFXn+4kbef3rlSFjWxY1hntgYZn1o2SkAAADwaPG3GQAAAAAAAAAAAAAAAADAY213WufFy9v57CIs6zOvbeXL1/eOu6x3rVcW+YYnN/ItT5/Ktzx9Mr/pyRMZ9avjLgsAAADgnhGiBQAAAAAAAAAAAAAAAAA8Nq7tTvP5S9t54dJOPn9pO5+/tJ2vXt9Le9yF3QNVWeT5ixv51g+czLe8/1S+8X0nsiI0CwAAAHgPE6IFAAAAAAAAAAAAAAAAADwSJvMmL1/dzZXdadImKbr5RZOiONRPN9iZzPP5yzt5YRGYdXl7egyV352qSL7hyRP5jg+dzsWNYWZ1k1ndZta0i343ntZN5nWbWdOkaZJz64N841Mn8s3vO5nVgdAsAAAA4PEhRAsAAAAAAAAAAAAAAAAAeKi0bZtL29O8eHk7L17eyYuXd/LS5Z185fpu6va4q7u3njwxzHd86HS+40Nn8m1Pn8rGyNJPAAAAgLvlb1IAAAAAAAAAAAAAAAAAgGPRtm1u7s3z9Zt7+cKV3bxweTsvXekCs26O58dd3n0x7JX5lqdP5js+dCa/7YOn88EzKymK4rjLAgAAAHgkCdECAAAAAAAAAAAAAAAAAO6brfE8r9wc55XNcV65Oc6rm+N8fdG+cnOcvVlz3CXec4OqyLn1Yc6vDXJ+fZBz68NcWB/k2Qvr+eb3ncywVx53iQAAAADvCUK0AAAAAAAAAAAAAAAAAOAx07ZtXr62l1/8yo1c3p6kKJLzi6CnZXt6dZCqLN7yWjvTeV69OTkSjHU4KGt7Uj+AV/RgVWWRZ86t5RMX1/PUyVEXlLU22A/OOjHqpSje+r0DAAAA4N0RogUAAAAAAAAAAAAAAAAAj4HJvMmvfO1Gfu6L1/IzX7yWV26O73h8VSRn17pQrfPrg1xYH+bc+iCb4/l+WNYrN8e5OZ4/oFdwfD50ZiXPP7GR5y9u5JNPbuSZ8+sZ9srjLgsAAADgsSdECwAAAAAAAAAAAAAAAADeoy5tTfJzX7qWn/vitfzCl69nPG/u+ty6TS5tT3Npe3ofK3z4PLEx7AKzntjI80+s57mLG1kfWo4JAAAA8DDytzYAAAAAAAAAAAAAAAAA8IBd2Znm5au72Z3VKYukKIqURVKmSFEkZXHQLvcXSZq2TdsmTbq2bd84VzdtPvXaVn7ui9fy+Uvbx/1SH1plkXzwzGo+fmF9sa3lmfPrObXSP+7SAAAAALhLQrQAAAAAAAAAAAAAAAAA4D66sTvLZ17fymdf38pnX9vOZ1/fyqXt6XGX9VgZ9sp87NxaPn5hPc9e6NqPnVvLqF8dd2kAAAAAvAtCtAAAAAAAAAAAAAAAAIB7qm3bvHh5J3uzOh84vZLTq4PjLgkemM3xLJ97fTuffX07n3mtC856dXNy3GU90nplkQ+fXc0z59fysXNrefb8ej56bjVrw17aNmnTpm0Pjl/OLftFkawPeymL4pheAQAAAAD3ixAtAAAAAAAAAAAAAAAA4J75jVc28x/+7Rfz4uWdJEm/KvLDn7yYf+P7PpZeVR5zdfDuTeZNXtsc59XNcV7ZnOTVm+O8cvNgfHVnetwlPtLOrg3yzLm1fOz8Wp5ZbB86s5q+3x8AAAAA3IYQLQAAAAAAAAAAAAAAAOCeePnqbv7gX/pUtibz/blZ3eYv//pr2Z3W+RM/9IkURXGMFcKdjWd1ruxMc3l7mis7i217kte3Jnl1c5JXN8e5vC0k690Y9co8dXLUbSdGeXK/P8yTJ0Y5udI/7hIBAAAAeIQI0QIAAAAAAAAAAAAAAADetbZt8x/85AtHArQO+4nPXc7v+MjZ/O7nLjzgyiDZnS7DsSa5ugjH2g/K2p7sB2ZtT+rjLvVYbAx7OTHq5fL2JNO6fVfXGlRFnlyEY73v5ChPnjgIyXrq5CinVvrC9AAAAAC4Z4RoAQAAAAAAAAAAAAAAAO/a337hSn7165t3POZP/9QX8h0fOp2TK/0HVBXvZW3bZmcRjnX1UCjWrUFZV3em2Zk+nuFYd/LRc6v5zg+fzXd95Ex+01Mn0iuLtG2bm+N5Lm9Pcml7mstbk1zenubyTtde2prkxt4sg155KByra588Mcz7To5yZm2QUkgWAAAAAA+IEC0AAAAAAAAAAAAAAADgXRnP6vyZ//mLb3nc9b1Z/sz//MX8Oz/w8QdQFY+yumlzaXuSr98Y59ItoVhXdqa5sj3JlZ1p9mbNcZf6yBj2ynzr06fynR85k+/6yJk8eWL0hmOKosiplX5OrfTzzPljKBIAAAAA3iYhWgAAAAAAAAAAAAAAAMC78t/+4tfy+tbkro79659+PT/4/IV82wdO3+equJ/mdZPtSZ2tyTy7szrV9XGG/TJrg15me9OMqiKrgyr9qrzjNV7dnORrN/fy1evjfO3GXr56Yy9fu7GXr98cZ1a3D/AVvfcUSZ46Ocp3fOh0vvPDZ/JtHziVUb867rIAAAAA4J4SogUAAAAAAAAAAAAAAAC8Y69tjvPf/OJX39Y5/+FPvpj/4Z/6FoE+D4G2bbM9qXN1d5rru7Nc253m6s4s13enuTmeZ2syz/Zknq3D/ck8e7Pmrq7fr4qs9qusDqqs9KusDaoMemVe35rk1ZvjPG45WWWRfOTsWp67uJ7nntjI8xfX86GzqymLIk3bpm2Tpm3TtN3X5nDbtG3aJGVRpCySYtnmoF8WRYpF2yuLO4aYAQAAAMB7gRAtAAAAAAAAAAAAAAAA4B37f/y9L2Uyv7tApaWv3hjn//sLX8m//F0fvk9VPd7qps2NvS4Q69rOLNf2Fu0iJOvaIjDr6s401/dmmd3HJKtZ3eZmPc/N8fy+3eNhVST50JnVPPfEep67uJHnLq7n4xfWhccBAAAAwD0kRAsAAAAAAAAAAAAAAAB4R37lazfyk5+//I7O/fO/+LV8/8cv5GPn1+5xVQ+f7ck813dn6VdFTq70M+qVKYribV9nPKtzaXuay9uTXD7UXtud5uruLNcXoVk39ma5f7FYHFYWycWNYZ48McqTJ0d56kTXf/+plTx7YS1rA0v4AAAAAOB+8jdwAAAAAAAAAAAAAAAAwNtWN23+9N/9wrs6/0/+5Av5c//YN6cq336g1MNoXjd5+fpeXrq8k5eu7OQLV3by0uWdvLY1OXJcryxyYtTLxrCXE6N+1x/1cmLYy4lRL2vDXjbHs1zanubK9mQ/OGt7Uh/TK3t8rQ2qnF8f5NzaIBc2hnlqPyxrlKdOjnJhfZBeVR53mQAAAADw2BKiBQAAAAAAAAAAAAAAALxtf+1Tr+WFyzvv6hqfenUr/79feyU/8pvfd4+quj/ats28aTOZNxnP6oznTSbzJq9ujg8FZu3m5Wu7mTftW15v3rS5tjvLtd1Zkr37/wJ4g41hL+cW4Vjn1gY5vz7I2bVBzq8P9+fOrQ+y0q+Ou1QAAAAA4A6EaAEAAAAAAAAAAAAAAABvy9Z4nj/7sy/fk2v9lz/zcv6Bj57NEydG9+R6b1fbtvnC1d389ItX8uuvbObKzjSTRUhWt9WZzJvcRTYWD4GTo0PhWIcCsc4v5s4uxiPhWAAAAADwniBECwAAAAAAAAAAAAAAAHhb/tzPfzk39mZ3PGbYK/Pv/9An8kf++mfuGEC1O6vzp/7OS/nTv/eTKYriHld6e03b5lOvbuWnX7ySn37pSr56Y/xA7ss7d2qln/PrXQjW+bXBG4Kyzq8PcnZ1kEGvPO5SAQAAAIAHSIgWAAAAAAAAAAAAAAAAcNe+dHU3/9OvvvKWx/3T3/Z0vueZc/nHf8v789//8tfueOzPfPFafurFK/m+Z8/fqzLfYF43+eWv3sxPvXQl//NLV3NlZ3rf7sXbV5VF3ndylPedHOXpUyt5/+mVPH1qlPefWslTJ0bCsQAAAACA2xKiBQAAAAAAAAAAAAAAANyVtm3zf//pL6Ru2jsed3FjmN//be9PkvwL3/nB/NSLl/PK5uSO5/ypv/uFfNsHTmdj9O6WPM3rJjvTOruzOjvTOl+9vpeffulKfuYL17I1mb+raz8uVvtVTq/2c2a1nxOjftaHVTaGvWyMetkY9rI+7NqNYS/ro15OrfTz1IWNTOZNdqbzvHp5O9vjWXZnTXan8+xOu3Zv8TUZz5usDaq8/9RBUNYTJ0bplcVxv3QAAAAA4BEjRAsAAAAAAAAAAAAAAAC4Kz/7xWv5+Zevv+Vxf/C7P5JRv0qSrPSr/JHf+Uz+4F/61B3PubozzX/xM1/K//V3PfOGffOmzVev7+XFy9t58fJOvn5znO3JPLuHwrJ2p3V2p/NM6zsHfD2uTo56ObM6yJm1fk6vDHJ2rZ8zq4NFWFY3Pr3az9nVwf7X7m5VVZkzJ0b74wuDKnXd3OuXAAAAAADwBkK0AAAAAAAAAAAAAAAAgLc0q5v8Zz/9hbc87je//2R+57Pnjsz99g+fye/+xPn8xOcu3/Hcv/Trr+a7PnImo36ZFy/v5MXLO3np8k6+eHVHONZtnBz1cn59mHNrXTjWmdVBzixCsc6s9XNmZRma1U+vKo+7XAAAAACAe06IFgAAAAAAAAAAAAAAAPCW/sKvfD1fvTG+4zFFkj/8vR9NURRv2PeHvvej+fmXr+fmeH7Ha/yhv/Lpd1PmQ2N9WOVj59by0XNr+di5tXz47GqSZGs8z+Zk3rXjWTbH82xN5kfanWmdUa/MhfVBzq8PF9tgsQ3322FPMBYAAAAA8HgTogUAAAAAAAAAAAAAAAD3wHhW58vX97I9mWfetKmb9jZtc2TctslKv8qoX2Z1UGWlf3grs9Kvsjqo0q+ONyzpys40/5+f/8pbHvd7v/GJfPzC+m33nVkd5A9+90fyx3/ihXtd3rHqlUU+fHZ1PyyrC85azcWN4W3DxAAAAAAAuHeEaAEAAAAAAAAAAAAAAMDbdGNvlhcubefzl7bzwuWdfP7Sdr58bTdNe3/uV5VFVvtVTq/2c3a1n7Nrg/3t3C39Uyv9VGWRtm2zNZnnys40V7anubIzzdWd6ZHxlZ1pru1OM6u7wtu2TZukXbyOtptM0y76d7A+rPIvfeeH7njMD3/yYn7ss5fyS1+58e7ekPvk5KiX7/ro2bzvxCjDXplRv8ywV2bYqxZtt40WcyuDMhfXh+kdc8gZAAAAAMDjSogWAAAAAAAAAAAAAAAA3EbbttmbNbm2O82Ll3eOhGa9vjV5oLXUTReItTWZ5yvX9+54bFUkJ1f62Z7MM63vU6rXbfzzv+2DOb06uOMxRVHkj/7OZ/KP//lfzmTePKDK7uzC+iDf+8y5fM/HzuWb338yvbI47pIAAAAAALhLQrQAAAAAAAAAAAAAAAC47ybzJl+8upMvXd3N5nieybzJeFZ37bzJZF5nPGsW48X8rEndtlntV1kZVFkbVFnpH7Srg+rIvlGvStO2qZs28+aWtm0zr9vUi/2zusnOtM72ZH7QTubZntZH2geYQXXP1G1ybXf2QO/5oTMr+ZFvfuqujn369Er+2e/4QP7sz758f4u6gw+eXumCs545l+cvrqcoBGcBAAAAADyKhGgBAAAAAAAAAAAAAABwT13bneaFS9t58fJOXri8kxcubefL13YfyUAq7s4f+t6PpleVd3387//W9+dvfe5yXrqycx+rOlAWyccvrHfBWR87lw+fXX0g9wUAAAAA4P4SogUAAAAAAAAAAAAAAMC+tm2zNZnnxt4886ZJ3bSZN23qxbbfb9vM666/O6vzhSu7efHydl64vJOrO9Pjfhk8QL/jI2fy2z505m2d06vK/LHvfyb/3F/4tdTN20tXWxtU+di5tbzv1Cir/Sqrg17WBlVWF9t+v19lbdDL6qDKmdV+Rv3qbd0HAAAAAICHnxAtAAAAAAAAAAAAAACA94imbdMsg67aLuCqaZL5or83q3Ntd5prO7Nc3Znm2u40V3dmubo7XYxnubY7zax+e6FGPL56ZZF/5Xs++o7O/YYnT+SP/+DH82//2OdyuxytIsnTp1fyzPm1fOzcWteeX8tTJ0YpiuLdFQ4AAAAAwHuCEC0AAAAAAAAAAAAAAIC3qWnb7E7rlEWRQa9Mr3x7gT5N22Z7Ms/meJ6b43k2x7Pc3Fu043n2pnXG8ybj2a1tk/G8zmTeZG9WZzxrMq2b1E0XkiX6igftX/jtH8wHTq+84/O//xMX8vwTG/mrv/Faru/OMuqX+ei5tTx7fi0fObeWlX51D6sFAAAAAOC9RogWAAAAAAAAAAAAAADAIeNZnUvb01zenuTS9iRXtqcH462uvbIzzbw5iKyqimTQKzOoygx75dF+VabfK7M3rbM5nmVz3IVnCbx6/FRF0qvKVEWRXlWkKoq0SfZmXTDao2TYK/MHvv3p/NPf/vS7vtb7T63k//Q7PnwPqgIAAAAA4HEjRAsAAAAAAAAAAAAAAHjozesmN8bz3Nib5ebeLNuTOnuzg213Wmdv1nT9WZ296cG+ybxJ2yZ12+63TdOmTVI3bdq2Td0mbdtmb9ZkazJ/2/XVbRb3f7SCkHj3iiQfOL2Sj19Yz7MX1vPxC2v58Nm1jHplqrJIb7FVZZGiKN70Ok3bZjxrsjurM97/nq735/ZmdbbG81zbnebKzjRXd2aLdppru9M0d5nKdmqln3Nrg5xbG+Ts+mC/vzaoUhRJkSLLMvfbFCkOjU+u9PPxC+s5tdJ/x+8bAAAAAADcC0K0AAAAAAAAAAAAAACA+6Zp20znTcazJuN5F3Q1ntf74/35aZ2bh0Kybux1/Rt7s9wcd6FZcNyGvTIfPbeWZ8+v7YdmPXN+LSv96l1fuyyKrA6qrA7e/rXqps2NvVmu7kz3g7VujudZ6ZcHgVmLrV+V77pWAAAAAAB4WAjRAgAAAAAAAAAAAACAR1zbtrm6M81XbuzlK9f28vWb4+zN6tRNm3nTpm7a1O2iXcztzzdtyrLIqZV+zqz2c3Z1kDNr/ZxeHeTsaj9nVgc5s9pP75bgnXnT3fPS1iSXtie5tL3oL8dbk1zdnWUyb47pXeFhtjHsZX1YZdgrM+p17bBXZtRfzh2MyyLZndbZm9XZnTXZnc6zO22yO5tnb3owN63bN9ynLJJeWaQqi/TKMtV+v2tX+1XWBlXWF/WsDbp2fdjbn1/OnVkd5OnTK+mVxTG8Y3dWlcV+SNazx10MAAAAAAA8QEK0AAAAAAAAAAAAAADgEbE5nuUr1/eObF9dtLuz+r7e++Sol9Or/az0q1zdmebKzjTNGzOL4IiySD54ejXPnF/LsxfW99tza4N7fq953WQ8b9JbhGSVZZGyePgCrwAAAAAAgHtHiBYAAAAAAAAAAAAAAA+NybzJ9d1pru/Ncm13ls3xLE2TNG2btu3aJknbtmnag3a5f9QvszHsZX3Yy8ZiWx917bBXvul927bN7qzO1niercliW/Q3x/PUTZthr8ygKjPslxlWZYa9KoNekWGvWozLDBb3uLE3y/W9WW7uzXJ9t+vf2JvlxuH+3iyb43mSpCqSoihSHmrLokixbJM0bbI1mT+Ar8Lt3RzPc3N8fPfn4bcx7OWj51bzzPn1PHt+Lc9cWM9Hz65m1K8eyP17VZn16s1/zgEAAAAAgPceIVoAAAAAAAAAAAAAANwTTdtmOm+yN6sznjcZz5qM53XGs8NzdbYn81zb7cKlru1O99tru7PsTOv7Vt+gKg7CtUa91E27H5a1PZmnbu/brd9S3SZplwUcYyE8VtYGVc6s9nN2bZCza4OcWR3k7Fp/0Q5ydrWfUb9KVRbpLbZquRXFkfmyLFIWxXG/JAAAAAAA4DEjRAsAAAAAAAAAAAAA4D2sbtq8ujnOl67u5vWtSdp0YVL9qsywV6ZflfvjQVVm0OvaflVkPGtyczzLzb1Zbo7nb2g3x7Pc3Jvn5rgLv5rMm+N+uXc0rdtc253l2u7suEuBN7Ux7OXEqJf1YS8r/TKjXpVRv8yoX2XUO9we7BtUZXrVQbDVsi3LIr39flIVRXpVmVMrvZxdHWTUr4775QIAAAAAALwrQrQAAAAAAAAAAAAAAB4CbdvmlZt7+dXXt3Nzb5bVQS/lfJ61fpUTo142Rr2s9qsURXHb8yfzJl+5vpsvXd3Nl6/t5UvXdvPytd185freQx9uBQ+7k6Nezq8Pc359kAuL9vzGMOfWBimLZDpvMq3bTOdNJnWzGDeZzI/2B1WZkyu9nBj1c2LUy8lR/8h4Y9hLVd7+ZxwAAAAAAIA3EqIFAAAAAAAAAAAAAPA2zJs2N/Zmubk3S1UWObXShd+UbxJudTuzuskXr+7mhUvbeeHyzqLdzvakvuN5VVlkY9jbD9vZGPZSlslXru/llZvjNO27fXXwaCmSrPSrrAyqrPbLjPpVVvfHVVb6ZVb6VYa9KlWZlEWRsli2RcryUH8xX5VFzqz290Ozzq8PM+yVx/1SAQAAAAAAuA0hWgAAAAAAAAAAAADAI2M6b/LKzXGu7k6zOZ5nczxbtPNsTea5uTfP1uRgbnM8z96szuqgyvqwlxPDXtZHXbsx7GVjdLRdH1bZmdS5vjfL9d3pop3lxqK9vtdd+1ZlkZwc9XNqpZ9Tq117+lD/1Eov13dn+6FZX7y6m/odJF7ViwCvG3uze/F2wkOjLLowrLVBtfiZOdhOrvQO9Q/mT4x6GfXKFG8jwA4AAAAAAID3FiFaAAAAAAAAAAAAAMBDZTyr87Wb43zt+l6+emMvX7sxXrR7eW1zkrcfPZX9QK1X7nm1naZNF7i1N0uu3aebwNtwYX2QixvD9KoyvbJIVRZdWxzqH9om8ybXdqa5tjvLtd1pbuzN8nZz3lb6ZS5uDHNhfZgLG4ttfZATo35GvTKjfplRr7pt2ysLYVgAAAAAAAC8bUK0AAAAAAAAAAAAAOAR17ZtpnWbnek8u9M6O5M607rJoFdmeOtWlelV5R2vVzdtJvMm43md8exoO5k3mc6bTOs2s/qW/m3GTdumbZN2Ued+/5Zx07S5sjPN127s5dL29AG8a/DoO7XSzwdOr+Tp0yv54OmVrn+qG6/0q3d17bppc2Nvluu7s1zdneba7jTXdrqArcm8ycmVfi6uD3NhY5Dz68Nc3BhmbVAJwgIAAAAAAOCBEqIFAAAAAAAAAAAAAHcwq5vsTutUZZGyKFKVi63IOw6Lads2TZs0bZu9WZ3daZ3taZ2dyTw70268M+36O5O6a6e327dop3XmTXvX96+KLAK2qgyqIv2qzLRu9oOyZvXdXwvutyJJvypSFEXKIimLIsWyzdFxkuzNup+Je6Uqko1RP4OqyLRuM503mczr3O2PSZHk5Eo/p1f6ObXaz6lD/dMr/Zxc6aUqirRt0qQLlqubrm3aNk0Ofme0bZuNUS8fWARlnRj179nrfMPrLoucXRvk7NogH8vafbsPAAAAAAAAvBtCtAAAAAAAAAB417Yn81zenuaDZ1b2F6wCAADcC03bZnda7wdN7S7bxdzO4X3TOk3bhe0MqjK9RdtfhEQd7verInWTbI5n2RzPc3PZ7h30N8ez3NybZ3f25mE8y0CfqizSW4RslcWy9kUAzqHArKZNmqbNcUdU1W2yN2uyN2uOuRIeR1WRjPpVTq/2c3plkDOr/Zxe7efM2iBnVhb91UFOr/ZzdnWQEyu9t/33DfOmzc5knu3pPNvjOluT+f62PZlna9z1y6LIxqiXjeFiG93SDntZ6Ze3DcybN20m83oRqtVt07pr66bNiVEXkrUx6qUq/X0JAAAAAAAA3A9CtAAAAAAAAAB4x75+cy//7o99Pr/+ymbaJCdGvfyT3/r+/IFvf/q2i0sBAIBHx7xpUzdtBlXxjp7v27bN1mSeazuzXN2d5urONNd2Z7m2O8313VnGi8CZ8azeD58Zzw/1Z00XTlMfd9zUnS3DseZNm8lxFwN3oV8VWe1XmdZNpnX3c363hr0yJ0e9nFzp77cnRr2cHPW7/rCXUb/MqF9l1Cuz0q+6ce9o26/K+/gKO72y6Opc6Scn7989eoNe1gb35/oAAAAAAADAWxOiBQAAAAAAAMA78tKVnfyL/9Ov5eZ4vj+3OZ7nz/7sy3nl5jh/9Hc9I0gLAACOybxpc2NvluuLwKobe7Nc253l+t4sO5N5xrMmu7M6e/tbk73p4fFBeFVZ5CAA55ZgnJXFeNSvUhZZhGTNFoFZ08we8gAseC9bG1T58NnVfOjMwfbhs6t56uQovfLg83rdtJnVzX6o1qxuMp0fjHtlkZOjXk6t9DPqV8f4igAAAAAAAADeSIgWAAAAAAAAAG/bzb1Z/rW/8ukjAVqH/ZXfeC3PXVzP7/umpx5wZQAA8PZtjef52s29fO3GOK9tjjNv2vSrMoOqzLBXZNDr+oOqzKBXZrhoB1WZFMlkGUK1CJ8az5qM50fnJvMulGalX2VlUGVlEUC12q+yOqi6/rLtVxn2y0znzX7A1e6sznhxrd1pk/Gs3g/B2p3WubE3W4RmdUFZm2/yrP5ONG2yu7hfMrtn1wUOnFrp59nza3n2wno+cXEj3/7s+Xzk3FpmdZsvv3oz13en2RrPszmeZ3syz+Zknq1x97O+NZlnOm9yaqW/H5r14bOrObc2uKtw66osUpWVgCwAAAAAAADgkSRECwAAAAAAAIC3pW7a/Fs/+rl8/eb4jsf9pz/1hTz/xEY+cXHjAVUGAMB7WdO2ubYzzWtbk7y6OcmNvVl6ZZGVfpVRrwukGvXLjBbjUb8Lqhr1qvSqIpe2Jvn6zXG+fmO8H5jVjffeNBwWeDT0qyInRv2cGPVyYtjLxqiXk6NeNg7NrQ6q7E7rbE260KmtRfjUrf3tSb1/3Y1hL6dX+zm10s/plX5Or/YPxqv9nFkZ5NRKP/O27YLsdhdhdrf2F9vmeJ4iydOnV/YDs545v5Znz6/n/PpB4FVVlTlzZi1J0quSCxvDnF3tH8dbCwAAAAAAAPDQE6IFAAAAAAAAwNvyZ3/2S/n5L19/y+NmdZt/869/Nv/tP/lbsjHyn6cBAB4HbdumbtrMmjazusm8adM07V2fvzOt89rWJK9tjvPa5uSgvzXJ61uTzOq7vxbw3jHslXn61Eref2rUtadX8v6To7z/1ErOrPYz7JX7AVTvVt202ZvVGfbK9Kvynlxzad60qYrcs1oBAAAAAAAAEKIFAAAAAAAAwNvwE5+9lD//i1+76+O/fnOcP/4Tn8+f+oeet0gYAOAWbdtmb9Zkb1anWYRPNW0X4FK3bZq2TdMk9f6+g2Oatu0Cqg4d0yzOO3ydvVmdvVmd8eI+e7M6e/Mm42V/1vXHsyZ1e/cBVfWhkKz5oj+ruz7weOmVRQZVmX5VZLAInhpUxaLt+lVZJEWRMklRJEWKrj3cTxcuNeyVed/JZVhW155bGzywz5RVWWR9eH/+iXWv9LkYAAAAAAAA4F4TogUAAAAAAADAXfn869v5E3/rhbd93k+/dDX/wy9/Pf/Et77/PlQFAHC85k2bybwLoRrP60zmTfZmTbbGs9zYm+fG3iw392a5sbcYj7vxcm5aC50C3tywV2ZtUGV92MvaoMrqoMraoOt3417Wh9Vi3Fvsr7K2OH5QlZnWTSbzJtN5107mTSZ1k8m8PjI3q9sMe2VG/TKjXnWkf7QtM+xVi8CsIqXAZAAAAAAAAACOkRAtAAAAAAAAAN7S9d1p/rW/+ulM5s07Ov8//5kv5Rue3Mg3ve/kPa4MAHicNG27H1a1N6uzN2synh3tz+o2g16ZQbUMeikzWLSHt0FVplcW2Z7UuTmeZXM8P9TOs7l3MHdzPM/WeJ7xflhWsx+cNW+EYMFxW+1XWVmER630q1RlkVndZFY3mdZt5ov28NxhVVnk5KiXE6NeToz6XX+la0+O+ov5XjZG3T+7rZs2dZPUbZu6adM07X6/3u8nRZFURVIURaqi6Mbloi2KxXy3fxmWtTboZW14EJDVKwVUAQAAAAAAAMCdCNECAAAAAAAA4I7mdZM/+jc+m9e2Ju/4GnXT5o/+jc/mv//935JTq/17WB0AvHtt22ZrMs+lrWle355kPKuz0q+yPuxlfVhlfdDL+rCXlX6Zonh3YSZt22ZWt5k1TWbzrp3Wh/vLsJcmTZO0adMmadokbTdu2qRtkyz73YX3+23bpl32s+gfOjdJyiIpbwl1KYtif74sD/pZnLOsZXG7xX0P9jVtMp7V2Z3W2V0EW+1OD8a700Nzszrz+uB6zaGab30tSTKt2+zN6ncc6Ak8PNYGVc6uDXJmtZ/1YS/D3jLwrsqofxB0N+pVR4LvVhcBWWuH20W/fJu/m9tF4NW07n6zrfard/37HQAAAAAAAAA4HkK0AAAAAAAAALijP/P3vpRf+urNd32dS9vT/Ns//rn8md/3DW97kTsAj7fxrM6rm5O8sjnOa5vjvLo5yeXtSdo2WR0cBKos+6uDXtfvV9lY6eeptsjubJ5Xb4zz0is389rmOK9vTXJpa9K125Pszd46nKkqkrVhL+uDqmuHvaz2q9Rtm1nddOFYi3ZaN7edmy9TrACOwcawl9Or/ZwYdb+/VvrLIKqy6/errParjPpVVgfdXFUUGc+bjGd19hbteFZnb9ZkPF+0szrjWZN50+TEqJ8zq/0uKGttkLOrg5xd6+fMahecNepXx/02pCiK9KoiveMvBQAAAAAAAAB4l4RoAQAAAAAAAPCm/sanX8tf+JWv39Wx68Mq25P6jsf8/MvX81//wlfyz37HB+9FeQC8Q23bZjJvsjOtF9s803mTum1TN22aJgf9tk3dZjHfHp1vun2H57t9B+e3bZteWXZhJWWRXlV27WLrHxq3SS5tTfLq5iSvbY3zys1xXtuc5Pre7LjfsiRJ3Sab43k2x/Mkk+MuB7hP1gZVTq30M6ubTOZNpnWTad39Trtbw16ZUa8LoRr1l22VftkFUu3N6uxO6+zNlttbB/kt9aviIOhqcf3VQZWNYS+nVvo5vdrP6dVBTq/0u221206t9NOvynfylgAAAAAAAAAAPLSEaAEAAAAAAABwW59+bSv/4U++eFfH/oFvfzrf8aHT+Zf/4q/nrbIF/l//y5fzjU+dyLd94PQ9qBJ4O8azOluTeVYHXehGURTHXdJt1U27HyqyO60za9qsLcJB1gbvvu7pvMnWZJ7tyTyzRTBUuwh9aheBUV27mF/sT5GD8KeqTL8sFsFQZfpVcSgY6mBclcU9fZ+bts3uoeCrncmindbZmdTZPtTfn5/OD86ZdHPb0/pthcEAPIxW+1WSZG9W5+3+Rju/Psj7T47y1KmVvP/kKO8/tZL3nxrl/SdXcnKld9vf3fOmPQjW2g/XatI02Q/KWulXGfbKVOXb+93ftG3Gsya7szrjQwFbw165H5bVXb9MTxAWAAAAAAAAAMA+IVoAAAAAAAAAb1Pbtrk5nue1zXF2FiEkTdumbrqF9XXbpm6ObvO2C2mpD+2fHz7m0FyzCG9ZG1TZGPVzYtTLiWEvJ1Z6OTHqd/1RL6NFaMBb1Tqtu8X+07pb7D/olTkx7N1x8f2VnWn+jb/66Uzrt44j+O0fPp1/8Ts/lKos8i9954fyX/7sy3c8vmmTf+tHP5f/7vf/lpxfH77l9bn/ZnWT8azJrGkyq9vM99s287pZBEYczNdNm0Gv3A9yWOlXGR3ql7cJnWjbNluTea7vznJjb5bru7NcP9JOc3M8T9pkbdgFRawtApMOtl5WB1XWhlXW+r2sDKoMqiL9qsyg6kKLBr3ytvc/DvO6C2raHHdhTVuTeaZ1F9K0/Dlv2i40o22TJot2MV8k+8EZo1653x/2yox6ZUa9KqN+mUGvTNMm13amubw9yeXtaS5tT3Nlp+sv5y5vT7M1me/XN+qVObs2yNm1Qc4t2rNr/UP9Qc6sDtK0bTbH82yOZ9kaz3NzPD9oJ0fn5k2bqixSLsKmyqILkSrLIr2iSFkm1WKuafOGoJC9WZO9WZ3JvHnT97UqkvXF78GNxe/EjdFivPie2Zs32R7Ps7kIytocd+//1qK90/Xvh6osjgRu9criUOhWF7Ryuz8bbv1zYl43uYtfywDvCUW6oKuLG6M8eWKYJ04Mj/SfPDHK+rD7J5DLZ97xrM54vvizZPFnynheZzzrgq9WBlXed3KU950c3dWz9K2639tdmNW9VhZFF3I5uPfXBgAAAAAAAAB4LxOiBQAAAAAAANxz7SJw5crONPO6Tb9XLAJuyjcE3hQPSdjNrcazOl+/Oc4ry22za5dzO9P6uEvMoCpyYtTPxiI8YHooKGtWt5kuwo/ezNqgyslRLydXuqCuk4vArpMr/fz8y9dzaXv6ljV84PRK/v0fei5V2X0d/6lvfzq/9spmfvaL1+543rXdWf7Yj34uf/b/8I3plQ/2e2A8q3N9b5Zru7NM5nf/dZzVbXYm82xP6mxPuzCe7Wmd7UVIz/a0zs7kIKBnpV91AWiLYJ+To/5+0E+3HYT/jPrlfrBOVS6DdYr0qjJVkTf8nMzrJjvTOruzumundXan8+zOmq6dHp6vszOrs7fsT+vszuYH+6b1Hb9P3ollyFMXrlVme1Lnxt7snt/nzVRlkUF19PfOMjRuGVjVpvtddaSf7I/7ZRfINajKRVsc6h/M9asy41l9ENJ0KKhpb/bggpqKdHW/HeN5k68vfq89Suo2ubkI7koejdqXQViZJ8nx//kBPB7KovszcdTrgi67wMs39lf61f4xverun8vKovtzcBkS2C+78/vVQVjgcq4sitztlcuyyNm1fi6uD+8Y+npYURQZ9ooMe2VO3vUrAAAAAAAAAADgvUCIFgAAAAAAADxmxrMu9GfzUNDL7rTeXwQ/6HWL3ftVFyBzuD/sV8mwn+u707y+Oc4XX9nMpa1xLm9Pc3l70rU701zZnmRa312cS/9Q0E2vLFIU2V9gXywW2x+ey2KuLNKFDlXFYpF+V+ey34UQHcw1OQgx2d/aNvND46ZtM5k3eX1rkmu7s3v+3t9r07rNlZ1pruy8ddjV7ewsApRe2Zy8o/NX+1X+k3/4+WyMDv7Tc1kU+fd+4OP5J//bX8lrW3e+7q9+7Wb+tb/y6ZxfH2Qybw5tdSbzJuPFeFY3GVRlVgdV1oa9rA+qrA2qrA56WVv014Zdf7VfZTxvcm13mhuLoKzru7Nc353u93dnj16AzeFgrVnd3PXP13FZfi27kKMHr27a7DXtAw2xOm4P93cEwONtY9jLqZVeTq30c3Kln1OHtpOjbn5j1EtVFCnLIlWRRVsctItArLLoAjeXx5RFt7/bd3BMeZsQTgAAAAAAAAAAeC8SogUA3LW2bfNXf+O1/C8vX8+V7Umef2IjP/Kb35cPnF457tIAAAAAIG3bZlq3mdVN5nWbedNk3nQBSd340NybjhdzR8Zt5nWTum0Xi9FvXZxepCqzv3i9XPSTZN60aRZBTXWT1O1ivD/XhTZ14xwdN22axdzhY5tFSspByNTBe7BcJL8MnaqbNluHgrI2x/NsT+YPXfjOrG4zq+skj16w0ePu//aDH89Hzq69Yf7kSj//0T/4XP65v/BrmTd3/n77uS9du1/lvacsfy+8s7gzAHi89MriLZ9B7qQsuuCrk4uQqxOjfk6Mejkx6mVt2MuoV2bYKzPqlRn1q0V/0fYP+quDKidHvfSq8h6+OgAAAAAAAAAA4DAhWgDAXRnP6vyxH/1c/t4Xru7P/carW/kbn349f/KHn8t3fvjMMVYHAAAAwN2qmzZtkqo4CFx6J5aBVXuzOuNZnb1Zk8m8TtMmbXfAfr9t28U53bhZjKd1k/GsyWTendu1Tcbz5fzB3MG+o3PjWb1/znTe5OGKhoL3tn/+t30g3/PMuTfd/8knT+Rf+e6P5D/9qS88wKoAgKUiXRhUimK/f/gzQNt2Qa7toaDWe2W0CJBaHVRZ7XftSr/K2qJd7utX5X4AbHkkELYLrs2iX6QLsV3pl1npVxn1q9v2VxaBVmVRpGnbTA99dpjW3eeGyeKzQ/d5owvhXRtWOTHqArNOjvpZG1b79QAAAAAAAAAAAA83IVoAwFtq2jb/3t/8/JEAraWdaZ0/8tc+kz/3j31TPnFx4xiqAwAAAHh0LRetz+sm86Y92BbjnWmd7ck825M6O9P5fn97Ms/Wsj+dZ2dSZzKv33D+cpstx3W7HzJVJBn0yvSrIoOqTK8sFuMyg6rMoCrSr8qURfZDrfZm9SI0qwuzutcL7YFHx3d/9Gz+ud/2wbc87kd+81P5+1+/mb/9wpUHUBUAj4uqSC5uDPPEiVFG/TK70zo70zq7y20RtPpmemWR8+uDXFgf5sLGMBc3DtqL64Nc3Bjm5Eo/u9PueXv5DH675/Lt6Tx7syb9snt+7i+eowdVkd7i2frwXHdM2R3f69pBVR7p9xbP6P2qSFUWKVKkKLqgqf1+DsKlDgdlHd73drRt91mhaQ6Cteq2Tdt2QbzLe2dxj6XDNSXdvftVmao8/gCqsigyWoRsAQAAAAAAAAAA711CtACAt/Rf/szL+Tt3WOA0mTf5w3/l0/lv/onfnHPrwwdYGQAAAPBW6v0gpSbz+lBI0xvGbwxemtdt6qY5Mp6/YXwooOkO1zlyXtOmfpNj6qZbuN0uwpkOZzS17RsTm3plkWGvyqBXZtgru7Y61F+MB70yZVGkbds0bdJm0S7GzWJx+OG2ycH+W9sjx7U5eH1v8h7Xze3n58eYQtWm+3udyTxJ6mOrA3j0fPjMav69H/x4yrsI5yiKIn/s+5/NC5d38pXrew+gOgDut7JIqrJIWRSpimLRPzRXFqmKpCy7/WXZRS8dfSY++rlhVjdHAlr7VZEnT4zyxMYwT54c5ckTwzx5YrTYhjm/PnzLkKZ502Zv2oVeTeo21aifqizyxIlRiun84EPHHZxcKXNypf8u37FHw34gV1X4B2UAAAAAAAAAAMAjxb95AgDu6C//+qv587/41bc87tL2NP/6X/tM/qsf+aYMe+UDqAwAAID3orpps7tY5Lw9rff703mTougWZpdH2iJlmZTpFma/3f1F0YUI7U7r7M2WW3O0f2hfVRZZG/ay1q+yNqyyNuhlbVBldVBlfdDL2rDrrw16ads2N/Zmubk379rx7Mj4YG6e8axOWRbpHdqqxdbbb8v9xejTus20bjKdN7dpj+47xowmAN6D1odV/pN/+PmsD+/+PzWvD3v5j/7B5/LP/A9/P5N5cx+rA2DYK7M2qLI+7D6rrC0+n6wu+/vzvawPD/YvP9+MesvPHd1nqf3+obCs4i5CFN+Jpl0E+bZthosQ3HejVxbZGPWyMeqlqsqcObO2v+/atZ3UtQ9LAAAAAAAAAAAA7wVCtACAN/ULL1/Pf/y3X7zr4z/16lb+xE98Pn/ihz5x3/7xPAAAQNu2aZO0bRZte7S/v28xv+g3bZJD/ba7WNqkG7fd4tlmeUyT1G2bpj3ot22buk2appuv77jv6HFt2wVEzZo287oLOprVTWZH+l340XJ/3bT7ryuHXnNzZHz0de6/F7e8Nzn03nShSnf3Pi4VRVIk+0FWOdTvhsvF1AfHFYvF1UW6uXKxc9mf1k12pnV2JvOunc6zNxOsAcB7S1VkPxhxGURy2/4iOHEZUlIVRZI2W5N5NsfdNj/mZMS1QZX/6IefzwfPrL7tc585v55/4/s+lj/xt164D5XxKBtURU6t9HN6dZDTq/2cXumnLIsuTHXxnLgMVl3236uxN8twov3A13TP/tN3GPQz7JU5vz7I+bVBzq8Pc269ay+sD3JqpZ/taZ2rO9Nc2Znm6q3b7iz1HX7nDHtlTox63Tbs5cSon43FeNgrUzdd7fXiM9F8+dmo6T4r1U2bZnH9lUGV1X6VlX6ZlX7VbftzVVYGZVb7VaqyyM6kzuZknq3xfNHOsjme7/+u3F60O9M6o17ZBSgNu7rWF+3G8OjcxqiXUa9KUSTV4nNMVXbvf1UWKYouyLZri/3XM2+6z3HLfl23mTVN5vVi3+H+oePmR/oHx9Vtu//nwtFQ3TK9RZjVfrBuWWS1vwzFOgj3XRtU6VWP7v/ZTVkUGfT8N0YAAAAAAAAAAADeHiFaAMBtvXRlJ3/kr38mb3ddxk987nI+em4t/8xv/cD9KQwAAN6FummzN6szntXZmzUZz+s0bdKvlotSi0W/Gy/7y0Wz79YymKjrL8KKiuYgSGne5Mr2JONZnem8yaw5CFY6HLa0DFg6HLZ0+Lhp3WbedNc7/Ei/fAXLUKOuf2j/m82n2B8Xi31t2wVHLRcEz5tmfwHw7ebrQwuE32p+uU67bY+GXe33AQCOQb8q8uSJUZ46Ocr7To7y1KL/1MlRLqwP0qvKg9CTokhZHoSu3Att22Zv1mTzUGDMzfFBgMz2ZL4IHynTr8oMqjKD6vC42J/vV0XGsyY3x7PcHM+zOZ7l5t6iHc+P9LfGs5xbH+bjF9bzr3z3R/L06ZV3/Br+od/0RK7sTPP//LmX78l7cpyGvTJrgyrrwy6EZ32/v2gHvYz6ZXamdbbG89wcz44Eom0u3tt3mI30lvpVF7CzOlhs/S5g52B80D+Y72Wl332P9MoivapMvyzSq4r0y3LRLj47Vd33+mTWZG9eZ2/5GWt20D/y2WtWZ9Svcnql3wVlrfYXwVn9rPart/Vz0rTd57qdSZ2daZ3xfPH5afEZ6XBI7XR+NLx21rSLENjiaPhrsh8AWx4qZV63mSzOncyb/fscnlveZ9ir9gObbm1PDHtZX4RNbQy7741yGUh7qL3Ta57Mm0wWn2PHt/bn3Xtct21Or/Rzfn2Y8+uDbAx77/h3UNO22dyb58ruNDd2Z+mVRU6sLF7DqJ9h79ENagIAAAAAAAAAAADeW4RoAQBvcGVnmj/0lz+VnWn9js7/sz/7cj58ZjXf88y5e1wZAAB3Y9603ULheZPJ/qLhxbZYXLtcp314Ke1BSFJxZNwtDG4zmdfdot3FNq2b/YW7y31N2+4vqF4GCHThVHnDfFkUi2vViwW/i4W/h+6zXAw8q5skObLIuLplsfFyXCSZ1s2RBdzjebeAe/YuVqh3r6VI23bXaNMFSS37XeeNIVkAAI+DUyv9nF8f5NzaIOfXB/sBLufWunZtUO0HhL5V2M286Z799kNHl89fh569luGkbZvMm+5688X1j7YH/XndpiyTqij2n+2qQ6FXVXkwXxZFNoa9/ZCsp06Ocn59kPIeBWK9E0VR7IcePXHiwd23bdt7FgSWJP/H7/hAnn9iPT/5+cv5/KWdNG2bUa/MsFdm2KsW7eGtyqjXBX9N5k1298OT5tmedv3d2Xw/UGlnOt8PZT0x6uX0Sj9nVvs5vTrI6dWD/plFkNOZlUHWh3cf4lQWydqgl8E9CBBq27YL2ZrMszWeZ9Z0gbnzRdDsfuDsYv5wWG2vLPbDr1b6VdYGvSOhWP3qwQQcrfSrnEr/gdxrqSyKrA16WRs8Pv/coSyKrPS7r3Ue0PtdFkVOrfZzavXBfn0BAAAAAAAAAAAA3q7H51+VAgB3ZTyr84f/yqfz6ubkXV3n3/nxz+XPnfzmPHth/R5VBgA8zNq2TdMetM1iQXvdtGmX4zap2/YujzkYN2nTNIfOOXRMm3Y/pKkqi/SKIlW1aMsiverQYviiyLztFh6/2QL7ed1mtliAP57X2ZvW2Zt14Uvd1vXHszq7i/F4Vqdpu4XUXcBTF+pUlsX+XFUUKYouhGm5yH95v6OLo4/O180bI5jeLJSpbdv9kKx3kRPFHdRv8jUBAN5byiLpLYNAFwGgvUOBS8vn0vrQM+ob+23qQ8+Iy1CmavGMeHh8OMCpXDwzLufK/X72Q0h7ZZGiOAj2XDoc4LkMmEq60NS1YS8nhr2sj7p245b+xqhr14ZV2rYLUZ0tno2n8+4ZdVo3mc27uXmbrKwOszIoc/HEKL1Zner4sqW4z+5lgNbSd3zoTL7jQ2fu+XWT7vt/Mm+6n9sHFCT1ThVFkfVhL+vDXp58gMFoAAAAAAAAAAAAAPBeIkQLANjXtG3+7R/7XD7z2ta7vtberMkf+iufzn/zT/zmnF0b3IPqAHgcLcONpvMmycGi8bI42r/Tgt56P5zoIKRoOT4aXvTmx+0fX7ep20XAUXt4/MZj66Y9EgZ1OACqG78xdOp249sd2yYpkxSL116kW5hfFDnaX74/Oejn1v2HrpMk03mTad1kMu+26aKd1EfH08VrPlwTAAC8U0WSUb/MsFdl2Cv3t9F+v1rsPxgfPaY6dGyZQa9cBOgswrCWQVi3HR+aq7rPGY+1IqnKKqP+mx9SVWXOnFnbH1+7tpO6bh5AcfDWiqLIqF8ddxkAAAAAAAAAAAAAwAMiRAsA2Pef/70v5adfunpXxw57ZSbzOy+Me31rkn/9r34m/9WPfGMGvfJelAjwnrEMHloGLR0JXrplrln0myb7803bHdM0B9dYHle3SXPoOs3iuHnbplmce/he89vc83A7a9rMFqFJ3XbLeL6Yq5vMmzZlUaQqi1RF0iuL/bCratE/PDdv2v3Qpll9cJ3pvBvXd5nMVBbZv8dyufsy7Eq4EwAA7xVlkawPe902qA76wyrrg15G/Sq9qkh/PyCq7PqHgqL6i36SzOr2jc/idZPZfv/gOX/UK7PSr7LS78Ks9tve0blhr+yey4ukyEGQ6zL8tTgU8loUSb/sQq/6VXHHcFwAAAAAAAAAAAAAAIDbEaIFACRJ/tKvvZL/7pe+dlfH/qPf9GR+9ycu5F/6i7+eeXPnaJLfeHUz/8FPvpB/9wc+biEkPKLaRbDStD4IO5ouFlEvw5maZVBTm4N2EcrUtlm0B+FOy+OOzOVoSNTtwpzmTbM/fuO+tz7n7s/tQgK7IKijwU+H55bzydEwrCP1L4OyDgVVLe/DvbP8nnqrP5cAAHhniuRIEFPvSDDTYu7IuEhVlUfGhwOcumMP7T907S5w9Zb7H/o7hWJ/Lmnb7Ac/TeYH2xvGi7ZNF0RVFN09liFPR+ZuactF+FO5CH3qgluXx3TzZZH92u/03lRv8l51+24zX5VZ6ZdZH3RhWSv90t+vAAAAAAAAAAAAAAAAHCJECwDI//rytfypv/PSXR372z98On/4+z6WXlnkj/6uZ/LHf+KFtzznRz9zKR85u5Z/6tufftNj2rbNZN5kb1ZnbdDLoFfedf1w3LqAqYOF2cuQqemhxdvTeXswVx86btHO6i5YqguV6oKnmiMBVEeDqtpbAquWYVRH52+/rwvFStochF0tj53VTWZ1k0nddu28G8slAgDgcVMVycqgykr/8FZm3rTZmdbZmcyzM62zO63zdh6XN4a9nFzp5dRKPydH/Zxa6eXkSj/rw95+EO28fmM7b9vM6yb1Inh2UBUZVGUGvXK/HVZdSNWgV2bYK9OvFvuqNw9oOjq+XbBVuR/+BAAAAAAAAAAAAAAAAA8bIVoA8Jho2zbbkzpXdqa5vD3JlZ1pru5Mc3l7mr/2qddS38WK32fOr+U/+OHn0lssnP0Hv+GJfPHqbv67X/raW577X/zMl3J5Z5q2bbM5nu9vW5PZop1ntiiiLJL3n1rJR86u5iPn1vLRs6v56Lm1fOD0SvqVcK13owtPajNfbPUtC7Tr5mBxdt0cbEWRFEmKokhRJGW6ibJIinRzxaI/b5pM6zazQ+FQ00UwUxcu1S38ntZt2vbgG68oisU98sa5JE2S2bzJrDl6jWXo06zuXlOqMvNF6NN0Nk/TdAFU7eL1t0kXCLUMlLplvm0Pjm8W9S3DrNo23f0Ph2PV3XsEAAB3UhVJWRYpiy6caLAIO1qGHPWqN871qy64aP+ZO4vn7kPPzkW6TpmDZ/IcOrZcPGDvP8/f5hpJd9zBePHcf+j6OfLMfPAM3T073/LMvQyEXbz2pr3N/nQnV2WRtUEva4Mqa8NFu+ivD6pu37CbG/aqQ8/ubZrmaHjs0fbw/lsDag9CZuvF54VBr9wPyVoGZvWrIsXhDyhvomnbjGdNdqbz7Ezq7MwOAraSHAnMOjnqpedzLQAAAAAAAAAAAAAAANwzQrQA4JjN6ybjedMFFzXNfrjRvF4GHTVvGE8WAT7jeZPxrMlkXh+ZW473Zk2u7UxzZbFN5s07rvPc2iD/2T/yDVkbHH18+D//jg/n5Wu7+dkvXrvj+W2Sv/ArX7+rezVt8pXre/nK9b389EtX9+erssgHT6/ko+fW8pFFsNaZ1f7ifagznjXZm9UZzw/aw/PzxeLog4qyv+j7YCZHgp3ebN+tkUm9crnQvUjv0IL35Vy/Kvf7ZVGkXKxOL7NYrF4ctMuQqqJIpnX3ddyb1tmb1dmdde3hueV4Wi+/V5rUbRZhWc2RMKy7CUsDAODRUBZZPGd24Uu9ssigV6ZfHn0WLcvi6HPtoXCjZbDRsv9mz8m3e0ZOumf0XlmkVy3asqvjzeaX4/39t8wv9x1+Rk4OwqEWeb77AVDL5+r9/qGwqbI4CJNahr/m0L7bh0cdei7PQehVVRQpy+z3iyL7dR4Ox1oeVxUHz/3Lfbx3lUWR1UGV1UGV8+vHXQ0AAAAAAAAAAAAAAAA8XoRoAcCbmNdNtid1tqfz7Cza8SKoaFZ37bRuM5sv59pM6mZ/vAw/Gh8KORofCnjaW4Q7zZuHP9Vo1Cvzn/0jn8zFjeEb9lVlkT/xQ5/IP/s//v188erufa2jbtp88erufb8PAABvblAVGfaqDHvlbbeqLDKv29Tt4SDYRTjskXGbtm0zqMqM+uUbrjnqlRn2q67tdSGlSRe42rZt16Y9Mm7adrEl/bLISr/KSr/KqF9m1K+y0i8z6r1xrkzxhgDb2RvCbNvM6iZN26bIQQBTchC+1EUx5UggU7f/YH55fHHo5LIssrE+yqDXBV+Nd6fpFenCsHrFLaFYB/2qFMwEAAAAAAAAAAAAAAAAwONNiBbAY6Rt2y7oad6kzdGF390i7iLl/rjYX/g9mS+DoA6FP91mbjI/CIQ6vDi8GxdHxkt106ZuuoXudZs0TbfYvptb7G+7xfX711ksOC+LQ/XfUnO7WEC/jKdq2jZt283vL7RfvCe70zo70zrbk/mRdjJv7u0X4BFVJPmTP/xcPnFx402PWR/28qd/7yfzB/77X83N8fzBFQcAcB9VRRYhS4vwpX6V1UOhTCv9KquDKqNelaosjgQ4tYtn2jbdM23b5shzba8s06uKVEWRXlWkVy63LhipVxb7+299hj4Uv/SGfcOqzKDXbV2/yGA5Vx2EUQ2qMmXZPR8n2X9uzv643R+2bdIri+7cXpnyjQXxLlVVmTNn1vbH167tpK59HgEAAAAAAAAAAAAAAACAtyJEC+AeWS6Sn9ZtpnWTWd107fzw+Gh/Nm+OjhfnLPfVi+Cn5GBR+3LR/cF9u7Zu24xndXYXoVa3BlztLcZ1c/R8eCv/6vd+NP/AR8++5XHvP7WSP/UPP59/+S/+hu8zAN6ziuRI8FHXlumVxX7w0X4AUlmkLLqQ0mVbFEXKskiZg0DQqiz2A0LLcnHcItx0f1wUqZbnL/KL3iwgdBng1N46l4P5Zdjo0X63b9A7CFoa3tJf7hv2yvQXr/u2r3F/3L3GN47feE51aF9R5A3jNzunTRfGWjdt5k2TujncbzNfhLYu215VpL8IsFq2vbLYfz396qDfK4sUAqMAAAAAAAAAAAAAAAAAAB5aQrSAB65p20znTWb1m4RL3Wbfcv5w0NThfcvj57fMzQ4dN2/aNIvEqWYZKnA4dGARHtAs0gSOBA0s5g+HDmQx17TdtafzJmKDeK/5kW9+Kv/Yb37qro//Le8/lX/zf/ex/MmffPE+VgXA3SrSBTRViyCmquxCh5ZhTcuQoOUxvcX+6pb5qiwyrLoApcEiYGgZorScG1Rd0FKvKtIsAo32t/YgwOjwXN20qcrFuYugpn51dLy836Aqk6J79mqaLkC0WTzf1W3SLK653J/cLuzqcMhV+YbQq8PhV73Dxxw6vxSoBAAAAAAAAAAAAAAAAAAADw0hWvAQmdVNdqd19mZ19mZNdmd19vbHdbdv3oVJzZsm87rNrGkzr9tufEt/VnchAlVZpEiRqkyKokhVLNsixSJMoUgXGDWZN5nMm4xndca39MezuhsvaigW1ymLpCy6a5S3XHM5XoZMzeomtaQpeCR810fO5F/93o+meJthIb/3G5/MF6/u5n/8la/fp8qA96KyOPqc0rtNqNHtgo/uFIJU3eG8W8+/3blJUt8aBnUo/Olwv2nzpmFUh7febeaqYnnPvGGuXIZeLc4tbw3DKrv3rAvJKt4w/3Z/hwMAAAAAAAAAAAAAAAAAADxKhGjx0GnaZdhSm0ndhTVN6ybtbYKX2rxxsm27rW7azNv2DaEHt5ur2zbzNwlHmDdH9x0eL4Osjs4dnT98znK+btsj582bJuNZF3z1KGnb7n/qbnS8xQD31Pd//Hz+rd/9bHrlOwtf+b9890dybXean/jc5XtcGTz6iiSDXplhr8ygKrt+VaZXdSFIy3DKW0OlDua7gMrDxx4EWC7myoPzyxyMl+eXb7jmwbhfdjX1qyLDXpl+1dXXX9R5eP5wyFNR5EhA562vZf/e5fK4o69N2BMAAAAAAAAAAAAAAAAAAABvlxAt7tqPfur1XN4ap227oKsk+/1FllLqRQDW9FD41bQ+mJvMm8wW7bReBGXNDx/bzQHwYJxa6ef8+iBn1wY5vzbIkydH+W0fOp1PPrHxrgJtemWRP/FDn8hvefpU/uZnXs8Xr+6mKIqcGPWyMexlY9TLiWEvJ0bdtjHq58RiflCV+cqNvXzxyk6+cGU3X7y6k51pfQ9fNcdpUBXpV114VL8qUpVFF4CZpD2UmLl8tjg8XxTF/vn9qki/LA/6y+v2yqyvDPbDnabTeYo2SZEuqCldyFORg/Cm5CCIar+/2L88tuwmugCsxX0GVZlBVdw2EGtwaDxYhE4t91VlITAKAAAAAAAAAAAAAAAAAAAA7gEhWty1//oXvpIXL20fdxkAHDLslRktAnxG/SrDRf9gq7IxrHJubZBz68OcWxvk/Pog59a64Kx+Vd632oqiyO/7xifz+77xybd97nce6rdtm9e3JvnC1d0uWGvRfvHqbibz5ug9k4z6ZVb6VUaL92TUr7LSLzPqVelXXXjRMr5omWNUHLrCrXOHs46WwUeH9xXpgp5mdZvZIgxyWjeZL4Mk6ybzRbvcvwygbNr2IJByERjVtG2atnvdTZv0qyIr/Wqxda9tdVDtz632q4z6ZVYH3de/V3YhTVVZpLdsi6PjN+wvi1RFkd4i1Kq6zfE5VG/X72o8XHeb7s2oyi7UarAMy+p1/d4DCI+qqjJnzqztj69d20ldN3c4AwAAAAAAAAAAAAAAAAAAAHhUCdECgHdoUBXpV11YVb8q98eDajHuFYswp4Pwo9Ei8OhwINIy/GpQFemVXdBQr+oCjN447uYGi+PvdyDRw6AoijxxYpQnTozynR8+sz9fN22u7U5TN233vi6Cwx6H9wQAAAAAAAAAAAAAAAAAAAAAIVoAvEtFsgiC6gKh+lWRtu32tbcc2y52HJ4viyJVUaQqi5RFFm239cqk3B8vr9Gd3y4GbZKmPegv95dFV1tRFCmKRbs/v5zr+sNemfVhlfVhL2uDrl0f9LI2rLI+6GV9WGVt0a4MqgyqLthKWNPxqsoi59eHx10GAAAAAAAAAAAAAAAAAAAAAMdEiBbAMSqSDHpl+lWRQVWmX5UZVMWiLdOruuCn5dHLzKbl3JFxUWRlEWQ16ldZ6ZVZHSz6/Wp/3zLwqkyRNoeCp9p042VIVZdSlbZN+lW5H5K1H5jV69phrxQmBQAAAAAAAAAAAAAAAAAAAAA8cEK0gEdCr1yGTBWL0KmDsKmj/YMwqv5yruzO6ZVFyqJIWSQpipRdk6LogqrKogupOtJf7Fv2u3O6fWVxEF7VX9bXOxqCdbjf7x0Oyur2VWUhgAoAAAAAAAAAAAAAAAAAAAAA4B0QogWPkJV+mZV+leEiRKoqi/QWW78q9/u9qkiv7EKkihRp06Zu2rRtUreH2zZ1m7Rtm6ZpkyTDXpVRv8ywV2a0368y6pUH/X6ZYVUmSZp012vaNs3yWrcZV2VxNFCqKjM4Eip1eF8XenU4DKsUNAUAAAAAAAAAAAAAAAAAAAAAwCFCtHjslUUX8FQVXfhUVRT74VTVcisO+r1DW3U4uOrQOb1b5rvzyi7cqliGXB2aL5NRv8pKv9oPylodLMddf9grBUkBAAAAAAAAAAAAAAAAAAAAAMCCEC3u2unVfs6tDVIUSZGkKIqUh/pFkZRFkUFVZtArM6yK9Jf9Xpl+VWa4GHfHdMcOF+N+7/D+Yv+45bnVmwVI3Wb6IPSq6x8JxFoGZpVFyrIQTAUAAAAAAAAAAAAAAAAAAAAAAI8gIVrctf/3P/7NmU7r4y4DAAAAAAAAAAAAAAAAAAAAAAAg5XEXAAAAAAAAAAAAAAAAAAAAAAAAAG+XEC0AAAAAAAAAAAAAAAAAAAAAAAAeOUK0AAAAAAAAAAAAAAAAAAAAAAAAeOQI0QIAAAAAAAAAAAAAAAAAAAAAAOCRI0QLAAAAAAAAAAAAAAAAAAAAAACAR44QLQAAAAAAAAAAAAAAAAAAAAAAAB45QrQAAAAAAAAAAAAAAAAAAAAAAAB45AjRAgAAAAAAAAAAAAAAAAAAAAAA4JEjRAsAAAAAAAAAAAAAAAAAAAAAAIBHjhAtAAAAAAAAAAAAAAAAAAAAAAAAHjlCtAAAAAAAAAAAAAAAAAAAAAAAAHjkCNECAAAAAAAAAAAAAAAAAAAAAADgkSNECwAAAAAAAAAAAAAAAAAAAAAAgEeOEC0AAAAAAAAAAAAAAAAAAAAAAAAeOUK0AAAAAAAAAAAAAAAAAAAAAAAAeOQI0QIAAAAAAAAAAAAAAAAAAAAAAOCRI0QLAAAAAAAAAAAAAAAAAAAAAACAR44QLQAAAAAAAAAAAAAAAAAAAAAAAB45QrQAAAAAAAAAAAAAAAAAAAAAAAB45AjRAgAAAAAAAAAAAAAAAAAAAAAA4JEjRAsAAAAAAAAAAAAAAAAAAAAAAIBHjhAtAAAAAAAAAAAAAAAAAAAAAAAAHjlCtAAAAAAAAAAAAAAAAAAAAAAAAHjkCNECAAAAAAAAAAAAAAAAAAAAAADgkSNECwAAAAAAAAAAAAAAAAAAAAAAgEeOEC0A/v/t3Xl8VeW1MOCVQEAiMk8iCE6gVSmIFRVF0TrhUKWK4kDV1gFnrbVabWsda7XW61wVrQMOVK32iletqFBUnEVEVERUxhDmIZAQku8Pf+6PkwBJIIdk6/P8tdc+7/tmJdd7urLYWQcAAAAAAAAAAAAAAAAAAAAAIHUM0QIAAAAAAAAAAAAAAAAAAAAAACB1DNECAAAAAAAAAAAAAAAAAAAAAAAgdQzRAgAAAAAAAAAAAAAAAAAAAAAAIHUM0QIAAAAAAAAAAAAAAAAAAAAAACB1DNECAAAAAAAAAAAAAAAAAAAAAAAgdQzRAgAAAAAAAAAAAAAAAAAAAAAAIHUM0QIAAAAAAAAAAAAAAAAAAAAAACB1DNECAAAAAAAAAAAAAAAAAAAAAAAgdQzRAgAAAAAAAAAAAAAAAAAAAAAAIHUM0QIAAAAAAAAAAAAAAAAAAAAAACB1DNECAAAAAAAAAAAAAAAAAAAAAAAgdQzRAgAAAAAAAAAAAAAAAAAAAAAAIHUM0QIAAAAAAAAAAAAAAAAAAAAAACB1DNECAAAAAAAAAAAAAAAAAAAAAAAgdQzRAgAAAAAAAAAAAAAAAAAAAAAAIHUM0QIAAAAAAAAAAAAAAAAAAAAAACB1DNECAAAAAAAAAAAAAAAAAAAAAAAgdQzRAgAAAAAAAAAAAAAAAAAAAAAAIHUM0QIAAAAAAAAAAAAAAAAAAAAAACB1DNECAAAAAAAAAAAAAAAAAAAAAAAgdQzRAgAAAAAAAAAAAAAAAAAAAAAAIHUM0QIAAAAAAAAAAAAAAAAAAAAAACB1DNECAAAAAAAAAAAAAAAAAAAAAAAgdQzRAgAAAAAAAAAAAAAAAAAAAAAAIHUM0QIAAAAAAAAAAAAAAAAAAAAAACB1GtZ1Aj9EU6dOjREjRsRbb70V06ZNi+XLl0ebNm2iY8eOsf/++8cRRxwRbdu2res0AQAAAAAAAAAAAAAAAAAAAAAA6i1DtDai0tLSuPnmm+OBBx6IsrKyjNdmzZoVs2bNivfeey9uvfXWuPTSS2Pw4MF1lCkAAAAAAAAAAAAAAAAAAAAAAED9ZojWRlJaWhrnnXdejBo1qsq1K1asiCuvvDKmTp0av/vd7zZCdgAAAAAAAAAAAAAAAAAAAAAAAOmSW9cJ/FD87W9/yxig1aZNm7jyyitj9OjR8dFHH8Xzzz8fZ555ZuTl5SVrHnzwwXjqqafqIl0AAAAAAAAAAAAAAAAAAAAAAIB6zRCtjeCzzz6L+++/P4k7d+4czzzzTAwePDg6dOgQjRs3jm222SYuvPDCeOSRRyI/Pz9Ze8MNN8SSJUvqIm0AAAAAAAAAAAAAAAAAAAAAAIB6yxCtjeCOO+6IsrKyiIjIzc2NW2+9Ndq2bbvGtT179ozrrrsuiRctWhTDhg3bKHkCAAAAAAAAAAAAAAAAAAAAAACkhSFaWTZ37twYNWpUEu+zzz7xox/9aJ17DjnkkOjRo0cSP/XUU1FeXp61HAEAAAAAAAAAAAAAAAAAAAAAANLGEK0sGz16dJSWlibxoYceWq19hx12WHI9Z86ceO+992o9NwAAAAAAAAAAAAAAAAAAAAAAgLQyRCvLxo0blxH36dOnWvsqrhszZkyt5QQAAAAAAAAAAAAAAAAAAAAAAJB2hmhl2WeffZZct27dOtq1a1etfdtuu200bNgwiT/++ONazw0AAAAAAAAAAAAAAAAAAAAAACCtDNHKovLy8pg6dWoSd+nSpdp7GzZsGJtvvnkSf/XVV7WZGgAAAAAAAAAAAAAAAAAAAAAAQKoZopVFixYtipKSkiRu165djfa3adMmuS4oKKi1vAAAAAAAAAAAAAAAAAAAAAAAANKuYV0n8H02b968jLh58+Y12r/6+tLS0li6dGk0bdq0VnJbH7m5OdGggblrAED91aBBzhpi9QsAUL+pYQCAtFG/AABpo34BANJG/QIApJEaBgBIG/ULAJA26hfqs4r/fW5shmhlUVFRUUa86aab1mh/fn5+Rrxs2bI6HaK12WZN6uxrAwCsj+bN86teBABQz6hhAIC0Ub8AAGmjfgEA0kb9AgCkkRoGAEgb9QsAkDbqF/j/jJPLopKSkow4Ly+vRvsbNsyccVZaWrrBOQEAAAAAAAAAAAAAAAAAAAAAAHwfGKKVRWVlZRlxTk5Ojfbn5mb+n6fieQAAAAAAAAAAAAAAAAAAAAAAAD9UDes6ge+zBg0aZMQ1HYJVWlqaETdq1GiDc9oQS5Ysj5UrDfICAOqvBg1yonnz/CRetKgoVq0qr8OMAACqpoYBANJG/QIApI36BQBIG/ULAJBGahgAIG3ULwBA2qhfqM8q/ve5sRmilUVNmjTJiIuLi2u0v6SkJCOu6yFaZWXlsWqVIVoAQH2WmxGtWqV+AQDSQA0DAKSN+gUASBv1CwCQNuoXACCN1DAAQNqoXwCAtFG/UJ/lVr3ke/vVv+eaN2+eES9durRG+1dfn5ubG82aNauVvAAAAAAAAAAAAAAAAAAAAAAAANLOEK0satOmTeTk5CTx/Pnza7R/7ty5yXWLFi2iQYMGtZYbAAAAAAAAAAAAAAAAAAAAAABAmhmilUWNGjWKtm3bJnFBQUGN9q++vlOnTrWWFwAAAAAAAAAAAAAAAAAAAAAAQNoZopVl3bp1S66/+uqrKCsrq9a+efPmxaJFi5J4u+22q/XcAAAAAAAAAAAAAAAAAAAAAAAA0soQrSzr0aNHcl1UVBRffPFFtfaNHz8+I+7Zs2dtpgUAAAAAAAAAAAAAAAAAAAAAAJBqhmhlWd++fTPi1157rVr7Kq7bc889aykjAAAAAAAAAAAAAAAAAAAAAACA9DNEK8t22WWX2HzzzZN4xIgRUVJSss498+fPj+eeey6Je/fuHZ06dcpajgAAAAAAAAAAAAAAAAAAAAAAAGljiFaW5ebmxvHHH5/E06ZNiz//+c9rXV9WVhaXXXZZLFu2LLk3ZMiQrOYIAAAAAAAAAAAAAAAAAAAAAACQNoZobQQnnnhidOzYMYmHDx8eV111VRQXF2esW7x4cZx//vnx2muvJfd69+4dBx988MZKFQAAAAAAAAAAAAAAAAAAAAAAIBUa1nUCPwT5+flx0003xamnnhorVqyIiG8HaT3//PPRv3//aNOmTcycOTNeeeWVKCoqSva1aNEibrzxxrpKGwAAAAAAAAAAAAAAAAAAAAAAoN4yRGsj6d27d9x1111xzjnnxLJlyyIiYsGCBfH000+vcX3btm3jvvvuiy222GJjpgkAAAAAAAAAAAAAAAAAAAAAAJAKuXWdwA/JnnvuGf/3f/8Xhx9+eDRu3HiNa5o0aRLHHXdcPPfcc7H99ttv5AwBAAAAAAAAAAAAAAAAAAAAAADSoWFdJ/BD0759+7jpppti2bJl8fbbb8fMmTNj8eLF0bRp09hqq62iZ8+e0bRp07pOEwAAAAAAAAAAAAAAAAAAAAAAoF4zRKuObLrpptG/f/+6TgMAAAAAAAAAAAAAAAAAAAAAACCVcus6AQAAAAAAAAAAAAAAAAAAAAAAAKgpQ7QAAAAAAAAAAAAAAAAAAAAAAABIHUO0AAAAAAAAAAAAAAAAAAAAAAAASB1DtAAAAAAAAAAAAAAAAAAAAAAAAEgdQ7QAAAAAAAAAAAAAAAAAAAAAAABIHUO0AAAAAAAAAAAAAAAAAAAAAAAASB1DtAAAAAAAAAAAAAAAAAAAAAAAAEgdQ7QAAAAAAAAAAAAAAAAAAAAAAABIHUO0AAAAAAAAAAAAAAAAAAAAAAAASB1DtAAAAAAAAAAAAAAAAAAAAAAAAEgdQ7QAAAAAAAAAAAAAAAAAAAAAAABIHUO0AAAAAAAAAAAAAAAAAAAAAAAASB1DtAAAAAAAAAAAAAAAAAAAAAAAAEgdQ7QAAAAAAAAAAAAAAAAAAAAAAABIHUO0AAAAAAAAAAAAAAAAAAAAAAAASB1DtAAAAAAAAAAAAAAAAAAAAAAAAEgdQ7QAAAAAAAAAAAAAAAAAAAAAAABIHUO0AAAAAAAAAAAAAAAAAAAAAAAASB1DtAAAAAAAAAAAAAAAAAAAAAAAAEgdQ7QAAAAAAAAAAAAAAAAAAAAAAABIHUO0AAAAAAAAAAAAAAAAAAAAAAAASB1DtAAAAAAAAAAAAAAAAAAAAAAAAEgdQ7QAAAAAAAAAAAAAAAAAAAAAAABIHUO0AAAAAAAAAAAAAAAAAAAAAAAASB1DtAAAAAAAAAAAAAAAAAAAAAAAAEgdQ7QAAAAAAAAAAAAAAAAAAAAAAABIHUO0AAAAAAAAAAAAAAAAAAAAAAAASB1DtAAAAAAAAAAAAAAAAAAAAAAAAEgdQ7QAAAAAAAAAAAAAAAAAAAAAAABIHUO0AAAAAAAAAAAAAAAAAAAAAAAASB1DtAAAAAAAAAAAAAAAAAAAAAAAAEgdQ7QAAAAAAAAAAAAAAAAAAAAAAABIHUO0AAAAAAAAAAAAAAAAAAAAAAAASB1DtAAAAAAAAAAAAAAAAAAAAAAAAEgdQ7QAAAAAAAAAAAAAAAAAAAAAAABIHUO0AAAAAAAAAAAAAAAAAAAAAAAASB1DtAAAAAAAAAAAAAAAAAAAAAAAAEidhnWdAOmRm5sTDRqYuwYA1F8NGuSsIVa/AAD1mxoGAEgb9QsAkDbqFwAgbdQvAEAaqWEAgLRRvwAAaaN+oT6r+N/nxpZTXl5eXqcZAAAAAAAAAAAAAAAAAAAAAAAAQA0ZJwcAAAAAAAAAAAAAAAAAAAAAAEDqGKIFAAAAAAAAAAAAAAAAAAAAAABA6hiiBQAAAAAAAAAAAAAAAAAAAAAAQOoYogUAAAAAAAAAAAAAAAAAAAAAAEDqGKIFAAAAAAAAAAAAAAAAAAAAAABA6hiiBQAAAAAAAAAAAAAAAAAAAAAAQOoYogUAAAAAAAAAAAAAAAAAAAAAAEDqGKIFAAAAAAAAAAAAAAAAAAAAAABA6hiiBQAAAAAAAAAAAAAAAAAAAAAAQOoYogUAAAAAAAAAAAAAAAAAAAAAAEDqGKIFAAAAAAAAAAAAAAAAAAAAAABA6hiiBQAAAAAAAAAAAAAAAAAAAAAAQOoYogUAAAAAAAAAAAAAAAAAAAAAAEDqGKIFAAAAAAAAAAAAAAAAAAAAAABA6hiiBQAAAAAAAAAAAAAAAAAAAAAAQOoYogUAAAAAAAAAAAAAAAAAAAAAAEDqGKIFAAAAAAAAAAAAAAAAAAAAAABA6hiiBQAAAAAAAAAAAAAAAAAAAAAAQOoYogUAAAAAAAAAAAAAAAAAAAAAAEDqGKIFAAAAAAAAAAAAAAAAAAAAAABA6hiiBQAAAAAAAAAAAAAAAAAAAAAAQOoYogUAAAAAAAAAAAAAAAAAAAAAAEDqGKIFAAAAAAAAAAAAAAAAAAAAAABA6hiiBQAAAAAAAAAAAAAAAAAAAAAAQOoYogUAAAAAAAAAAAAAAAAAAAAAAEDqGKIFAAAAAAAAAAAAAAAAAAAAAABA6hiiBQAAAAAAAAAAAAAAAAAAAAAAQOoYogUAAAAAAAAAAAAAAAAAAAAAAEDqGKIFAAAAAAAAAAAAAAAAAAAAAABA6hiiBQAAAAAAAAAAAAAAAAAAAAAAQOo0rOsEWD9lZWUxduzYeOmll2L8+PExZ86cWLZsWbRo0SK222676NevXxxzzDHRtGnTGp1bUFAQI0aMiNdffz2mTp0ay5Yti5YtW0aHDh2iX79+ceSRR0bnzp3XK+eFCxfGk08+Gf/9739j8uTJsXjx4mjWrFl06NAh+vTpE0cddVR069Ztvc4GAOq/2q5fzjrrrBg1atR65fLEE09Ez549q1ynfgGAH47u3bvX2lkPPfRQ9OnTZ51r9GAAgA21seoXPRgAINvefvvtGDlyZLz//vtRUFAQRUVFsdlmm0WnTp1i1113jYEDB8Z2221X43P1XwCAbKnt+kX/BQDYGEaPHh0vvvhivP/++zF37twoLi6OVq1axY9+9KPYf//9Y8CAAZGfn1/jc7NZZxQVFcWzzz4br7zySkyaNCkWLlwYm266abRv3z569uwZAwcOrFYtBACkU23XL9dee2089NBD65XLzTffHIceemiV69QvAPD99/XXX8ehhx4aK1eujHPOOSfOPffcGp+R1mda1DrUdznl5eXldZ0ENTNx4sT44x//GBMmTFjnumbNmsVVV10VhxxySLXOHTZsWNxyyy1RUlKy1jUNGjSIs846K4YOHRoNGjSods7PPvtsXH311bFkyZJ1rhs8eHBceumlsckmm1T7bACg/stG/bLffvvFjBkz1iuf6jxAqH4BgB+WjTlESw8GAKgNG6t+0YMBALJlzpw58Zvf/CbGjRu3znU5OTlxxBFHxB//+MfYdNNNq3W2/gsAkA3Zql/0XwCAbPrss8/iD3/4Q3z44YfrXNe2bdv4zW9+Ez/72c+qfXY264z//ve/8bvf/S7mzJmzznUHHnhgXHPNNdG8efNqnw0A1G/Zql9OOumkePvtt9crp+oM0VK/AMD336pVq2LIkCHx7rvvRkSs1xCttD7TotYhDXLrOgFqZvTo0XHcccdVOYAiImLx4sVxwQUXxMMPP1zl2quuuir+8pe/rPONNuLbN/XbbrstLrjggqju/LX77rsvLrnkkirfaCMiHnvssfjFL35RZR4AQHpko35ZsmTJej88WB3qFwBgfTVu3Dg6dOiw1tf1YACA+mZd9YseDACQLdOmTYuBAwdWOYAiIqK8vDyeffbZOO6442LRokVVrtd/AQCyIVv1i/4LAJBNY8eOjcGDB1c5gCIiorCwMC655JL4wx/+UK1eSTbrjJEjR8YZZ5xR5R9lRkS89NJLccwxx8SCBQuqdTYAUL9ls3757LPPaiHDNVO/AMAPw1VXXZUM0Frf/Wl8pkWtQ1rklFf3/2Ooc++8806ceuqpGW9E/fr1i1NPPTW6d+8ejRs3jk8++STuv//+eOWVV5I1ubm58fDDD8euu+66xnMfffTR+NOf/pTEm266aQwdOjQOPvjgaN++fRQUFMQLL7wQd999dyxdujRZd/bZZ8d55523zpxHjx4dZ5xxRvLGnJeXF7/85S/jiCOOiE6dOsXChQvjlVdeiTvuuCMKCwuTfUceeWTccMMNNfsBAQD1Trbql3feeSdOPPHEJH7ooYeiT58+tZKz+gUAqK6SkpIYMmRIfPDBB8m9dX3SlB4MAFDXalq/6MEAANlQUlISRx11VHzxxRfJvS5dusRZZ50Vffv2jRYtWkRBQUG8/PLLcdddd8XChQuTdXvuuWc88MADaz1b/wUAyIZs1i/6LwBAtkyePDkGDRoURUVFyb0WLVrEmWeeGT/96U+jffv2MW/evHjttdfizjvvzPgjyJNOOimuuOKKtZ6dzTpj0qRJMWjQoOTZ45ycnDjuuONi0KBBsfXWW8fSpUvjjTfeiDvuuCO++uqrZF+fPn3iH//4R+Tm5tbo5wQA1B/ZrF9mzpwZ/fv3T+Lrr78+Bg4cWCt5q18A4Ifh+uuvj3/84x8Z984555w499xzq7U/rc+0qHVIE0O0UqKoqCgGDBgQs2bNiohv31iuvPLKOO6449a4/tZbb4077rgjiXfcccd4+umnK62bO3duHHDAAckvlS1atIhHH300ttlmm0prv/rqqzjxxBOTN8W8vLx4/vnnY8stt1xjDsXFxXHQQQclOTdu3DiGDRsWP/nJT9aYxy9+8YuMBwyGDx++1sEZAED9l636JeLbBwavvfbaJH777bejefPmG5yz+gUAqIk//elP8eijjybxqaeeGr/97W/XuFYPBgCoD2pSv0TowQAA2VGxxujVq1fcd9990bRp00prp0+fHieccELMnj07uXf77bfHAQccUGmt/gsAkC3Zql/WdLb+CwBQG8rKyuJnP/tZfP7558m97bffPoYNGxZt2rSptH7RokVx2mmnxfjx45N799xzT+yzzz6V1mazzigvL49BgwbFRx99FBHfPnt88803x4ABAyqtXbp0aQwdOjTefvvt5N4NN9wQRx555BrPBgDqt2zWLxERo0aNirPOOiuJn3nmmdhhhx02OG/1CwB8/y1dujQuu+yyeOmllyq9Vt0hWml9pkWtQ9oY2ZYSDz30UPKmFRFx1llnrXUARUTEeeedF717907iiRMnxoQJEyqtGzZsWMZU5muvvXaNb7QREV27do3bb789mfS3cuXKuO2229aawz//+c+MnH/961+v8Y02IqJNmzZx9913R35+fnLv5ptvXuvZAED9l636JSLi008/Ta47duxYKw8PRqhfAIDqe/XVVzMGUOy4445x4YUXrnW9HgwAUNdqWr9E6MEAANnxzDPPJNd5eXlx8803r3EARUREp06d4rrrrsu4969//WuNa/VfAIBsyVb9EqH/AgBkx0svvZQxgKJ169ZrHUAREdG8efO48847o1WrVsm9G2+8McrKyiqtzWad8dprryV/lBkRMWTIkDX+UWZERNOmTeP222+PDh06JPduu+22KC0tXev5AED9lc36JSKzB5OXl7fWf0OqKfULAHy/TZo0KQYOHLjGAVo1kdZnWtQ6pI0hWilQWloaw4cPT+Jtttkmhg4dWuW+IUOGZMT//e9/M+KSkpJ4+umnk7hbt27x05/+dJ1n9uzZMw466KAkfuGFF2Lp0qVrXPvEE08k1y1btozBgwev8+zOnTvH8ccfn8TvvfdefPnll+vcAwDUT9mqX76zevO6e/fu65llZeoXAKA6FixYEFdccUUS5+XlxY033hiNGjVa43o9GACgrtW0fvmOHgwAUNuKi4tj4sSJSbzrrrtGx44d17mnb9++0a5duyRe/RPFv6P/AgBkS7bql+/ovwAA2VBxiOfFF1+81gEU32nTpk2cdtppSTx58uR44403Kq3LZp2x+tl5eXkZ+axJ8+bN44wzzkji6dOnx5tvvrnOPQBA/ZTN+iUiswez1VZbVfnMTHWpXwDg+2n+/Plx1VVXxdFHHx1ff/11cn/1AZ7VleZnWtQ6pI0hWinw9ttvx5w5c5L49NNPj7y8vCr37bXXXtG2bdvYdtttY7fddsuYBhgR8f7778fChQuT+NBDD61WPocddlhyXVJSEqNGjaq0Ztq0aRlTnw844IBq/VJ5+OGHZ8QvvPBCtXICAOqXbNUvEd8O6Jo8eXISb7/99rWSs/oFAKium266KebOnZvEZ5555jo/kUoPBgCoazWtXyL0YACA7Jg/f35G3Lp162rt22KLLdZ6RoT+CwCQPdmqXyL0XwCA7CgtLY133nkniZs1a5bRA1mXI444IiOuWA9ks85YsWJFvP7660m82267Rdu2bas8+5BDDokGDRqs82wAoH7LZv3yndWHaNVWD0b9AgDfT6+//noceOCBMXz48CgtLU3u77777nHffffV+Ly0PtOi1iGNDNFKgdGjRyfXTZo0yZgYuC5NmzaNsWPHxsiRI+Phhx+Ok08+OeP1cePGZcR9+vSp1rm77bZb5OTkJPGYMWMqrVnfs7t37x7Nmzdf59kAQP2XrfolImLq1KlRUlKSxLXVvFa/AADV8eGHH8ZTTz2VxF27do3TTz99nXv0YACAurQ+9UuEHgwAkB0VH9SbNWtWtfYVFhYm102bNq30uv4LAJAt2apfIvRfAIDsmD17dixbtiyJd9lll2r98WRERJs2baJjx45J/N5772W8ns0644MPPsiojap7dsuWLaNbt25JvPozzABAOmSzfomIWLZsWUybNi2Ja6sHo34BgO+nyZMnx5IlS5K4SZMmcdlll8UDDzyQ0d+orrQ+06LWIY0M0UqB999/P7nu1atXNGnSpFbO/eyzz5LrnJycav/i16xZs4xfKj/++ON1nh0RscMOO1Tr7JycnOjevXsSf/LJJ7Fq1apq7QUA6o9s1S8REZMmTcqIq1tnVEX9AgBUx5///OcoLy9P4t/+9rdV/kO9HgwAUJfWp36J0IMBALKjdevW0aZNmyQeP358xh8trMn48eNj+vTpSdyzZ89Ka/RfAIBsyVb9EqH/AgBkx8KFCzPiTp061Wh/69atk+uvvvoqli9fnsTZrDMqnl2T4Rar51FYWBgFBQXV3gsA1L1s1i8REZ9++mnGszPZ6sGoXwDg+yUnJycOO+yweO655+Lkk0+O3Nz1G8+T1mda1DqkkSFa9Vx5eXnGm0tt/XIWEfHll18m1+3atavRcIvOnTsn19OnT6/0hjh16tTkOicnJ2N9Tc4uLi6O2bNnV3svAFD3slm/RHzbvP5Ofn5+bLnllvHpp5/GDTfcEAMHDoyf/OQnsdNOO0W/fv1iyJAhcf/998eCBQuqPFf9AgBU5aWXXooPPvggiffYY4/Yb7/9qtynBwMA1JX1rV8i9GAAgOw5/PDDk+vS0tK45JJLoqioaI1r58+fH5dddlnGvZNOOqnSOv0XACCbslG/ROi/AADZsXLlyoy4ph+E26BBg+S6rKwsZs2alcTZrDNW7+9ERHTt2rXaZ1cctPH1119Xey8AUPeyWb9EZPZgIr4dAPHNN9/E//zP/8TgwYOjT58+sdNOO8Vee+0Vxx13XNxxxx0xc+bMKr+u+gUAvp/y8vLi8MMPj6effjr++te/1njAZ0VpfaZFrUMaNazrBFi3goKCKC4uTuItttgiuS4sLIyRI0fGyy+/HNOmTYt58+ZFixYtYuutt4799tsvjj766GjatOlazy4sLEyu27VrV6O8Vv9UrdLS0pg7d260b98+uTdnzpzkumXLltX6RPPvtG3bNiOePXt2xvcNANRv2axfIjKb1y1btoyzzz47Ro0atcY8CgoK4q233oo777wzzjnnnDj55JPXeq76BQBYl/Ly8rj11lsz7l100UXV2qsHAwDUhQ2pXyL0YACA7DnzzDPjhRdeSP6A4f3334+BAwfG0KFDo2/fvtGiRYuYN29ejBkzJm6//faMh/ROOumk6NevX6Uz9V8AgGzKRv0Sof8CAGRH8+bNM+JFixbVaP/8+fMz4oKCgth6660jIrt1xupnR9Ssx7OmswGA9Mhm/RJReZD5jTfeGM8880yUlZVl7CssLIzCwsL44IMP4u9//3uccsopcd5552UM6Vqd+gUAvp9OOOGEOOGEE2rtvLQ+06LWIY0M0arnKr4ZtGnTJsrKyuKhhx6KW265JZYvX57x+ne/pL311lvx97//PS677LI44ogjKp1bXFwcy5YtS+KKv2RWpeL6hQsXZrzZrv5LZ03PbtasWUZc0194AYC6la365TurN69nzJgRM2bMqDKnJUuWxPXXXx+TJk2K6667bo0NbPULALAuo0aNismTJyfxvvvuGz169Khynx4MAFBX1rd++Y4eDACQLS1atIh//OMfcdZZZ8WUKVMi4ttPxrzkkkvWuic/Pz/OP//8NQ6L0H8BALKttuuX7+i/AADZ0KFDh2jYsGGUlpZGRMTEiROrvXfJkiUxbdq0jHur912yWWesfnajRo2iSZMmtXY2AFC/ZbN+icjswRQVFcXTTz9d5bnFxcVx9913x8cffxy33XZb5OfnV1qjfgEAqpLmZ1rUOqRRbl0nwLotXLgwI95kk03i17/+dVx//fWVBlBUNH/+/PjNb34Tt99+e6XXKv4SuOmmm9Yor4q/8FU8r6ioKGtnAwD1W7bql4hvJxfPmzev0v1+/frFnXfeGaNHj44JEybEmDFj4m9/+1v07t07Y90zzzwTN9544xrPVr8AAOty7733ZsRnn312tfbpwQAAdWV965cIPRgAIPu6du0azzzzTFx22WVr/KOD1W222Wbx17/+da0DKPRfAICNoTbrlwj9FwAge/Lz82PHHXdM4k8++SQZBFqVF154IcrLyzPuFRcXJ9fZrDPUMADww5XN+qWsrCzjQ+i+06tXr/jrX/8ao0aNigkTJsQbb7wRd911V/Tv3z9j3dixY+PSSy9d49dWvwAAVUnzMy1qHdLIEK16ruKbwZ133hnPP/98RES0adMmLr300njxxRdjwoQJMW7cuLjnnntir732ythz2223xTPPPJNxb+XKlRlxXl5ejfJq2LBhRvzdhOfvlJSUZO1sAKB+y1b9EpH56Q8R3w7ouummm+Lee++N/fffPzp06BCNGjWK9u3bx4ABA+LRRx+NSy65JHJycpI9DzzwQLz55puVzla/AABr8/HHH8eHH36YxLvsskv06NGjWnv1YACAurAh9UuEHgwAkH0rVqyIYcOGxb333pvx0N2aLFmyJIYOHRqnnXZaFBQUVHpd/wUA2Bhqs36J0H8BALLr4IMPTq7Ly8vjhhtuqDRcoqKlS5fG3//+90r3V++9ZLPOWP3simurUjEXNQwApE+26pepU6fG8uXLkzg3NzcuvfTSePzxx+Owww6LTp06RaNGjaJ169ax3377xd133x033XRTRn3x4osvxpNPPlnp66hfAICqpPmZFrUOaWSIVj1X8U3xuz946N27dzz33HNxyimnRNeuXaNRo0bRsmXL2GeffWLYsGFxySWXZOz705/+FPPnz0/iVatWZby++j+qV0dubuZ/OmVlZRnx6ufX9tkAQP2Wrfol4ttpxYcddlj07Nkz2rRpE9dee20cfvjh68znl7/8ZZxyyikZ92699dZK69QvAMDaPPbYYxnxL37xi2rv1YMBAOrChtQvEXowAEB2zZ49O4455pi45ZZbYu7cuRERsffee8fdd98db775ZkyYMCFeffXVuO6662LbbbdN9o0ZMyaOPvro+OqrrzLO038BALKttuuXCP0XACC7Bg0aFC1atEji0aNHx1VXXbXW/21fsWJFXHjhhTFt2rRKrzVq1Ci5zmadsfrZFddWpWIuahgASJ9s1S8REUceeWT07t072rdvHxdeeGGl/kpFhx9+eFx66aUZ9+68885Kwx/ULwBAVdL8TItahzQyRCuFtthii7jrrruiZcuWa13zy1/+Mo455pgkLioqigcffDCJGzRokLG+pm86Fd+sK/5Sufokwdo+GwBIn9qoXyK+HcT117/+NZ544ol4/fXX47DDDqvW1z/vvPMymunvv/9+TJ8+PWON+gUAWJMVK1bE888/n8Rt27aNn/70p9XerwcDAGxsG1q/ROjBAADZs2LFivjVr34Vn3/+eUR8+9DclVdeGffdd1/0798/WrVqFY0aNYqOHTvGz3/+83j22Wcz/v1ozpw5MXTo0IxPu9R/AQCyKRv1S4T+CwCQXU2bNo1rrrkm496jjz4aP//5z2PkyJFRWFgYK1eujNmzZ8eTTz4Zhx9+eIwZMyYiInr27Jmxb/V6IJt1hhoGAH7YslW/bLPNNnHDDTfEo48+GmPGjInTTz+9WvmccMIJsc022yTxjBkz4r333stYo34BAKqS5mda1DqkkSFa9dya3gzOPvvsaN68eZV7zzvvvMjLy0vi//znP8l1kyZNMtYWFxfXKK+K6yvmuckmm2TtbACgfstW/bIhmjRpEgcffHDGvTfffDMjVr8AAGvyyiuvRFFRURIffvjhGY3gqujBAAAb24bWLxtCDwYAqMq9994bkydPTuIzzzwzBg8evNb1DRs2jKuvvjr23Xff5N6XX34Zw4cPT2L9FwAgm7JRv2wI/RcAoLoOOOCAuPjiiyMnJye598knn8RFF10Ue+21V+y0006xzz77xOWXXx7ffPNNREQce+yxceyxx2acs+mmmybX2awz1DAAQDbql/WVk5MTRx55ZMY9PRgAoKbS/EyLWoc0MkSrnqv4y1qDBg3ioIMOqtbedu3aRY8ePZJ4ypQpMX/+/IiI2GyzzTKmFi5durRGeVVcv/qnWkVExpCM2j4bAKjfslW/bKgf//jHGXHFT+FUvwAAa/LCCy9kxEcddVSN9uvBAAAb24bWLxtKDwYAWJtVq1bF448/nsStW7eOM888s8p9OTk5ccUVV2QMBn3iiSeSa/0XACBbslW/bCj9FwCguk477bS4+eabo02bNutcl5+fH1dffXVcddVVsXjx4ozX2rZtm1xns85Y/exly5ZFeXl5rZ0NAKRHbdcvG6ImPRj1CwCwJml+pkWtQxoZolXPtW7dOiPu2LFjNG3atNr7u3fvnhHPmTMnIr79B/pWrVol92s6nGLu3LnrzHP1XzJreva8efPWeTYAUL9lq36p7bwWLFiQEatfAICKVq5cGWPHjk3irbbaKrp161ajM/RgAICNqTbqlw2lBwMArM3kyZMzeh377bdfxqdWrkvnzp2jV69eSTx16tTkLP0XACBbslW/bCj9FwCgJgYMGBAvvvhiXH755bH77rtH27Zto2HDhrHZZptFr1694oILLoiXX345Bg0aFBGVn9tt165dcp3NOmP1s1etWhWLFi2qtbMBgHSpzfplQ1Qc5LWuHoz6BQBYkzQ/06LWIY0M0arntthii4y4SZMmNdrfrFmzjHj1icqdOnVKrgsKCmp07urrW7duXSmv1fNetmxZjaYWzp49O7nOycmJjh071ig3AKBuZbN+qU2NGjXKiNUvAEBF7733XixbtiyJ999///U6Rw8GANhYaqt+qU16MADAd7755puMeJtttqnR/u233z4jnjlzZnKt/wIAZEM265fapP8CAFSladOmMWTIkHjwwQdj7NixMXHixHj33Xfj8ccfj6FDh2b8IeOnn36aXLdr1y7jud5s1hmr93cqrq/J2Ws6CwBIn9qqXzZEeXl5RlyxB6N+AQCqI63PtKh1SCNDtOq5li1bZkwrrumnUBUVFWXEq78prv7J44sWLar22WVlZfHVV18l8XbbbVdpTcVPNZ8yZUq1zo6I+PLLL5PrTp06RX5+frX3AgB1L5v1y/Lly2P69Okxfvz4+OCDD2p0bsXJxS1btsyI1S8AQEVvvvlmRty/f//1OkcPBgDYWGqrftGDAQCyobi4OCNu2LBhjfZX/N/+kpKS5Fr/BQDIhmzWL/ovAEB9tGrVqvj444+TeIcddsh4PZt1RsW+zOrra3J2Xl5edOnSpdp7AYB0q6p+KSkpiVmzZsWECRNi3LhxNTq7qh6M+gUAqI60PtOi1iGNDNFKgR//+MfJ9YIFC2o0iGLatGkZcefOnZPrHj16ZLw2YcKEap05efLkjOEWPXv2rLRmfc9esmRJTJ06NYlX/94BgPTIRv1SVFQUvXr1iv333z8GDRoUF1xwQY1yqliP7Ljjjhmx+gUAqOj9999Prps0abLe/zuvBwMAbCy1Ub/owQAA2VLxDwtmzpxZo/0V/71p9U8Y138BALIhW/WL/gsAsLGsWLEi5syZU+317777bixatCiJ99xzz4zXs1lnVLxX3bPLy8sz1u600041Hn4KANQftV2/7LPPPrHvvvvG0UcfHb/61a8qDU1fl6p6MOoXAKA60vpMi1qHNDJEKwX69euXXJeXl8cLL7xQrX0lJSUZn07VtWvXaNGiRRL37ds3Y/1rr71WrXMrrqt4TkRE7969o0mTJjU+e/To0VFWVpbEe+21V7X2AQD1Szbql/z8/IyBoLNnz44vvviiWueuXLkyRo0alcR5eXmxyy67ZKxRvwAAq1u1alVG03bnnXeOvLy89TpLDwYA2Bhqq37RgwEAsmWrrbbKiMeOHVuj/e+++25ynZ+fH1tssUUS678AANmQrfpF/wUAyLYbbrghevXqFT/+8Y/joIMOitLS0mrte/bZZ5PrnJyc2G+//TJez2ad0blz59hyyy1rfPaHH34YCxYsWOfZAED9l636pXv37sn1ypUrY9y4cdXO6cUXX8yI+/TpkxGrXwCA6kjrMy1qHdLIEK0UOOigg6Jx48ZJ/MADD8Ty5cur3PfMM8/EwoULk/jAAw/MeH3zzTePXr16JfFzzz2X8Wa0JiUlJfHEE08kcceOHWPXXXettK5Ro0ax//77J/Hrr78eX375ZZU5P/LII8l1kyZN4oADDqhyDwBQ/2Srftl3330z4uHDh1crnxEjRkRBQUESH3LIIdGsWbOMNeoXAGB1U6dOzahfunXrtt5n6cEAABtDbdYvejAAQDZsscUWsd122yXx559/Hm+++Wa19r766qvx9ddfJ/Eee+wRjRo1SmL9FwAgG7JZv+i/AADZ1LFjxygqKoqIiKKionjjjTeq3PPNN9/Ev//97yTu27dvxh9KRmS/zhgwYEBy/eWXX1Yr74cffji5zsnJicMPP7zKPQBA/ZOt+mV9ezCvvfZafPTRR0ncu3fv2HbbbSutU78AAFVJ8zMtah3SxhCtFGjZsmUcffTRSTx9+vS4+uqrMyb7VfT111/HjTfemMR5eXlx/PHHV1o3ZMiQ5Hrp0qXxu9/9bp3nXnvttTFjxowkPvHEEyM3d83/GZ100knJdVlZWVxyySWxYsWKtZ59zz33xAcffJDEAwcOjKZNm651PQBQf2WrfjnmmGMyao8RI0bEO++8s85cxo8fH3/5y18yzj3ttNPWuFb9AgB85/PPP8+It9566w06Tw8GAMi22qxf9GAAgGxZvQ6IiLj88stj3rx569xTUFAQf/jDHzLunXrqqZXW6b8AANmQrfpF/wUAyKaf/vSnGbXGnXfeuc4+SVFRUZx33nmxcuXKiPj2DxzPOuusNa7NZp1x7LHHRl5eXhL//ve/j/nz56/17JEjR8bIkSOTeJ999okuXbqsdT0AUH9lq3454ogjIj8/P4lHjx4d//u//7vOXL7++uu4/PLLM+4NHTp0jWvVLwBAdaT1mRa1DmljiFZKnHvuudGuXbskfuqpp+K8886L2bNnV1r75ptvxgknnBCLFy9O7v3yl7+MzTffvNLagw8+OIVfY0AAAB9JSURBVHbeeeckfuWVV+KCCy7I2BsRUVxcHFdeeWU8/vjjyb0tt9yy0sMBq+vZs2ccdNBBSTxhwoT41a9+lfEJWBERq1atijvuuCNuvvnm5F7z5s3j7LPPXuvZAED9l436pVu3bjFo0KAkLi0tjTPOOCP+93//N8rLyzPWlpeXx1NPPRUnn3xyxi98Z555ZnTr1m2NOatfAIDvfPXVVxlx+/btN+g8PRgAINtqs37RgwEAsuXoo4+OHXfcMYlnzJgRAwcOjLFjx65x/euvvx6DBg2KOXPmJPcOO+ywNX66pv4LAJAN2apf9F8AgGzafPPN4+CDD07iDz74IC655JJYtmxZpbWTJk2KY489NiZNmpTcGzRoUPTu3XuNZ2ezzujYsWNGj2b69Onxi1/8IqZMmVJp7YgRI+LSSy9N4ry8vLj44ovXejYAUL9lq35p1apVpQFYl112WTz44INRWlpaaf2oUaPi+OOPj7lz5yb3Bg4cGHvvvfca81a/AADVkdZnWtQ6pE1OecV/aaXemjhxYpx66qmxcOHC5F5eXl7sueeesfXWW8eqVavigw8+iAkTJmTs22233eL+++/PmPC3uqlTp8bgwYNjwYIFyb38/PzYb7/9omPHjlFYWBivvvpqxtdt3LhxDB8+POONek3mz58fxx57bHzzzTfJvUaNGsW+++4bXbp0iUWLFsWYMWMyhmnk5ubG7bffHvvvv391fiwAQD2Wjfpl+fLlccopp2RMOo6I6Nq1a/Tp0ydatmwZhYWF8eabb8bMmTMz1hx11FFx3XXXrXXicoT6BQD41u9///sYMWJEEo8YMSJ+/OMfb9CZejAAQDbVdv2iBwMAZMvs2bNj0KBBlR7W69q1a+yyyy7Rtm3bWLRoUbz33nsxefLkjDU777xzPPLII7HJJpus8Wz9FwAgG7JVv+i/AADZVFBQEEcddVTMmzcvudeiRYvYe++9Y4sttoiFCxfGZ599VqkW2XXXXeOBBx6IRo0arfXsbNYZxcXFceKJJ8ZHH32U3GvQoEH07ds3tttuuygqKopx48bF1KlTM/b9/ve/jxNPPHHdPxQAoF7LVv1SVlYW559/frz00ksZ9zt06BB9+/aNtm3bxoIFC+Kdd96JL7/8MmNN375946677orGjRuvNW/1CwD8cEyfPj2jt3HOOefEueeeW629aX2mRa1DmhiilTKTJ0+Os88+O77++utqre/fv3/cfPPNkZ+fv851n376afzqV7+KwsLCKs9s2rRp3HbbbbHnnntWK4dZs2bFySefXOkT0NckLy8vrrnmmjjyyCOrdTYAUP9lo35ZvHhx/Pa3v41XXnmlWmfm5ubGSSedFJdeeuk6Hx78jvoFADj77LPj5ZdfTuLnnnsutttuuw0+Vw8GAMiWbNQvejAAQLbMnj07zj333IwH7Kpy4IEHxp///OfYdNNN17lO/wUAyIZs1S/6LwBANn366adx+umnVxoGujYDBgyI66+/fq0DzFeXzTpjyZIlcdppp1UakLEmubm5ceGFF8bpp59erbMBgPotW/VLSUlJXH311RkfUFeVww47LK699tpq1UbqFwD4YdiQIVoR6X2mRa1DWhiilUIlJSXxwAMPxOOPP17pk6W+s+2228bpp58eP/vZz6p97uLFi+OWW26JZ555JpYtW1bp9by8vDjwwAPj4osvjo4dO9Yo5+Li4rj77rvj0UcfzZh8+J2cnJzo169fXHzxxdGtW7canQ0A1H/Zql+ef/75uO+++2LixIlrfD0vLy/22GOPOPfcc6NHjx41yln9AgA/bKecckq88cYbSfyf//wnttxyy1o5Ww8GAMiGbNYvejAAQDasXLkynn322bj//vtjypQpa1yTk5MTPXv2jNNPPz3222+/ap+t/wIAZEM26xf9FwAgWxYuXBi33npr/Otf/4qioqI1runVq1ecccYZ0b9//xqdnc06Y9WqVfHII4/EsGHD1jpEo3fv3nHRRRfFrrvuWqOzAYD6LZv1y+uvvx5///vf4+233441/Xl9bm5u7LLLLnHGGWdEv379anS2+gUAvv82dIhWRHqfaVHrkAaGaKXcxx9/HF988UXMnTs3ysrKom3btrHzzjvHtttuu95nlpSUxNtvvx3Tp0+PhQsXxiabbBJbbrll7LLLLtGiRYsNynfVqlXx3nvvxddffx3z58+PRo0axeabbx677LJLtGvXboPOBgDSIRv1S0FBQbz//vtRWFgYRUVF0bJly2jXrl307t07mjVrtkH5ql8AgGzRgwEA0kYPBgDIlhkzZsT48eNj7ty5sWzZsmjWrFlSZ7Rq1Wq9z9V/AQCyJVv1i/4LAJAty5cvjw8//DC+/PLLWLx4cWyyySbRvn376NmzZ43/ILOibNYZ5eXlMWHChJg8eXLMmzcvGjRoEO3atYuePXtG586dN+hsAKB+y2b9Mn/+/Hj//fejoKAglixZkvR2fvzjH0fbtm036Gz1CwBQHWl9pkWtQ31miBYAAAAAAAAAAAAAAAAAAAAAAACpk1vXCQAAAAAAAAAAAAAAAAAAAAAAAEBNGaIFAAAAAAAAAAAAAAAAAAAAAABA6hiiBQAAAAAAAAAAAAAAAAAAAAAAQOoYogUAAAAAAAAAAAAAAAAAAAAAAEDqGKIFAAAAAAAAAAAAAAAAAAAAAABA6hiiBQAAAAAAAAAAAAAAAAAAAAAAQOoYogUAAAAAAAAAAAAAAAAAAAAAAEDqGKIFAAAAAAAAAAAAAAAAAAAAAABA6hiiBQAAAAAAAAAAAAAAAAAAAAAAQOoYogUAAAAAAAAAAAAAAAAAAAAAAEDqGKIFAAAAAAAAAAAAAAAAAAAAAABA6hiiBQAAAAAAAAAAAAAAAAAAAAAAQOoYogUAAAAAAAAAAAAAAAAAAAAAAEDqGKIFAAAAAAAAAAAAAAAAAAAAAABA6hiiBQAAAAAAAAAAAAAAAAAAAAAAQOoYogUAAAAAAAAAAAAAAAAAAAAAAEDqGKIFAAAAAAAAAAAAAAAAAAAAAABA6hiiBQAAAAAAAAAAAAAAAAAAAAAAQOoYogUAAAAAAAAAAAAAAAAAAAAAAEDqGKIFAAAAAAAAAAAAAAAAAAAAAABA6hiiBQAAAAAAAAAAAAAAAAAAAAAAQOoYogUAAAAAAAAAAAAAAAAAAAAAAEDqGKIFAAAAAAAAAABAvTJ37tzYY489onv37nHOOefUdTobpLy8PI455pjo3r17HHTQQbF8+fK6TgkAAAAAAAAAAL43csrLy8vrOgkAAAAAAAAAAIBs6N69e9bOPuqoo+LPf/5zvPXWWzFkyJDk/vXXXx8DBw7M2tf9ITj99NNj9OjR0ahRo3j++eejc+fOdZ3SBvnggw9i8ODBUV5eHscdd1z86U9/quuUAAAAAAAAAADgeyG3rhMAAAAAAAAAAACA7zzxxBMxevToiIgYMmRI6gdoRUT06tUrDjnkkIiIePzxx2PMmDF1nBEAAAAAAAAAAHw/GKIFAAAAAAAAAABAvTB//vy46aabIiKiRYsWceaZZ9ZxRrXnoosuiry8vIiIuOqqq6K4uLiOMwIAAAAAAAAAgPRrWNcJAAAAAAAAAAAAZMtnn31W5Zq33norhgwZksS77bZbPPzww9lMi7W48cYbY/HixRERccYZZ8Rmm21WxxnVns6dO8exxx4bjzzySEybNi3uueeeOPfcc+s6LQAAAAAAAAAASLWc8vLy8rpOAgAAAAAAAAAAoK4YolU/TJo0KY466qgoLy+PVq1axauvvhqbbLJJXadVqwoKCuKnP/1plJSUROPGjePll1+Odu3a1XVaAAAAAAAAAACQWrl1nQAAAAAAAAAAAADcdttt8d1nQg4aNOh7N0ArIqJ9+/ZxyCGHREREcXFx3HPPPXWcEQAAAAAAAAAApJshWgAAAAAAAAAAANSpSZMmxahRo5J44MCBdZhNdq3+vY0YMSLmzJlTh9kAAAAAAAAAAEC6GaIFAAAAAAAAAABAnXr44YeT65/85CfRpUuXOswmu/r06ROdO3eOiIji4uIYMWJEHWcEAAAAAAAAAADp1bCuEwAAAAAAAAAAAEizt956K4YMGZLE119/fQwcOLDSuu7duyfXDz30UPTp0yfKysriv//9bzzzzDPxySefREFBQTRu3Dg6dOgQu+++exx33HGx1VZbZZyzcuXKePnll+PZZ5+Nzz//PObMmRP5+fnRtWvX6NevX5xwwgnRsmXLGn0PY8eOjVdeeSXefffdKCwsjCVLlkSLFi2iQ4cOseeee8YhhxwSO+ywQw1/MtWzZMmSeP7555P4wAMPrHLPSSedFG+//XZERJx55plx4YUXRkTEF198Ef/+979j7NixMXv27Fi8eHG0atUqtt566+jfv38cddRR0axZs2rltWrVqhg9enT85z//iQkTJsTs2bNj+fLl0axZs2jZsmXstNNOsccee8QBBxwQTZs2rfb3m5OTEwcccEDcf//9ERHxz3/+M4YOHRoNGjSo9hkAAAAAAAAAAMC3DNECAAAAAAAAAACoAzNnzozf/va3yTCo7yxfvjwWLlwYn376aTzyyCPxxz/+MQYNGhQREVOnTo1f//rXMXHixIw9ixYtivHjx8f48ePjkUceidtvvz123XXXKnP46KOP4pprronx48dXeq2wsDAKCwtjwoQJcc8998SAAQPi8ssvj9atW2/Ad13ZCy+8EMuXL0/ivffeu8ZnlJSUxP/8z//EAw88EKtWrcp4raCgIAoKCuLNN9+MO++8My6//PI44ogj1nnepEmT4je/+U1Mnjy50mvz58+P+fPnx5QpU+LZZ5+Na6+9Ni644II48cQTq51v3759kyFas2fPjjfeeGO9vm8AAAAAAAAAAPihy63rBAAAAAAAAAAAAH5oZs2aFccee2ylAVoVlZaWxu9///t49dVXY8qUKXHsscdWGqBV0YIFC+Kss86KmTNnrnPdyJEj44QTTljjAK2KysvLY+TIkTFo0KCYMmVKletrYtSoUcl1p06dYquttqrR/vLy8rjwwgvjvvvuqzRAq6KFCxfGJZdcEv/3f/+31jUTJ06M448/fo0DtNZkyZIlcfXVV8ctt9xS7Zx/8pOfxCabbJLEq/8MAAAAAAAAAACA6jNECwAAAAAAAAAAYCO76qqrYs6cORERcdBBB8WDDz4Y48aNiw8//DCGDx8eu+66a8b666+/Pk477bRYtGhR5OfnxznnnBMjR46MCRMmxOuvvx7XXXddtG7dOlm/aNGiuPfee9f69d944424+OKLo6SkJLm39957x5133hlvvPFGTJgwIcaMGRM33XRT7Ljjjsma6dOnJ3nUhpKSknjjjTeSuEePHjU+4/HHH4+XX345IiK23XbbuO666+K1115Lvodrrrkmtthii2R9eXl5XHvttbF8+fJKZ5WXl8cll1wSRUVFERGRm5sbgwcPjsceeyzeeeedmDhxYowZMyYefPDB2H///TP23nvvvTF16tRq5dy4cePYfvvtk3j06NE1/r4BAAAAAAAAAABDtAAAAAAAAAAAADa6ZcuWRW5ublxzzTVx6623xu677x4tW7aMJk2axK677hr3339/dOnSJVn/9ddfx4wZM6JVq1YxYsSIOPfcc2PbbbeNRo0aRZs2beLnP/95PPLII9GoUaNkzwsvvLDGr71w4cK4+OKLo6ysLCIiyeO+++6L/fffP1q3bh2NGjWK9u3bx+GHHx5PPvlknHLKKcn+GTNmxB/+8Ida+TlMmjQpiouLk3i77bar8RnfDfQaOHBg/Otf/4qf//znsfnmmyffwzHHHBNPPvlkdO3aNdlTWFgY//3vfyud9fbbb8cXX3yRxJdddllceeWVscsuu0SzZs2iYcOG0b59+9h9993jzjvvjNNOOy1ZW1paGo8++mi18+7WrVtyPXPmzCgoKKjJtw0AAAAAAAAAAIQhWgAAAAAAAAAAAHXiyCOPjGOOOWaNrzVu3DgGDx5c6f4f//jHtQ6a2nrrrePAAw9M4vnz58fMmTMrrRs+fHjMmzcviS+88MK15hHx7ZCtSy+9NA466KDk3osvvhhTpkxZ657q+uijjzLi1QdL1cQOO+wQV199dcYQsdW1atUqLrrooox748aNq7Ru0qRJGfG6fi4RERdccEG0bNlynWeuTcX/O1b8WQAAAAAAAAAAAFUzRAsAAAAAAAAAAKAODB06dJ2v9+jRIyNu3759xpCsNenevXtGPH/+/Iy4vLw8Hn300SRu165dnHzyydXINuL888/POOexxx6r1r51mTp1aka87bbbrtc5J510UjRs2HCda/r27Rs5OTlJXFBQUOW5n3322Tpfb9iwYfz1r3+N++67L1588cV4+umnq5dwVB6iVfFnAQAAAAAAAAAAVM0QLQAAAAAAAAAAgI1s8803jy233HKda1q3bp0R9+rVK3Jz1/3IV4sWLTLioqKijPjzzz+PuXPnJvE+++wTjRo1qkbGEdtss0107do1id96661q7VuX6dOnZ8QVv+fq2m233apc07Rp02jevHkSL1++vNKabt26ZcQXXHBBjBkzJsrLy9d6bt++fWPvvfeOrl27Rl5eXrVzrvi9VvxZAAAAAAAAAAAAVTNECwAAAAAAAAAAYCPr0qVLlWsaNmyYEW+++eY13lNx+NMHH3yQEXfq1KnKM1fXvXv35Hry5MmxdOnSGu2vaN68ecl1Tk5ObLrppjU+o3HjxtG5c+dqrW3SpElyXVpaWun13XffPWNQ2KxZs+K0006Lfv36xe9+97t4/vnnY/78+TXOcU2aNm2aEdfWuQAAAAAAAAAA8EPSsOolAAAAAAAAAAAA1KZWrVrVeE9+fv4Gf93Zs2dnxH/729/ib3/723qdVV5eHvPmzas0DKomli9fnlzn5+dHbm7NPxeyJl9/9fMrDhj77vWbb745TjzxxCgqKkruz5kzJ5566ql46qmnIicnJ370ox/FXnvtFfvss0/ssssukZOTU+O8N9tss4x49Z8FAAAAAAAAAABQPTV/4ggAAAAAAAAAAIAN0qhRoxrvWZ9BTRUtXrx4g89Y3aJFizZof0lJSXK9vkPCNtlkkw3KoaIdd9wxnnzyyfjJT36yxtfLy8tj4sSJ8fe//z2OP/746NevX9xyyy2xdOnSGn2dit/v6j8LAAAAAAAAAACgegzRAgAAAAAAAAAA2MhqYyDW+igtLa3V81asWLFB+1cfgLVy5coNTafWbLPNNvHII4/EU089Fb/85S9jq622WuvaOXPmxF133RUHH3xwfP7559X+GsXFxRlxbQ8DAwAAAAAAAACAH4KGdZ0AAAAAAAAAAAAAG0ezZs0y4nvuuSf22WefOsomIj8/P7levnx5neWxNjvttFPstNNOcckll8T06dNj3Lhx8dZbb8Wbb74ZhYWFGWsLCwvj1FNPjZdeeinj+1qbigPIqrMHAAAAAAAAAADIlFvXCQAAAAAAAAAAALBxtG7dOiNesGBBHWXyrVatWiXXxcXFsWzZsjrMZt06deoURx99dNx4440xduzYePrpp+OEE06IBg0aJGsKCwvjn//8Z7XOmz9/fka8+s8CAAAAAAAAAACoHkO0AAAAAAAAAAAAfiB23nnnjHj8+PE12j916tQoKCiIsrKyWsmnS5cuGfGsWbNq5dwNUVRUFJ988klMmTJlnet23HHH+MMf/hDXXHNNxv2PPvqoWl9n5syZGXHFnwUAAAAAAAAAAFA1Q7QAAAAAAAAAAAB+IHr06BFNmjRJ4v/85z9RUlJSrb1Lly6NY445Jvr16xc9evSIAQMGRHFx8Qbls9VWW2XE06ZN26DzNsTy5ctj3333jV69esVRRx0Vt9xyS7X2DRgwICOeO3dutfZNnz49I674swAAAAAAAAAAAKpmiBYAAAAAAAAAAMAPRKNGjWLgwIFJXFhYGHfddVe19t5+++2xZMmSiIhYuXJlbLXVVtG4ceMNymfnnXfOiCdNmrRB522IJk2aRIsWLZL4tddei4KCgir3zZgxIyPefPPNq/X1Pvnkk+Q6Jyen0s8CAAAAAAAAAAComiFaAAAAAAAAAAAAPyCnnnpqbLLJJkl81113xT/+8Y917vnnP/+ZsSYnJyfOOuusDc5lhx12iM022yyJVx8sVRd+/vOfJ9clJSVx0UUXxbJly9a6fuXKlXHddddl3Ovfv3+1vtbq3+u2224brVq1qmG2AAAAAAAAAACAIVoAAAAAAAAAAAA/IJ06dYo//elPSVxeXh7XX399HH/88fH8889HQUFBlJSUxMyZM+O1116LU045Ja644oooLy9P9px66qmx4447bnAuubm50adPnyR+9913o6ysbIPPXV9HH310bLnllhn5HHHEEfHoo4/GV199FcXFxbFy5cqYNWtWPPfcczFo0KAYO3Zssn7nnXeOAw44oMqvs2TJkvj000+TeI899qjdbwQAAAAAAAAAAH4gGtZ1AgAAAAAAAAAAAGxcRx55ZMyfPz9uvPHGZGjVe++9F++9916Ve4844oj49a9/XWu5DBgwIF5++eWIiFiwYEFMnDgxdt5551o7vyaaNGkSN998c5xyyimxZMmSiIiYPn16xtCxtenSpUvcddddkZtb9Wdbjhs3LlatWpXEhx566PonDQAAAAAAAAAAP2BVP60DAAAAAAAAAADA986pp54aw4YNi27dulVr/WabbRZXXHFF/OUvf4kGDRrUWh777bdf5OfnJ/Ho0aNr7ez1sfPOO8fw4cNjp512qtb6nJycGDhwYDz22GPRtm3bau157bXXkustt9wyevbsuR6ZAgAAAAAAAAAADes6AQAAAAAAAAAAAOrGnnvuGf/+979j9OjRMXr06Hj//fejsLAwFi9eHHl5edGqVavYYYcdYu+9944BAwbEZpttVus5NGnSJI444oh4/PHHIyLiueeei3POOafWv05NdO/ePf75z3/GW2+9FS+++GJMnDgxpk+fHkuXLo3c3Nxo3bp1dOzYMfbaa6844IADYptttqn22SUlJfHSSy8l8aBBg7LxLQAAAAAAAAAAwA9CTnl5eXldJwEAAAAAAAAAAMAP15dffhkDBgyI7x5ne+qpp2KnnXaq46yy4z//+U8yJCw/Pz9Gjx4dzZo1q+OsAAAAAAAAAAAgnXLrOgEAAAAAAAAAAAB+2Lbeeuvo379/Ej/22GN1mE12rf69DRo0yAAtAAAAAAAAAADYAIZoAQAAAAAAAAAAUOfOP//8yMnJiYiI5557LhYsWFDHGdW+KVOmxBtvvBEREfn5+XH66afXcUYAAAAAAAAAAJBuhmgBAAAAAAAAAABQ57bffvs49NBDIyJixYoVMXz48DrOqPYNGzYsysvLIyLiF7/4RbRu3bqOMwIAAAAAAAAAgHTLKf/uiRwAAAAAAAAAAACoQ7Nnz44BAwbEsmXLYrPNNotXXnklmjVrVtdp1YpvvvkmDjnkkCgtLY2OHTvGyJEjIz8/v67TAgAAAAAAAACAVMut6wQAAAAAAAAAAAAgIqJDhw5x/vnnR0TEkiVLYtiwYXWcUe25/fbbo7S0NCIirrjiCgO0AAAAAAAAAACgFhiiBQAAAAAAAAAAQL1x0kknxW677RYREf/4xz9ixowZdZzRhvvoo4/i3//+d0RE/OxnP4v999+/jjMCAAAAAAAAAIDvB0O0AAAAAAAAAAAAqDdyc3PjpptuipYtW8aKFSviz3/+c12ntEHKy8vjmmuuifLy8ujSpUv88Y9/rOuUAAAAAAAAAADgeyOnvLy8vK6TAAAAAAAAAAAAAAAAAAAAAAAAgJrIresEAAAAAAAAAAAAAAAAAAAAAAAAoKYM0QIAAAAAAAAAAAAAAAAAAAAAACB1DNECAAAAAAAAAAAAAAAAAAAAAAAgdQzRAgAAAAAAAAAAAAAAAAAAAAAAIHUM0QIAAAAAAAAAAAAAAAAAAAAAACB1DNECAAAAAAAAAAAAAAAAAAAAAAAgdQzRAgAAAAAAAAAAAAAAAAAAAAAAIHUM0QIAAAAAAAAAAAAAAAAAAAAAACB1DNECAAAAAAAAAAAAAAAAAAAAAAAgdQzRAgAAAAAAAAAAAAAAAAAAAAAAIHUM0QIAAAAAAAAAAAAAAAAAAAAAACB1DNECAAAAAAAAAAAAAAAAAAAAAAAgdQzRAgAAAAAAAAAAAAAAAAAAAAAAIHUM0QIAAAAAAAAAAAAAAAAAAAAAACB1DNECAAAAAAAAAAAAAAAAAAAAAAAgdQzRAgAAAAAAAAAAAAAAAAAAAAAAIHUM0QIAAAAAAAAAAAAAAAAAAAAAACB1DNECAAAAAAAAAAAAAAAAAAAAAAAgdQzRAgAAAAAAAAAAAAAAAAAAAAAAIHUM0QIAAAAAAAAAAAAAAAAAAAAAACB1DNECAAAAAAAAAAAAAAAAAAAAAAAgdQzRAgAAAAAAAAAAAAAAAAAAAAAAIHUM0QIAAAAAAAAAAAAAAAAAAAAAACB1DNECAAAAAAAAAAAAAAAAAAAAAAAgdQzRAgAAAAAAAAAAAAAAAAAAAAAAIHUM0QIAAAAAAAAAAAAAAAAAAAAAACB1DNECAAAAAAAAAAAAAAAAAAAAAAAgdQzRAgAAAAAAAAAAAAAAAAAAAAAAIHUM0QIAAAAAAAAAAAAAAAAAAAAAACB1/h86+SXN7du5gwAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 6000x3000 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAEtEAAAn6CAYAAABcU5rDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzdd3TV9f0/8FcICRBAkCEoQxSplKUgzi+KoqgMUVDcC4o4qlVLHbRqHSDU1m3V1lpQqtYtQ0BFAa2iOFBxgEAFWQKyBAIkjN8fHvPzQwIkISFc+3icwzl5v+57vG5y7+fec7jnedM2b968OQAAAAAAAAAAAAAAAAAAAAAAACCFlCvrBgAAAAAAAAAAAAAAAAAAAAAAAKCohGgBAAAAAAAAAAAAAAAAAAAAAACQcoRoAQAAAAAAAAAAAAAAAAAAAAAAkHKEaAEAAAAAAAAAAAAAAAAAAAAAAJByhGgBAAAAAAAAAAAAAAAAAAAAAACQcoRoAQAAAAAAAAAAAAAAAAAAAAAAkHKEaAEAAAAAAAAAAAAAAAAAAAAAAJByhGgBAAAAAAAAAAAAAAAAAAAAAACQcoRoAQAAAAAAAAAAAAAAAAAAAAAAkHKEaAEAAAAAAAAAAAAAAAAAAAAAAJByhGgBAAAAAAAAAAAAAAAAAAAAAACQcoRoAQAAAAAAAAAAAAAAAAAAAAAAkHKEaAEAAAAAAAAAAAAAAAAAAAAAAJByhGgBAAAAAAAAAAAAAAAAAAAAAACQcoRoAQAAAAAAAAAAAAAAAAAAAAAAkHKEaAEAAAAAAAAAAAAAAAAAAAAAAJByhGgBAAAAAAAAAAAAAAAAAAAAAACQcoRoAQAAAAAAAAAAAAAAAAAAAAAAkHKEaAEAAAAAAAAAAAAAAAAAAAAAAJByhGgBAAAAAAAAAAAAAAAAAAAAAACQcoRoAQAAAAAAAAAAAAAAAAAAAAAAkHKEaAEAAAAAAAAAAAAAAAAAAAAAAJByhGgBAAAAAAAAAAAAAAAAAAAAAACQcoRoAQAAAAAAAAAAAAAAAAAAAAAAkHKEaAEAAAAAAAAAAAAAAAAAAAAAAJByhGgBAAAAAAAAAAAAAAAAAAAAAACQcoRoAQAAAAAAAAAAAAAAAAAAAAAAkHKEaAEAAAAAAAAAAAAAAAAAAAAAAJByypd1AwAAAAAAAAAAAMCu5csvv4wvvvgili5dGps2bYrKlStHzZo1Y++9944mTZpEZmZmWbfILmjDhg0xc+bMmDNnTixatCjWrl0baWlpUbVq1ahRo0bsv//+sffee0daWtpO6WfNmjXx5Zdfxty5c2PFihWxdu3ayMjIiKysrNhrr72iUaNG0ahRo53WDwAAAAAAAABQ8oRoAQAAAAAAAADsoPfeey/OP//8Am+rWLFiTJo0KbKyskrsvOuvvz5efPHFfPV69erFG2+8UWLnsHVb/g0OOeSQGDZsWKHXr127NipVqlQarZWZgp4Hr7/+etSvX7+MOqI4Xnjhhejfv/9OPXP69OkREXH//ffHAw88kFd3TSsb77zzTtx6663x9ddfb3XOG2+8EfXq1duJXZWtLR+bERGdOnWKe+65p0T279ChQ8yfPz9vfNJJJ8Vf/vKXrc4v6H1AWV5v169fH2PHjo0xY8bEe++9F9nZ2ducX6VKlTj66KOjS5cu0b59+0hPTy/Rfr7//vt46aWXYvTo0TF16tTYsGHDNudXr1492rVrFyeddFK0b99eoBYAAAAAAAAApBghWgAAAAAAAAAApWjdunUxYcKE6Ny5c4nsl5OTE+PGjSuRvdj51q5dGw8++GCsWLEibrvttrJuByBh5MiRcf31128zdGi33Xb7nwrQ2poxY8ZE586d4/jjjy/rVsrMhg0b4oknnohHHnkklixZUuh1q1evjlGjRsWoUaOiUaNGcdlll0W3bt12OLxq48aN8Y9//CMeeeSRWLVqVaHXrVixIq+f/fbbL6699tpo3779DvUCAAAAAAAAAOw85cq6AQAAAAAAAACAn7uxY8eW2F5vvvlmkYIh2HWMHz8+unTpEn//+98jNze3rNsBSFi0aFHceOON2wzQioho2rTpTupo13fzzTfH8uXLy7qNMjFr1qw49dRT4/bbby9SgNaWZs+eHddee22cf/75sWDBgmLvs3Llyjj33HPjrrvu2qH3STNnzoy+ffvGgAEDYtOmTcXeBwAAAAAAAADYecqXdQMAAAAAAAAAAD93EydOjOzs7MjKytrhvV5++eUS6IidbcCAATFs2LCybgNgqx599NFYu3Ztorb//vtH7969o3HjxpGWlhbLly+PihUrllGHu56lS5fGbbfdFnfddVdZt7JTTZw4Ma666qrIzs7Od1tmZmYccsghceSRR0a9evWiVq1aUb58+Vi5cmXMnDkzPvzww5gwYULk5OQk1k2ePDm6desWDz30UBx88MFF6icnJyd69+4dn332WaKelpYWbdq0iSOOOCKaNGkSNWvWjMqVK0dOTk6sWrUqZs6cGR9//HG88cYbsX79+sTaYcOGRXZ2dtx+++1F6gUAAAAAAAAA2PmEaAEAAAAAAAAAlLJ169bFhAkTonPnzju0T3Z2dowfP76EumJnmj59elm3AIXSo0eP6NGjR6HnX3/99fHiiy8maq+//nrUr1+/pFujlE2ePDkx3mOPPeKpp56KypUrl1FHqeHll1+OTp06RceOHcu6lZ1i3LhxcdVVV0Vubm6inpWVFeeff3706dMnqlatWuDadu3axYUXXhgrV66Mxx57LIYMGZII4lq1alX06dMn7r///jjqqKMK3dNdd92VL0CrdevWcdttt0WTJk22uq5du3YREbFy5cq4++6749///nds3rw57/bnn38+WrduHT179ix0LwAAAAAAAADAzleurBsAAAAAAAAAAPg5qlatWmI8duzYHd5z/PjxsXbt2h3ehx03ePDgmD59et6/YcOGlXVLkPKuuOKKxPPqjTfeKOuW/qcsWLAgMT7hhBMEaBXSzTffHMuXLy/rNkrd1KlT43e/+12+AK3WrVvH2LFj4+qrr95qgNZPVatWLX7zm9/EiBEjokWLFonb1q1bF1dddVXMmjWrUD3Nnz8//vWvfyVq//d//xePP/74NgO0tuzn5ptvjhtvvDHfbXfddVesWbOmUPsAAAAAAAAAAGVDiBYAAAAAAAAAQCk47rjjEuOJEydGdnb2Du358ssvJ8YHHHDADu0HAD/aMiioUaNGZdNICvruu+9iwIABZd1GqcrOzo7f/va3+cI8TznllHj88cejTp06Rd6zQYMG8eSTT8bhhx+eqK9ZsyauuOKKyMnJ2e4eL7zwQiLUq2LFivGnP/0pMjMzi9zPOeecE507d07Uli1bFqNHjy7yXgAAAAAAAADAziNECwAAAAAAAACgFHTo0CEqVqyYN163bl1MmDCh2PutWrUq3nrrrbxxixYtomHDhjvSIgDk2bBhQ2JcqVKlMuokNWwZ0jRq1KgYN25cGXVT+u6///745ptvErXjjjsuBg0aVKzAqh9VqFAhHnrooWjSpEmiPmvWrBg6dOh217/99tuJ8VFHHRW1a9cudj9XX311vtr48eOLvR8AAAAAAAAAUPqEaAEAAAAAAAAAlIKsrKxo3759ojZ27Nhi7/faa69FTk5O3rhLly7F3gsAtictLa2sW9ilXX755flqN998c6xYsWLnN1PKFi1aFE888USiVqtWrRg4cGCUK7fjH0OtVKlS/OUvf4ny5csn6g899FAsX758m2tnzZqVGDdo0GCHemnYsGG0bNkyUZs2bdoO7QkAAAAAAAAAlK7y258CAAAAAAAAAEBxdOrUKV555ZW88cSJEyM7OzuysrKKvNfo0aPzfk5LS4vOnTvHF198USJ95ubmxhdffBELFy6MlStXxooVK2Lz5s1RqVKlqF27duy7777RpEmTSE9P3+GzNm/eHDNnzowvvvgili5dGhs2bIg99tgj9tlnn2jVqlWphrasWLEiPv744/jmm29izZo1sdtuu0WtWrXiwAMPjDp16pTauanu+++/j08++STmzJkTq1evjho1asSee+4Zbdu2jUqVKpXKmUuXLo1PP/00vvvuu1i+fHlUrFgxatWqFfvss0/88pe/LJUzdyUbN26Mr776KqZPnx7Lly+PnJycqFatWuy+++7RqFGj2H///cu6xZSwYMGC+Pjjj2PhwoWRk5MTVatWjX322SfatGmz3cfu+vXr46OPPoqZM2fG6tWro3LlylGnTp1o06ZN1K5du0T6W7VqVUyZMiWWLFkSS5cujczMzKhZs2ZeiE9JhBOVlU2bNsUXX3wRs2bNynsM77777lGzZs1o1apV1KpVq8TPnDZtWkyZMiVWr14dDRs2jEMOOSR23333Ej/nR7169YrXX389Pvnkk7zakiVL4rbbbos777yz1M4tC08++WSsX78+Ubv44oujevXqJXZG06ZNo0ePHvHMM8/k1bKzs+P555+PPn36bHVddnZ2YlwSIWYtW7aMqVOnRkRERkZGvnAvAAAAAAAAAGDX4n/2AQAAAAAAAABKydFHHx1ZWVl5AQ/r1q2LCRMmROfOnYu0z/Lly2PSpEl544MOOijq1q27Q72tXbs2RowYEa+88kpMmTIlXwjFlqpVqxbHH3989OrVKxo3blys8x5//PF4+umnY/78+QXO2WuvveL000+PX/3qV5GZmRlTp06N0047Le/2evXqxRtvvFHg2vvvvz8eeOCBvHH//v3jwgsvjIiIKVOmxEMPPRRvvfVWbNq0Kd/atLS0aN68efTu3Tu6dOlSqPtz/fXXx4svvpg3PuSQQ2LYsGGJOdsKOnrxxRcT6yMipk+fnhifd955MXny5Lxx9+7dY/DgwYXqLyJi3rx5ceyxxyZqjz/+eBx66KGFWj916tR4+OGHY+LEiZGbm5vv9ipVqkTXrl3jyiuvjBo1ahS6r63ZuHFjPPfcc/H888/H1KlTC/xbRUTsscceccIJJ8Qll1xSKkE8ERG/+c1vEgF41apVi//85z+RmZlZ5L3OOOOM+Pjjj/PGRxxxRAwZMqTAuV999VU8/vjjMXbs2Fi1atVW96xVq1a0a9cuzj777DjggAOK3NOuasvncVGe8zfffHOcddZZERExadKkuPfee2PKlCkFrq1UqVKcdtppceWVV0bVqlUTty1btiwefPDBeP7557d6Xfy///u/uPrqq6Nly5ZFun8/GjNmTDz55JPx0UcfxYYNGwqcU7169ejQoUNcdtll0aBBg2Kdsz0dOnTY6vU44ofraP/+/RO1QYMGRY8ePba6ZsaMGfHPf/4zXnvtta0+htPS0qJZs2Zx6qmnxumnnx4ZGRmF6ndr1/nVq1fHH/7whxg7dmxifkZGRnTp0iV+85vfRL169Qp1RlGUK1cuBg0aFKecckrk5OTk1UeNGhWdO3fOd/1NVZs2bYoXXnghUcvKykq8PpeUvn37xrPPPhubN2/Oqz311FPbDNGqUqVKIjjrzTffjPXr10eFChWK3cfll18evXv3jt133z2qVKlS7H0AAAAAAAAAgJ0jdb+qDgAAAAAAAABgF1epUqU4+uijE7UtQz4K45VXXkkErRQ26Glrxo0bFyeccELcdNNN8fbbb283QCsiYuXKlfHss89Gt27d4q9//WuRzpsyZUp06tQp7rrrrm0GtixYsCDuueee6NGjR8yYMaNIZxRk06ZN8ac//SnOOuusmDhx4lZDmTZv3hyfffZZ/Pa3v43zzjsvVq9evcNnp7KcnJy49dZbo2fPnjFu3LgCA7QiIlavXh3//ve/46STToq33357h8784IMPomvXrnHTTTfFJ598stW/VUTE4sWLY9iwYdGxY8ethlHtqFNPPTUxXrlyZUycOLHI+8yZMycRoBURWw0guvfee+OUU06JZ599dpsBWhER3333Xbz00ktx+umnx+9+97tCPYf/F+Tk5MSgQYOiV69eWw3Qivgh1G/YsGHRvXv3xDVp0qRJ0blz5xg2bNg2f6dvv/12nHXWWfHSSy8Vqb+ZM2fG6aefHldddVVMnjx5qwFaERErVqyIF154ITp16hR//vOfY+PGjUU6a2fLzs6OG2+8MU466aR44YUXtvkY3rx5c3z++edx6623xoknnrhD14+NGzfG5ZdfXuBra25ubrz00kuJMMKS1rhx47jiiivy1f/4xz/GypUrS+3cnWnq1KmxePHiRK1Dhw6RlZVV4mc1aNAgDj744ERt3rx5MW3atK2u2TKwcsmSJTFw4MBEEFdR1axZMxo0aCBACwAAAAAAAABShBAtAAAAAAAAAIBS1Llz58T4zTffjLVr1xZpj5dffjnv5/Lly8eJJ55Y7H6GDh0av/71r2PRokXFWr9hw4a47777YujQoYWaP378+DjvvPNi4cKFhT5jxowZccEFF8R///vfYvX4o/79+8c///nPIgVpTJ48Ofr06bPNcJufs/Xr18dFF10UTzzxRKF/b999911ceuml8cEHHxTrzJdffjl69epV5L93dnZ2DB48OG644YYS/3u1a9cuateunaiNHDmyyPsMHz48Ma5atWp07Ngx37wBAwbEgw8+WKygpJEjR0afPn0iJyenyGt/TjZv3hzXXXddDB06tNCP3blz58Zll10Wubm5MXHixLjoooti+fLlhVqbm5sbN9xwQ0ydOrVQ8999990466yz4pNPPinU/J+e849//CMuu+yyXTYsbdGiRdGjR4945plnihxcNG/evOjbt2888cQTxTp76NChMWnSpK3enpGREccdd1yx9i6sX/3qV9GqVatEbcmSJTFgwIBSPXdneeedd/LVDj/88FI775hjjslXe+utt7Y6/9hjj81Xe/rpp6NXr17x0UcflWhvAAAAAAAAAMCuqXxZNwAAAAAAAAAA8HN21FFHReXKlWPNmjUREbF27doYP358vnCtrVm8eHEinOiwww6LGjVqFKuXSZMmxeDBg/PVW7RoESeccELsv//+sfvuu0f58uVj5cqVMWvWrJg4cWL85z//iU2bNiXW3HvvvdGlS5d8QUM/9eWXX8aVV14Zubm5iXrNmjXjlFNOybsvK1asiClTpsSLL74Y8+fPj4iIpUuXxg033FCs+xnxQ4DGT0OZ9thjj+jevXscdNBBUbNmzfj+++9j+vTp8e9//ztmz56dWDtlypR45pln4uyzzy72+RERJ5xwQt7PkydPToTz1KtXL1q0aLFD+5eGG264Id5999189SOPPDI6d+4cjRo1ioiIOXPmxNixY2PChAkR8UP41v3331/k88aNGxf9+vXLF7zTqFGj6Nq1axxwwAFRs2bNWLNmTcyZMydef/31mDBhQmL+s88+GxUqVIgbb7yxyOdvTXp6epxyyinxyCOP5NXGjx8fq1atiqpVqxZ6nxEjRiTGnTt3jooVKyZqEyZMiGHDhiVqlStXjpNPPjnatm0be+21V1SqVCmys7Pj66+/jtdeey3Gjx+fmP/hhx/G0KFDo2/fvoXu7efmscceSzyXGzZsGGeccUb84he/iJo1a8a3334br776agwfPjzx+Jk2bVrcfffd8dRTT+Vdq2rVqhWnnXZaHHTQQVGjRo1YunRpvPPOO/HMM88kgqxyc3PjrrvuiiFDhmyzt6lTp0afPn3yXQv32GOP6NatWxx00EFRu3btWL9+fcybNy8mTpwYr732WmL+hAkT4re//W08/PDDO/JrSjjqqKNi2bJleeNXXnklcXuLFi2iXr16idqW41WrVsVFF10UX3/9db7927VrF8cff3w0atQoKleuHEuWLInJkyfHyJEjY8mSJXnzNmzYELfeemtkZmZGz549C93/0qVL41//+tc257Rr165Iz9niSE9Pj0GDBkX37t0TYXYjRoyITp06RYcOHUr1/NL22Wef5attGRpWkg4++OB8tW2Fz5166qnx0EMP5QvAmzRpUkyaNCkaN24cnTp1ivbt20eLFi2iXDnfPQsAAAAAAAAAPzdCtAAAAAAAAAAASlGFChWiQ4cOMXLkyLza2LFjCx2iNWbMmESAVdeuXYvVx6ZNm2LgwIGJ8Jhy5crFH//4xzjzzDMLXHP44YfHueeeG59++mlceeWVsWDBgrzbsrOzY8yYMXH++ecXuHbjxo1x7bXXxvr16xP1zp07x8033xzVqlVL1Nu1axd9+/aNe+65J/75z39GRCTCSIrqxwCttLS06NOnT/zmN7+JzMzMxJwjjjgizj///Bg4cGA88cQTiduGDh26wyFa9913X97P5513XkyePDlvfMghhxQYaFaWxo0bly/0qUqVKnHXXXdF+/btE/U2bdpE9+7dY9KkSfHb3/42li1bli8Ia3sWLFgQv//97xPrMjIy4rrrrouzzz470tPTE/MPOeSQ6NmzZ3zyySdxzTXXxJw5c/Ju+9e//hWHHnpoHH/88UXqYVu6d++eCNHKycmJsWPHFjrk58MPP4y5c+cmaj169Mg37+9//3tivO+++8aQIUOibt26+ea2adMmTj311Jg4cWJceeWVsXbt2rzbhg4dGr17947y5f83PxL20wCtq666Ki6++OJEWE7z5s3j2GOPjUMPPTT69++fWPvoo4/m/dytW7e45ZZbIisrKzGnffv20bNnz7jwwgsTAVDvvPNOzJs3L+rXr19gX6tWrYqrr746EYiVlpYWF198cVx22WVRoUKFxPy2bdvGKaecErNmzYrrrrsupk6dmnfb+PHjY8iQIdGrV69C/Ea27+abb06M999//8T4nHPOKfAx+1PXXXddTJ8+PVGrV69e3HHHHdG2bdt884855pi4/PLL4+67784XHnfbbbdF8+bNo1mzZoXq/8knn0yEmh1yyCHRrFmzWLt2bXzxxRcxderU6NSpU6H22lH77bdfXH755XHXXXcl6jfddFMcdNBB+V7zUsnMmTMT4/T09LxAxdLwi1/8ItLS0hKvDbNmzdrq/CpVqsQtt9wSv/nNbwq8fdasWfHAAw/EAw88ENWqVYuDDjoo2rZtG23bto1mzZpFRkZGid8HAAAAAAAAAGDn8pVaAAAAAAAAAAClbMvArDfffDMRfrMto0ePzvs5MzMzOnbsWKwe3n777ZgxY0ai1rt3760GaP1Uq1at4s4778xXf+edd7a6ZsSIEfHVV18lat26dYs777xzq2EiFSpUiOuuuy5++9vfbrenwrr66qvjd7/7Xb4ArR+lp6fHTTfdFIccckiiPmfOnG2GdvzcbN68Oe69995ELSMjIx599NF8AVo/dfjhh8fjjz8eu+22W5HPHDx4cKxcuTJvXL58+Xj44YfjvPPOyxeg9VMHHHBAPPHEE/lCXG6//fbYsGFDkfvYmsaNG0fr1q0TtS1DxrZl+PDhifG+++4bBx54YKK2fPny+PDDDxO1AQMGFBig9VPt27ePa665JlFbunRpvr3+F/Xr1y8uvfTSRIDWT/Xo0SMOPvjgAm877rjj4s9//nO+AK0f7bfffnHdddflq0+ZMmWr/Tz44IP5wtQGDBgQV199db4ArZ9q3LhxPPbYY9GmTZtE/b777ks8b8rSRx99FK+//nqi1qBBg3jyyScLDND6UeXKleOGG27Id61fv359DBw4sNDnr169OiIiqlevHk888UQMGzYs+vfvH7feems899xz8fzzz8exxx5bhHu0Y/r06RMtWrRI1JYsWVKk+7Qr+vbbbxPjGjVqbPU1tSRUqFAh9thjj0Rty+fQlk444YS44YYbIi0tbZvzVq5cGW+88Ubccccdcfrpp8fBBx8cffr0iSFDhsTXX3+9w70DAAAAAAAAAGVDiBYAAAAAAAAAQClr165dImRo7dq1MWHChO2umz9/fnz88cd54/bt20eVKlWK1cPYsWMT46ysrLj44osLvb5Nmzaxzz77JGpbBmv81JAhQxLj+vXrx80337zVYJuf6tu3b/zf//1foXvbmiZNmhT6Pvbt2zdfbdq0aTvcQ6p4//3384WeXXzxxflCnwrSpEmTuPbaa4t03ty5c+O1115L1C655JJo165dodbXrl07/vKXvyRqCxcujDFjxhSpj+3p0aNHYvzBBx9s83H/o5ycnHzPuS33ivjhOb6l5s2bF6q3nj17Jq4HVatWjW+++aZQa3+uGjVqFL169druvE6dOuWrZWRkxB//+Mftrj3hhBMiIyMjUdta4N7q1avjmWeeSdS6d+8ep5122nbPifghbOruu++OihUr5tWys7PjqaeeKtT60nbfffclxunp6fGXv/xluyFwP7r44ovjmGOOSdQ++OCDIofBPfTQQwWGdrVo0aLYr5nFkZ6eHoMHD873+Bg+fHiMHz9+p/VRklavXh3r1q1L1GrWrFnq51avXj0xzs3Njezs7G2uOe+88+Lvf/97oR9/ET+8H3vrrbdi8ODBceKJJ0bXrl3j0UcfjVWrVhWnbQAAAAAAAACgjAjRAgAAAAAAAAAoZZmZmXHssccmaoUJ+3n55ZcT486dOxe7h1atWkWPHj3i4IMPjrp168Zxxx2XCPYqjP322y8x3lqgxbRp02L69OmJ2q9+9auoXLlyoc5JS0uLq666qki9FeT0008v9NzWrVvnqy1dunSHe0gVo0aNSowrVKgQF154YaHXn3baadGgQYNCz3/66adj06ZNeeNKlSpF7969C70+IqJly5ZxxBFHJGrPP/98kfbYns6dOycCjDZt2hQjR47c7roJEybEypUr88bp6elx8skn55u3ZdhORMSUKVMK1VtmZmY88MAD8eyzz8a7774bH3zwQfTs2bNQa3+uzjrrrAJ/p1tq2rRpvtqRRx4Ze+yxx3bXZmZmRr169RK177//vsC5I0eOjNWrVydqv/71r7d7xk/VrVs3TjrppEStpB/nxbF8+fJ49913E7UTTjihUMF7P1VQAN+zzz5b6PVHHnlktGnTpkhnlqYmTZrE5Zdfnq9+0003bfVxsitbu3ZtvlqlSpVK/dysrKx8tTVr1mx33VFHHRVjxoyJfv36FSlM60czZsyIO+64I4477rgYNmxYbN68uch7AAAAAAAAAAA7nxAtAAAAAAAAAICdoFOnTonxm2++WWA4xU/9NGgrKysrOnToUOzzzzjjjBg0aFD861//iokTJ8af//znIu+xZQhWbm5ugfP+85//JMbp6en5QmC2p1WrVvGLX/yiaA1uoW3btoWeW6VKlahSpUqitr2/z8/JlmE4Rx11VFStWrXQ69PS0qJbt26Fnv/ee+8lxgcffHChQ9Z+asvnxMcffxwbNmwo8j5bU6VKlTj++OMTtcKEaA0fPjwxbteuXYEBTQ0aNIj09PRE7brrrotPP/20UP0dfvjh0apVq9h9990LNf/n7uCDDy7UvIJ+XwUF6W1N9erVE+OtXSu2fJw3bty4SGFzP9rycf7NN9/EokWLirxPSXrvvffyBQwVJ8Rt3333jUMOOSRRmzx5cqHXH3300UU+s7T16dMnmjdvnqgtXrw4Bg4cWEYdFV9B19Mtr1ml4achiz8qbKBVVlZW9O3bN8aPHx+PPfZYnHvuuVG/fv0inb9ixYoYMGBA9O7dO1atWlWktQAAAAAAAADAzidEi1IxZ86caNGiRey///5x//33l2kv5513Xuy///4l8q+s7wsAAAAAAAAAqeuII45IBK+sXbs2JkyYsNX5X3/9dXzxxRd54w4dOkTFihVLscOtW79+fbz99tsxY8aMRL2gkIuIH4KMfqpx48ZFCmT6UZs2bYq85kflypWLJk2aFGlNVlZWYlySYUy7spUrV8acOXMStVatWhV5n8KGlq1duza+/PLLRG3vvfcu8nkREb/85S/z7f3T501J6NGjR2I8ffr0+Oqrr7Y6f8WKFTFx4sRt7vGjgsLxFi1aFD179owLLrgghg0blu9vw9btu+++hZqXmZmZr9awYcNCn5ORkZEYby3c56OPPkqMi/s4b9as2Xb33tnef//9xLh8+fJx0EEHFWuvQw89NDGeP39+fPvtt4VaW5Tws52lfPnyMXjw4HyPk5deemmbr/u7okqVKuWrrV69utTPXblyZb5aUYMWy5UrF4cddljceOON8frrr8err74at956a3Tp0qXAUMOCvPPOO3HBBRf8T4VqAgAAAAAAAEAqKl/WDfDzs3Hjxvj973+/1W+bBQAAAAAAAID/RRkZGXHcccfFc889l1cbO3ZsdOrUqcD5L7/8cmLctWvXUu0vIiInJyfmzZsXc+fOjdmzZ8fMmTPjyy+/jGnTphX4OYCtBcd8/fXXifEvfvGLYvWzZUBSUWRlZeULMNmewgbj/NwUFNJUnL9Z06ZNCzVv9uzZ+R5Pb7/9dvzmN78p8pnZ2dn5avPmzStWCNjWHHbYYVGvXr2YP39+Xm3EiBHxu9/9rsD5o0ePTty/6tWr5wvK+qnLLrss3nzzzVi/fn2i/u6778a7774bERENGjSIdu3aRbt27eKwww6LKlWq7Mhd+lmqXLlygYE/hVWUoL+0tLTtzvn+++9j0aJFidq0adOK9Tgv6Fo0b968Iu9TkhYuXJgYN27cOCpUqFCsvVq0aJGvNn/+/Khbt+521xY1LHFn+cUvfhGXXXZZ3HvvvYn6jTfeGC+//HLstttuZdRZ0RR0rfn+++9L/dwtz0hPTy9yiNaW9t5779h7773jjDPOiIgf3qtMmjQp3n777Zg0aVKsWbOmwHWff/553HbbbXH77bfv0PkAAAAAAAAAQOkRokWJu/XWW+ODDz4o6zZKRXG/DRIAAAAAAAAAIiI6d+6cCNGaOHFirF27tsDglzFjxuT9XL169WjXrl2J9pKTkxNvvfVWTJ48OaZPnx6zZ8+Ob7/9tkSCoxYvXpwYV69evVj77L777sXuoSRChv5XQrS2/HtFFO93X6NGjcjIyNjuF6+tWLEiX+2///1v/Pe//y3ymQVZuXJliezzo7S0tOjevXs88MADebVRo0ZFv379CgxTGjFiRGJ80kknRWZm5lb3b9asWQwePDiuvfbarf7u5s6dG0899VQ89dRTkZGREQcffHAcd9xxccIJJ0StWrWKec9+XrKysnZoffnyJftRuoIehwsWLIgFCxaU2v4705bP49q1axd7rxo1auSrFeb+VapUaZvPrbLWt2/fGDduXHz++ed5tcWLF8ftt98egwcPLsPOCq98+fKx5557JkLTCrqGl6ScnJx8IVoNGjQo8XP22Wef2GeffeLss8+OnJyceOONN2LIkCHx8ccf55v7wgsvxDnnnBPNmzcv8T4AAAAAAAAAgB1Xrqwb4Odl0KBB8e9//7us20gYNmxYTJ8+vcj/evXqldjnzDPPjG7dupXRvQAAAAAAAADg5+Cwww5LhIWsXbs2JkyYkG/etGnTYubMmXnjjh07RkZGRon0sG7dunjwwQfjyCOPjMsuuyyGDh0akyZNioULF243NKqwYSXZ2dmJcXHDbapWrVqsdRER6enpxV77v2bLv1dEROXKlYu1V2HWlXb4z5bhKyWhe/fuicCshQsXxvvvv59v3pw5c2LKlCn51m7PjwF7BxxwwHbn5ubmxjvvvBO33nprHHXUUXH55ZeXWABZKtvVwpRKO2ioNB7nRbHl/duR4MKCrvWFuU7stttuxT5zZyhfvnzcfvvt+V6/X3zxxZg4cWIZdVV0TZo0SYyzs7NL9ZrzxRdfxIYNGxK1xo0bl9p5ET9cP0488cR4+umn4/bbb893Pdm8eXM89dRTpdoDAAAAAAAAAFB8QrQoEatXr44rrrgihg4dWtatlIgxY8bEkCFD8sYHHnhg3HjjjWXYEQAAAAAAAAA/B+np6dGxY8dEbezYsfnmjR49OjHu0qVLiZw/d+7cOOWUU+Lee+8tVMBL9erVo127dtGvX78YPXp0ofsoX758Yrxu3britBs5OTnFWkfR/DQcakdVqFBhu3Nyc3NL7LyClMbjpn79+nHooYcmaiNGjMg3b8va/vvvH82bNy/UGU2bNo1nnnkm/v3vf8e5554bderU2e6ajRs3xmuvvRbdunUT8LKLScXHeVFsGbq4vRDGbdm4cWO+WmGCELd8rdkVNW3aNC655JJ89RtvvDFWrVpVBh0VXevWrfPVPvzww1I77+OPP85Xa9GiRamdt6VTTz01Bg4cmK/+9ttv77QeAAAAAAAAAICi2fU/RcIu78svv4wrr7wy5syZU9atlIhvv/02brrpprxxlSpV4i9/+UtKfOgKAAAAAAAAgF1f586d4+mnn84bT5w4MdauXRuVKlXKq/00RKt27dr5wnuKY9myZXH22WfH4sWL892WkZERTZs2jaZNm0bjxo1jn332if322y/q16+fmFfYkJRq1aolgrPWrFlTrJ5TJWBkV7Vhw4ZCzfvpY+9Hxf3dF+Zvvdtuu+WrPfLII3HUUUcV68ydpUePHvHuu+/mjV955ZW46aabIjMzM682fPjwfGuKqnXr1tG6deu48cYb48svv4y33norJk2aFB999NFWA+lyc3PjlltuiWrVqkXnzp2LfCYlr6DH+c033xxnnXVWGXRT8qpVq5YYF/c6H1Hw9aag61KquuSSS2LcuHHx5Zdf5tUWLVoUt99+ewwaNKgMOyuco446Ku69995EbdKkSdGzZ89SOa+gsKr27dvnq82YMSMeeeSRWLp0aSxZsiSWLl0ad999dxxyyCE73EO3bt3isccei88++yyvtmDBglizZk1Urlx5h/cHAAAAAAAAAEpWubJugNS1bNmyuPXWW+O0005LBGjVqFGjDLvacb///e/j+++/zxv3798/GjRoUIYdAQAAAAAAAPBzcsghh0Tt2rXzxmvXro2JEyfmjadOnRpz587NG5944olRrtyOf8TjlltuyRegteeee8af/vSnmDx5cjz33HMxYMCA6NWrVxx99NH5ArQiYqsBPluqVatWYjxv3rxi9bxw4cJirfu52rRpU5HmF/bvtccee+SrLV26tEhnRfwQ2pWdnb3deVuG70RE4rMau6rjjz8+qlSpkjf+/vvvE8/djz76KPHczcjIiG7duu3Qmb/85S+jb9++MWTIkHj//ffjsccei969exf4WZbNmzfHbbfdFjk5OTt0JiUjVR/nhbVlSNiSJUuKvVdBa2vWrFns/XY15cuXj8GDB0dGRkai/sILLySuIbuq5s2b53tP8OqrrxYYyrmjvvnmm/jPf/6TqNWtWzeaNWuWb+6KFSti+PDh8Z///CemT58e3333XXzyyScl1ssRRxyRr7Z69eoS2x8AAAAAAAAAKDlCtCiWt99+O44//vh44oknEt9aethhh8U//vGPMuxsxwwfPjzxTXaHHnponHbaaWXYEQAAAAAAAAA/N+XKlYvjjz8+UXvllVfyfh4zZkziti5duuzwmfPnz49XX301Udtrr73i2WefjVNOOSWysrIKtc+yZcsKNa9ly5aJ8bRp0wrX6Ba++OKLYq37ucrNzS3S/ML+vfbZZ598tS+//LJIZ0VEzJo1q1BBX/Xq1ctXmz17dpHP29kqVaoUnTt3TtR++rwaOXJk4rajjz66RL+MLjMzMw477LC47rrrYty4cfHQQw9F9erVE3OWLVsWkyZNKrEzKb4aNWrku7amwuO8sBo2bJgYz5o1q9DBfVv6/PPP89V+bl962LRp07j44ovz1W+66aZYtWpVGXRUeGlpaXHmmWcmarm5ufHEE0+U+FnDhg3L9zpy5plnRlpaWr65e+65Z77ahx9+WGK91K1bN1+tcuXKJbY/AAAAAAAAAFByhGhRLDNmzEh8eKdSpUrRv3//GDJkSIHfolgc06dPj3vvvTfOPPPMOPLII6NFixZx6KGHRpcuXeKmm24q8W/hW716dfz5z3/OG2dkZMQtt9xSomcAAAAAAAAAQETkC+KZMGFCrF+/PiIixo4dm1evV69etG7deofPe/311/OFUlx66aVRu3btIu3z1VdfJcZbC0xq06ZNYrxy5cr4+OOPi3RWTk5OvPvuu0Va83OTkZGRGGdnZxdp/X//+99CzatatWo0adIkUXv//feLdFZExKefflqoebVr184XwPPBBx8U+byIiK+//jqefPLJmDhxYsycObPIv6Oi6tGjR2I8YcKE2LBhQ2zYsCHx3I2I6N69e6H2/P777+Pjjz+OF154IT777LNC99KhQ4cYMGBAvvrMmTMLvQelJz09PQ444IBErbiP8++++y6GDRsWr7/+ekybNm2XCF3a8jq/YcOGYgcYvffee4lxrVq1ivz6lAouueSSaNq0aaL27bffxqBBg8qoo8Lr2bNnVK1aNVEbOnRozJgxo8TO+Pzzz+Opp55K1CpWrBhnnHFGgfPr168fNWvWTNTefPPN+Oabb0qkn4ULFybGNWrUiCpVqpTI3gAAAAAAAABAyRKixQ5JS0uLrl27xqhRo+LCCy+McuV2/CG1ZMmS6NevX5x88snx4IMPxpQpU2Lx4sWRm5sbK1asiJkzZ8bTTz8dffv2jZ49exbpw4Pb8re//S2WLFmSNz733HML/KZVAAAAAAAAANhRBx10UNSpUydvnJ2dHW+99VZ8+umnMX/+/Lx6ly5dSuS8efPm5asdeOCBRdrj/fffjxUrViRqGzduLHDuMcccE5UqVUrUnn322SKd99prr8Xy5cuLtObnpnLlyonxTz/XUBiTJ08u9Nwjjzwy39qfPhYLY8SIEYWe27Zt23znzZ07t0jnRfzweY9bbrkl+vbtG126dInWrVsXOsyrOFq3bp34PMn3338fkydPjnfffTeWLVuWV69Vq1a0b99+u/t17949Dj744DjjjDOif//+8dxzzxWpny3/bhERa9euLdIelJ4tH+fffPNNsQLqnnrqqRgwYEBcdtllcfLJJ0fbtm3zhbbtbAcddFC+WlGv8xE/hL5NmTIlUTv00EOL3deuLCMjIwYNGhTly5dP1J9//vlYvHhxGXVVONWrV4/LLrssUVu3bl1cffXVsW7duh3ef+3atdGvX7/Izc1N1C+66KKoUaPGVtd17NgxMd64cWM8+OCDO9zPxo0b49VXX03UDj744B3eFwAAAAAAAAAoHUK0KJaMjIw46aST4oUXXog777wz6tevXyL7Tps2LXr27BmjRo2KzZs3b3f+p59+Gueee26MGzduh85dtGhRPP7443njgj70AwAAAAAAAAAlJS0tLU444YRE7bXXXssX2FBSIVo5OTn5akUJvdi4cWPceeed+epbhl38aLfddovOnTsnai+88EK+oJStWbVqVdxxxx2F7i8VpKenF3lNrVq1EuOvvvoqEdS0LYsWLYoJEyYU+qwePXokxps3b46777670Os//PDDIoUDnXrqqYnxxo0b45577in0+oiIGTNm5AvuqlevXrRq1apI+xTVlr+rgp673bp1yxeUU5BGjRolxmPHjo3169cXupeCHg9bPm4oO6ecckq+5/4999yz1QDCgixdujSGDh2aqFWqVCmOOuqokmix2OrUqZMvxO3VV1+NTz75pEj7/OlPf8pX69q16w71titr1qxZ9O3bN199a6+nu5LzzjsvmjZtmqjNmDEjLr300li9enWx9129enVcfPHF8fXXXyfqDRs2jIsuumiba88666xIS0tL1F588cV44oknit1PRMQ///nPmDNnTqJ2yimn7NCeAAAAAAAAAEDpEaJFsZxzzjnxl7/8JZo1a1Ziey5evDh+9atfxcKFC/NqjRs3joEDB8Ybb7wRU6dOjUmTJsWjjz6a+CDx2rVr46qrriryB7B+6uGHH058OLhPnz6x2267FXs/AAAAAAAAANieLUOmJkyYEK+88kreuHHjxvnCKoqrTp06+Wo/PWtbNm3aFLfcckuBAVjbCuLq27dvZGZmJva54oorYsaMGds8b/Xq1XHJJZfEt99+W6j+UsVPfxcRP3zeYXuaN2+eGOfm5sa//vWv7a7LycmJ66+/vkhhTE2aNImjjz46URs5cmS88MIL2127bNmy6N+/f6G+MO1Hbdu2jQMPPDBRGzVqVOJL0LYlOzs7+vXrly+M6MILLyx0D8V18sknJ4KRxo0bF2+88UZizpZBW1tz/PHHJ8bLly+Pe++9t9C9PPXUU/lqbdu2LfR6Slf9+vXjxBNPTNQ++OCD+POf/1yo9Rs3boxrr702X0DRGWecEVlZWSXWZ3H17t07Md64cWP069cvFi1aVKj1f/vb3+LNN99M1PbZZ59816Kfm8suuyx+8YtflHUbRZaRkRH3339/vs/VvfPOO3H++efH/Pnzi7zn/Pnz4/zzz4/33nsvUc/Kyor7778/KlSosM31TZs2jZNPPjlf/dZbb40BAwZEdnZ2kfrZvHlzDB06NO66665EvXnz5nHMMccUaS8AAAAAAAAAYOcRosUu49prr43vvvsub3z66afH8OHD47TTTot69epFZmZm1KhRI9q1axf33Xdf3HPPPZGRkRERP3xI9KqrrirSt+T+aMmSJfH888/njWvWrBnnnnvujt8hAAAAAAAAANiGAw88MPbaa6+88YoVK+Kbb77JG28ZsrUjDjvssHy1xx57LMaNG7fNdbNnz45f/epX8fTTTxd4e25ubuTk5BR4W6NGjeLSSy9N1JYsWRKnn356PProo7Fq1ap8e73yyitx8sknxwcffLDNvlLRlqEjs2bN2u6ao48+OsqVS36856GHHoqRI0dudc2CBQuiT58+8c477xS5x2uuuSZf2Ncf/vCHePTRR2PTpk0Frpk5c2acd955MWfOnCKf179//7zPfvxo4MCBMWjQoFizZs1W182dOzcuuOCCmD59eqLesGHDOPPMM4vcR1HVqVMn2rVrlzdevHhxLFmyJG/cokWLaNKkSaH26tixY+I6EBHx6KOPxv333x8bNmzY5tqnnnoq/vGPfyRqBx10UOy3336FOpud4+qrr46qVasmakOGDIl+/frFsmXLtrpu2bJlcemll8Z//vOfRL1atWpx8cUXl0qvRXXEEUfEsccem6jNnTs3zjrrrG1ex7Ozs2PgwIH5gorS0tLij3/8Y77r3s9NRkZGDB48OMqXL1/WrRRZw4YN469//Wu+ELfPP/88OnfuHPfee2++0LeCrF69Ou69997o1KlTfP7554nbMjIy4o477ih0kOjvf//7qF+/fr76sGHDomPHjvHQQw/FggULttvPmDFj4owzzohBgwYlXvMyMjLilltuibS0tEL1AwAAAAAAAADsfKn3KQx+lj744IOYNGlS3rh9+/Zx6623bvODJ506dYply5bFrbfeGhE/fAj0xRdfjLPOOqtIZz/++OOJb17t1atXVKpUqYj3AAAAAAAAAACKJi0tLU488cT45z//WeDtXbt2LbGzDjzwwGjZsmVMnTo1r5abmxu//vWv49hjj43jjz8+GjVqFBUrVozvv/8+ZsyYEW+++Wa8+eabiSCJrKysyM7OTuy9ZMmSqFevXoHnXnTRRTFlypR4880382rZ2dlxxx13xN133x3NmjWLGjVqxKpVq+Krr76K77//PrG+Zs2asXTp0rxxKgdYbBmUNGPGjPjDH/4QPXr0iEqVKsV3330X7dq1S4TH1KpVK7p27RojRozIq23atCl+97vfxXPPPRcnn3xyNGzYMCpUqBDffPNNTJw4McaMGZMXbJaVlRWNGjWKL774olA97rffftG/f/+45ZZbEufdcccd8dJLL8Wpp54azZo1i0qVKsWCBQti/PjxMWrUqMjNzc07LycnZ7vhTz868MAD43e/+10MGjQoUR86dGiMHDkyunbtGoceemjUrl07IiLmzZsXb731Vrz88suJz3pERGRmZsbdd9+dLwSstPTo0SMmTpy41dsKq3z58nHDDTfEZZddlqg/8MADMXz48DjppJPigAMOiJo1a0Z6enqsXLkypk2bFqNHj45PP/00sSYjIyOuv/76ot8ZSlWDBg1i0KBBcfnllyfqo0aNigkTJkSXLl3iiCOOiD333DPS09Nj4cKFMWnSpBgxYkS+sMG0tLQYPHhw1KhRY2fehW0aPHhwnHLKKTF//vy82vz58+Occ86JI488Mo4//vjYZ5998q5zkydPjpEjR8bixYvz7XXllVfG4YcfvjPbLzPNmzePPn36xMMPP1xie24ZaFYchxxySAwbNmy7c/75z3/GJZdcEitWrMirr1u3Lh588MH4xz/+EYcffngceeSRseeee0bt2rVj8+bN8d1338WCBQvirbfeinfffbfAEM6srKy4//77E0GF21OtWrX429/+FhdeeGEi0DAi4rvvvot77rkn7rnnnmjUqFHsv//+seeee0alSpUiOzs7li1bFvPmzYupU6cW+NpVrly5GDBgQLRs2bLQ/QAAAAAAAAAAO58QLXYJW37w5pprrinUB1/POOOM+Nvf/haLFi2KiIgnn3yySCFaOTk58eyzz+aNs7Ky4owzzij0egAAAAAAAADYEZ06dSowRKt58+bRqFGjEjsnLS0tbrnlljjnnHNi7dq1idtef/31eP3117e7x6GHHhq///3v4+STT07Up06dutUQrYyMjHjggQfi4osvTny5VsQPIV6ffPLJVs+7/vrr46uvvooXXnghsV+qOuigg/LVnnvuuXjuuefyxmPGjIl99903Madfv37x1ltvxfLlyxP1d999N959992tnpeRkRF33313DB8+vNAhWhERZ599dixdujQeeOCBRP2rr77KF3b1U2lpaXHHHXfEtddeW+gQrYiICy+8MNatWxf33HNPbN68Oa++dOnSeOyxx+Kxxx7b7h4VK1aMe+65J1q0aFHoc3dUhw4donr16okAmYgfwryKGoB37LHHRt++fePvf/97oj537tx48MEHC7VHuXLl4pZbbolWrVoV6Wx2jo4dO8bgwYPjxhtvzAudi4hYvXp1PP300/H0009vd49y5crFzTffHB06dCjNVotst912i8ceeywuvvjimDVrVuK2t956K956661C7XPFFVfEpZdeWhot7rJ+/etfxxtvvBFfffVVWbdSZK1bt44RI0bEddddl+/1PScnJyZOnLjVoMGtadOmTQwcODDf62Bh7LfffvHkk0/GVVddFZ9//nmBc2bPnh2zZ88u9J5ZWVkxcODA6Ny5c5H7AQAAAAAAAAB2rnLbnwKla/PmzYkPde69997RpEmTQq0tX758tG/fPm88Y8aMWLZsWaHPHjNmTOJDpt27d4/ddtut0OsBAAAAAAAAYEe0atUq6tevn6/epUuXEj+refPm8eCDD0b16tWLtK5KlSrRv3//GDp0aDRt2jT22GOPxO3bC8moUKFCPProo9G/f//Iysra7nl77bVXPPzww9GrV6/YuHFjvr1SVfv27aNdu3bbnDN9+vR8tbp168Zjjz0WDRs2LPRZNWvWjEceeSSOPvroorYZET+E2fz5z3+OKlWqFGp+ZmZm3HzzzdGxY8dinXfJJZfEAw88EHXr1i3y2iZNmsSwYcPimGOOKdbZxZWZmRknnXRSvvpxxx0X1apVK/J+/fr1i+uvvz4qVqxY5LW1atWKhx56KE499dQir2Xn6d69ewwdOrRYAUF77rln/O1vf9tlvxywQYMG8fTTT0eXLl0K9cWJP7XXXnvF3//+97j88stLqbtdV2ZmZtx+++2Rnp5e1q0US506dWLIkCFx55137lDwZ6NGjWLgwIHxxBNPFOv58aOGDRvGv//97+jXr1+R3+ts6dhjj43hw4cL0AIAAAAAAACAFCFEizL39ddfJ76Vs6APB29L06ZN837evHlzfPrpp4Ve+9Nvq42IOOuss4p0NgAAAAAAAADsqC0DGtLS0kottOGII46IESNGxDnnnBOVK1fe5tzGjRvHFVdcEa+99lpceOGFUa7cDx8z6dq1a2Leyy+/HEuXLt3mXunp6XHhhRfGhAkT4vbbb48OHTrEvvvuG7vttltUqFAh6tevH8ccc0z86U9/itGjR+cFIq1bty6xT6VKlYp6l3cpDzzwQPTo0WOrITPTpk0rsL7//vvHyJEj45prrtlmwMhuu+0WvXv3jtGjR8fhhx++Q71269YtXn311bjgggu2GkaSnp4eRx11VDz77LNx5pln7tB5xx13XLz22mvxhz/8IZo3b77dIJ6WLVvGgAED4sUXX4xWrVrt0NnF1aNHj3y17t27F3u/Xr16xahRo+KCCy6IWrVqbXf+fvvtF9dee228+uqrxQ5MY+dq27ZtjBo1Kv70pz/FQQcdFOXLl9/m/P322y+uv/76GD16dBx11FE7qcviqVq1atx1113x/PPPR6dOnaJq1arbnN+iRYu45ZZb4pVXXkl8ieL/mpYtW8ZFF11U1m0UW1paWnTt2jVGjx4dDz/8cHTt2nW7f/uIiGrVqsXJJ58cDz/8cIwZMyZOO+20vPcZOyIzMzP69u0bb7zxRgwePDjat29fqH4ifgitPPvss+Oll16KBx98sEjhlQAAAAAAAABA2UrbvHnz5rJugp+XefPmxbHHHps3vvzyy+OKK67Y6vxJkybFhRdeWGLnDxgwIHr27LndeUuWLImjjjoqNm3aFBE/fDDr+eefL7E+AAAAAAAAAGBXlpOTE19++WXMmDEjVq5cGRs2bIjq1atHzZo1o1WrVrHHHnuUdYvRq1eveOedd/LGJ5xwQtx3331l2FHJ+Pbbb+ODDz6IhQsXRm5ublSuXDnq1q0bzZo1iwYNGmx3/X//+9+YNm1aLF68ONatWxfVqlWLJk2axAEHHBAZGRkl3m9OTk589tln8dVXX8XKlSsjKysr6tatGwcccECpPU6WLVsWn376aXz33XexfPny2Lx5c1StWjX22muvaNmyZdSoUaNUzt1VbN68Ob755puYNm1afPfdd7FmzZrYuHFjVK5cOerVqxfNmzePunXrlnWb7KDVq1fHlClTYsmSJbF8+fLYsGFDVKlSJerUqRMtW7aMOnXqlHWLxbZhw4aYOnVqzJ07N5YtWxZr166NKlWqRP369aN58+a7xGsMpWPz5s0xZ86cmD59eixdujRWr14dERFVqlSJWrVqxf777x8NGzbcblhiSdm0aVPMnj075s6dG99++22sWbMm1q1bF+np6VG5cuXYa6+9okmTJoV6/QUAAAAAAAAAdk3b/io72AlWrlxZovutWLGiUPNeeeWVvACtiB37JlAAAAAAAAAASDWZmZlxwAEHxAEHHFDWrWzVokWLEuOfS+hK3bp1o2vXrsVev++++8a+++5bgh1tW2ZmZrRp0ybatGmz086sUaNGHH300TvtvF1NWlpa7L333rH33nuXdSuUoipVqsSRRx5Z1m2UivLly0fr1q2jdevWZd0KO1laWlo0atQoGjVqVNatREREuXLldvrrJgAAAAAAAACwcwnRosxt2LChRPdbv359oeaNHz8+7+e0tLTo2LFjifYBAAAAAAAAAP+rFi5cGFdffXXsvffe0ahRo9h7773j2GOPjQoVKhR6j2XLlsXs2bMTtf3337+EOwUAAAAAAAAAAABSmRAtytxuu+2WGPfp0yeuueaaUj1z3bp18f777+eNW7ZsGXXq1CnVMwEAAAAAAADgf0XVqlVjypQpMWXKlLzao48+Gu3atSv0Hs8991xs3LgxUTvwwANLqkUAAAAAAAAAAADgZ6BcWTcANWvWTIyXLVtW6md++OGHsX79+rzxMcccU+pnAgAAAAAAAMD/iipVqkT9+vUTtWeeeabQ62fNmhUPP/xwotakSZNo0qRJifQHAAAAAAAAAAAA/DwI0aLMNWnSJCpWrJg3/vTTT4u0ftGiRfHNN99Ebm5uodd89NFHifGhhx5apDMBAAAAAAAAgG07/vjjE+NXXnkl7rvvvtiwYcM2133wwQdxwQUXxJo1axL1Pn36lHiPAAAAAAAAAAAAQGorX9YNQGZmZrRp0ybeeeediIiYOXNmfPnll/HLX/6yUOuvueaaeO+996JcuXJRu3btuP/+++OAAw7Y5pqPP/447+eMjIxo2bJlsfsHAAAAAAAAAPLr3bt3PPvss7Fq1aq82l//+tcYOXJknHTSSdGqVauoWbNmpKenx8qVK2PmzJkxfvz4ePvtt/PtdfTRR8fJJ5+8M9sHAAAAAAAAAAAAUoAQLXYJZ5xxRl6IVkTE7bffHkOHDo309PRtrnvjjTfivffei4iITZs2RW5ubjRr1my753355Zd5P++zzz6RmZlZzM4BAAAAAAAAgILUrl07Bg0aFFdffXXk5ubm1b/55pv461//Wuh92rZtG3feeWekpaWVRpsAAAAAAAAAAABACitX1g1ARMTxxx8fTZo0yRtPnjw5rr322li/fv1W13z22Wdx/fXXJ2oXX3xxZGRkbPOs7777LpYuXZo33nfffYvZNQAAAAAAAACwLR07doxHHnkk6tWrV+S16enp0bt37xgyZEhUqVKlFLoDAAAAAAAAAAAAUl35sm4AIiLKlSsX99xzT/Ts2TOys7MjImLUqFHx8ccfR69eveLII4+MunXrxpo1a2L27Nnx/PPPx/DhwxPfVNumTZs455xztnvW7NmzE+M6deqU6H0BAAAAAAAAAP6/ww8/PEaPHh1PP/10vPTSS/HFF19sc37NmjWjY8eOccEFF/hiLAAAAAAAAAAAAGCbhGixy9hvv/3iwQcfjKuuuipWrFgRERHz5s2L2267bbtrf/nLX8b9998fGRkZ2527cOHCxLhWrVrF6hcAAAAAAAAAKJyKFSvGBRdcEBdccEEsW7YsPv/885g/f36sWrUqNmzYEJUqVYo99tgj9ttvv2jSpEmkpaWVdcsAAAAAAAAAAABAChCixS7l8MMPj2effTYGDhwYEyZM2O78cuXKxZlnnhn9+vWLKlWqFOqMZcuWJcaVK1cuTqsAAAAAAAAAQDHUqFEjjjzyyLJuAwAAAAAAAAAAAPgZEKLFLqdhw4bxt7/9LT7//PN49dVX47333osFCxbEihUrIiKiWrVqsd9++8XBBx8cJ598ctSrV69I+2dnZyfGmZmZJdU6AAAAAAAAAAAAAAAAAAAAAACwk6Rt3rx5c1k3AQAAAAAAAAAAAAAAAAAAAAAAAEVRrqwbAAAAAAAAAAAAAAAAAAAAAAAAgKISogUAAAAAAAAAAAAAAAAAAAAAAEDKEaIFAAAAAAAAAAAAAAAAAAAAAABAyhGiBQAAAAAAAAAAAAAAAAAAAAAAQMoRogUAAAAAAAAAAAAAAAAAAAAAAEDKEaIFAAAAAAAAAAAAAAAAAAAAAABAyhGiBQAAAAAAAAAAAAAAAAAAAAAAQMoRogUAAAAAAAAAAAAAAAAAAAAAAEDKEaIFAAAAAAAAAAAAAAAAAAAAAABAyhGiBQAAAAAAAAAAAAAAAAAAAAAAQMoRogUAAAAAAAAAAAAAAAAAAAAAAEDKEaIFAAAAAAAAAAAAAAAAAAAAAABAyhGiBQAAAAAAAAAAAAAAAAAAAAAAQMopX9YNkDpWrVobubmbyroNAICtSk9Pi2rVsvLGK1dmx8aNm8uwIwCA7fMeBgBINd6/AACpxvsXACDVeP8CAKQi72EAgFTj/QsAkGq8f2FXtuXjc2cTokWhbdq0OTZuFKIFAOzKyiVGGzd6/wIApALvYQCAVOP9CwCQarx/AQBSjfcvAEAq8h4GAEg13r8AAKnG+xd2ZeW2P+VnezoAAAAAAAAAAAAAAAAAAAAAAAAUgxAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAAAAAAAAAAAAAAAAAUo4QLQAAAAAAAAAAAAAAAAAAAAAAAFKOEC0AAAAAAAAAAAAAAAAAAAAAAABSjhAtAAAAAAAAgP/Hzr2FWEGvfRx/nPGQ4+xGTYXUoJNZdCKioAgpLxIvOlwYSFEXFUlpkh2IIIgKuiiIILIiojK7ikDoQHSAhoaik1YmTpFEGWmOlduNIzk5s6/e9e6pfM13t2bNb/x8rtazXH98LubiufoCAAAAAAAAAAAAABBHRAsAAAAAAAAAAAAAAAAAAAAAAIA4IloAAAAAAAAAAAAAAAAAAAAAAADEEdECAAAAAAAAAAAAAAAAAAAAAAAgjogWAAAAAAAAAAAAAAAAAAAAAAAAcUS0AAAAAAAAAAAAAAAAAAAAAAAAiCOiBQAAAAAAAAAAAAAAAAAAAAAAQBwRLQAAAAAAAAAAAAAAAAAAAAAAAOKIaAEAAAAAAAAAAAAAAAAAAAAAABBHRAsAAAAAAAAAAAAAAAAAAAAAAIA4IloAAAAAAAAAAAAAAAAAAAAAAADEEdECAAAAAAAAAAAAAAAAAAAAAAAgjogWAAAAAAAAAAAAAAAAAAAAAAAAcUS0AAAAAAAAAAAAAAAAAAAAAAAAiCOiBQAAAAAAAAAAAAAAAAAAAAAAQBwRLQAAAAAAAAAAAAAAAAAAAAAAAOKIaAEAAAAAAAAAAAAAAAAAAAAAABBHRAsAAAAAAAAAAAAAAAAAAAAAAIA4IloAAAAAAAAAAAAAAAAAAAAAAADEEdECAAAAAAAAAAAAAAAAAAAAAAAgjogWAAAAAAAAAAAAAAAAAAAAAAAAcUS0AAAAAAAAAAAAAAAAAAAAAAAAiCOiBQAAAAAAAAAAAAAAAAAAAAAAQBwRLQAAAAAAAAAAAAAAAAAAAAAAAOKIaAEAAAAAAAAAAAAAAAAAAAAAABBHRAsAAAAAAAAAAAAAAAAAAAAAAIA4IloAAAAAAAAAAAAAAAAAAAAAAADEEdECAAAAAAAAAAAAAAAAAAAAAAAgjogWAAAAAAAAAAAAAAAAAAAAAAAAcUS0AAAAAAAAAAAAAAAAAAAAAAAAiCOiBQAAAAAAAAAAAAAAAAAAAAAAQBwRLQAAAAAAAAAAAAAAAAAAAAAAAOKIaAEAAAAAAAAAAAAAAAAAAAAAABBHRAsAAAAAAAAAAAAAAAAAAAAAAIA4IloAAAAAAAAAAAAAAAAAAAAAAADEEdECAAAAAAAAAAAAAAAAAAAAAAAgjogWAAAAAAAAAAAAAAAAAAAAAAAAcUS0AAAAAAAAAAAAAAAAAAAAAAAAiCOiBQAAAAAAAAAAAAAAAAAAAAAAQBwRLQAAAAAAAAAAAAAAAAAAAAAAAOKIaAEAAAAAAAAAAAAAAAAAAAAAABBHRAsAAAAAAAAAAAAAAAAAAAAAAIA4IloAAAAAAAAAAAAAAAAAAAAAAADEEdECAAAAAAAAAAAAAAAAAAAAAAAgjogWAAAAAAAAAAAAAAAAAAAAAAAAcUS0AAAAAAAAAAAAAAAAAAAAAAAAiCOiBQAAAAAAAAAAAAAAAAAAAAAAQBwRLQAAAAAAAAAAAAAAAAAAAAAAAOKIaAEAAAAAAAAAAAAAAAAAAAAAABBHRAsAAAAAAAAAAAAAAAAAAAAAAIA4IloAAAAAAAAAAAAAAAAAAAAAAADEEdECAAAAAAAAAAAAAAAAAAAAAAAgjogWAAAAAAAAAAAAAAAAAAAAAAAAcUS0AAAAAAAAAAAAAAAAAAAAAAAAiCOiBQAAAAAAAAAAAAAAAAAAAAAAQBwRLQAAAAAAAAAAAAAAAAAAAAAAAOKIaAEAAAAAAAAAAAAAAAAAAAAAABBHRAsAAAAAAAAAAAAAAAAAAAAAAIA4IloAAAAAAAAAAAAAAAAAAAAAAADEEdECAAAAAAAAAAAAAAAAAAAAAAAgjogWAAAAAAAAAAAAAAAAAAAAAAAAcUS0AAAAAAAAAAAAAAAAAAAAAAAAiCOiBQAAAAAAAAAAAAAAAAAAAAAAQBwRLQAAAAAAAAAAAAAAAAAAAAAAAOKIaAEAAAAAAAAAAAAAAAAAAAAAABBHRAsAAAAAAAAAAAAAAAAAAAAAAIA4IloAAAAAAAAAAAAAAAAAAAAAAADEEdECAAAAAAAAAAAAAAAAAAAAAAAgjogWAAAAAAAAAAAAAAAAAAAAAAAAcUS0AAAAAAAAAAAAAAAAAAAAAAAAiCOiBQAAAAAAAAAAAAAAAAAAAAAAQBwRLQAAAAAAAAAAAAAAAAAAAAAAAOKIaAEAAAAAAAAAAAAAAAAAAAAAABBHRAsAAAAAAAAAAAAAAAAAAAAAAIA4IloAAAAAAAAAAAAAAAAAAAAAAADEGd/qBQ43g4OD1dPTU2+88UZ99tlntWPHjtqzZ09NnTq15s2bVwsWLKgrrriiOjs7W70qAAAAAAAAAAAAAAAAAAAAAADAqCWiNYI2bdpU99xzT23cuPEP/9bX11d9fX313nvv1erVq+u+++6rxYsXt2BLAAAAAAAAAAAAAAAAAAAAAACA0a+t1QscLrq7u2vp0qV/GtD6vd27d9ctt9xSzz///AhsBgAAAAAAAAAAAAAAAAAAAAAAkEdEawR89NFHtWLFitq3b1/juwULFtSzzz5b77//fq1fv77Wrl1bCxcuHPbugQceqI8//nik1wUAAAAAAAAAAAAAAAAAAAAAABj1RLSarL+/v+64445GQGvcuHF177331lNPPVXnnXdeTZ8+vaZMmVLnnHNOPf7447V8+fLG28HBwXrggQdatToAAAAAAAAAAAAAAAAAAAAAAMCoJaLVZGvWrKlt27Y15ptuuqmWLl16wN+vXLmyzj777Ma8adOm2rhxY1N3BAAAAAAAAAAAAAAAAAAAAAAASCOi1US//fZbvfDCC435hBNOqBtvvPGg76655pph87vvvvu37wYAAAAAAAAAAAAAAAAAAAAAAJBsfKsXGMs+/PDD2rFjR2O+4YYbasKECQd9d8EFF9TMmTOrq6urpk+fXh0dHc1cEwAAAAAAAAAAAAAAAAAAAAAAII6IVhN1d3c3Pk+ePLkWLVr0l951dnZWT09Ps9YCAAAAAAAAAAAAAAAAAAAAAACI19bqBcay9evXNz6fddZZNXny5BZuAwAAAAAAAAAAAAAAAAAAAAAAMHaIaDXJ0NBQffnll435lFNOaeE2AAAAAAAAAAAAAAAAAAAAAAAAY8v4Vi8wVv3444/166+/NuY5c+Y0Pvf19dWrr75ab731Vm3durV++umnmjp1ah1//PG1cOHCWrJkSXV2drZibQAAAAAAAAAAAAAAAAAAAAAAgAgiWk2yffv2YfOMGTNqcHCw1qxZU4888kjt3bt32L/39fVVX19fffDBB/Xkk0/WXXfdVZdeeulIrnxQbW3jqr29rdVrAAAcUHv7uD+Z3S8AwOjmhgEA0rhfAIA07hcAII37BQBI5IYBANK4XwCANO4XRrPf/32ONBGtJtm1a9ew+YgjjqjbbrutXnvttYO+/fnnn+uOO+6o7777rlasWNGkDQ/dP/4xudUrAAAckq6ujlavAABwyNwwAEAa9wsAkMb9AgCkcb8AAIncMABAGvcLAJDG/QL/S0SrSfbs2TNsXr16dX366adVVTVjxoy6/vrr66KLLqrZs2fXnj176vPPP681a9ZUT09P482jjz5ac+fOrcsvv3wENwcAAAAAAAAAAAAAAAAAAAAAABj9xg0NDQ21eomxaN26dXXnnXf+4fuzzz67HnvssZo2bdqfvnv66afrwQcfbMwdHR319ttv1/Tp05u2KwAAAAAAAAAAAAAAAAAAAAAAQJrxrV7gcDJnzpx6/PHHq6ur64C/ue666+qbb76pF198saqq+vv767nnnqtVq1aN1JoH9K9/7a2BgcFWrwEAcEDt7eOqq6ujMf/zn/21f79mLAAwurlhAIA07hcAII37BQBI434BABK5YQCANO4XACCN+4XR7Pd/nyNNRKtJJk6c+Ifvli9f/n8GtP7HypUra926dTUwMFBVVW+++eaoiGgNDg7V/v0iWgDAaNY2bNq/3/0CACRwwwAAadwvAEAa9wsAkMb9AgAkcsMAAGncLwBAGvcLo1nbwX8yZv/3MWzKlCnD5vb29lq0aNFfejtr1qw644wzGvOWLVvq559//lv3AwAAAAAAAAAAAAAAAAAAAAAASCai1SRHHXXUsHn27NnV2dn5l9/Pnz9/2Lxjx46/ZS8AAAAAAAAAAAAAAAAAAAAAAICxQESrSebMmTNsnjx58iG9P/LII4fNu3fv/q93AgAAAAAAAAAAAAAAAAAAAAAAGCtEtJpk2rRpNWPGjMa8c+fOQ3rf398/bD7UCBcAAAAAAAAAAAAAAAAAAAAAAMBYJqLVRGeeeWbj8y+//HJIIa2tW7cOm4855pi/bS8AAAAAAAAAAAAAAAAAAAAAAIB0IlpNtGDBgsbnoaGhev311//Su3379tWGDRsa87HHHltTp079u9cDAAAAAAAAAAAAAAAAAAAAAACIJaLVRIsWLapJkyY15meeeab27t170Hfr1q2rXbt2NeaLL764GesBAAAAAAAAAAAAAAAAAAAAAADEEtFqomnTptWSJUsa8/fff1/3339/DQ4OHvDNt99+Ww899FBjnjBhQl155ZVN3RMAAAAAAAAAAAAAAAAAAAAAACCNiFaT3XzzzTVr1qzG/NJLL9XKlStr+/btf/jt+++/X1dddVXt3r278d11111XRx999IjsCgAAAAAAAAAAAAAAAAAAAAAAkGJ8qxcY66ZNm1ZPPPFEXXvttbVr166qqnrzzTfrnXfeqfPPP7+OP/742r9/f23YsKE2btw47O25555bK1asaMHWAAAAAAAAAAAAAAAAAAAAAAAAo5uI1gg49dRTa+3atbV8+fL69ttvq6pqYGCguru7q7u7+0/fXHTRRfXwww/XhAkTRnJVAAAAAAAAAAAAAAAAAAAAAACACG2tXuBwMW/evHrllVfq1ltvrdmzZx/wdyeeeGI9+OCD9cQTT1RHR8cIbggAAAAAAAAAAAAAAAAAAAAAAJBjfKsXOJxMnDixli1bVsuWLasvvviivv7669q5c2cNDg7WzJkz6/TTT68TTzyx1WsCAAAAAAAAAAAAAAAAAAAAAACMeiJaLXLaaafVaaed1uo1AAAAAAAAAAAAAAAAAAAAAAAAIrW1egEAAAAAAAAAAAAAAAAAAAAAAAA4VCJaAAAAAAAAAAAAAAAAAAAAAAAAxBHRAgAAAAAAAAAAAAAAAAAAAAAAII6IFgAAAAAAAAAAAAAAAAAAAAAAAHFEtAAAAAAAAAAAAAAAAAAAAAAAAIgjogUAAAAAAAAAAAAAAAAAAAAAAEAcES0AAAAAAAAAAAAAAAAAAAAAAADiiGgBAAAAAAAAAAAAAAAAAAAAAAAQR0QLAAAAAAAAAAAAAAAAAAAAAACAOCJaAAAAAAAAAAAAAAAAAAAAAAAAxBHRAgAAAAAAAAAAAAAAAAAAAAAAII6IFgAAAAAAAAAAAAAAAAAAAAAAAHFEtAAAAAAAAAAAAAAAAAAAAAAAAIgjogUAAAAAAAAAAAAAAAAAAAAAAEAcES0AAAAAAAAAAAAAAAAAAAAAAADiiGgBAAAAAAAAAAAAAAAAAAAAAAAQR0QLAAAAAAAAAAAAAAAAAAAAAACAOCJaAAAAAAAAAAAAAAAAAAAAAAAAxBHRAgAAAAAAAAAAAAAAAAAAAAAAII6IFgAAAAAAAAAAAAAAAAAAAAAAAHFEtAAAAAAAAAAAAAAAAAAAAAAAAIgjogUAAAAAAAAAAAAAAAAAAAAAAEAcES0AAAAAAAAAAAAAAAAAAAAAAADiiGgBAAAAAAAAAAAAAAAAAAAAAAAQR0QLAAAAAAAAAAAAAAAAAAAAAACAOCJaAAAAAAAAAAAAAAAAAAAAAAAAxBHRAgAAAAAAAAAAAAAAAAAAAAAAII6IFgAAAAAAAAAAAAAAAAAAAAAAAHFEtAAAAAAAAAAAAAAAAAAAAAAAAIgjogUAAAAAAAAAAAAAAAAAAAAAAEAcES0AAAAAAAAAAAAAAAAAAAAAAADiiGgBAAAAAAAAAAAAAAAAAAAAAAAQR0QLAAAAAAAAAAAAAAAAAAAAAACAOCJaAAAAAAAAAAAAAAAAAAAAAAAAxBHRAgAAAAAAAAAAAAAAAAAAAAAAII6IFgAAAAAAAAAAAAAAAAAAAAAAAHFEtAAAAAAAAAAAAAAAAAAAAAAAAIgjogUAAAAAAAAAAAAAAAAAAAAAAEAcES0AAAAAAAAAAAAAAAAAAAAAAADiiGgBAAAAAAAAAAAAAAAAAAAAAAAQR0QLAAAAAAAAAAAAAAAAAAAAAACAOCJaAAAAAAAAAAAAAAAAAAAAAAAAxBHRAgAAAAAAAAAAAAAAAAAAAAAAII6IFgAAAAAAAAAAAAAAAAAAAAAAAHFEtAAAAAAAAAAAAAAAAAAAAAAAAIgjogUAAAAAAAAAAAAAAAAAAAAAAEAcES0AAAAAAAAAAAAAAAAAAAAAAADiiGgBAAAAAAAAAAAAAAAAAAAAAAAQR0QLAAAAAAAAAAAAAAAAAAAAAACAOCJaAAAAAAAAAAAAAAAAAAAAAAAAxBHRAgAAAAAAAAAAAAAAAAAAAAAAII6IFgAAAAAAAAAAAAAAAAAAAAAAAHFEtAAAAAAAAAAAAAAAAAAAAAAAAIgjogUAAAAAAAAAAAAAAAAAAAAAAEAcES0AAAAAAAAAAAAAAAAAAAAAAADiiGgBAAAAAAAAAAAAAAAAAAAAAAAQR0QLAAAAAAAAAAAAAAAAAAAAAACAOCJaAAAAAAAAAAAAAAAAAAAAAAAAxBHRAgAAAAAAAAAAAAAAAAAAAAAAII6IFgAAAAAAAAAAAAAAAAAAAAAAAHFEtAAAAAAAAAAAAAAAAAAAAAAAAIgjogUAAAAAAAAAAAAAAAAAAAAAAEAcES0AAAAAAAAAAAAAAAAAAAAAAADiiGgBAAAAAAAAAAAAAAAAAAAAAAAQR0QLAAAAAAAAAAAAAAAAAAAAAACAOCJaAAAAAAAAAAAAAAAAAAAAAAAAxBHRAgAAAAAAAAAAAAAAAAAAAAAAII6IFgAAAAAAAAAAAAAAAAAAAAAAAHFEtAAAAAAAAAAAAAAAAAAAAAAAAIgjogUAAAAAAAAAAAAAAAAAAAAAAEAcES0AAAAAAAAAAAAAAAAAAAAAAADiiGgBAAAAAAAAAAAAAAAAAAAAAAAQR0QLAAAAAAAAAAAAAAAAAAAAAACAOCJaAAAAAAAAAAAAAAAAAAAAAAAAxBHRAgAAAAAAAAAAAAAAAAAAAAAAII6IFgAAAAAAAAAAAAAAAAAAAAAAAHFEtAAAAAAAAAAAAAAAAAAAAAAAAIgjogUAAAAAAAAAAAAAAAAAAAAAAEAcES0AAAAAAAAAAAAAAAAAAAAAAADiiGgBAAAAAAAAAAAAAAAAAAAAAAAQR0QLAAAAAAAAAAAAAAAAAAAAAACAOCJaAAAAAAAAAAAAAAAAAAAAAAAAxBHRAgAAAAAAAAAAAAAAAAAAAAAAII6IFgAAAAAAAAAAAAAAAAAAAAAAAHFEtAAAAAAAAAAAAAAAAAAAAAAAAIgjogUAAAAAAAAAAAAAAAAAAAAAAEAcES0AAAAAAAAAAAAAAAAAAAAAAADiiGgBAAAAAAAAAAAAAAAAAAAAAAAQR0QLAAAAAAAAAAAAAAAAAAAAAACAOCJaAAAAAAAAAAAAAAAAAAAAAAAAxBHRAgAAAAAAAAAAAAAAAAAAAAAAII6IFgAAAAAAAAAAAAAAAAAAAAAAAHFEtAAAAAAAAAAAAAAAAAAAAAAAAIgjogUAAAAAAAAAAAAAAAAAAAAAAEAcES0AAAAAAAAAAAAAAAAAAAAAAADiiGgBAAAAAAAAAAAAAAAAAAAAAAAQR0QLAAAAAAAAAAAAAAAAAAAAAACAOCJaAAAAAAAAAAAAAAAAAAAAAAAAxBHRAgAAAAAAAAAAAAAAAAAAAAAAII6IFgAAAAAAAAAAAAAAAAAAAAAAAHFEtAAAAAAAAAAAAAAAAAAAAAAAAIgjogUAAAAAAAAAAAAAAAAAAAAAAEAcES0AAAAAAAAAAAAAAAAAAAAAAADiiGgBAAAAAAAAAAAAAAAAAAAAAAAQR0QLAAAAAAAAAAAAAAAAAAAAAACAOCJaAAAAAAAAAAAAAAAAAAAAAAAAxBHRAgAAAAAAAAAAAAAAAAAAAAAAII6IFgAAAAAAAAAAAAAAAAAAAAAAAHFEtAAAAAAAAAAAAAAAAAAAAAAAAIgjogUAAAAAAAAAAAAAAAAAAAAAAEAcES0AAAAAAAAAAAAAAAAAAAAAAADiiGgBAAAAAAAAAAAAAAAAAAAAAAAQR0QLAAAAAAAAAAAAAAAAAAAAAACAOCJaAAAAAAAAAAAAAAAAAAAAAAAAxBHRAgAAAAAAAAAAAAAAAAAAAAAAII6IFgAAAAAAAAAAAAAAAAAAAAAAAHFEtAAAAAAAAAAAAAAAAAAAAAAAAIgjogUAAAAAAAAAAAAAAAAAAAAAAEAcES0AAAAAAAAAAAAAAAAAAAAAAADiiGgBAAAAAAAAAAAAAAAAAAAAAAAQR0QLAAAAAAAAAAAAAAAAAAAAAACAOCJaAAAAAAAAAAAAAAAAAAAAAAAAxBHRAgAAAAAAAAAAAAAAAAAAAAAAII6IFgAAAAAAAAAAAAAAAAAAAAAAAHFEtAAAAAAAAAAAAAAAAAAAAAAAAIgjogUAAAAAAAAAAAAAAAAAAAAAAEAcES0AAAAAAAAAAAAAAAAAAAAAAADiiGgBAAAAAAAAAAAAAAAAAAAAAAAQR0QLAAAAAAAAAAAAAAAAAAAAAACAOCJaAAAAAAAAAAAAAAAAAAAAAAAAxBHRAgAAAAAAAAAAAAAAAAAAAAAAII6IFgAAAAAAAAAAAAAAAAAAAAAAAHFEtAAAAAAAAAAAAAAAAAAAAAAAAIgjogUAAAAAAAAAAAAAAAAAAAAAAEAcES0AAAAAAAAAAAAAAAAAAAAAAADiiGgBAAAAAAAAAAAAAAAAAAAAAAAQR0QLAAAAAAAAAAAAAAAAAAAAAACAOCJaAAAAAAAAAAAAAAAAAAAAAAAAxBHRAgAAAAAAAAAAAAAAAAAAAAAAII6IFgAAAAAAAAAAAAAAAAAAAAAAAHFEtAAAAAAAAAAAAAAAAAAAAAAAAIgjogUAAAAAAAAAAAAAAAAAAAAAAEAcES0AAAAAAAAAAAAAAAAAAAAAAADiiGgBAAAAAAAAAAAAAAAAAAAAAAAQR0QLAAAAAAAAAAAAAAAAAAAAAACAOCJaAAAAAAAAAAAAAAAAAAAAAAAAxBHRAgAAAAAAAAAAAAAAAAAAAAAAII6IFgAAAAAAAAAAAAAAAAAAAAAAAHFEtAAAAAAAAAAAAAAAAAAAAAAAAIgjogUAAAAAAAAAAAAAAAAAAAAAAEAcES0AAAAAAAAAAAAAAAAAAAAAAADiiGgBAAAAAAAAAAAAAAAAAAAAAAAQR0QLAAAAAAAAAAAAAAAAAAAAAACAOCJaAAAAAAAAAAAAAAAAAAAAAAAAxBHRAgAAAAAAAAAAAAAAAAAAAAAAII6IFgAAAAAAAAAAAAAAAAAAAAAAAHFEtAAAAAAAAAAAAAAAAAAAAAAAAIgjogUAAAAAAAAAAAAAAAAAAAAAAEAcES0AAAAAAAAAAAAAAAAAAAAAAADiiGgBAAAAAAAAAAAAAAAAAAAAAAAQR0QLAAAAAAAAAAAAAAAAAAAAAACAOCJaAAAAAAAAAAAAAAAAAAAAAAAAxBHRAgAAAAAAAAAAAAAAAAAAAAAAII6IFgAAAAAAAAAAAAAAAAAAAAAAAHFEtAAAAAAAAAAAAAAAAAAAAAAAAIgjogUAAAAAAAAAAAAAAAAAAAAAAEAcES0AAAAAAAAAAAAAAAAAAAAAAADiiGgBAAAAAAAAAAAAAAAAAAAAAAAQR0QLAAAAAAAAAAAAAAAAAAAAAACAOCJaAAAAAAAAAAAAAAAAAAAAAAAAxBHRAgAAAAAAAAAAAAAAAAAAAAAAII6IFgAAAAAAAAAAAAAAAAAAAAAAAHFEtAAAAAAAAAAAAAAAAAAAAAAAAIgjogUAAAAAAAAAAAAAAAAAAAAAAEAcES0AAAAAAAAAAAAAAAAAAAAAAADiiGgBAAAAAAAAAAAAAAAAAAAAAAAQR0QLAAAAAAAAAAAAAAAAAAAAAACAOCJaAAAAAAAAAAAAAAAAAAAAAAAAxBHRAgAAAAAAAAAAAAAAAAAAAAAAII6IFgAAAAAAAAAAAAAAAAAAAAAAAHFEtAAAAAAAAAAAAAAAAAAAAAAAAIgjogUAAAAAAAAAAAAAAAAAAAAAAEAcES0AAAAAAAAAAAAAAAAAAAAAAADiiGgBAAAAAAAAAAAAAAAAAAAAAAAQR0QLAAAAAAAAAAAAAAAAAAAAAACAOCJaAAAAAAAAAAAAAAAAAAAAAAAAxBHRAgAAAAAAAAAAAAAAAAAAAAAAII6IFgAAAAAAAAAAAAAAAAAAAAAAAHFEtAAAAAAAAAAAAAAAAAAAAAAAAIgjogUAAAAAAAAAAAAAAAAAAAAAAEAcES0AAAAAAAAAAAAAAAAAAAAAAADiiGgBAAAAAAAAAAAAAAAAAAAAAAAQR0QLAAAAAAAAAAAAAAAAAAAAAACAOCJaAAAAAAAAAAAAAAAAAAAAAAAAxBHRAgAAAAAAAAAAAAAAAAAAAAAAII6IFgAAAAAAAAAAAAAAAAAAAAAAAHFEtAAAAAAAAAAAAAAAAAAAAAAAAIgjogUAAAAAAAAAAAAAAAAAAAAAAEAcES0AAAAAAAAAAAAAAAAAAAAAAADiiGgBAAAAAAAAAAAAAAAAAAAAAAAQR0QLAAAAAAAAAAAAAAAAAAAAAACAOCJaAAAAAAAAAAAAAAAAAAAAAAAAxBHRAgAAAAAAAAAAAAAAAAAAAAAAII6IFgAAAAAAAAAAAAAAAAAAAAAAAHFEtAAAAAAAAAAAAAAAAAAAAAAAAIgjogUAAAAAAAAAAAAAAAAAAAAAAEAcES0AAAAAAAAAAAAAAAAAAAAAAADiiGgBAAAAAAAAAAAAAAAAAAAAAAAQR0QLAAAAAAAAAAAAAAAAAAAAAACAOCJaAAAAAAAAAAAAAAAAAAAAAAAAxBHRAgAAAAAAAAAAAAAAAAAAAAAAII6IFgAAAAAAAAAAAAAAAAAAAAAAAHFEtAAAAAAAAAAAAAAAAAAAAAAAAIgjogUAAAAAAAAAAAAAAAAAAAAAAEAcES0AAAAAAAAAAAAAAAAAAAAAAADiiGgBAAAAAAAAAAAAAAAAAAAAAAAQR0QLAAAAAAAAAAAAAAAAAAAAAACAOCJaAAAAAAAAAAAAAAAAAAAAAAAAxBHRAgAAAAAAAAAAAAAAAAAAAAAAII6IFgAAAAAAAAAAAAAAAAAAAAAAAHFEtAAAAAAAAAAAAAAAAAAAAAAAAIgjogUAAAAAAAAAAAAAAAAAAAAAAEAcES0AAAAAAAAAAAAAAAAAAAAAAADiiGgBAAAAAAAAAAAAAAAAAAAAAAAQR0QLAAAAAAAAAAAAAAAAAAAAAACAOCJaAAAAAAAAAAAAAAAAAAAAAAAAxBHRAgAAAAAAAAAAAAAAAAAAAAAAII6IFgAAAAAAAAAAAAAAAAAAAAAAAHFEtAAAAAAAAAAAAAAAAAAAAAAAAIgjogUAAAAAAAAAAAAAAAAAAAAAAEAcES0AAAAAAAAAAAAAAAAAAAAAAADiiGgBAAAAAAAAAAAAAAAAAAAAAAAQR0QLAAAAAAAAAAAAAAAAAAAAAACAOCJaAAAAAAAAAAAAAAAAAAAAAAAAxBHRAgAAAAAAAAAAAAAAAAAAAAAAII6IFgAAAAAAAAAAAAAAAAAAAAAAAHFEtAAAAAAAAAAAAAAAAAAAAAAAAIgjogUAAAAAAAAAAAAAAAAAAAAAAEAcES0AAAAAAAAAAAAAAAAAAAAAAADiiGgBAAAAAAAAAAAAAAAAAAAAAAAQR0QLAAAAAAAAAAAAAAAAAAAAAACAOCJaAAAAAAAAAAAAAAAAAAAAAAAAxBHRAgAAAAAAAAAAAAAAAAAAAAAAII6IFgAAAAAAAAAAAAAAAAAAAAAAAHFEtAAAAAAAAAAAAAAAAAAAAAAAAIgjogUAAAAAAAAAAAAAAAAAAAAAAEAcES0AAAAAAAAAAAAAAAAAAAAAAADiiGgBAAAAAAAAAAAAAAAAAAAAAAAQR0QLAAAAAAAAAAAAAAAAAAAAAACAOCJaAAAAAAAAAAAAAAAAAAAAAAAAxBHRAgAAAAAAAAAAAAAAAAAAAAAAII6IFgAAAAAAAAAAAAAAAAAAAAAAAHFEtAAAAAAAAAAAAAAAAAAAAAAAAIgjogUAAAAAAAAAAAAAAAAAAAAAAEAcES0AAAAAAAAAAAAAAAAAAAAAAADiiGgBAAAAAAAAAAAAAAAAAAAAAAAQR0QLAAAAAAAAAAAAAAAAAAAAAACAOCJaAAAAAAAAAAAAAAAAAAAAAAAAxBHRAgAAAAAAAAAAAAAAAAAAAAAAII6IFgAAAAAAAAAAAAAAAAAAAAAAAHFEtAAAAAAAAAAAAAAAAAAAAAAAAIgjogUAAAAAAAAAAAAAAAAAAAAAAEAcES0AAAAAAAAAAAAAAAAAAAAAAADiiGgBAAAAAAAAAAAAAAAAAAAAAAAQR0QLAAAAAAAAAAAAAAAAAAAAAACAOCJaAAAAAAAAAAAAAAAAAAAAAAAAxBHRAgAAAAAAAAAAAAAAAAAAAAAAII6IFgAAAAAAAAAAAAAAAAAAAAAAAHFEtAAAAAAAAAAAAAAAAAAAAAAAAIgjogUAAAAAAAAAAAAAAAAAAAAAAEAcES0AAAAAAAAAAAAAAAAAAAAAAADiiGgBAAAAAAAAAAAAAAAAAAAAAAAQR0QLAAAAAAAAAAAAAAAAAAAAAACAOCJaAAAAAAAAAAAAAAAAAAAAAAAAxBHRAgAAAAAAAAAAAAAAAAAAAAAAII6IFgAAAAAAAAAAAAAAAAAAAAAAAHFEtAAAAAAAAAAAAAAAAAAAAAAAAIgjogUAAAAAAAAAAAAAAAAAAAAAAEAcES0AAAAAAAAAAAAAAAAAAAAAAADiiGgBAAAAAAAAAAAAAAAAAAAAAAAQR0QLAAAAAAAAAAAAAAAAAAAAAACAOCJaAAAAAAAAAAAAAAAAAAAAAAAAxBHRAgAAAAAAAAAAAAAAAAAAAAAAII6IFgAAAAAAAAAAAAAAAAAAAAAAAHFEtAAAAAAAAAAAAAAAAAAAAAAAAIgjogUAAAAAAAAAAAAAAAAAAAAAAEAcES0AAAAAAAAAAAAAAAAAAAAAAADiiGgBAAAAAAAAAAAAAAAAAAAAAAAQR0QLAAAAAAAAAAAAAAAAAAAAAACAOCJaAAAAAAAAAAAAAAAAAAAAAAAAxBHRAgAAAAAAAAAAAAAAAAAAAAAAII6IFgAAAAAAAAAAAAAAAAAAAAAAAHFEtAAAAAAAAAAAAAAAAAAAAAAAAIgjogUAAAAAAAAAAAAAAAAAAAAAAEAcES0AAAAAAAAAAAAAAAAAAAAAAADiiGgBAAAAAAAAAAAAAAAAAAAAAAAQR0QLAAAAAAAAAAAAAAAAAAAAAACAOCJaAAAAAAAAAAAAAAAAAAAAAAAAxBnf6gUOJ5dddln19vb+v9729PTUzJkz/+aNAAAAAAAAAAAAAAAAAAAAAAAAMrW1eoHDxcDAQG3ZsqXVawAAAAAAAAAAAAAAAAAAAAAAAIwJIlojZMuWLTUwMNDqNQAAAAAAAAAAAAAAAAAAAAAAAMaE8a1e4HDR29s7bH777bdr7ty5LdoGAAAAAAAAAAAAAAAAAAAAAAAgW1urFzhcbN68ufH5yCOPFNACAAAAAAAAAAAAAAAAAAAAAAD4L4hojZDe3t7G5/nz57dwEwAAAAAAAAAAAAAAAAAAAAAAgHwiWiPkPyNaJ598cgs3AQAAAAAAAAAAAAAAAAAAAAAAyCeiNQK2b99eu3btaszz589v3TIAAAAAAAAAAAAAAAAAAAAAAABjgIjWCOjt7R02n3zyyS3aBAAAAAAAAAAAAAAAAAAAAAAAYGwQ0RoBmzdvbnxub2+vk046qYXbAAAAAAAAAAAAAAAAAAAAAAAA5Bvf6gUOB729vY3Pxx13XE2aNKk++eSTevnll+uTTz6pH374ofbt21dHHXVUnXTSSXXhhRfW5ZdfXh0dHS3cGgAAAAAAAAAAAAAAAAAAAAAAYPQS0RoB/xnRmjRpUl111VX18ccf/+F327Ztq23btlV3d3etXr267rzzzrrkkktGclUAAAAAAAAAAAAAAAAAAAAAAIAIIlpN1t/fX999911j3rRp019619fXV7fffnt9/fXXtWrVqmatd0ja2sZVe3tbq9cAADig9vZxfzK7XwCA0c0NAwCkcb8AAGncLwBAGvcLAJDIDQMApHG/AABp3C+MZr//+xxp44aGhoZausEYt2HDhlq6dOmw79ra2mrx4sW1ZMmSmjdvXnV1dVVfX1998MEH9cwzz9RXX3017Pd33313XX311SO5NgAAAAAA/Jud+wmxut7/OP72zJmRKW6KDWEgkhiJZn/AFkVJi4iKVi0ygiAiskimP5uwfxRIoTIEoRFURCHlokUUrapZNRARGdViIgpEhAlqRszS7DQzd/GD82O6/fNeZ77nNT0eu89wzsxrMYv36gkAAAAAAAAAAAAAAAA9TURrnu3fv7+efPLJ7nv58uX1zDPP1JVXXvm7n5+Zmamnn3669u3b1/1Zu92ud955p9asWTPfcwEAAAAAAAAAAAAAAAAAAAAAACK0mh6w2J1zzjl1ww031MaNG2toaKj27t37hwGtqqpWq1WPPfZYXXfddd2f/frrr/Xcc88txFwAAAAAAAAAAAAAAAAAAAAAAIAIS2ZnZ2ebHsF/mpiYqGuvvbY6nU5VVS1durQ+/vjjWrp0aWObjh07UZ3OTGN/HwDgr/T1Lally87ovo8ePV7T085dAKC3uWEAgDTuFwAgjfsFAEjjfgEAErlhAIA07hcAII37hV722//PhdZu7C/zp84999y6/PLL64MPPqiqqpMnT9aBAwfqiiuuaGzTzMxsTU+LaAEAvaw15zU97X4BABK4YQCANO4XACCN+wUASON+AQASuWEAgDTuFwAgjfuFXtb6648s2r/On7rkkkvmvA8fPtzQEgAAAAAAAAAAAAAAAAAAAAAAgN4iotXDzj777DnvI0eONLQEAAAAAAAAAAAAAAAAAAAAAACgt4ho9bDZ2dk574GBgYaWAAAAAAAAAAAAAAAAAAAAAAAA9JZ20wMWu59++qkmJyfr+++/r8HBwVq/fv3f/u7U1NSc9/Lly0/zOgAAAAAAAAAAAAAAAAAAAAAAgEwiWvPo66+/rhtvvLH73rRpU73++ut/+/tffPHFnPeFF1542rYBAAAAAAAAAAAAAAAAAAAAAAAkazU9YDE777zzamBgoPv+/PPP6+jRo3/ru0eOHKmPPvqo+x4aGqrzzz//tG8EAAAAAAAAAAAAAAAAAAAAAABIJKI1j9rtdm3evLn77nQ69cYbb/yt777wwgv1888/d98333xzLVmy5LRvBAAAAAAAAAAAAAAAAAAAAAAASCSiNc9uueWWOe/nn3++vvnmmz/9zvvvv1+vvPJK933WWWfVbbfdNh/zAAAAAAAAAAAAAAAAAAAAAAAAIolozbOrr766Nm/e3H3/+OOPdfvtt9fY2Nh/fLbT6dSLL75Y999/f83MzHR//sgjj9TQ0NCC7AUAAAAAAAAAAAAAAAAAAAAAAEjQbnrAP8Hu3bvr1ltvrYMHD1ZV1XfffVd33nlnrV+/vjZt2lRnnnlmTUxM1NjYWE1NTc357r333ls33XRTA6sBAAAAAAAAAAAAAAAAAAAAAAB6l4jWAlixYkW9+uqr9eCDD9aBAwe6Px8fH6/x8fHf/c7AwEANDw/X1q1bF2omAAAAAAAAAAAAAAAAAAAAAABAjFbTA/4pVq5cWfv27asdO3bUmjVr/vBzg4ODdf3119dbb70loAUAAAAAAAAAAAAAAAAAAAAAAPAH2k0P+Cdpt9u1ZcuW2rJlSx06dKg+++yzmpycrJMnT9aKFStq5cqVddlll9Xg4GDTUwEAAAAAAAAAAAAAAAAAAAAAAHqaiFZDVq9eXatXr256BgAAAAAAAAAAAAAAAAAAAAAAQKRW0wMAAAAAAAAAAAAAAAAAAAAAAADgVIloAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdEq0eMj4/Xxo0ba926dbVu3bo6fPhw05MAAAAAAAAAAAAAAAAAAAAAAAB6lohWD/jll1/qoYceqk6n0/QUAAAAAAAAAAAAAAAAAAAAAACACCJaPeDZZ5+tr776qukZAAAAAAAAAAAAAAAAAAAAAAAAMUS0GvbJJ5/Uyy+/3PQMAAAAAAAAAAAAAAAAAAAAAACAKCJaDTp+/Hht3769ZmZmmp4CAAAAAAAAAAAAAAAAAAAAAAAQRUSrQbt3765Dhw41PQMAAAAAAAAAAAAAAAAAAAAAACCOiFZDxsbGav/+/VVV1Wq16qqrrmp4EQAAAAAAAAAAAAAAAAAAAAAAQA4RrQb88MMP9eijj3bfd9xxR1166aXNDQIAAAAAAAAAAAAAAAAAAAAAAAgjotWAHTt21LfffltVVWvXrq0HHnig2UEAAAAAAAAAAAAAAAAAAAAAAABhRLQW2Lvvvltvv/12VVX19fXVzp07a2BgoOFVAAAAAAAAAAAAAAAAAAAAAAAAWUS0FtDk5GQ98cQT3fddd91VF198cYOLAAAAAAAAAAAAAAAAAAAAAAAAMoloLaDHH3+8pqamqqrqggsuqG3btjW8CAAAAAAAAAAAAAAAAAAAAAAAIJOI1gJ58803a3R0tKqq+vv7a9euXTUwMNDwKgAAAAAAAAAAAAAAAAAAAAAAgEztpgf8E0xMTNRTTz3Vfd999921YcOGBhf9d1qtJdXXp7sGAPSuvr4lv/N2vwAAvc0NAwCkcb8AAGncLwBAGvcLAJDIDQMApHG/AABp3C/0st/+fy40Ea15Njs7Ww8//HAdO3asqqo2bNhQ99xzT8Or/jv/+tdg0xMAAE7JsmVnND0BAOCUuWEAgDTuFwAgjfsFAEjjfgEAErlhAIA07hcAII37Bf6fnNw8e+211+rDDz+sqqr+/v7auXNn9ff3N7wKAAAAAAAAAAAAAAAAAAAAAAAgm4jWPDp48GCNjIx039u2bat169Y1uAgAAAAAAAAAAAAAAAAAAAAAAGBxaDc9YLGanp6u7du314kTJ6qq6qKLLqqtW7c2vOp/c+zYiep0ZpqeAQDwh/r6ltSyZWd030ePHq/p6dkGFwEA/DU3DACQxv0CAKRxvwAAadwvAEAiNwwAkMb9AgCkcb/Qy377/7nQRLTmyUsvvVSffvppVVUNDAzUrl27qq+vr+FV/5uZmdmanhbRAgB6WWvOa3ra/QIAJHDDAABp3C8AQBr3CwCQxv0CACRywwAAadwvAEAa9wu9rPXXH1m0f32R+vLLL2vPnj3d93333Vdr165tcBEAAAAAAAAAAAAAAAAAAAAAAMDi0m56wGL03nvvVafT6b5HRkZqZGTklH7HNddcM+c9Ojpaq1atOi37AAAAAAAAAAAAAAAAAAAAAAAA0rWaHgAAAAAAAAAAAAAAAAAAAAAAAACnSkQLAAAAAAAAAAAAAAAAAAAAAACAOO2mByxGw8PDNTw8fErf2bNnT+3du7f7Hh0drVWrVp3uaQAAAAAAAAAAAAAAAAAAAAAAAItCq+kBAAAAAAAAAAAAAAAAAAAAAAAAcKpEtAAAAAAAAAAAAAAAAAAAAAAAAIgjogUAAAAAAAAAAAAAAAAAAAAAAEAcES0AAAAAAAAAAAAAAAAAAAAAAADiiGgBAAAAAAAAAAAAAAAAAAAAAAAQR0QLAAAAAAAAAAAAAAAAAAAAAACAOO2mB/B/hoeHa3h4uOkZAAAAAAAAAAAAAAAAAAAAAAAAEVpNDwAAAAAAAAAAAAAAAAAAAAAAAIBTJaIFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAAAAAAAA4ohoAQAAAAAAAAAAAAAAAAAAAAAAEEdECwAAAAAAAAAAAAAAAAAAAAAAgDgiWgAAAAAAAAAAAAAAAAAAAAAAAMQR0QIAAAAAAAAAAAAAAAAAAAAAACCOiBYAAAAAAAAAAAAAAAAAAAAAAABxRLQAAAAAAAAAAAAAAAAAAAAAAACII6IFAAAAAAAAAAAAAAAAAAAAAABAHBEtAAAAAAAAAAAAAAAAAACAf7Nz79Fe1XX+x1/7nMNNTqgImAoZmo6IdwkskxRFAspKW9UKB7WccpXdRyen5a+0Vc2Mt2GqqZkizenipcwxEdLUUWeKGXEyTMRboBhiKgIpHOEc9u8PF9+RxLidc/Z36+Ox1nf52d99e3/XOq714Z8nAAAAtSOiBQAAAAAAAAAAAAAAAAAAAAAAQO2IaAEAAAAAAAAAAAAAAAAAAAAAAFA7IloAAAAAAAAAAAAAAAAAAAAAAADUjogWAAAAAAAAAAAAAAAAAAAAAAAAtSOiBQAAAAAAAAAAAAAAAAAAAAAAQO2IaAEAAAAAAAAAAAAAAAAAAAAAAFA7IloAAAAAAAAAAAAAAAAAAAAAAADUjogWAAAAAAAAAAAAAAAAAAAAAAAAtSOiBQAAAAAAAAAAAAAAAAAAAAAAQO2IaAEAAAAAAAAAAAAAAAAAAAAAAFA7IloAAAAAAAAAAAAAAAAAAAAAAADUjogWAAAAAAAAAAAAAAAAAAAAAAAAtSOiBQAAAAAAAAAAAAAAAAAAAAAAQO2IaAEAAAAAAAAAAAAAAAAAAAAAAFA7IloAAAAAAAAAAAAAAAAAAAAAAADUjogWAAAAAAAAAAAAAAAAAAAAAAAAtSOiBQAAAAAAAAAAAAAAAAAAAAAAQO2IaAEAAAAAAAAAAAAAAAAAAAAAAFA7IloAAAAAAAAAAAAAAAAAAAAAAADUjogWAAAAAAAAAAAAAAAAAAAAAAAAtSOiBQAAAAAAAAAAAAAAAAAAAAAAQO2IaAEAAAAAAAAAAAAAAAAAAAAAAFA7IloAAAAAAAAAAAAAAAAAAAAAAADUjogWAAAAAAAAAAAAAAAAAAAAAAAAtSOiBQAAAAAAAAAAAAAAAAAAAAAAQO2IaAEAAAAAAAAAAAAAAAAAAAAAAFA7IloAAAAAAAAAAAAAAAAAAAAAAADUjogWAAAAAAAAAAAAAAAAAAAAAAAAtSOiBQAAAAAAAAAAAAAAAAAAAAAAQO2IaAEAAAAAAAAAAAAAAAAAAAAAAFA7IloAAAAAAAAAAAAAAAAAAAAAAADUjogWAAAAAAAAAAAAAAAAAAAAAAAAtSOiBQAAAAAAAAAAAAAAAAAAAAAAQO2IaAEAAAAAAAAAAAAAAAAAAAAAAFA7IloAAAAAAAAAAAAAAAAAAAAAAADUjogWAAAAAAAAAAAAAAAAAAAAAAAAtSOiBQAAAAAAAAAAAAAAAAAAAAAAQO2IaAEAAAAAAAAAAAAAAAAAAAAAAFA7IloAAAAAAAAAAAAAAAAAAAAAAADUjogWAAAAAAAAAAAAAAAAAAAAAAAAtSOiBQAAAAAAAAAAAAAAAAAAAAAAQO2IaAEAAAAAAAAAAAAAAAAAAAAAAFA7IloAAAAAAAAAAAAAAAAAAAAAAADUjogWAAAAAAAAAAAAAAAAAAAAAAAAtSOiBQAAAAAAAAAAAAAAAAAAAAAAQO2IaAEAAAAAAAAAAAAAAAAAAAAAAFA7IloAAAAAAAAAAAAAAAAAAAAAAADUjogWAAAAAAAAAAAAAAAAAAAAAAAAtSOiBQAAAAAAAAAAAAAAAAAAAAAAQO2IaAEAAAAAAAAAAAAAAAAAAAAAAFA7IloAAAAAAAAAAAAAAAAAAAAAAADUjogWAAAAAAAAAAAAAAAAAAAAAAAAtSOiBQAAAAAAAAAAAAAAAAAAAAAAQO2IaAEAAAAAAAAAAAAAAAAAAAAAAFA7IloAAAAAAAAAAAAAAAAAAAAAAADUjogWAAAAAAAAAAAAAAAAAAAAAAAAtSOiBQAAAAAAAAAAAAAAAAAAAAAAQO20VT3A9lixYkV+85vf5Mknn8zKlSvT0dGRj33sY43z8+fPz+jRo9Pa2lrhlAAAAAAAAAAAAAAAAAAAAAAAAHS32kW01q5dm5/+9Kf54Q9/mAcffDBlWW50/sURrY9//OPp7OzMRz7ykUybNk1MCwAAAAAAAAAAAAAAAAAAAAAA4BWiVhGt+fPn51Of+lQef/zxl8SzkqQoisa6s7MzTz75ZNavX5+vfvWrufHGG/NP//RPGTx4cG+ODAAAAAAAAAAAAAAAAAAAAAAAQA9oqXqALfWLX/wi06ZNawS0XhzMevF6g8cffzzr169PURQpyzJ33XVXTj/99Kxevbo3xwYAAAAAAAAAAAAAAAAAAAAAAKAH1CKide+99+ass87KunXrGt8NGzYs733ve3PuueemLMuX3NOvX7+MHTu2EdwqyzL33XdfLr744t4cHQAAAAAAAAAAAAAAAAAAAAAAgB5Qi4jWeeedlzVr1qQoirS1teXcc8/NLbfckvPPPz/Tpk3b5D3Dhg3L5Zdfnn/+53/OoEGDGiGtH/3oR3n88cd7+RcAAAAAAAAAAAAAAAAAAAAAAADQnZo+onXbbbdl/vz5jeMLL7ww06ZNS2tr6xbdP2HChMycOTNtbW0piiLr16/Pv//7v/fUuAAAAAAAAAAAAAAAAAAAAAAAAPSCpo9o3XzzzUmSoigyadKkTJo0aaufccABB+SEE05IWZZJkjvvvLNbZwQAAAAAAAAAAAAAAAAAAAAAAKB3NX1E63//938b6/e+973b/Jz3vOc9jfVDDz20XTMBAAAAAAAAAAAAAAAAAAAAAABQraaPaD355JON9f7777/Nz9lzzz2TJGVZZuXKlds9FwAAAAAAAAAAAAAAAAAAAAAAANVp+ojW6tWrG+v29vZtfs723AsAAAAAAAAAAAAAAAAAAAAAAEBzafqI1s4779xYP/nkk9v8nGXLliVJiqLITjvttL1jAQAAAAAAAAAAAAAAAAAAAAAAUKGmj2jtvvvujfXcuXO3+Tl33HHHJp8JAAAAAAAAAAAAAAAAAAAAAABA/TR9ROvNb35zYz1z5sx0dXVt9TPWrl2bSy+9tHE8bty4bpkNAAAAAAAAAAAAAAAAAAAAAACAajR9ROttb3tbiqJIkjz88MM5//zzt+r+sixzzjnn5LHHHmt8d/zxx3frjAAAAAAAAAAAAAAAAAAAAAAAAPSupo9o7bvvvpkyZUrKskySXHXVVTnjjDPy8MMPb/behQsX5tRTT80NN9yQJCmKIm9961szatSoHp0ZAAAAAAAAAAAAAAAAAAAAAACAntVW9QBb4pxzzsldd92VJ554Ikly22235bbbbsvrXve6DB8+fKNrL7rooixfvjzz58/PQw89lCSNANeOO+6Yz3/+8707PAAAAAAAAAAAAAAAAAAAAAAAAN2uFhGtIUOG5Fvf+lY+9KEP5emnn05RFCnLMo888kgeffTRxnVlWeY73/lOY50kRVEkSQYMGJAZM2ZkxIgRvf8DAAAAAAAAAAAAAAAAAAAAAAAA6FYtVQ+wpfbbb79ce+21OeKII14SyCqKovHZYMO6LMvss88++fGPf5xx48b1/uAAAAAAAAAAAAAAAAAAAAAAAAB0u7aqB9gaQ4cOzWWXXZZ58+bl+9//fubOnZsVK1Zs8tr+/fvnsMMOy/ve974cf/zxGwW2AAAAAAAAAAAAAAAAAAAAAAAAqLdaRbQ2GDNmTMaMGZMkWbRoUZYtW5ZVq1als7MzgwYNyi677JJ99tknffr0qXhSAAAAAAAAAAAAAAAAAAAAAAAAekItI1ovNnLkyIwcObLqMQAAAAAAAAAAAAAAAAAAAAAAAOhFLVUPAAAAAAAAAAAAAAAAAAAAAAAAAFtLRAsAAAAAAAAAAAAAAAAAAAAAAIDaaat6gKVLl1by3t13372S9wIAAAAAAAAAAAAAAAAAAAAAALD9Ko9oTZgwIUVR9Oo7i6LIggULevWdAAAAAAAAAAAAAAAAAAAAAAAAdJ/KI1oblGVZ9QgAAAAAAAAAAAAAAAAAAAAAAADURFNEtLY0oFUUxVbdt7XXAwAAAAAAAAAAAAAAAAAAAAAAUA+VR7TOPPPMLbruoYceypw5c1IURcqyTP/+/XPMMcfk4IMPzsiRI9Pe3p5+/frl2WefzbJly/Lb3/42c+bMyVNPPZWiKNLa2prPfvazGT16dA//IgAAAAAAAAAAAAAAAAAAAAAAAHpaUZZlWfUQm7Nw4cKccsopWbVqVZLkAx/4QD796U+nvb39z97X2dmZyy67LDNmzEhnZ2f69++fb33rWxk3blxvjP2Ks3Ll6qxd21X1GAAAL6u1tSWDBw9sHC9f/ly6utZXOBEAwObZwwAAdWP/AgDUjf0LAFA39i8AQB3ZwwAAdWP/AgDUjf0LzexP/z57W0tlb95Ca9euzVlnnZWVK1cmSc4555yce+65mw1oJUlbW1tOP/30XHTRRUmSNWvWbPQsAAAAAAAAAAAAAAAAAAAAAAAA6qnpI1qzZs3Kgw8+mKIo8ta3vjXTp0/f6mccf/zxeec735kkefLJJ/OTn/yku8cEAAAAAAAAAAAAAAAAAAAAAACgFzV9ROtnP/tZY33KKads83Pe//73N9Y33njjds0EAAAAAAAAAAAAAAAAAAAAAABAtZo+ovXwww831gcccMA2P2ffffdtrJcsWbJdMwEAAAAAAAAAAAAAAAAAAAAAAFCtpo9oPf3004113759t/k5ZVk2/rtq1artngsAAAAAAAAAAAAAAAAAAAAAAIDqNH1Ea+DAgY31ww8/vM3PuffeexvrHXfccbtmAgAAAAAAAAAAAAAAAAAAAAAAoFpNH9HaZ599Gutrrrlmm59z+eWXJ0mKosj++++/3XMBAAAAAAAAAAAAAAAAAAAAAABQnaaPaB111FFJkrIsc8UVV+RXv/rVVj/jiiuuyC9+8YvG8cSJE7ttPgAAAAAAAAAAAAAAAAAAAAAAAHpf00e0TjzxxAwYMCBFUaSzszMf/ehHc+WVV27RvWvXrs2FF16Y888/P0VRJEl23XXXvPOd7+zJkQEAAAAAAAAAAAAAAAAAAAAAAOhhbVUPsDlDhw7NGWeckUsuuSRFUWTNmjX54he/mH/5l3/JpEmTcuCBB2b48OEZOHBgkuSPf/xjFi9enLvvvjuzZ8/OqlWrUpZlkqQoinzxi19M3759q/xJAAAAAAAAAAAAAAAAAAAAAAAAbKemj2glyYc//OHcd999mTNnToqiSFmWWbp0aS677LI/e19ZlimKonHPWWedlaOPPrpXZgYAAAAAAAAAAAAAAAAAAAAAAKDntFQ9wJYoiiIXX3xxPvzhD6elpaXxXfJCKGtTnw3XlGWZ9vb2XHzxxfngBz9Y2W8AAAAAAAAAAAAAAAAAAAAAAACg+9QiopUkLS0t+cxnPpOf/exnOfHEEzNw4MBGLGtTyrLMzjvvnL/6q7/KjTfemClTpvTitAAAAAAAAAAAAAAAAAAAAAAAAPSktqoH2Fp77bVXvvKVr+S8887L/Pnzs3Dhwjz22GN57rnnkiQDBw7MiBEjcsABB+SAAw5IS0ttOmEAAAAAAAAAAAAAAAAAAAAAAABsodpFtDbo06dPDj/88Bx++OFVjwIAAAAAAAAAAAAAAAAAAAAAAEAva6l6AAAAAAAAAAAAAAAAAAAAAAAAANhaIloAAAAAAAAAAAAAAAAAAAAAAADUjogWAAAAAAAAAAAAAAAAAAAAAAAAtdNW9QCbM2rUqG5/ZlEUWbBgQbc/FwAAAAAAAAAAAAAAAAAAAAAAgN7R9BGtsiyrHgEAAAAAAAAAAAAAAAAAAAAAAIAm0/QRrSQpimKrY1pFUWx0LMYFAAAAAAAAAAAAAAAAAAAAAADwytH0Ea13v/vdW3X92rVrs2LFijz66KNZsmRJkheCWrvvvnvOO++87LDDDj0xJgAAAAAAAAAAAAAAAAAAAAAAAL2o6SNaX/3qV7f53t///ve55JJLcv311+fxxx/PjBkzctlll6W9vb0bJwQAAAAAAAAAAAAAAAAAAAAAAKC3tVQ9QE/aY489cuGFF+ZTn/pUyrLMvffemy9/+ctVjwUAAAAAAAAAAAAAAAAAAAAAAMB2ekVHtDY444wzcvjhh6csy1x77bWZP39+1SMBAAAAAAAAAAAAAAAAAAAAAACwHV4VEa0kOfnkkxvra6+9trpBAAAAAAAAAAAAAAAAAAAAAAAA2G6vmojWoYce2ljfeeedFU4CAAAAAAAAAAAAAAAAAAAAAADA9nrVRLQGDx6cJCnLMk888UTF0wAAAAAAAAAAAAAAAAAAAAAAALA9XjURraVLlzbW69atq3ASAAAAAAAAAAAAAAAAAAAAAAAAtterJqI1a9asxnro0KEVTgIAAAAAAAAAAAAAAAAAAAAAAMD2aqt6gN7w61//Ot/97ndTFEWS5MADD6x4IgAAAAAAAAAAAAAAAAAAAAAAALZH00e0li5dutX3dHZ2ZvXq1XniiSdy880357rrrsvzzz+fsixTFEXe9ra39cCkAAAAAAAAAAAAAAAAAAAAAAAA9Jamj2hNmDAhRVFs1zM2xLOKosioUaMyceLEbpoOAAAAAAAAAAAAAAAAAAAAAACAKjR9RGuDsiy36b4N8ayyLDN48OBccMEF3TwZAAAAAAAAAAAAAAAAAAAAAAAAva2l6gG2xLYGtDbc29ramkmTJuXKK6/M3nvv3Y2TAQAAAAAAAAAAAAAAAAAAAAAAUIW2qgfYnDPPPHOb7mtra8vAgQOz2267ZezYsRk0aFA3TwYAAAAAAAAAAAAAAAAAAAAAAEBVXrERLQAAAAAAAAAAAAAAAAAAAAAAAF65WqoeAAAAAAAAAAAAAAAAAAAAAAAAALZWW9UD9Kbf//73uf/++7NmzZpMnTq16nEAAAAAAAAAAAAAAAAAAAAAAADYRk0f0Ro1alSSpCiKLFiwYJuf88wzz+TYY49NURQZPny4iBYAAAAAAAAAAAAAAAAAAAAAAECNNX1EqyzLbnnOoEGDGs976qmnuuWZAAAAAAAAAAAAAAAAAAAAAAAAVKOl6gF6y+LFixvrrq6u6gYBAAAAAAAAAAAAAAAAAAAAAABgu7VVPcDixYtz9913b9G111577VY/f/369VmxYkWuvvrqxne77LLLVj8HAAAAAAAAAAAAAAAAAAAAAACA5lF5RGvw4MH5h3/4hzzzzDN/9rqyLHPOOeds83vKskySFEWRww47bJufAwAAAAAAAAAAAAAAAAAAAAAAQPVaqh5g0KBB+cxnPtOIXJVludHnxf703JZ8NiiKIknS1taW0047rfd+IAAAAAAAAAAAAAAAAAAAAAAAAN2u8ohWkrznPe/JIYcc8pJoVnd4cVBrxIgR+frXv54DDjig298DAAAAAAAAAAAAAAAAAAAAAABA72mreoANvva1r2XRokUbfVeWZU455ZQkSVEU+d73vrdVzyyKIq2trdlhhx0ybNiwDB48uNvmBQAAAAAAAAAAAAAAAAAAAAAAoDpNE9EaOnRohg4duslzRVEkScaOHdubIwEAAAAAAAAAAAAAAAAAAAAAANCkWqoeYEuUZVn1CAAAAAAAAAAAAAAAAAAAAAAAADSRtqoH2JyFCxdWPQIAAAAAAAAAAAAAAAAAAAAAAABNpqXqAQAAAAAAAAAAAAAAAAAAAAAAAGBriWgBAAAAAAAAAAAAAAAAAAAAAABQO21VD3DttddudPyud73rz57vLn/6HgAAAAAAAAAAAAAAAAAAAAAAAOqj8ojW5z73uRRF0Tj+07jVn57vLiJaAAAAAAAAAAAAAAAAAAAAAAAA9VV5RGuDsiz/bCyrLMvtfkdRFJt9DwAAAAAAAAAAAAAAAAAAAAAAAM2vpeoBks0HsrojoNWdzwEAAAAAAAAAAAAAAAAAAAAAAKBabVUPcPnll2/XeQAAAAAAAAAAAAAAAAAAAAAAAF59Ko9ojR07drvOAwAAAAAAAAAAAAAAAAAAAAAA8OrTUvUAAAAAAAAAAAAAAAAAAAAAAAAAsLVEtAAAAAAAAAAAAAAAAAAAAAAAAKgdES0AAAAAAAAAAAAAAAAAAAAAAABqp63qAbbVs88+mzVr1qSrqyvr16/f6vt33333HpgKAAAAAAAAAAAAAAAAAAAAAACA3lCriNYvfvGLXHPNNZk7d27WrFmzzc8piiILFizoxskAAAAAAAAAAAAAAAAAAAAAAADoTbWIaK1duzaf/OQn8x//8R9JkrIsqx0IAAAAAAAAAAAAAAAAAAAAAACASrVUPcCW+MIXvpBbb721Ec8qiqLiiQAAAAAAAAAAAAAAAAAAAAAAAKhSW9UDbM59992Xa6+9thHOKssygwcPzpgxY7LHHntkwIABaWmpRQsMAAAAAAAAAAAAAAAAAAAAAACAbtL0Ea3rrrsuZVk2IlqnnnpqPv3pT6dfv34VTwYAAAAAAAAAAAAAAAAAAAAAAEBVmj6i9ctf/rKxnjBhQj73uc9VOA0AAAAAAAAAAAAAAAAAAAAAAADNoKXqATZn2bJljfVpp51W4SQAAAAAAAAAAAAAAAAAAAAAAAA0i6aPaHV0dDTW++23X4WTAAAAAAAAAAAAAAAAAAAAAAAA0CyaPqI1ZMiQxrqtra3CSQAAAAAAAAAAAAAAAAAAAAAAAGgWTR/RGjlyZGO9ePHi6gYBAAAAAAAAAAAAAAAAAAAAAACgaTR9RGvSpEmN9ezZsyucBAAAAAAAAAAAAAAAAAAAAAAAgGbR9BGtyZMnZ9ddd02SfP/738+SJUsqnggAAAAAAAAAAAAAAAAAAAAAAICqNX1Eq729Peeff36Kosjq1atz2mmnZcGCBVWPBQAAAAAAAAAAAAAAAAAAAAAAQIXaqh5gS7z1rW/NJZdckrPPPjuPPfZYTjrppIwZMybjxo3LXnvtlde85jXp37//Vj3zjW98Yw9NCwAAAAAAAAAAAAAAAAAAAAAAQE9r+ojW0Ucf3VgXRZEkKcsy8+bNy7x587bpmUVRZMGCBd0xHgAAAAAAAAAAAAAAAAAAAAAAABVo+ojWsmXLGvGsJButkxeCWgAAAAAAAAAAAAAAAAAAAAAAALy6NH1EKxHKAgAAAAAAAAAAAAAAAAAAAAAAYGNNH9H66le/WvUIAAAAAAAAAAAAAAAAAAAAAAAANJmmj2i9+93vrnoEAAAAAAAAAAAAAAAAAAAAAAAAmkxL1QMAAAAAAAAAAAAAAAAAAAAAAADA1hLRAgAAAAAAAAAAAAAAAAAAAAAAoHZEtAAAAAAAAAAAAAAAAAAAAAAAAKidtqoH2JylS5d2y3NaWlrSt2/f9O3bN+3t7d3yTAAAAAAAAAAAAAAAAAAAAAAAAKrR9BGtCRMmpCiKbn1mW1tbhg4dmn333Tdjx47NO97xjgwdOrRb3wEAAAAAAAAAAAAAAAAAAAAAAEDPaal6gC1VlmW3fdatW5elS5fmtttuywUXXJCJEyfm29/+dtU/EQAAAAAAAAAAAAAAAAAAAAAAgC1Ui4hWWZZJkqIoNvpszpZe39HRkYsvvjhf/OIXu2tkAAAAAAAAAAAAAAAAAAAAAAAAelBb1QNszo9//OMkyS9/+ctcfPHFKYoiZVmmtbU1b3rTm3LooYdm5MiRGTRoUMqyzLPPPpslS5Zk/vz5uf3227N27dpGQOuII47Ivvvum46OjixfvjwLFizI0qVLG8+88sorc/DBB+fd7353lT8ZAAAAAAAAAAAAAAAAAAAAAACAzWj6iNYBBxyQu+66K9/4xjcasavjjjsun//857Pbbrv92XtXrlyZiy++OFdeeWWKosh9992Xv/3bv82+++6bJCnLMrNnz87555+flStXpizLXHDBBZk6dWr69u3bGz8PAAAAAAAAAAAAAAAAAAAAAACAbdBS9QCb8/zzz+ecc87J888/nyQ57bTT8vWvf32zAa0k2XHHHXPeeeflc5/7XMqyzKpVq3LWWWdl/fr1SZKiKDJlypTMnDkz/fv3T5I888wzmT17ds/9IAAAAAAAAAAAAAAAAAAAAAAAALZb00e0rrvuujz66KMpiiIHH3xw/uZv/marn3HqqafmqKOOSlmWeeCBB3LddddtdH706NGZNm1a4/j222/f7rkBAAAAAAAAAAAAAAAAAAAAAADoOU0f0Zo9e3Zjffrpp2/zc0455ZTG+oYbbnjJ+YkTJzbWCxcu3Ob3AAAAAAAAAAAAAAAAAAAAAAAA0POaPqL18MMPN9ZjxozZ5uccdNBBjfWmIll77bVXkqQsyzzxxBPb/B4AAAAAAAAAAAAAAAAAAAAAAAB6XtNHtJ5++unGeocddtjm5/Tv3z/JC5GsFStWvOT8wIEDG+uOjo5tfg8AAAAAAAAAAAAAAAAAAAAAAAA9r+kjWi8OZy1ZsmSbn/Poo48mSYqiyKBBg15y/sVhrb59+27zewAAAAAAAAAAAAAAAAAAAAAAAOh5TR/Rev3rX99Y/+xnP9vm59xwww2N9Wtf+9qXnF+6dGmSFyJbO++88za/BwAAAAAAAAAAAAAAAAAAAAAAgJ7X9BGtI444IklSlmUuu+yyPPDAA1v9jEWLFuXSSy9NURRJkre85S0vuebGG29srPfZZ59tnBYAAAAAAAAAAAAAAAAAAAAAAIDe0PQRrZNOOimtra0piiIdHR057bTTMm/evC2+f/78+fngBz+Yjo6OlGWZ1tbWvOMd79jomiVLluSqq65qHG8IdwEAAAAAAAAAAAAAAAAAAAAAANCc2qoeYHP23HPPTJs2LZdffnmKosjTTz+d6dOn57jjjssJJ5yQQw45JEOGDNnonmXLluWee+7J9ddfn5tvvjmdnZ1JkqIo8oEPfCB7771349oLLrggP/3pT7Ny5cokSVtbWyZPntx7PxAAAAAAAAAAAAAAAAAAAAAAAICt1vQRrSQ566yzct999+XOO+9MURRZv359brrpptx0001Jkn79+qW9vT1dXV159tlnG9GsJCnLMkVRpCzLvPnNb85f//VfN84tX748M2fOTFEUSV6IbE2bNi277rpr7/5AAAAAAAAAAAAAAAAAAAAAAAAAtkpL1QNsiT59+uQ73/lOpk6d2ohiJS8EssqyTEdHR5566qk888wzWbduXeP7DcqyzIknnphvfvOb6du3b+P7xx57bKNrxowZk89+9rO998MAAAAAAAAAAAAAAAAAAAAAAADYJrWIaCVJv379ctFFF+Vf//Vfc/DBB28UyUqSoigaca0NyrLM4YcfnksvvTRf+cpXNgpoJf8X0dp1113ziU98It/97nfTp0+fnv0hAAAAAAAAAAAAAAAAAAAAAAAAbLe2qgfYWuPHj8/48eOzaNGi3H777bnnnnvy6KOPZtWqVUmSHXfcMbvttlsOOeSQvOUtb8kb3vCGl33WkUcemTvuuCNDhw7trfEBAAAAAAAAAAAAAAAAAAAAAADoBrWLaG0wcuTIjBw5crueseOOO3bTNAAAAAAAAAAAAAAAAAAAAAAAAPSmlqoHAAAAAAAAAAAAAAAAAAAAAAAAgK0logUAAAAAAAAAAAAAAAAAAAAAAEDtvGoiWmVZZsmSJbn66qtz0kknVT0OAAAAAAAAAAAAAAAAAAAAAAAA26Gt6gG2xp133pnrr78+999/f1atWpV169alLMuUZfmSa8uyzPr167Nu3bp0dHRkzZo1m7wOAAAAAAAAAAAAAAAAAAAAAACA+qlFRKuzszNnn312Zs+e3fhue4JYRVF0x1gAAAAAAAAAAAAAAAAAAAAAAABUpBYRrb/7u7/LDTfc0DguimKbQlgbwlv9+/fvttkAAAAAAAAAAAAAAAAAAAAAAADofU0f0Vq6dGmuuOKKRjSrLMuUZZn29vYMHDgwTz31VLq6utLa2pohQ4akq6srzz33XNasWZPkheBWWZYpiiLjxo3L+973vowfP77KnwQAAAAAAAAAAAAAAAAAAAAAAMB2avqI1jXXXJPOzs5GROttb3tbPvvZz2bEiBFJko9+9KO55ZZbUpZlrr766gwbNixJ8oc//CE33XRT/vEf/zHPPvtsyrLMwoULc+ihh6a9vb2y3wMAAAAAAAAAAAAAAAAAAAAAAMD2a6l6gM2ZN29eY73//vvnkksuaQS0kuSII45IkpRlmTvuuKPx/bBhwzJt2rRce+21GTFiRIqiyKpVq/KlL32p94YHAAAAAAAAAAAAAAAAAAAAAACgRzR9RGvx4sWN9fTp01MUxUbnDzzwwMb6zjvvfMn9e+yxRy666KK0tramLMvceuutWbhwYY/NCwAAAAAAAAAAAAAAAAAAAAAAQM9r+ojWM88801gffvjhLzm/zz77NNa//e1vN/mMAw88MBMnTmwcz5kzpxsnBAAAAAAAAAAAAAAAAAAAAAAAoLc1fUSrs7OzsR42bNhLzre3t2fYsGEpyzKLFy/e6PoXe9e73tVY33vvvd0+JwAAAAAAAAAAAAAAAAAAAAAAAL2n6SNa7e3tjXVra+smrxk+fHiSpKurK4888sgmr3nDG97QWP/ud7/rxgkBAAAAAAAAAAAAAAAAAAAAAADobU0f0dppp50a6xUrVmzymg0RrSRZtGjRJq8ZNmxYkqQsy6xcubLb5gMAAAAAAAAAAAAAAAAAAAAAAKD3NX1E63Wve11jfd99923ymhEjRjTW999//yavWbt2bWPd0dHRTdMBAAAAAAAAAAAAAAAAAAAAAABQhaaPaL3xjW9srK+55ppNXrP33ns31v/zP/+zyWteHODaYYcdumk6AAAAAAAAAAAAAAAAAAAAAAAAqtD0Ea3x48c31rNnz863vvWtl1xz4IEHJknKssy8efOycOHCl1xz+eWXJ0mKoshuu+3WQ9MCAAAAAAAAAAAAAAAAAAAAAADQG5o+orXffvvlyCOPTFmWKcsyM2bMyNvf/vb84Ac/aFwzYsSI7L///imKIl1dXfnIRz6S22+/Pc8//3yWLVuW//f//l9uvPHGxvWHHnpoFT8FAAAAAAAAAAAAAAAAAAAAAACAbtL0Ea0kOeuss7LDDjukKIqUZZmHHnooV1xxxUbXnHrqqSnLMkVR5IknnshHPvKRHHLIITnmmGNy9dVXb3TtiSee2JvjAwAAAAAAAAAAAAAAAAAAAAAA0M1qEdHab7/9MmPGjLS3tydJiqLI8OHDN7rmhBNOyJFHHtkIaZVl2fhsuKcoirzrXe/KQQcd1Ou/AQAAAAAAAAAAAAAAAAAAAAAAgO5Ti4hWkhx11FGZM2dO3vve92bQoEEviWglyYwZMzJ+/PiXhLM2xLQmTpyY8847r7dHBwAAAAAAAAAAAAAAAAAAAAAAoJsV5YbiVI10dXVl5cqVGTx48CbP33zzzbnuuuuyaNGilGWZN7zhDTnhhBNyzDHH9PKkrywrV67O2rVdVY8BAPCyWltbMnjwwMbx8uXPpatrfYUTAQBsnj0MAFA39i8AQN3YvwAAdWP/AgDUkT0MAFA39i8AQN3Yv9DM/vTvs7e1Vfbm7dDa2vqyAa0kOfbYY3Psscf24kQAAAAAAAAAAAAAAAAAAAAAAAD0ppaqBwAAAAAAAAAAAAAAAAAAAAAAAICtJaIFAAAAAAAAAAAAAAAAAAAAAABA7bRVPcCMGTMqee8nP/nJSt4LAAAAAAAAAAAAAAAAAAAAAADA9qs8ovXNb34zRVH0+ntFtAAAAAAAAAAAAAAAAAAAAAAAAOqr8ojWBmVZbnTcU2GtsiwriXYBAAAAAAAAAAAAAAAAAAAAAADQfZomovXisFVZli+JagEAAAAAAAAAAAAAAAAAAAAAAMAGTRPRSl6IZxVFkYMPPjhTpkzJqFGjqh4JAAAAAAAAAAAAAAAAAAAAAACAJlR5RGuXXXbJ008/nSQpiiJJMn/+/MyfPz8jR47MlClTMnXq1IwcObLKMQEAAAAAAAAAAAAAAAAAAAAAAGgiLVUPcMcdd+TSSy/Ne97zngwaNChlWTY+ixYtyje+8Y1MmTIlJ554YmbOnJmlS5dWPTIAAAAAAAAAAAAAAAAAAAAAAAAVK8qyLKseYoPOzs7813/9V2bNmpWbb745zz33XONcURSN9SGHHJKpU6dm8uTJ2WWXXaoY9VVp5crVWbu2q+oxAABeVmtrSwYPHtg4Xr78uXR1ra9wIgCAzbOHAQDqxv4FAKgb+xcAoG7sXwCAOrKHAQDqxv4FAKgb+xea2Z/+ffa2popovdjatWtz2223ZdasWbntttuyZs2axrkNQa2WlpaMHTs2U6dOzaRJk/Ka17ymqnG3WGdnZ37+85/npptuyvz587N8+fJ0dXVlyJAhOeCAAzJx4sRMnjw5ffr0qXrUlxDRAgCanX/8AQB1ZA8DANSN/QsAUDf2LwBA3di/AAB1ZA8DANSN/QsAUDf2LzQzEa0tsGbNmtxyyy2ZNWtW7rjjjqxbt65xbkNQq62tLUceeWTe/va359hjj82AAQOqGvdl3X333Tn77LPzyCOP/Nnrhg8fnr//+7/PmDFjemmyLSOiBQA0O//4AwDqyB4GAKgb+xcAoG7sXwCAurF/AQDqyB4GAKgb+xcAoG7sX2hmIlpb6dlnn81NN92UWbNmZe7cuens7Gyc2xDU6t+/f44++uhMnTo148ePT9++fasat+Hmm2/OJz7xiY3m/XNaW1vz+c9/PtOmTevhybaciBYA0Oz84w8AqCN7GACgbuxfAIC6sX8BAOrG/gUAqCN7GACgbuxfAIC6sX+hmYlobYdnnnkmN954Y2bNmpV58+Zl/fr/+x97Q1Crvb09xx13XKZMmZIjjzwyLS0tvT7nAw88kJNOOilr165tfHf00Ufn1FNPzYEHHpg+ffpk0aJF+clPfpIf/OAH6ep6IVTV2tqamTNn5k1velOvz7wpIloAQLPzjz8AoI7sYQCAurF/AQDqxv4FAKgb+xcAoI7sYQCAurF/AQDqxv6FZiai1U2efPLJzJkzJzfccEPuvvvuvPhnbQhq7bzzzjn++OMzderUvPGNb+y12d7//vfn17/+deP4zDPPzMc//vFNXnvLLbfkzDPPbIS0dt999/z85z9P3759e2XWP0dECwBodv7xBwDUkT0MAFA39i8AQN3YvwAAdWP/AgDUkT0MAFA39i8AQN3Yv9DMqo5otVT25m42dOjQ/OVf/mV+9KMf5ZZbbsnZZ5+dgw8+OEVRpCzLlGWZ5cuX54orrsgpp5zSa3P9+te/3iig9aY3vellA1pJMmHChEybNq1xvHTp0tx88809OiMAAAAAAAAAAAAAAAAAAAAAAEDdvGIiWi+222675YMf/GCuvPLKfO9738vrX//6FEWRoiiSJGVZ9tos119//UbHH/7whzd7z0knnbTR8a9+9atunQkAAAAAAAAAAAAAAAAAAAAAAKDu2qoeoCc89NBD+fnPf56bbrop999/f6Wz/OY3v2ms29vbM27cuM3eM3LkyI2OlyxZ0u1zAQAAAAAAAAAAAAAAAAAAAAAA1NkrJqL14IMPZs6cOZkzZ05+97vfJUnKskySFEXRWA8YMCATJkzotbmuuuqqLF68OAsXLsyzzz6b1tbWzd7T0dHRC5MBAAAAAAAAAAAAAAAAAAAAAADUV60jWpsLZ23Qv3//jB8/PlOmTMnRRx+dfv369dqMLS0t2WuvvbLXXntt8T0LFizY6HjPPffs7rEAAAAAAAAAAAAAAAAAAAAAAABqrXYRrS0NZ/Xt2zfjx4/P5MmTc8wxx2TAgAGVzLstZs6cudHxscceW9EkAAAAAAAAAAAAAAAAAAAAAAAAzakWEa0tDWe1tbXlLW95S6ZMmZIJEyZk4MCBlcy7rZ5//vl8+ctfzh133NH47rDDDstRRx1V4VQAAAAAAAAAAAAAAAAAAAAAAADNp2kjWg8++GBmz56dOXPmZNGiRUk2Hc5qbW3NkUcemcmTJ+e4445Le3t7JfNui66urqxbty6PPvpo7rjjjvzgBz/I73//+8b5PfbYI1/72tcqnHBjLS1FWltbqh4DAOBltbYWmzi2fwEAmps9DABQN/YvAEDd2L8AAHVj/wIA1JE9DABQN/YvAEDd2L/QzP7077O3FeWGMlUTeOCBBzJnzpyXDWdtWLe1tWXcuHGZMmVKJk6cmEGDBlU28/Y45ZRTMnfu3E2eO+aYY/KFL3whu+22Wy9PBQAAAAAAAAAAAAAAAAAAAAAA0Pzaqh5gc+GsDVpaWjJ27NhMnjw5EydOzM4771zJvN3p8ccf3+T37e3tGTVqVJqobwYAAAAAAAAAAAAAAAAAAAAAANBUirLiUtN+++2Xoig2GYxqaWnJ4YcfnilTpmTSpEkZPHhwBRP2jLIsc9BBB2Xt2rUve02fPn1yxhln5GMf+9hGQTEAAAAAAAAAAAAAAAAAAAAAAIBXu6aJaCUvhKVaWlpy2GGHZfLkyZk0aVKGDBlS5Xg9Zt26dfnv//7v/MVf/EV22mmnrFq1KnfffXd++MMf5j//8z83uvbkk0/OueeeW9Gk/+ePf1yTdevWVz0GAMDLam0tsuOOOzSOV65cna6uSre7AACbZQ8DANSN/QsAUDf2LwBA3di/AAB1ZA8DANSN/QsAUDf2LzSzP/377G1NFdFKkv79+2fHHXfs0XcWRZFbb721R9+xPb7//e/nS1/60kbfffvb38748eMrmugFK1euztq1XZXOAADw57S2tmTw4IGN4+XLn0tXlwgoANDc7GEAgLqxfwEA6sb+BQCoG/sXAKCO7GEAgLqxfwEA6sb+hWb2p3+fva2tsje/jI6OjnR0dKQn214vjnY1o5NPPjlLly7NzJkzG981Q0QLAAAAAAAAAAAAAAAAAAAAAACgWbRUPcDLKYqiRz518dGPfjT9+/dvHN91111ZvXp1hRMBAAAAAAAAAAAAAAAAAAAAAAA0j7aqB9h9992rHqEptbe355BDDsncuXOTJF1dXXnkkUcyatSoiicDAAAAAAAAAAAAAAAAAAAAAACoXuURrVtuuaXqEXpFV1dXOjs7069fvy2+Z8iQIRsdd3R0dPdYAAAAAAAAAAAAAAAAAAAAAAAAtdRS9QCvZIsXL84pp5ySY489NgcddFC+9rWvbdX9K1as2Oh4l1126cbpAAAAAAAAAAAAAAAAAAAAAAAA6ktEqwfttNNOmTt3bh577LF0dnbm1ltv3eJ7161bl9/85jeN4x122CGvfe1re2JMAAAAAAAAAAAAAAAAAAAAAACA2hHR6kE77bRTRo8e3Th+6KGH8stf/nKL7r3qqqvyxz/+sXE8fvz49O3bt9tnBAAAAAAAAAAAAAAAAAAAAAAAqCMRrR72/ve/f6Pj888/f6M41qbcc889ufDCCxvHRVHk9NNP75H5AAAAAAAAAAAAAAAAAAAAAAAA6khEq4eddNJJGT16dON40aJFmT59eh588MGXXNvV1ZWrrroq06dPz+rVqxvfn3zyyTnwwAN7ZV4AAAAAAAAAAAAAAAAAAAAAAIA6aKt6gFe61tbWzJgxI9OmTcsTTzyRJFmwYEHe8Y53ZMyYMRk9enT69euXZcuW5Ve/+lX+8Ic/bHT/hAkTcs4551QxOgAAAAAAAAAAAAAAAAAAAAAAQNMS0eoFI0aMyL/927/lU5/6VBYsWJAkKcsyd955Z+68885N3lMURT70oQ/l05/+dFpbW3tzXAAAAAAAAAAAAAAAAAAAAAAAgKYnotVL9txzz1x55ZW54oor8r3vfS+PPfbYJq/r06dPjjnmmJxxxhkZPXp0L08JAAAAAAAAAAAAAAAAAAAAAABQDyJavahv376ZPn16pk+fnocffjj33HNPli9fnnXr1mWnnXbK8OHDc9hhh2XAgAFVjwoAAAAAAAAAAAAAAAAAAAAAANDURLQqsvfee2fvvfeuegwAAAAAAAAAAAAAAAAAAAAAAIBaaql6AAAAAAAAAAAAAAAAAAAAAAAAANhaIloAAAAAAAAAAAAAAAAAAAAAAADUjogWAAAAAAAAAAAAAAAAAAAAAAAAtSOiBQAAAAAAAAAAAAAAAAAAAAAAQO2IaAEAAAAAAAAAAAAAAAAAAAAAAFA7IloAAAAAAAAAAAAAAAAAAAAAAADUjogWAAAAAAAAAAAAAAAAAAAAAAAAtSOiBQAAAAAAAAAAAAAAAAAAAAAAQO2IaAEAAAAAAAAAAAAAAAAAAAAAAFA7IloAAAAAAAAAAAAAAAAAAAAAAADUjogWAAAAAAAAAAAAAAAAAAAAAAAAtSOiBQAAAAAAAAAAAAAAAAAAAAAAQO2IaAEAAAAAAAAAAAAAAAAAAAAAAFA7IloAAAAAAAAAAAAAAAAAAAAAAADUjogWAAAAAAAAAAAAAAAAAAAAAAAAtSOiBQAAAAAAAAAAAAAAAAAAAAAAQO2IaAEAAAAAAAAAAAAAAAAAAAAAAFA7IloAAAAAAAAAAAAAAAAAAAAAAADUjogWAAAAAAAAAAAAAAAAAAAAAAAAtSOiBQAAAAAAAAAAAAAAAAAAAAAAQO2IaAEAAAAAAAAAAAAAAAAAAAAAAFA7IloAAAAAAAAAAAAAAAAAAAAAAADUjogWAAAAAAAAAAAAAAAAAAAAAAAAtSOiBQAAAAAAAAAAAAAAAAAAAAAAQO2IaAEAAAAAAAAAAAAAAAAAAAAAAFA7IloAAAAAAAAAAAAAAAAAAAAAAADUjogWAAAAAAAAAAAAAAAAAAAAAAAAtSOiBQAAAAAAAAAAAAAAAAAAAAAAQO2IaAEAAAAAAAAAAAAAAAAAAAAAAFA7IloAAAAAAAAAAAAAAAAAAAAAAADUjogWAAAAAAAAAAAAAAAAAAAAAAAAtSOiBQAAAAAAAAAAAAAAAAAAAAAAQO2IaAEAAAAAAAAAAAAAAAAAAAAAAFA7IloAAAAAAAAAAAAAAAAAAAAAAADUjogWAAAAAAAAAAAAAAAAAAAAAAAAtSOiBQAAAAAAAAAAAAAAAAAAAAAAQO2IaAEAAAAAAAAAAAAAAAAAAAAAAFA7IloAAAAAAAAAAAAAAAAAAAAAAADUjogWAAAAAAAAAAAAAAAAAAAAAAAAtSOiBQAAAAAAAAAAAAAAAAAAAAAAQO2IaAEAAAAAAAAAAAAAAAAAAAAAAFA7IloAAAAAAAAAAAAAAAAAAAAAAADUjogWAAAAAAAAAAAAAAAAAAAAAAAAtSOiBQAAAAAAAAAAAAAAAAAAAAAAQO2IaAEAAAAAAAAAAAAAAAAAAAAAAFA7IloAAAAAAAAAAAAAAAAAAAAAAADUjogWAAAAAAAAAAAAAAAAAAAAAAAAtSOiBQAAAAAAAAAAAAAAAAAAAAAAQO2IaAEAAAAAAAAAAAAAAAAAAAAAAFA7IloAAAAAAAAAAAAAAAAAAAAAAADUjogWAAAAAAAAAAAAAAAAAAAAAAAAtSOiBQAAAAAAAAAAAAAAAAAAAAAAQO2IaAEAAAAAAAAAAAAAAAAAAAAAAFA7IloAAAAAAAAAAAAAAAAAAAAAAADUjogWAAAAAAAAAAAAAAAAAAAAAAAAtSOiBQAAAAAAAAAAAAAAAAAAAAAAQO2IaAEAAAAAAAAAAAAAAAAAAAAAAFA7IloAAAAAAAAAAAAAAAAAAAAAAADUjogWAAAAAAAAAAAAAAAAAAAAAAAAtSOiBQAAAAAAAAAAAAAAAAAAAAAAQO2IaAEAAAAAAAAAAAAAAAAAAAAAAFA7IloAAAAAAAAAAAAAAAAAAAAAAADUjogWAAAAAAAAAAAAAAAAAAAAAAAAtSOiBQAAAAAAAAAAAAAAAAAAAAAAQO2IaAEAAAAAAAAAAAAAAAAAAAAAAFA7IloAAAAAAAAAAAAAAAAAAAAAAADUjogWAAAAAAAAAAAAAAAAAAAAAAAAtSOiBQAAAAAAAAAAAAAAAAAAAAAAQO2IaAEAAAAAAAAAAAAAAAAAAAAAAFA7IloAAAAAAAAAAAAAAAAAAAAAAADUjogWAAAAAAAAAAAAAAAAAAAAAAAAtSOiBQAAAAAAAAAAAAAAAAAAAAAAQO2IaAEAAAAAAAAAAAAAAAAAAAAAAFA7IloAAAAAAAAAAAAAAAAAAAAAAADUjogWAAAAAAAAAAAAAAAAAAAAAAAAtSOiBQAAAAAAAAAAAAAAAAAAAAAAQO2IaAEAAAAAAAAAAAAAAAAAAAAAAFA7IloAAAAAAAAAAAAAAAAAAAAAAADUjogWAAAAAAAAAAAAAAAAAAAAAAAAtSOiBQAAAAAAAAAAAAAAAAAAAAAAQO2IaAEAAAAAAAAAAAAAAAAAAAAAAFA7IloAAAAAAAAAAAAAAAAAAAAAAADUjogWAAAAAAAAAAAAAAAAAAAAAAAAtSOiBQAAAAAAAAAAAAAAAAAAAAAAQO2IaAEAAAAAAAAAAAAAAAAAAAAAAFA7IloAAAAAAAAAAAAAAAAAAAAAAADUjogWAAAAAAAAAAAAAAAAAAAAAAAAtSOiBQAAAAAAAAAAAAAAAAAAAAAAQO2IaAEAAAAAAAAAAAAAAAAAAAAAAFA7IloAAAAAAAAAAAAAAAAAAAAAAADUjogWAAAAAAAAAAAAAAAAAAAAAAAAtSOiBQAAAAAAAAAAAAAAAAAAAAAAQO2IaAEAAAAAAAAAAAAAAAAAAAAAAFA7IloAAAAAAAAAAAAAAAAAAAAAAADUjogWAAAAAAAAAAAAAAAA8P/ZubfgOu/63sO/pYMlH+QlWT5LtoNjNzgk8YHE4VTi0DRAoZTNodO9obnKlGGY6YmrTjudaTOdyX2HC2bSzqSFDu0mDXvv7gZIWztQwImNDwmJE6wkPsiWLVuWZMmWdVha+6Z4Y3DeZTvSf71rree5ylrvT8k3li/eqw8AAAAAANQcES0AAAAAAAAAAAAAAAAAAAAAAABqjogWAAAAAAAAAAAAAAAAAAAAAAAANUdECwAAAAAAAAAAAAAAAAAAAAAAgJojogUAAAAAAAAAAAAAAAAAAAAAAEDNEdECAAAAAAAAAAAAAAAAAAAAAACg5ohoAQAAAAAAAAAAAAAAAAAAAAAAUHNEtAAAAAAAAAAAAAAAAAAAAAAAAKg5IloAAAAAAAAAAAAAAAAAAAAAAADUHBEtAAAAAAAAAAAAAAAAAAAAAAAAao6IFgAAAAAAAAAAAAAAAAAAAAAAADetNDtb1f++iBYAAAAAAAAAAAAAAAAAAAAAAAA35XuvD8UX/vFwVTeIaAEAAAAAAAAAAAAAAAAAAAAAAHDDnj82HF/+1ssxNlmq6g4RLQAAAAAAAAAAAAAAAAAAAAAAAG5IuVyOr/znm9WeEREiWgAAAAAAAAAAAAAAAAAAAAAAANygkyNX4sjZ8WrPiAgRLQAAAAAAAAAAAAAAAAAAAAAAAG7Q3mPD1Z5wlYgWAAAAAAAAAAAAAAAAAAAAAAAAN+T54yJaAAAAAAAAAAAAAAAAAAAAAAAA1JCZ0mzsPzFS7RlXiWgBAAAAAAAAAAAAAAAAAAAAAABQ0UsDY3F5ulTtGVeJaAEAAAAAAAAAAAAAAAAAAAAAAFDR88eHqz3hGiJaAAAAAAAAAAAAAAAAAAAAAAAAVCSiBQAAAAAAAAAAAAAAAAAAAAAAQE0ZnZiOV86MVXvGNUS0AAAAAAAAAAAAAAAAAAAAAAAAyLT/5EjMlqu94loiWgAAAAAAAAAAAAAAAAAAAAAAAGTae2y42hN+iYgWAAAAAAAAAAAAAAAAAAAAAAAAb6lcLsfzx0W0AAAAAAAAAAAAAAAAAAAAAAAAqCEnhidi4OJktWf8EhEtAAAAAAAAAAAAAAAAAAAAAAAA3tLzx4erPeG6RLQAAAAAAAAAAAAAAAAAAAAAAAB4S3uPiWgBAAAAAAAAAAAAAAAAAAAAAABQQ2ZKs/Hjk6PVnnFdIloAAAAAAAAAAAAAAAAAAAAAAABc10sDY3F5ulTtGdclogUAAAAAAAAAAAAAAAAAAAAAAMB17T0+XO0Jb0lECwAAAAAAAAAAAAAAAAAAAAAAgOt6/piIFgAAAAAAAAAAAAAAAAAAAAAAADVkdGI6XjkzVu0Zb0lECwAAAAAAAAAAAAAAAAAAAAAAgF+y78RIlKs9IoOIFgAAAAAAAAAAAAAAAAAAAAAAAL9k7/HhzOfNhURD3oKIFgAAAAAAAAAAAAAAAAAAAAAAANcol8vx/LHsiNbmlUsSrbk+ES0AAAAAAAAAAAAAAAAAAAAAAACucXx4Is6MTWbe3LN2aaI11yeiBQAAAAAAAAAAAAAAAAAAAAAAwDVeOD5c8UZECwAAAAAAAAAAAAAAAAAAAAAAgFzZeyw7otXR1hK3dy9OtOb6RLQAAAAAAAAAAAAAAAAAAAAAAAC4aro0Gz8+OZp5c9/6zmhqKiRadH0iWgAAAAAAAAAAAAAAAAAAAAAAAFz10sDFuDxdyry5/7auRGvemogWAAAAAAAAAAAAAAAAAAAAAAAAVz1/bLjizf0bOud/SAUiWgAAAAAAAAAAAAAAAAAAAAAAAFy19/hI5vP1XQujp7gwzZgMIloAAAAAAAAAAAAAAAAAAAAAAABERMTIxHQcOTOWeXP/hq5Ea7KJaAEAAAAAAAAAAAAAAAAAAAAAABAREftOjES5wo2IFgAAAAAAAAAAAAAAAAAAAAAAALny/LHhzOfNTYV497piojXZRLQAAAAAAAAAAAAAAAAAAAAAAACIcrkczx/Pjmjds6YjlrS1JFqUTUQLAAAAAAAAAAAAAAAAAAAAAACAOD48EWfGJjNvdm7oSrSmMhEtAAAAAAAAAAAAAAAAAAAAAAAA4vljwxVv3nObiBYAAAAAAAAAAAAAAAAAAAAAAAA5svd4dkSro60ltqzqSLSmMhEtAAAAAAAAAAAAAAAAAAAAAACABjddmo0fnxzJvNm5oTOamwppBt0AES0AAAAAAAAAAAAAAAAAAAAAAIAG9+LpizExPZt5c/+GrkRrboyIFgAAAAAAAAAAAAAAAAAAAAAAQIN7/vhwxRsRLQAAAAAAAAAAAAAAAAAAAAAAAHJl77HsiNb6roWxttieaM2NEdECAAAAAAAAAAAAAAAAAAAAAABoYCMT0/Hq2fHMm/ds6Eq05saJaAEAAAAAAAAAAAAAAAAAAAAAADSwA/2jUa5wc/9tIloAAAAAAAAAAAAAAAAAAAAAAADkyIGTI5nPm5sK8e51xTRjboKIFgAAAAAAAAAAAAAAAAAAAAAAQAM72D+a+fzOVR2xeEFLojU3TkQLAAAAAAAAAAAAAAAAAAAAAACgQV28Mh1Hz13KvNmxrphozc0R0QIAAAAAAAAAAAAAAAAAAAAAAGhQh09djHKFm+29IloAAAAAAAAAAAAAAAAAAAAAAADkyIH+0cznTYWIrWuXJlpzc0S0AAAAAAAAAAAAAAAAAAAAAAAAGlSliNYdK5fEkraWRGtujogWAAAAAAAAAAAAAAAAAAAAAABAA7o0NROvnR3LvNneW0y05uaJaAEAAAAAAAAAAAAAAAAAAAAAADSgF09fjFI5+2ZHb2eSLbdCRAsAAAAAAAAAAAAAAAAAAAAAAKABHewfzXxeiIhtPUvTjLkFIloAAAAAAAAAAAAAAAAAAAAAAAAN6MDJ7IjWphWLo7iwNdGamyeiBQAAAAAAAAAAAAAAAAAAAAAA0GCuTJfi5TNjmTc7eouJ1twaES0AAAAAAAAAAAAAAAAAAAAAAIAG85OBsZiZLWfebBfRAgAAAAAAAAAAAAAAAAAAAAAAIE8O9I9UvBHRAgAAAAAAAAAAAAAAAAAAAAAAIFcO9I9mPr9t2cJYtmhBojW3RkQLAAAAAAAAAAAAAAAAAAAAAACggUzNzMZPBsYyb3b0dqYZ8zaIaAEAAAAAAAAAAAAAAAAAAAAAADSQV86MxeTMbObNjt5iojW3TkQLAAAAAAAAAAAAAAAAAAAAAACggRw8NVrxZruIFgAAAAAAAAAAAAAAAAAAAAAAAHly4GR2RKu3sz1WdrQlWnPrRLQAAAAAAAAAAAAAAAAAAAAAAAAaxExpNg6fzo5o7egtJlrz9ohoAQAAAAAAAAAAAAAAAAAAAAAANIjXBsdjYno282a7iBYAAAAAAAAAAAAAAAAAAAAAAAB5cqB/tOLNjt7O+R8yB0S0AAAAAAAAAAAAAAAAAAAAAAAAGkSliNaqjrZYs7Qt0Zq3R0QLAAAAAAAAAAAAAAAAAAAAAACgAZRmy3HoVHZEa0dvMQqFQqJFb4+IFgAAAAAAAAAAAAAAAAAAAAAAQAPoO3cpxidLmTc7eouJ1rx9IloAAAAAAAAAAAAAAAAAAAAAAAAN4MCp0Yo320W0AAAAAAAAAAAAAAAAAAAAAAAAyJMDJ0cyn3cvXhDruxamGTMHRLQAAAAAAAAAAAAAAAAAAAAAAADq3Gy5HAf7RzNvdvQWo1AoJFr09oloAQAAAAAAAAAAAAAAAAAAAAAA1Lk3hy7H6JWZzJvtvcVEa+aGiBYAAAAAAAAAAAAAAAAAAAAAAECdO9A/WvFmh4gWAAAAAAAAAAAAAAAAAAAAAAAAeXLgZHZEq9jeEu/oXpRozdwQ0QIAAAAAAAAAAAAAAAAAAAAAAKhj5XI5Dp7Kjmht7y1GU6GQaNHcENECAAAAAAAAAAAAAAAAAAAAAACoYyeGJ2Lo0lTmzY51nWnGzCERLQAAAAAAAAAAAAAAAAAAAAAAgDp2sH+04s2OnmKCJXNLRAsAAAAAAAAAAAAAAAAAAAAAAKCOHagQ0VrS1hybVixOtGbuiGgBAAAAAAAAAAAAAAAAAAAAAADUqXK5XDGita2nGM1NhUSL5o6IFgAAAAAAAAAAAAAAAAAAAAAAQJ0auDgZZ8cmM2929BYTrZlbIloAAAAAAAAAAAAAAAAAAAAAAAB16kD/SMUbES0AAAAAAAAAAAAAAAAAAAAAAABy5WD/aObzha1NcceqjkRr5paIFgAAAAAAAAAAAAAAAAAAAAAAQJ06UCGitXVtMVqaConWzC0RLQAAAAAAAAAAAAAAAAAAAAAAgDo0ODYZ/SNXMm92rCsmWjP3RLQAAAAAAAAAAAAAAAAAAAAAAADq0MH+0Yo323tEtAAAAAAAAAAAAAAAAAAAAAAAAMiRAxUiWm0tTXHn6o5Ea+aeiBYAAAAAAAAAAAAAAAAAAAAAAEAdOtA/kvn87jUdsaCldlNUtbscAAAAAAAAAAAAAAAAAAAAAACA67pweSqOXZjIvNneW0y0Zn6IaAEAAAAAAAAAAAAAAAAAAAAAANSZg/2jFW929HbO/5B5JKIFAAAAAAAAAAAAAAAAAAAAAABQZypFtFqaCnHXmo5Ea+aHiBYAAAAAAAAAAAAAAAAAAAAAAECdOVAhovWu1R3R3tqcaM38ENECAAAAAAAAAAAAAAAAAAAAAACoI2NXZqLv3KXMmx3rionWzB8RLQAAAAAAAAAAAAAAAAAAAAAAgDpy+PRolCvcbOsR0QIAAAAAAAAAAAAAAAAAAAAAACBHDvaPZj5vKkTcs3ZpojXzR0QLAAAAAAAAAAAAAAAAAAAAAACgjlSKaN2xckksaWtJtGb+iGgBAAAAAAAAAAAAAAAAAAAAAADUiYnpUrxydjzzZntvMdGa+SWiBQAAAAAAAAAAAAAAAAAAAAAAUCdeOn0xSrPlzJvtPSJaAAAAAAAAAAAAAAAAAAAAAAAA5MjB/tGKN9tEtAAAAAAAAAAAAAAAAAAAAAAAAMiTg6eyI1obuxdF56LWRGvml4gWAAAAAAAAAAAAAAAAAAAAAABAHZiamY2fDIxl3mzvLSZaM/9EtAAAAAAAAAAAAAAAAAAAAAAAAOrAkbNjMTkzm3mzQ0QLAAAAAAAAAAAAAAAAAAAAAACAPDnQP1rxZluPiBYAAAAAAAAAAAAAAAAAAAAAAAA5crBCRKu3sz1WdrQlWjP/RLQAAAAAAAAAAAAAAAAAAAAAAABq3MxsOV48fTHzZntPMdGaNES0AAAAAAAAAAAAAAAAAAAAAAAAatzRc+NxaaqUebO9V0QLAAAAAAAAAAAAAAAAAAAAAACAHDnYP1rxRkQLAAAAAAAAAAAAAAAAAAAAAACAXKkU0Vq5ZEH0FNsTrUlDRAsAAAAAAAAAAAAAAAAAAAAAAKCGzZbLFSNa23uLUSgUEi1KQ0QLAAAAAAAAAAAAAAAAAAAAAACghr05dDlGr8xk3mzvLSZak46IFgAAAAAAAAAAAAAAAAAAAAAAQA07dGq04o2IFgAAAAAAAAAAAAAAAAAAAAAAALlysD87olVsb4l3LFuUaE06IloAAAAAAAAAAAAAAAAAAAAAAAA1qlwuV4xobe8tRqFQSLQoHREtAAAAAAAAAAAAAAAAAAAAAACAGnVq9EoMjk9l3mzvLSZak5aIFgAAAAAAAAAAAAAAAAAAAAAAQI062D9a8UZECwAAAAAAAAAAAAAAAAAAAAAAgFypFNFavKA5Nq9YkmhNWiJaAAAAAAAAAAAAAAAAAAAAAAAANergqeyI1j1rl0ZLUyHRmrREtAAAAAAAAAAAAAAAAAAAAAAAAGrQ4Nhk9I9cybzZ3ltMtCY9ES0AAAAAAAAAAAAAAAAAAAAAAIAadOjUaMWbHSJaAAAAAAAAAAAAAAAAAAAAAAAA5MmB/uyIVltLU2xZ1ZFoTXoiWgAAAAAAAAAAAAAAAAAAAAAAADXoYIWI1l1rOmJBS/2mpur3/wwAAAAAAAAAAAAAAAAAAAAAAKBOjVyejjeGLmfebO8pJlpTHSJaAAAAAAAAAAAAAAAAAAAAAAAANebQqdGKN9t7RbQAAAAAAAAAAAAAAAAAAAAAAADIkYMVIlrNTYW4e+3SRGuqQ0QLAAAAAAAAAAAAAAAAAAAAAACgxhzsz45o3blqSSxsbU60pjpEtAAAAAAAAAAAAAAAAAAAAAAAAGrI+ORMvDY4nnmzvbeYaE31iGgBAAAAAAAAAAAAAAAAAAAAAADUkBdPX4zZcvaNiBYAAAAAAAAAAAAAAAAAAAAAAAC5cujUaObzQkRsXSuiBQAAAAAAAAAAAAAAAAAAAAAAQI4c7M+OaG1esTg62lsSrakeES0AAAAAAAAAAAAAAAAAAAAAAIAacWW6FC+fGcu82d5bTLSmukS0AAAAAAAAAAAAAAAAAAAAAAAAasTLZ8ZiulTOvBHRAgAAAAAAAAAAAAAAAAAAAAAAIFcO9o9WvNnWI6IFAAAAAAAAAAAAAAAAAAAAAABAjlSKaG3oWhjdixckWlNdIloAAAAAAAAAAAAAAAAAAAAAAAA1YKY0Gy+evph5s723mGhN9YloAQAAAAAAAAAAAAAAAAAAAAAA1IBXB8fjysxs5o2IFgAAAAAAAAAAAAAAAAAAAAAAALlysH+04s0OES0AAAAAAAAAAAAAAAAAAAAAAADyZP/Jkczna5a2xeql7WnG5ICIFgAAAAAAAAAAAAAAAAAAAAAAQM5Nl2bjwMnRzJvtvcVEa/JBRAsAAAAAAAAAAAAAAAAAAAAAACDnXhq4GFdmZjNv3t3bmWZMTohoAQAAAAAAAAAAAAAAAAAAAAAA5Ny+4yMVb3Zu6Jz3HXkiogUAAAAAAAAAAAAAAAAAAAAAAJBzL5wYyXy+vmthrF7anmZMTohoAQAAAAAAAAAAAAAAAAAAAAAA5Nj45Ey8PHAx8+a+9Z1pxuSIiBYAAAAAAAAAAAAAAAAAAAAAAECOHegfjVI5+2bnhq40Y3JERAsAAAAAAAAAAAAAAAAAAAAAACDHXjg+nPm8EBH3riumGZMjIloAAAAAAAAAAAAAAAAAAAAAAAA5tu/ESObzLas7Yml7a5oxOSKiBQAAAAAAAAAAAAAAAAAAAAAAkFPnxyfjjaHLmTf3re9MMyZnRLQAAAAAAAAAAAAAAAAAAAAAAABy6oUTIxVvdopoAQAAAAAAAAAAAAAAAAAAAAAAkCeVIlptLU2xtaeYZkzOiGgBAAAAAAAAAAAAAAAAAAAAAADkULlcjn3HhzNvtq5dGm0tjZmTasz/awAAAAAAAAAAAAAAAAAAAAAAgJw7PjwRg+NTmTc7N3QlWpM/IloAAAAAAAAAAAAAAAAAAAAAAAA59MLxkYo3963vnPcdeSWiBQAAAAAAAAAAAAAAAAAAAAAAkEP7TgxnPl/a3hJ3rFySaE3+iGgBAAAAAAAAAAAAAAAAAAAAAADkzMxsOfafHMm8uXddZzQ3FdIMyiERLQAAAAAAAAAAAAAAAAAAAAAAgJx59exYjE+WMm92buhMMyanRLQAAAAAAAAAAAAAAAAAAAAAAAByZt+JkYo3O9d3zf+QHBPRAgAAAAAAAAAAAAAAAAAAAAAAyJkXjg9nPl+ztC16O9sTrcknES0AAAAAAAAAAAAAAAAAAAAAAIAcuTJdisOnL2be3Le+MwqFQqJF+SSiBQAAAAAAAAAAAAAAAAAAAAAAkCOHTo3GdKmcebNzfVeiNfklogUAAAAAAAAAAAAAAAAAAAAAAJAjLxwfqXhz7/rOed+RdyJaAAAAAAAAAAAAAAAAAAAAAAAAObLvxEjm880rFkf34gVpxuSYiBYAAAAAAAAAAAAAAAAAAAAAAEBOjFyejtcGxzNv7lvfmWZMzoloAQAAAAAAAAAAAAAAAAAAAAAA5MT+kyNRrnCzc31Xki15J6IFAAAAAAAAAAAAAAAAAAAAAACQEy+cGM583txUiO293oJknAABAABJREFUxURr8k1ECwAAAAAAAAAAAAAAAAAAAAAAICdeOD6S+fyeNR2xaEFzmjE5J6IFAAAAAAAAAAAAAAAAAAAAAACQA6dGJ+LU6JXMm/s2dCVak38iWgAAAAAAAAAAAAAAAAAAAAAAADmw7/hIxZud6zvnfUetENECAAAAAAAAAAAAAAAAAAAAAADIgRdOjGQ+X9TaHO9a3ZFmTA0Q0QIAAAAAAAAAAAAAAAAAAAAAAKiy2XI59lWIaO1YV4yWZumon/EnAQAAAAAAAAAAAAAAAAAAAAAAUGVHz12KkYnpzJudG7oSrakNIloAAAAAAAAAAAAAAAAAAAAAAABVtu/ESMWbnes7531HLRHRAgAAAAAAAAAAAAAAAAAAAAAAqLIXjg9nPu9evCA2di9KtKY2iGgBAAAAAAAAAAAAAAAAAAAAAABU0dTMbBzsH828uW99ZxQKhUSLaoOIFgAAAAAAAAAAAAAAAAAAAAAAQBW9NHAxrszMZt7sXN+ZZkwNEdECAAAAAAAAAAAAAAAAAAAAAACoohdOjFS8uU9E65eIaAEAAAAAAAAAAAAAAAAAAAAAAFTRvuMjmc83dC2M1Uvb04ypISJaAAAAAAAAAAAAAAAAAAAAAAAAVTI+OROvnLmYebNzQ1eiNbVFRAsAAAAAAAAAAAAAAAAAAAAAAKBKfnxyNErl7Jud6zuTbKk1IloAAAAAAAAAAAAAAAAAAAAAAABVsu/EcObzpkLEu9d1phlTY0S0AAAAAAAAAAAAAAAAAAAAAAAAqqBcLsePjmVHtLas6oiO9pZEi2qLiBYAAAAAAAAAAAAAAAAAAAAAAEAVvDF0OU4MT2Te7NzQmWZMDRLRAgAAAAAAAAAAAAAAAAAAAAAAqILn+oYq3ty/oSvBktokogUAAAAAAAAAAAAAAAAAAAAAAFAFe/rOZz4vtrfE1p5iojW1R0QLAAAAAAAAAAAAAAAAAAAAAAAgsTMXr8SRs+OZNx+4vTtamgqJFtUeES0AAAAAAAAAAAAAAAAAAAAAAIDEnusbqnjz4KbuBEtql4gWAAAAAAAAAAAAAAAAAAAAAABAYnv6zmc+b2tpivs3dCVaU5tEtAAAAAAAAAAAAAAAAAAAAAAAABIamZiOg/2jmTfvva0r2lubEy2qTSJaAAAAAAAAAAAAAAAAAAAAAAAACf3nG0NRKmff7Nq0PM2YGiaiBQAAAAAAAAAAAAAAAAAAAAAAkNBzfUOZz5sLER/YuCzRmtologUAAAAAAAAAAAAAAAAAAAAAAJDIlelS/OjYcObN9nWdUVzYmmhR7RLRAgAAAAAAAAAAAAAAAAAAAAAASGTvseGYnJnNvHlwU3eiNbVNRAsAAAAAAAAAAAAAAAAAAAAAACCRPX3nK9588HYRrRshogUAAAAAAAAAAAAAAAAAAAAAAJDAzGw5vv/GhcybLauWxOql7YkW1TYRLQAAAAAAAAAAAAAAAAAAAAAAgAQO9o/ExSszmTe7Ni1PtKb2tVR7QCOZnZ2NPXv2xO7du+PQoUMxODgY4+PjsXjx4li2bFls27YtPvjBD8aHP/zhaG5urvZcAAAAAAAAAAAAAAAAAAAAAABgDj3XN1TxZtfm7gRL6oOIViL79++PP/3TP41jx4790rPR0dEYHR2NN998M55++ulYt25d/OVf/mW8733vSz8UAAAAAAAAAAAAAAAAAAAAAACYc+VyOfZUiGit71oY71i2KNGi2tdU7QGN4KmnnopHHnnkugGt6zl58mQ8+uij8Q//8A/zOwwAAAAAAAAAAAAAAAAAAAAAAEji1cHxODs2mXmza1N3FAqFRItqX0u1B9S7vXv3xp//+Z9HqVS6+t39998fjzzySGzbti2KxWJcvHgxDh48GH//938fe/fujYiIUqkUjz32WPT09MQDDzxQrfkAAAAAAAAAAAAAAAAAAAAAAMAc2HP0fMWbBzYtT7CkfjRVe0A9m5mZicceeyxmZmaufvfHf/zH8Xd/93fx0EMPxfLly6O1tTW6u7vjoYceiieffDJ+//d//+rt7Oxs/MVf/EVMTU1VYz4AAAAAAAAAAAAAAAAAAAAAADBH9vQNZT7vXrwg7lrTkWhNfRDRmkfPPfdc9PX1Xf388Y9/PL7whS9k/syXvvSl+NjHPnb186lTp+KZZ56Zt40AAAAAAAAAAAAAAAAAAAAAAMD8OjE8EW8MXc68eeD27mgqFBItqg8iWvPoO9/5zjWfv/SlL93Qz33xi1+85vNzzz03Z5sAAAAAAAAAAAAAAAAAAAAAAIC09hw9X/Fm1+buBEvqi4jWPDp8+PDVf+7p6YmNGzfe0M9t3rw5lixZcvXzsWPH5noaAAAAAAAAAAAAAAAAAAAAAACQyJ6+ocznixc0x73rOtOMqSMiWvOkXC5HsViMFStWRFNTU/T09NzUz7e1tV3954sXL871PAAAAAAAAAAAAAAAAAAAAAAAIIHz45Px0kB2R+gDG5dFa7Mk1M1qqfaAelUoFOKf/umfIiJieno6Ll26dMM/OzIyEhcuXLj6edmyZXO+DwAAAAAAAAAAAAAAAAAAAAAAmH/fe32o4s0Dm5YnWFJ/ZMcSaG1tjc7Ozhu+f/bZZ6NcLl/9vHHjxnlYBQAAAAAAAAAAAAAAAAAAAAAAzLfdfdkRrdbmQrzvHV2J1tQXEa2cmZqaiieeeOKa7z70oQ9VaQ0AAAAAAAAAAAAAAAAAAAAAAHCrxidnYv+Jkcybneu7YvGCljSD6oyIVs585StfiWPHjl39vHbt2ti1a1fV9gAAAAAAAAAAAAAAAAAAAAAAALfmB29ciJnZcubNrk3didbUH+mxHHn22Wfjq1/96jXf/cEf/EEsWLCgSouu1dRUiOZm3TUAIL+amwvX+ez9BQDIN+8wAECt8f4CANQa7y8AQK3x/gIA1CLvMABArfH+AgDUGu8vte2514cynxciYtevrKjZts8v/v1MTUQrJ370ox/Fl7/85SiX/38x7qGHHopPfvKT1Rv1Czo6FlZ7AgDATSkWF1V7AgDATfMOAwDUGu8vAECt8f4CANQa7y8AQC3yDgMA1BrvLwBArfH+UjuuTJfih29eyLy597au2LyuK9Gi+lOb6bE688Mf/jC++MUvxuTk5NXvNmzYEI8//ngVVwEAAAAAAAAAAAAAAAAAAAAAALfqR68PxaWpUubNw3euTrSmPoloVdm3v/3t+L3f+72YmJi4+t2KFSviiSeeiI6OjiouAwAAAAAAAAAAAAAAAAAAAAAAbtV3Xj5T8ebhd61KsKR+tVR7QCN78skn4/HHH4/Z2dmr361YsSKefPLJWL9+fRWXXd/Y2ERMT89WPgQAqJLm5kIUi4uufh4dvRylUrmKiwAAKvMOAwDUGu8vAECt8f4CANQa7y8AQC3yDgMA1BrvLwBArfH+UptKs+X4boWI1qYVi6OjEHHhwqVEq+beL/79TE1EqwpKpVL81V/9VXz961+/5vuenp7427/927jtttuqM6yC2dlylEoiWgBAnjVd86lU8v4CANQC7zAAQK3x/gIA1BrvLwBArfH+AgDUIu8wAECt8f4CANQa7y+16FD/aFy4PJ15s+v27jr4XTZVPplHIlqJjY+Pxx/+4R/G97///Wu+37x5czzxxBOxevXqKi0DAAAAAAAAAAAAAAAAAAAAAADmwp6+oYo3uzYtT7CkvoloJTQ4OBiPPvpovPbaa9d8v3PnzvjKV74SS5curdIyAAAAAAAAAAAAAAAAAAAAAABgLpTL5djTdz7zZs3StviVlYsTLapfTdUe0Cj6+/vjd37nd34poPXxj388/uZv/kZACwAAAAAAAAAAAAAAAAAAAAAA6kDf+UtxavRK5s0Dm5ZHoVBItKh+tVR7QCMYGBiIRx55JE6dOnXN91/4whfij/7oj/xFBgAAAAAAAAAAAAAAAAAAAACAOrH76PmKN7s2dSdYUv9EtObZpUuX4tFHH70moNXU1BR/9md/Fp/73OequAwAAAAAAAAAAAAAAAAAAAAAAJhru48OZT7vXNgaW3uKidbUNxGtefbYY49FX1/f1c/Nzc3x+OOPxyc+8YkqrgIAAAAAAAAAAAAAAAAAAAAAAObaieGJ6Dt/KfPmgdu7o6WpkGhRfWuq9oB69m//9m/x9NNPX/Pdn/zJnwhoAQAAAAAAAAAAAAAAAAAAAABAHdpz9HzFm12buxMsaQwiWvOkXC7HX//1X1/z3cMPPxy/+7u/W6VFAAAAAAAAAAAAAAAAAAAAAADAfNrdlx3RWrygOe5b35VoTf1rqfaAevWDH/wgXn311Wu+++53vxt33HHHLf37XnvttbmYBQAAAAAAAAAAAAAAAAAAAAAAzIPBscn4ycBY5s3737Es2lqaEi2qf/4k58mePXuqPQEAAAAAAAAAAAAAAAAAAAAAAEhkT99QxZsHNy9PsKRxiGjNk5MnT1Z7AgAAAAAAAAAAAAAAAAAAAAAAkMjuvvOZzxc0F+J971iWaE1jaKn2gHr11a9+tdoTAAAAAAAAAAAAAAAAAAAAAACABEYuT8fBkyOZN++5bVksWtCcZlCDaKr2AAAAAAAAAAAAAAAAAAAAAAAAgFr2vTeGolTOvnlwc3eaMQ1ERAsAAAAAAAAAAAAAAAAAAAAAAOBt2H30fObz5kLEr24U0ZprIloAAAAAAAAAAAAAAAAAAAAAAAC36NLUTLxwfDjzZse6zigubE20qHGIaAEAAAAAAAAAAAAAAAAAAAAAANyiH745HFOlcubNg5uXJ1rTWES0AAAAAAAAAAAAAAAAAAAAAAAAbtHuo+cr3uza1J1gSeMR0QIAAAAAAAAAAAAAAAAAAAAAALgFkzOz8YM3LmTe3L1maaxY0pZoUWMR0QIAAAAAAAAAAAAAAAAAAAAAALgFLxwfjsvTpcybBzd3J1rTeES0AAAAAAAAAAAAAAAAAAAAAAAAbsHuo+cr3jy4eXmCJY1JRAsAAAAAAAAAAAAAAAAAAAAAAOAmzcyW43uvD2XebF6xOHo7FyZa1HhEtAAAAAAAAAAAAAAAAAAAAAAAAG7Sof7RGL0yk3nz4KblidY0JhEtAAAAAAAAAAAAAAAAAAAAAACAm7T76PmKNw9uFtGaTyJaAAAAAAAAAAAAAAAAAAAAAAAAN2G2XI49fdkRrXWd7XH78kWJFjUmES0AAAAAAAAAAAAAAAAAAAAAAICb8MqZsRgcn8q8eXDz8igUCokWNSYRLQAAAAAAAAAAAAAAAAAAAAAAgJuw++j5ijcPbl6eYEljE9ECAAAAAAAAAAAAAAAAAAAAAAC4QeVyuWJEa+WSBXHn6o5EixqXiBYAAAAAAAAAAAAAAAAAAAAAAMANen3ocpwcuZJ588Cm5dFUKCRa1LhEtAAAAAAAAAAAAAAAAAAAAAAAAG7Q7qPnK948uLk7wRJEtAAAAAAAAAAAAAAAAAAAAAAAAG5QpYhWsb0ltvd2phnT4ES0AAAAAAAAAAAAAAAAAAAAAAAAbkD/yEQcPXcp8+aDt3dHS1Mh0aLGJqIFAAAAAAAAAAAAAAAAAAAAAABwA3YfPV/x5sHNyxMsIUJECwAAAAAAAAAAAAAAAAAAAAAA4IbsPjqU+XxRa3Ps3NCVaA0iWgAAAAAAAAAAAAAAAAAAAAAAABWcG5+MlwYuZt68f+OyaGuRdkrFnzQAAAAAAAAAAAAAAAAAAAAAAEAFz/UNVbzZtak7wRJ+RkQLAAAAAAAAAAAAAAAAAAAAAACggt1Hz2c+b20uxPs3Lku0hggRLQAAAAAAAAAAAAAAAAAAAAAAgEwjE9Px45MjmTf3b+iKxQta0gwiIkS0AAAAAAAAAAAAAAAAAAAAAAAAMv3HT89FqZx98+Dm5WnGcJWIFgAAAAAAAAAAAAAAAAAAAAAAQIZnjgxmPm8uRHxwY3eiNfyMiBYAAAAAAAAAAAAAAAAAAAAAAMBbOD16JQ6duph5s2NdZ3Quak20iJ8R0QIAAAAAAAAAAAAAAAAAAAAAAHgL33l1sOLNR7esTLCEXySiBQAAAAAAAAAAAAAAAAAAAAAAcB3lcjmeeSU7otXW0hQPbl6eaBE/T0QLAAAAAAAAAAAAAAAAAAAAAADgOn46eCnevHA58+ZXN3bHkraWRIv4eSJaAAAAAAAAAAAAAAAAAAAAAAAA1/GvR85WvPnonSsTLOF6RLQAAAAAAAAAAAAAAAAAAAAAAAB+QWm2HN999VzmTbG9Jd57W1eiRfwiES0AAAAAAAAAAAAAAAAAAAAAAIBfsP/kSJy/NJV589AdK6K1WcqpWvzJAwAAAAAAAAAAAAAAAAAAAAAA/IJnjgxWvPnolpUJlvBWRLQAAAAAAAAAAAAAAAAAAAAAAAB+zpXpUuw5ej7zZm2xPe5ZuzTRIq5HRAsAAAAAAAAAAAAAAAAAAAAAAODnfO/1obg0Vcq8+ciWlVEoFBIt4npEtAAAAAAAAAAAAAAAAAAAAAAAAH7OM0cGK9589J0rEywhi4gWAAAAAAAAAAAAAAAAAAAAAADAfxm5PB0/OjacebNl1ZK4rXtRokW8FREtAAAAAAAAAAAAAAAAAAAAAACA//LsT89FabacefORLSsTrSGLiBYAAAAAAAAAAAAAAAAAAAAAAMB/+faRwcznTYWIh98popUHIloAAAAAAAAAAAAAAAAAAAAAAAAR0T8yES+evph5s3N9VyxfvCDRIrKIaAEAAAAAAAAAAAAAAAAAAAAAAETEd14drHjz0TtXJljCjRDRAgAAAAAAAAAAAAAAAAAAAAAAGl65XI5nXsmOaLW1NMUDm7oTLaISES0AAAAAAAAAAAAAAAAAAAAAAKDhHTk7HseHJzJvdm3qjsULWhItohIRLQAAAAAAAAAAAAAAAAAAAAAAoOF9+8hgxZuPbFmZYAk3SkQLAAAAAAAAAAAAAAAAAAAAAABoaDOz5fjOq9kRrc6FrfGeDV2JFnEjRLQAAAAAAAAAAAAAAAAAAAAAAICGtv/EcFy4PJ158/AdK6KlWbYpT/w2AAAAAAAAAAAAAAAAAAAAAACAhvbMkcGKNx/ZsjLBEm6GiBYAAAAAAAAAAAAAAAAAAAAAANCwJqZLsfvo+cyb3s72uGtNR6JF3CgRLQAAAAAAAAAAAAAAAAAAAAAAoGF9r28oJqZnM28+8s6VUSgUEi3iRoloAQAAAAAAAAAAAAAAAAAAAAAADeuZI4MVbz6yZWWCJdwsES0AAAAAAAAAAAAAAAAAAAAAAKAhDV+eir3HLmTevGt1R2xYtijRIm6GiBYAAAAAAAAAAAAAAAAAAAAAANCQnn3tXJTK2Tcf2bIyzRhumogWAAAAAAAAAAAAAAAAAAAAAADQkJ45Mpj5vLkQ8et3rEi0hpslogUAAAAAAAAAAAAAAAAAAAAAADSck8MT8ZOBscybnRu6onvxgkSLuFkiWgAAAAAAAAAAAAAAAAAAAAAAQMP51ktnKt589M6VCZZwq0S0AAAAAAAAAAAAAAAAAAAAAACAhjI1Mxv/+yfZEa2FrU2xa9PyRIu4FSJaAAAAAAAAAAAAAAAAAAAAAABAQ/mPo+djZGI68+aBTctjYWtzokXcChEtAAAAAAAAAAAAAAAAAAAAAACgoTx1+HTFm0/evTrBEt4OES0AAAAAAAAAAAAAAAAAAAAAAKBh9J27FIdOXcy8eUf3otjRW0y0iFslogUAAAAAAAAAAAAAAAAAAAAAADSMpw6frnjz6XvWRKFQSLCGt0NECwAAAAAAAAAAAAAAAAAAAAAAaAiXp0rxzJHBzJv2lqb42LtWJVrE2yGiBQAAAAAAAAAAAAAAAAAAAAAANIRvvzoYl6ZKmTcffufKWNLWkmgRb4eIFgAAAAAAAAAAAAAAAAAAAAAAUPfK5XI8deh0xbtPb1uTYA1zQUQLAAAAAAAAAAAAAAAAAAAAAACoez8ZGIufnruUeXPn6o7Ysqoj0SLeLhEtAAAAAAAAAAAAAAAAAAAAAACg7j11+HTFm09vXZNgCXNFRAsAAAAAAAAAAAAAAAAAAAAAAKhrIxPT8exr5zJvOtpa4uE7ViRaxFwQ0QIAAAAAAAAAAAAAAAAAAAAAAOrav7x8NqZK5cybj79rVbS3NidaxFwQ0QIAAAAAAAAAAAAAAAAAAAAAAOrWbLkc/3z4dMW7T21dk2ANc0lECwAAAAAAAAAAAAAAAAAAAAAAqFv7TozEyZErmTf3rivGbcsWJVrEXBHRAgAAAAAAAAAAAAAAAAAAAAAA6tZThwcq3nx669oES5hrIloAAAAAAAAAAAAAAAAAAAAAAEBdGhybjO/1nc+86V68IHZt6k60iLkkogUAAAAAAAAAAAAAAAAAAAAAANSl//XSmSiVs29+6+7V0dIsx1SL/NYAAAAAAAAAAAAAAAAAAAAAAIC6MzNbjm+9NJB501SI+G93r060iLkmogUAAAAAAAAAAAAAAAAAAAAAANSd778+FIPjU5k3H9jYHauXtidaxFwT0QIAAAAAAAAAAAAAAAAAAAAAAOrOU4dPV7z51NY1CZYwX0S0AAAAAAAAAAAAAAAAAAAAAACAunJyeCKePz6SebO22B7vva0rzSDmhYgWAAAAAAAAAAAAAAAAAAAAAABQV/75xYGKN5+6Z000FQoJ1jBfRLQAAAAAAAAAAAAAAAAAAAAAAIC6MTkzG//nJ2cyb1qbC/GJu1YlWsR8EdECAAAAAAAAAAAAAAAAAAAAAADqxr//9FyMXpnJvPnQ5uXRtWhBokXMFxEtAAAAAAAAAAAAAAAAAAAAAACgbnzz0EDFm89sXZtgCfNNRAsAAAAAAAAAAAAAAAAAAAAAAKgLPx0cj5cGLmbe3L58UWztWZpoEfNJRAsAAAAAAAAAAAAAAAAAAAAAAKgLTx0eqHjzqXvWRqFQSLCG+SaiBQAAAAAAAAAAAAAAAAAAAAAA1LzxyZl45sjZzJuFrU3xG3euTLSI+SaiBQAAAAAAAAAAAAAAAAAAAAAA1Lz/+/LZmJiezbz5yJaVsaStJdEi5puIFgAAAAAAAAAAAAAAAAAAAAAAUNPK5XJ88/Dpinef3ro2wRpSEdECAAAAAAAAAAAAAAAAAAAAAABq2v6TI3HswkTmzT1rl8YdK5ckWkQKIloAAAAAAAAAAAAAAAAAAAAAAEBN++ahgYo3n9m2JsESUhLRAgAAAAAAAAAAAAAAAAAAAAAAatbZscl4ru985k3Xwtb4tc0rEi0iFREtAAAAAAAAAAAAAAAAAAAAAACgZn3rxYEolbNvfuvu1bGgRXKp3viNAgAAAAAAAAAAAAAAAAAAAAAANWm6NBtPv3Qm86apEPGprWsSLSIlES0AAAAAAAAAAAAAAAAAAAAAAKAm7ekbiqFLU5k3H9jYHWuWtidaREoiWgAAAAAAAAAAAAAAAAAAAAAAQE365qHTFW8+u21NgiVUg4gWAAAAAAAAAAAAAAAAAAAAAABQc/rOX4oD/aOZN+s622Pnhq5Ei0hNRAsAAAAAAAAAAAAAAAAAAAAAAKg5Tx06XfHm01vXRlOhkGAN1SCiBQAAAAAAAAAAAAAAAAAAAAAA1JTxyZn411cGM2/aWpriN+9alWgR1SCiBQAAAAAAAAAAAAAAAAAAAAAA1JRnjgzG5elS5s2H37kilra3JlpENYhoAQAAAAAAAAAAAAAAAAAAAAAANaNcLsc3D52uePfZbWsTrKGaRLQAAAAAAAAAAAAAAAAAAAAAAICacaB/NN4Yupx5c9eajnjnqo5Ei6gWES0AAAAAAAAAAAAAAAAAAAAAAKBmfPPQQMWbz25bm2AJ1SaiBQAAAAAAAAAAAAAAAAAAAAAA1ITz45Oxu+985k2xvSV+7VdWJFpENYloAQAAAAAAAAAAAAAAAAAAAAAANeHpl85EabacefNbd6+OthZ5pUbgtwwAAAAAAAAAAAAAAAAAAAAAAOTeTGk2nn5xIPOmEBGf2romzSCqTkQLAAAAAAAAAAAAAAAAAAAAAADIve+9PhTnxqcyb96/cVn0FBcmWkS1iWgBAAAAAAAAAAAAAAAAAAAAAAC59z8PD1S8+cy2tQmWkBciWgAAAAAAAAAAAAAAAAAAAAAAQK69OXQ59p8YybzpKbbHe2/rSjOIXBDRAgAAAAAAAAAAAAAAAAAAAAAAcu2pw6cr3nx665poKhQSrCEvRLQAAAAAAAAAAAAAAAAAAAAAAIDcujxVin95+WzmzYLmQvzmXasTLSIvRLQAAAAAAAAAAAAAAAAAAAAAAIDc+vaRs3FpqpR58+vvXBmdC1sTLSIvRLQAAAAAAAAAAAAAAAAAAAAAAIBcmi2X4xsHTle8++y2tQnWkDciWgAAAAAAAAAAAAAAAAAAAAAAQC798M0L8eaFy5k3W1YtiXet7ki0iDwR0QIAAAAAAAAAAAAAAAAAAAAAAHLpa/v7K958dtvaBEvIIxEtAAAAAAAAAAAAAAAAAAAAAAAgd145MxY/PjmaedO5sDV+/Y4ViRaRNyJaAAAAAAAAAAAAAAAAAAAAAABA7nx9f3/Fm9/etjbaW5sTrCGPRLQAAAAAAAAAAAAAAAAAAAAAAIBcOT16Jf79p+cyb9pamuIz29YkWkQeiWgBAAAAAAAAAAAAAAAAAAAAAAC58o0Dp6JUzr75+LtWRdeiBWkGkUsiWgAAAAAAAAAAAAAAAAAAAAAAQG5cvDId33ppIPOmEBH/fUdPmkHklogWAAAAAAAAAAAAAAAAAAAAAACQG/98eCAmpmczbx7Y1B0bli1KtIi8EtECAAAAAAAAAAAAAAAAAAAAAAByYWpmNv7x4OmKd5+/tzfBGvJORAsAAAAAAAAAAAAAAAAAAAAAAMiF77w6GOcvTWXe3L2mI+5ZuzTRIvJMRAsAAAAAAAAAAAAAAAAAAAAAAKi6crkcX9vfX/Hu8/f2RqFQSLCIvBPRAgAAAAAAAAAAAAAAAAAAAAAAqu5Hx4bjjaHLmTc9xfZ4YNPyRIvIOxEtAAAAAAAAAAAAAAAAAAAAAACg6r62v7/izf94d280NxUSrKEWiGgBAAAAAAAAAAAAAAAAAAAAAABV9drZ8dh3YiTzptjeEr9516o0g6gJIloAAAAAAAAAAAAAAAAAAAAAAEBVfe3H/RVvPr1tbSxsbU6whlohogUAAAAAAAAAAAAAAAAAAAAAAFTNmYtX4tlXBzNvFjQX4re3rU20iFohogUAAAAAAAAAAAAAAAAAAAAAAFTNNw6cjlI5++Y37lwV3YsXpBlEzRDRAgAAAAAAAAAAAAAAAAAAAAAAqmJ8cia+9dJAxbvPvbs3wRpqjYgWAAAAAAAAAAAAAAAAAAAAAABQFU+/OBCXpkqZN7+6cVnc1r0o0SJqiYgWAAAAAAAAAAAAAAAAAAAAAACQ3HRpNr5x4FTFu8/f15tgDbVIRAsAAAAAAAAAAAAAAAAAAAAAAEju2dfOxeD4VObNnas7YntPMdEiao2IFgAAAAAAAAAAAAAAAAAAAAAAkFS5XI6v7e+vePf5e3ujUCgkWEQtEtECAAAAAAAAAAAAAAAAAAAAAACSeuH4SBw9dynzZu3Stnhw8/JEi6hFIloAAAAAAAAAAAAAAAAAAAAAAEBST+47WfHmv7+7N1qaCgnWUKtEtAAAAAAAAAAAAAAAAAAAAAAAgGSePzYc+06MZN50tLXEJ+5anWYQNUtE6/+xc5/xdR703fD/R1u2bHlPee+VvffeIYR5l1BKCzc8ZYQdCGG0EDalbJ7yMPr0LgUaUiAkAYcsB4fEIQmJ471ky1uyZMna65z7BaUtEHwk+ZwjHen7fWd/ftf/+r2w5OvVDwAAAAAAAAAAAAAAAAAAAAAAyIlkKhVf+VV12tzLT54eo0oKc9CIfGZECwAAAAAAAAAAAAAAAAAAAAAAyIkHttTF1tqW42aKChLx6lNn5KgR+cyIFgAAAAAAAAAAAAAAAAAAAAAAkHVdPcn4xtrqtLmbVk2LSRWlOWhEvjOiBQAAAAAAAAAAAAAAAAAAAAAAZN2Pnj8QB451HjdTXlwQbzx3To4ake+MaAEAAAAAAAAAAAAAAAAAAAAAAFnV0tkT33myJm3ultOrYtLokhw0YjgwogUAAAAAAAAAAAAAAAAAAAAAAGTVv/xmbzR19Bw3M768OF57ZlWOGjEcGNECAAAAAAAAAAAAAAAAAAAAAACypra5M/7tmf1pc288d3aMLinKQSOGCyNaAAAAAAAAAAAAAAAAAAAAAABA1nzziT3R2ZM8bqZqXFncfNL0HDViuDCiBQAAAAAAAAAAAAAAAAAAAAAAZEV1fVv8bMOhtLm3XDAvigtNItE//sUAAAAAAAAAAAAAAAAAAAAAAABZ8bVfVUcydfzM8mlj4orFk3JTiGHFiBYAAAAAAAAAAAAAAAAAAAAAAJBxz+9vijU769Pm3n7hvEgkEjloxHBjRAsAAAAAAAAAAAAAAAAAAAAAAMioVCoVX36sOm3uvHnj44zZ47JfiGHJiBYAAAAAAAAAAAAAAAAAAAAAAJBRa3bUx/oDx46bSUTE2y6cl5tCDEtGtAAAAAAAAAAAAAAAAAAAAAAAgIzpSabia2ur0+auWz4lFk2uyEEjhisjWgAAAAAAAAAAAAAAAAAAAAAAQMb8bMOh2N3QftxMSWEi/p/z5+amEMOWES0AAAAAAAAAAAAAAAAAAAAAACAj2rt745u/3pM296pTZ8a0sWU5aMRwZkQLAAAAAAAAAAAAAAAAAAAAAADIiO8/sz+OtHYdNzOmtChef9asHDViODOiBQAAAAAAAAAAAAAAAAAAAAAAnLDGtu74l9/sTZt7/VmzorK8OAeNGO6MaAEAAAAAAAAAAAAAAAAAAAAAACfs2+tqorWr97iZKRUl8apTZ+SoEcOdES0AAAAAAAAAAAAAAAAAAAAAAOCEbD7cHHf9dn/a3JvPnxtlxYU5aMRIYEQLAAAAAAAAAAAAAAAAAAAAAAAYsO7eZHx89bboTR0/t2DSqLh++dTclGJEMKIFAAAAAAAAAAAAAAAAAAAAAAAM2D8/tTe217Wmzb3twnlRWJDIQSNGCiNaAAAAAAAAAAAAAAAAAAAAAADAgOyoa43vPFmTNndqVWWcP29CDhoxkhjRAgAAAAAAAAAAAAAAAAAAAAAA+q0nmYqPrd4aPcnUcXOFBYl4z6ULIpFI5KgZI4URLQAAAAAAAAAAAAAAAAAAAAAAoN/+7el9sflwS9rcX501K5ZMqchBI0YaI1oAAAAAAAAAAAAAAAAAAAAAAEC/7G5oi3/69e60uXkTR8Ubzp6d/UKMSEa0AAAAAAAAAAAAAAAAAAAAAACAPutNpuLjq7dFV2/quLmCRMRHr14cJUWmjsgO/7IAAAAAAAAAAAAAAAAAAAAAAIA+u+u5A7H+wLG0uVtOr4oV08fmoBEjlREtAAAAAAAAAAAAAAAAAAAAAACgT/Y1tsfXflWdNjd7fHm86bw5OWjESGZECwAAAAAAAAAAAAAAAAAAAAAASCuZSsUnHtgWHT3J4+YSEfHhqxZHWXFhbooxYhnRAgAAAAAAAAAAAAAAAAAAAAAA0vrJ+oPx9N6mtLlXnTojTqmqzEEjRjojWgAAAAAAAAAAAAAAAAAAAAAAwHEdOtYRX36sOm1uxtjSeMsF83LQCIxoAQAAAAAAAAAAAAAAAAAAAAAAx5FKpeKTv9werV29abN3XLU4RpUU5qAVGNECAAAAAAAAAAAAAAAAAAAAAACO475Nh+OJ3UfT5l66alqcNWd8DhrB7xjRAgAAAAAAAAAAAAAAAAAAAAAAXtSRls74wiO70uamVJTEOy6en4NG8N+MaAEAAAAAAAAAAAAAAAAAAAAAAH8ilUrFZx7aEc2dPWmzt1+5KCpKi3LQCv6bES0AAAAAAAAAAAAAAAAAAAAAAOBPPLjtSDy6oz5t7rrlU+KC+RNz0Aj+kBEtAAAAAAAAAAAAAAAAAAAAAADgDzS2d8fnH96RNjdhVHG8+5IFOWgEf8qIFgAAAAAAAAAAAAAAAAAAAAAA8Ae++OjOaGjrTpv7wBWLorK8OAeN4E8Z0QIAAAAAAAAAAAAAAAAAAAAAAP7LE7sb4r5NtWlzVyyeHJcumpSDRvDijGgBAAAAAAAAAAAAAAAAAAAAAAAREdHW1RuffGB72lxlWVG87/IFOWgEf54RLQAAAAAAAAAAAAAAAAAAAAAAICIivr62Og41d6bNvfvSBTFhVEkOGsGfZ0QLAAAAAAAAAAAAAAAAAAAAAACI9QeOxb//9kDa3Hnzxse1y6bkoBEcnxEtAAAAAAAAAAAAAAAAAAAAAAAY4bp6knHn6m2RSpMbVVwYH7hiUSQSiZz0guMxogUAAAAAAAAAAAAAAAAAAAAAACPcd9fVRHVDW9rcWy+cG9PHluWgEaRnRAsAAAAAAAAAAAAAAAAAAAAAAEawHXWt8d2n9qbNnTxjbLzilBk5aAR9Y0QLAAAAAAAAAAAAAAAAAAAAAABGqN5kKj7+wLboTaaOmysuTMSHrlocBYlEjppBeka0AAAAAAAAAAAAAAAAAAAAAABghPrBs/tj06HmtLk3njMn5k4clYNG0HdGtAAAAAAAAAAAAAAAAAAAAAAAYATa19ge33h8d9rcosmj43VnVmW/EPSTES0AAAAAAAAAAAAAAAAAAAAAABhhUqlUfOKX26OzJ3ncXEEi4kNXLY6iQnNFDD3+VQIAAAAAAAAAAAAAAAAAAAAAwAjzsw2H4+maxrS515xeFcunjcl+IRgAI1oAAAAAAAAAAAAAAAAAAAAAADCCHGnpjC+u2ZU2VzWuLN583pwcNIKBMaIFAAAAAAAAAAAAAAAAAAAAAAAjyGcf3hnNnT1pc3dcuTjKigtz0AgGxogWAAAAAAAAAAAAAAAAAAAAAACMEA9tq4tHth9Jm3vpqmlxxuxx2S8EJ8CIFgAAAAAAAAAAAAAAAAAAAAAAjACNbd3xmQd3pM1NGl0St140PweN4MQY0QIAAAAAAAAAAAAAAAAAAAAAgBHgcw/viKPt3WlzH7hiYYwpK8pBIzgxRrQAAAAAAAAAAAAAAAAAAAAAAGCYe2T7kXhga13a3BWLJ8XFCyfloBGcOCNaAAAAAAAAAAAAAAAAAAAAAAAwjDW2d8enH9yeNje2rCjee9nCHDSCzDCiBQAAAAAAAAAAAAAAAAAAAAAAw9g/PLIzGtq60+bee9mCmDi6JAeNIDOMaAEAAAAAAAAAAAAAAAAAAAAAwDC1Zkd9/GJzbdrchfMnxDVLp+SgEWSOES0AAAAAAAAAAAAAAAAAAAAAABiGjnV0x6cf3J42N6a0KG6/clEkEokctILMMaIFAAAAAAAAAAAAAAAAAAAAAADD0Bce3RVHWrvS5t596fyYXFGag0aQWUa0AAAAAAAAAAAAAAAAAAAAAABgmFm7qz7u23g4be78eRPi+uVTc9AIMs+IFgAAAAAAAAAAAAAAAAAAAAAADCPNHT3xqV9uT5sbXVIYt1+5KBKJRA5aQeYZ0QIAAAAAAAAAAAAAAAAAAAAAgGHki2t2Rm1LV9rcuy9ZEFPHlOagEWSHES0AAAAAAAAAAAAAAAAAAAAAABgmntjdEPdsOJw2d87c8XHjyqk5aATZY0QLAAAAAAAAAAAAAAAAAAAAAACGgZbOnrhz9ba0udElhXHHlYsikUjkoBVkjxEtAAAAAAAAAAAAAAAAAAAAAAAYBr60ZlfUtnSlzd168fyYNrYsB40gu4xoAQAAAAAAAAAAAAAAAAAAAABAnlu352j85IVDaXNnzR4XN6+aloNGkH1GtAAAAAAAAAAAAAAAAAAAAAAAII+1dvXEnau3pc2VFxfEHVctjkQikYNWkH1GtAAAAAAAAAAAAAAAAAAAAAAAII99ac2uONTcmTZ360XzY0ZlWQ4aQW4Y0QIAAAAAAAAAAAAAAAAAAAAAgDz16+qG+PH6Q2lzp8+qjJedPD0HjSB3jGgBAAAAAAAAAAAAAAAAAAAAAEAeOtbRHXc+sC1trqyoID501eIoSCRy0Apyx4gWAAAAAAAAAAAAAAAAAAAAAADkoc8+tCPqWrrS5t524byoGleeg0aQW0a0AAAAAAAAAAAAAAAAAAAAAAAgzzy0rS5Wb6lLmzt15th45akzctAIcs+IFgAAAAAAAAAAAAAAAAAAAAAA5JH61q741C+3p82VFxfER65ZEgWJRA5aQe4Z0QIAAAAAAAAAAAAAAAAAAAAAgDyRSqXik7/cHk0dPWmz77x4flSNK89BKxgcRrQAAAAAAAAAAAAAAAAAAAAAACBP3LvxcDy2sz5t7ty54+Pmk6bnoBEMHiNaAAAAAAAAAAAAAAAAAAAAAACQB/Y3tsfnHtyeNjemtCg+dNXiSCQSOWgFg8eIFgAAAAAAAAAAAAAAAAAAAAAADHHJZCre/6P10dLVmzb7vssXxJQxpTloBYPLiBYAAAAAAAAAAAAAAAAAAAAAAAxx/7puT6zdcSRt7rJFk+KapVNy0AgGnxEtAAAAAAAAAAAAAAAAAAAAAAAYwqqPtMYn79+cNjdhVHF84IqFkUgkctAKBl/RYBcAAAAAAAAAAAAAAAAAAAAAAABeXG8yFe/59+ejozuZNvvBKxfF+FElOWgFQ0PBYBcAAAAAAAAAAAAAAAAAAAAAAABe3P/5zd54tqYxbe76FVPj4oWTsl8IhhAjWgAAAAAAAAAAAAAAAAAAAAAAMATtqGuNb6ytTpubOqY03nvpghw0gqHFiBYAAAAAAAAAAAAAAAAAAAAAAAwx3b3J+OjPt0R3bypt9sNXL46K0qIctIKhxYgWAAAAAAAAAAAAAAAAAAAAAAAMMd9Yuzu21bWmzb3ylBlx9pzxOWgEQ48RLQAAAAAAAAAAAAAAAAAAAAAAGEIe3FoX/+fpfWlzs8aVxdsvmpeDRjA0GdECAAAAAAAAAAAAAAAAAAAAAIAhYseR1vjY6q1pcwWJiI9esyTKiwtz0AqGJiNaAAAAAAAAAAAAAAAAAAAAAAAwBDR39MRtP90Y7d3JtNnXnjErTp5ZmYNWMHQZ0QIAAAAAAAAAAAAAAAAAAAAAgEGWTKXiIz/fEnsbO9JmF0waFW8+b04OWsHQZkQLAAAAAAAAAAAAAAAAAAAAAAAG2bee2BNrdzWkzZUVF8Sd1y2LkiLzQeCnAAAAAAAAAAAAAAAAAAAAAAAABtFjO+vj/3uipk/Zj16zJBZOHp3lRpAfjGgBAAAAAAAAAAAAAAAAAAAAAMAg2dPQFh+5f0ufsm+8YF5cvWxqlhtB/jCiBQAAAAAAAAAAAAAAAAAAAAAAg6C1qyfed8+maO3qTZs9d/7E+MC1S3PQCvKHES0AAAAAAAAAAAAAAAAAAAAAAMixVCoVH1+9Larr29JmZ1SWxVdfc2oUFZoMgv/JTwQAAAAAAAAAAAAAAAAAAAAAAOTYv/xmXzy07UjaXElhIv7fvzw9JlaU5qAV5BcjWgAAAAAAAAAAAAAAAAAAAAAAkEPrdh+Nr6+t7lP29qsWx0lV47JbCPKUES0AAAAAAAAAAAAAAAAAAAAAAMiR/U3tccd9myOZSp99+cnT46ZV07NfCvKUES0AAAAAAAAAAAAAAAAAAAAAAMiBju7euO2nm6Kpoydt9qQZY+M9ly7IQSvIX0a0AAAAAAAAAAAAAAAAAAAAAAAgy1KpVHzqwe2xra41bXbi6JL49I3LorjQRBAcj58QAAAAAAAAAAAAAAAAAAAAAADIsn//7YG4f1Nt2lxhQSI+fcOymFxRmoNWkN+MaAEAAAAAAAAAAAAAAAAAAAAAQBb9dl9T/OOaXX3KvvuSBXFKVWWWG8HwYEQLAAAAAAAAAAAAAAAAAAAAAACypLa5Mz7ws03Rm0ylzV6/Ymq88pTpOWgFw4MRLQAAAAAAAAAAAAAAAAAAAAAAyIKunmS8/2eboqGtO2126ZSK+MDlCyORSOSgGQwPRrQAAAAAAAAAAAAAAAAAAAAAACALPv/IjthwsDltblx5cXz2puVRVlyYg1YwfBjRAgAAAAAAAAAAAAAAAAAAAACADPvJ+oPx4/WH0uYKEhGfvGFpTB9bloNWMLwY0QIAAAAAAAAAAAAAAAAAAAAAgAzacPBYfPbhHX3Kvu3CeXHm7PFZbgTDkxEtAAAAAAAAAAAAAAAAAAAAAADIkPrWrnj/PZuiuzeVNnvlksnx2jOqctAKhicjWgAAAAAAAAAAAAAAAAAAAAAAkAE9vcm4/d7NUdvSlTa7YNKo+PDViyORSOSgGQxPRrQAAAAAAAAAAAAAAAAAAAAAACADvvRYdfx2X1PaXEVpYXzuJSuivLgwB61g+DKiBQAAAAAAAAAAAAAAAAAAAAAAJ+jnmw/HD57dnzaXiIiPX7c0Zo0vz34pGOaMaAEAAAAAAAAAAAAAAAAAAAAAwAnYWtsSn3hge5+y//u8OXHB/IlZbgQjgxEtAAAAAAAAAAAAAAAAAAAAAAAYoKb27rjtnk3R2ZNMm71owcR4wzmzc9AKRgYjWgAAAAAAAAAAAAAAAAAAAAAAMAC9yVR86P4tcaCpI2129vjy+Ptrl0RBIpGDZjAyGNECAAAAAAAAAAAAAAAAAAAAAIAB+OYTe+LJ3UfT5kYVF8bnbloeFaVFOWgFI4cRLQAAAAAAAAAAAAAAAAAAAAAA6Kc1O+rjO0/W9Cn70WsWx/yJo7PcCEYeI1oAAAAAAAAAAAAAAAAAAAAAANAPNUfb46M/39Kn7F+dNSsuWzw5y41gZDKiBQAAAAAAAAAAAAAAAAAAAAAAfdTe3Ru33bMxWrt602bPmTM+/vb8udkvBSOUES0AAAAAAAAAAAAAAAAAAAAAAOiDVCoVn3hgW+w80pY2O2NsaXz8+qVRWJDIQTMYmYxoAQAAAAAAAAAAAAAAAAAAAABAH/zwtwdi9Za6tLnSooL47EtWxLjy4hy0gpHLiBYAAAAAAAAAAAAAAAAAAAAAAKTx3L6m+OKaXX3Kvv/yhbFkakWWGwFGtAAAAAAAAAAAAAAAAAAAAAAA4DiOtHTGB+7dHL3JVNrsy06aHjeunJaDVoARLQAAAAAAAAAAAAAAAAAAAAAA+DN6epNx+72bo761K212xbQx8Z5LF+SgFRBhRAsAAAAAAAAAAAAAAAAAAAAAAP6sLz1WHc/tP5Y2N768OD5947IoKTLrA7nipw0AAAAAAAAAAAAAAAAAAAAAAF7E6s218YNn96fNFSQiPnHD0pg2tiwHrYDfM6IFAAAAAAAAAAAAAAAAAAAAAAB/ZEdda9z5wLY+Zd96wbw4c/b4LDcC/pgRLQAAAAAAAAAAAAAAAAAAAAAA+B9aOnvitns2RkdPMm320kWT4i/PrMpBK+CPGdECAAAAAAAAAAAAAAAAAAAAAID/lEyl4qM/3xp7GzvSZudOKI+PXL04EolEDpoBf8yIFgAAAAAAAAAAAAAAAAAAAAAA/Kev/ao6HttZnzY3qrgwPvuSFVFRWpSDVsCLMaIFAAAAAAAAAAAAAAAAAAAAAAAR8ZP1B+NffrOvT9kPX7045k0cleVGwPEY0QIAAAAAAAAAAAAAAAAAAAAAYMR7as/R+PRDO/qUfe0ZVXHFkslZbgSkY0QLAAAAAAAAAAAAAAAAAAAAAIARrbq+Ld7/s03Rm0ylzZ4+qzLeeuG8HLQC0jGiBQAAAAAAAAAAAAAAAAAAAADAiHW0rSve+eMN0dLZmzY7uaIkPnH9sigqSOSgGZCOES0AAAAAAAAAAAAAAAAAAAAAAEakzp5kvPenm+JAU0fabFlRQfzDS1fExNElOWgG9IURLQAAAAAAAAAAAAAAAAAAAAAARpxUKhUf+8XWWH/gWNpsIiI+ft3SWDZ1TPaLAX1mRAsAAAAAAAAAAAAAAAAAAAAAgBHnn369Jx7YWten7K0Xz49LFk3KciOgv4xoAQAAAAAAAAAAAAAAAAAAAAAwoty38XB8+8maPmVvPmla3HL6zCw3AgbCiBYAAAAAAAAAAAAAAAAAAAAAACPGs/sa484HtvUpe/accXHbZQsjkUhkuRUwEEa0AAAAAAAAAAAAAAAAAAAAAAAYEWqOtsdtP90UPclU2uy8iaPiUzcsj6JCMz0wVPnpBAAAAAAAAAAAAAAAAAAAAABg2Gtq7453/XhDNHX0pM2OLy+Of7x5RYwpK8pBM2CgjGgBAAAAAAAAAAAAAAAAAAAAADCsdXT3xvvu2RQ1R9vTZksKE/EPL10RMyvLc9AMOBFm7gAAAAAAAAAAAAAAAAAAAAAAGLZaOnvi3T/eEL/df6xP+b+7dmmsmjE2y62ATDCiBQAAAAAAAAAAAAAAAAAAAADAsNTY3h233v1CbD7c0qf8Wy6YG1cumZzlVkCmGNECAAAAAAAAAAAAAAAAAAAAAGDYOdLaFW/70frYeaStT/nrV0yN1581K8utgEwyogUAAAAAAAAAAAAAAAAAAAAAwLBy8FhHvPWu9bG3saNP+dOqKuOOKxdFIpHIcjMgk4xoAQAAAAAAAAAAAAAAAAAAAAAwbNQcbY+33LU+Djd39ik/e3x5fPYly6O4sCDLzYBMM6IFAAAAAAAAAAAAAAAAAAAAAMCwsKOuNd76o/XR0Nbdp/zUMaXxpZetjMry4iw3A7LBiBYAAAAAAAAAAAAAAAAAAAAAAHlv46HmeMfdL0RTR0+f8rPGlcXXX3lSTBtbluVmQLYY0QIAAAAAAAAAAAAAAAAAAAAAIK89u68x3v3jjdHa1dun/IJJo+KrL18VkypKs9wMyCYjWgAAAAAAAAAAAAAAAAAAAAAA5K1fVzfEbfdsis6eZJ/yy6ZWxJdfvirGlRdnuRmQbUa0AAAAAAAAAAAAAAAAAAAAAADISw9vPxJ33Ls5epKpPuVPnTk2vnDzyqgoNb0Dw4GfZAAAAAAAAAAAAAAAAAAAAAAA8s6j24/EB3+2KXr7tp8V58wZH5+7aXmUFRdmtxiQM0a0AAAAAAAAAAAAAAAAAAAAAADIK8/sbYw77tvc5wGtSxZOjE9cvyxKigqyWwzIKSNaAAAAAAAAAAAAAAAAAAAAAADkjW21LfGen2yMrj4uaF27bEp85JolUVSQyHIzINeMaAEAAAAAAAAAAAAAAAAAAAAAkBf2NbbHrf+xIVq7evuUf/nJ0+O2yxdGQcKAFgxHRrQAAAAAAAAAAAAAAAAAAAAAABjyGtq64ta7X4j61q4+5V97RlXcetG8SBjQgmHLiBYAAAAAAAAAAAAAAAAAAAAAAENaS2dPvOPuDbG3saNP+TefNyfecM5sA1owzBnRAgAAAAAAAAAAAAAAAAAAAABgyOrqScb77tkUW2pb+pR/wzmz443nzslyK2AoKBjsAgAAAAAAAAAAAAAAAAAAAAAA8GJ6k6n4yM+3xNM1jX3K33zStHjzeQa0YKQwogUAAAAAAAAAAAAAAAAAAAAAwJCTSqXicw/viIe2HelT/tJFk+L9ly+KRCKR5WbAUGFECwAAAAAAAAAAAAAAAAAAAACAIedbT9TE3c8f7FP29FmV8fHrlkZhgQEtGEmMaAEAAAAAAAAAAAAAAAAAAAAAMKTc/fyB+OYTe/qUXTR5dHz+phVRWmROB0YaP/VDwJ49e2LlypWxZMmS+MpXvjLYdQAAAAAAAAAAAAAAAAAAAAAABs1D2+riMw/u6FN2ZmVZfPnlq6KitCjLrYChyIjWIOvt7Y0PfvCD0d3dPdhVAAAAAAAAAAAAAAAAAAAAAAAG1bo9R+PD92+JVB+yE0YVx1dfsSomjS7Jei9gaDKiNcg+9rGPxdNPPz3YNQAAAAAAAAAAAAAAAAAAAAAABtWz+xrjPT/ZGN296Se0RpcUxpdftiqqxpXnoBkwVBnRGkSf+tSn4gc/+MFg1wAAAAAAAAAAAAAAAAAAAAAAGFTrDxyLd/3HxujsSabNFhcm4vM3rYglUyty0AwYyooGu8BI1NLSErfffns88MADg10FAAAAAAAAAAAAAAAAAAAAAGBQbTrUHLfe/UK0dfemzSYi4uPXLY0zZo/Lei9g6DOilWObN2+Od7zjHbFnz57BrgIAAAAAAAAAAAAAAAAAAAAAMKi21bbE2+9+IVq70g9oRUS8/4qFcfniyVluBeQLI1o50tDQEF/96lfjhz/8YfT09PzX30+YMCEaGhoGsRkAAAAAAAAAAAAAAAAAAAAAQO7tqm+Nt/7ohTjW0ZM+HBFvOndOvPzkGVluBeSTgsEuMBI8/vjjcdVVV8X3vve9PxjQOuecc+Jb3/rWIDYDAAAAAAAAAAAAAAAAAAAAAMi9PQ1t8Za7XojG9u4+5V996ox447mzs9wKyDdFg11gJNi+fXs0Nzf/15/Ly8vjne98Z7zuda+LAwcODGIzAAAAAAAAAAAAAAAAAAAAAIDc2tfYHm+5a33Ut3b1Kf+yk6bHey5dEIlEIsvNgHxjRCuHEolEXH/99fGud70rqqqqBrsOAAAAAAAAAAAAAAAAAAAAAEBOHTrWEW+5a33UtvRtQOuGFVPj/VcsNKAFvCgjWjlQXFwcN954Y/zN3/xNLF++fLDrAAAAAAAAAAAAAAAAAAAAAADkXF1LZ/ztXevj4LHOPuWvXjo5PnTV4igwoAX8GUa0cuCWW26JW265ZbBrAAAAAAAAAAAAAAAAAAAAAAAMivrWrnjLXetjX2NHn/KXLZoUf3ft0igsMKAF/HkFg10AAAAAAAAAAAAAAAAAAAAAAIDhq7GtO976o/Wxu6G9T/kL50+IO69fGkUGtIA0iga7APmjoCARhYV21wCAoauwMPEif/b9AgAMbb5hAIB84/sFAMg3vl8AgHzj+wUAyEe+YQCAfOP7BQByq+ZoW7zjRy/EnqN9G9A6d974+NxLV0ZJkf+ff8/3C0PZH//7zDUjWvTZmDHlg10BAKBfKitHDXYFAIB+8w0DAOQb3y8AQL7x/QIA5BvfLwBAPvINAwDkG98vAJA9v9ndEG/63m/jaFt3n/Lnzp8Y3/3rM6OsuDDLzfKb7xf4b0a0AAAAAAAAAAAAAAAAAAAAAADIqJ8+tz/ed9f66OpN9il/5tzx8e3Xn2FAC+gXI1oAAAAAAAAAAAAAAAAAAAAAAGREKpWKrzy8I77wy219fuaUWePiO68/M0aVmMMB+sdvDfqsubk9urv7tuwIADAYCgsTUVk56r/+3NTUFr29qUFsBACQnm8YACDf+H4BAPKN7xcAIN/4fgEA8pFvGAAg3/h+AYDs6epJxp2rt8a9Gw/3+ZmlUyviSzeviO62rmho68piu/zl+4Wh7I//feaaES36LJlMRW+vES0AYCgr+IM/9fb6fgEA8oFvGAAg3/h+AQDyje8XACDf+H4BAPKRbxgAIN/4fgGAbGhq747b7tkUz+5r6vMzCyeNjq+8fFWMKi70//Fx+X5hKCtIH8kiI1oAAAAAAAAAAAAAAAAAAAAAAAzY3qPt8c4fb4iao+19fua0qsr47EuWR2V5cRabAcOdES0AAAAAAAAAAAAAAAAAAAAAAAbk+f1N8Z6fbIymjp4+P3P98ilxx1WLo7iwIIvNgJHAiBYAAAAAAAAAAAAAAAAAAAAAAP22enNt/P3qrdHdm+rzM28+b0684ZzZkUgkstgMGCmMaAEAAAAAAAAAAAAAAAAAAAAA0Gc9vcn4p1/viX9+am+fnykuTMRHrl4S1yybksVmwEhjRAsAAAAAAAAAAAAAAAAAAAAAgD45eKwjPnTfllh/4Fifn6ksK4rP37QiTqmqzGIzYCQyogUAAAAAAAAAAAAAAAAAAAAAQFoPbz8Sd67eFs2dPX1+Zvb48vjizStj1vjyLDYDRiojWgAAAAAAAAAAAAAAAAAAAAAA/Fkd3b3xxTW74u7nD/bruVOrKuNzL1keleXFWWoGjHRGtAAAAAAAAAAAAAAAAAAAAAAAeFHV9W3xwXs3x44jrf167rrlU+KOKxdHSVFBlpoBGNECAAAAAAAAAAAAAAAAAAAAAOCPpFKp+NmGw/G5h3dER0+yX8+++bw58YZzZkcikchSO4DfMaIFAAAAAAAAAAAAAAAAAAAAAMB/aensiU8/uD1Wb6nr13MlhYn40NWL49plU7PUDOAPGdECAAAAAAAAAAAAAAAAAAAAACAiIjYeao477t0c+5s6+vXcnPHl8ckblsXiKRVZagbwp4xoDbKqqqrYunXrYNcAAAAAAAAAAAAAAAAAAAAAAEawVCoV3392f3zlseroSab69exLVk6N9162MMqLC7PUDuDFGdECAAAAAAAAAAAAAAAAAAAAABjBWrt64s7V2+LBbUf69dyo4sK4/cpFcc2yKVlqBnB8RrQAAAAAAAAAAAAAAAAAAAAAAEao6vq2uO2ejbG7ob1fzy2bWhGfuH5ZzBpfnqVmAOkZ0QIAAAAAAAAAAAAAAAAAAAAAGIF+ubUuPr56a7R3J/v13GtOnxlvu3BeFBcWZKkZQN8Y0QIAAAAAAAAAAAAAAAAAAAAAGEF6epPxpceq4wfP7u/Xc5VlRfF31y6JC+ZPzFIzgP4xogUAAAAAAAAAAAAAAAAAAAAAMELUtXTG7T/bHM8fONav506fVRkfu3ZpTBlTmqVmAP1nRAsAAAAAAAAAAAAAAAAAAAAAYAR4Zm9jfPDezdHQ1t3nZwoSEf/73Dnx12fPjsKCRBbbAfSfES0AAAAAAAAAAAAAAAAAAAAAgGEslUrFvz69L772q+roTfX9uQmjiuOTNyyL02eNy1o3gBNhRAsAAAAAAAAAAAAAAAAAAAAAYJhq6eyJj63eFo9sP9Kv506eMTY+deOymFxRmqVmACfOiBYAAAAAAAAAAAAAAAAAAAAAwDC05XBzfPDezbG3saNfz/3FaTPj1ovmRVFhQZaaAWSGES0AAAAAAAAAAAAAAAAAAAAAgGEklUrF95/dH195rDp6kqk+P1deXBAfumpxXLV0ShbbAWSOES0AAAAAAAAAAAAAAAAAAAAAgGGisa07/n711li7q6Ffz82dUB6fecnymD9xdJaaAWSeES0AAAAAAAAAAAAAAAAAAAAAgGHgmb2N8eH7t0RdS1e/nrti8aT40NWLY3SJORogv/itBQAAAAAAAAAAAAAAAAAAAACQx3qSqfjWE3viO0/WRKofzxUWJOLWi+bFX5w2MxKJRNb6AWSLES0AAAAAAAAAAAAAAAAAAAAAgDx16FhHfPj+LfHc/mP9em7S6JL41A3L4pSqyiw1A8g+I1oAAAAAAAAAAAAAAAAAAAAAAHlozY4j8bHV2+JYR0+/nju1qjI+ecOymDS6JEvNAHLDiBYAAAAAAAAAAAAAAAAAAAAAQB7p7EnGl9fsin9/7kC/nitIRLzhnNnxN+fMiaKCRJbaAeSOES0AAAAAAAAAAAAAAAAAAAAAgDzxxO6G+MdHd0V1fVu/nptSURIfu25pnD5rXHaKAQwCI1oAAAAAAAAAAAAAAAAAAAAAAEPcziOt8aU1u+KJ3Uf7/eyF8yfER65eEuNGFWehGcDgMaIFAAAAAAAAAAAAAAAAAAAAADBENbR1xTd/vSd+vP5gJFP9e7a4MBG3XjQ/Xn3qjEgkEtkpCDCIjGgBAAAAAAAAAAAAAAAAAAAAAAwxnT3J+OGz++M762qitau338/PHl8en7x+WSyZWpGFdgBDgxEtAAAAAAAAAAAAAAAAAAAAAIAhIpVKxYPbjsRXH9sVB451DujG9Sumxm2XLYxRJYUZbgcwtBjRAgAAAAAAAAAAAAAAAAAAAAAYAjYcPBZfeGRXvHDw2ICeH1VcGO+/YmFct3xqhpsBDE1GtAAAAAAAAAAAAAAAAAAAAAAABtH+pvb4xtrdsXpL3YBvLJ1SEZ+4YVnMHl+ewWYAQ5sRLQAAAAAAAAAAAAAAAAAAAACAQdDU3h3fWVcTdz13ILp7UwO6MbqkMP7qrFnx2jOqoriwIMMNAYY2I1oAAAAAAAAAAAAAAAAAAAAAADnU2ZOMf//t/vjuur3R3NkzoBsFiYibVk2LN583NyaOLslwQ4D8YEQLAAAAAAAAAAAAAAAAAAAAACAHkqlU/GJzbXxj7e441Nw54DtnzxkX77x4QSycPDqD7QDyjxEtAAAAAAAAAAAAAAAAAAAAAIAse2rP0fjyY9WxtbZlwDfmTRgV77hkfpw3d3wkEokMtgPIT0a0AAAAAAAAAAAAAAAAAAAAAACyZHtdS3zlsep4YvfRAd8YV14cbzpvTtx80vQoKjCeBfB7RrQAAAAAAAAAAAAAAAAAAAAAADKsvrUrvvar6rh34+FIDfBGcWEi/tepM+Ovz54dY8pMxQD8Mb8ZAQAAAAAAAAAAAAAAAAAAAAAypDeZiv9YfzC+vrY6Wjp7B3zn8sWT4m0XzouqceUZbAcwvBjRAgAAAAAAAAAAAAAAAAAAAADIgE2HmuPTD26PzYdbBnzjlJlj49aL5seqGWMz2AxgeDKiBQAAAAAAAAAAAAAAAAAAAABwApo7euLra6vj7ucPRmqAN+aML4+3XzQvLlowMRKJREb7AQxXRrQAAAAAAAAAAAAAAAAAAAAAAAYglUrFzzfXxpfW7IqGtu4B3ZgwqjjedN6cuGnV9CgqMJ4F0B9GtAAAAAAAAAAAAAAAAAAAAAAA+mlXfWt85sEd8ey+pgE9X1ZUEH95ZlXcckZVjC4xAwMwEH57AgAAAAAAAAAAAAAAAAAAAAD0UXt3b3z7yZr416f3RW8y1e/nCxIRN62aFm86d05MqijNQkOAkcOIFgAAAAAAAAAAAAAAAAAAAABAHzy+qyE+/eD2ONTcOaDnL5g/Id5+0byYP3F0hpsBjExGtAAAAAAAAAAAAAAAAAAAAAAAjuNYR3d84ZGdcd+m2gE9P31sabz3soVx0YKJGW4GMLIZ0QIAAAAAAAAAAAAAAAAAAAAA+DPW7KiPTz24Pepbu/r9bFFBIl57RlW84ZzZUVZcmIV2ACObES0AAAAAAAAAAAAAAAAAAAAAgD/S2N4dn394R6zeUjeg58+YVRm3Xb4o5k0cleFmAPyeES0AAAAAAAAAAAAAAAAAAAAAgP/h4W118ZmHdkRDW3e/n50wqjjedcmCuHrp5EgkElloB8DvGdECAAAAAAAAAAAAAAAAAAAAAIiIhrau+NxDO+LBbUf6/WxBIuKVp8yIN583N8aUmXUByAW/bQEAAAAAAAAAAAAAAAAAAACAES2VSsUvt9bF5x7eGY3t3f1+fvm0MfGBKxbGsqljstAOgD/HiBYAAAAAAAAAAAAAAAAAAAAAMGLtb2qPL62pjke2H+n3s6NLCuNtF86Lm0+aHoUFiSy0A+B4jGgBAAAAAAAAAAAAAAAAAAAAACNKKpWK5/Yfi+8/uz/W7DgSyVT/b5wzd3zcceWimDa2LPMFAegTI1oAAAAAAAAAAAAAAAAAAAAAwIjQ1ZOMB7fVxfef2R9balsGdKOitDDedfGCuHHl1EgkEhluCEB/GNECAAAAAAAAAAAAAAAAAAAAAIa1hrau+I/nD8aPnj8Y9a1dA75zwfwJcfsVi2LKmNIMtgNgoIxoAQAAAAAAAAAAAAAAAAAAAADD0va6lvjBs/vjF5tro6s3NeA7Y8uK4j2XLohrl02JRCKRwYYAnAgjWgAAAAAAAAAAAAAAAAAAAADAsJFKpeLJPUfjX36zL56uaTzhexcvmBgfuGJhTKooPfFyAGSUES0AAAAAAAAAAAAAAAAAAAAAIO+lUqlYu6shvv1kTWw81HzC9yrLiuJ9ly2Mq5ZOjkQikYGGAGSaES0AAAAAAAAAAAAAAAAAAAAAIG8lU6lYs6M+vv1kTWytbcnIzcsXT4r3XbYwJo4uycg9ALLDiBYAAAAAAAAAAAAAAAAAAAAAkHd6k6l4aFtdfGddTew80nbC9woSEZcsnBSvOX1mnDyzMgMNAcg2I1oAAAAAAAAAAAAAAAAAAAAAQN7oSabigS218d11NbG7of2E71WUFsZNK6fHq06dETMqyzLQEIBcMaIFAAAAAAAAAAAAAAAAAAAAAAx5Pb3JuH9zbfzzuprY29hxwvdmjSuL/3XazLh+xdQYXWKGBSAf+e0NAAAAAAAAAAAAAAAAAAAAAAxpz+xtjE/+cnvUHG0/4Vtnzh4Xf3HazDh//oQoSCQy0A6AwWJECwAAAAAAAAAAAAAAAAAAAAAYklo6e+LLj+2KH68/dEJ3SgoTce2yqfG/TpsZCyePzlA7AAabES0AAAAAAAAAAAAAAAAAAAAAYMhZs6M+PvPQ9qhr6RrwjfLignjFyTPiljOqYuLokgy2A2AoMKIFAAAAAAAAAAAAAAAAAAAAAAwZ9a1d8fmHd8aD2+oGfGN0SWG8+tQZ8RenVcW4UcUZbAfAUGJECwAAAAAAAAAAAAAAAAAAAAAYdKlUKu7fVBtfeHRnHOvoGdCNMaVF8RenzYxXnzYjxpYZzwIY7oxoAQAAAAAAAAAAAAAAAAAAAACD6kBTR3zql9vjyT1HB/R8ZVlR3HJGVbzylBlRUWpSBWCk8BsfAAAAAAAAAAAAAAAAAAAAABgUvclU3PXcgfj62upo7072+/kJo4rjtWdUxctPnhGjSgqz0BCAocyIFgAAAAAAAAAAAAAAAAAAAACQc8/vb4ovrdkVLxxs7vezpUUF8aZz58SrTp0RZcXGswBGKiNaAAAAAAAAAAAAAAAAAAAAAEDObDncHN94fHf8uvrogJ4/Y/a4uOPKRVE1rjzDzQDIN0a0AAAAAAAAAAAAAAAAAAAAAICs21XfGv/0+J54ePuRAT1fUVoY77p4Qdy4cmokEokMtwMgHxnRAgAAAAAAAAAAAAAAAAAAAACyZl9je3zz13viF5trIzXAG5cumhS3XbYgJlWUZrQbAPnNiBYAAAAAAAAAAAAAAAAAAAAAkHGHmzvj20/uiXs2HI7e5MDmsyaMKo73X74wLls8OcPtABgOjGgBAAAAAAAAAAAAAAAAAAAAABnT0NYV/7xub9z9/IHo6h3YeFZExEtWTo13XDw/xpYVZ7AdAMOJES0AAAAAAAAAAAAAAAAAAAAA4ISkUqlYf+BY/Hj9wXhw25Ho7EkO+NaMyrL44JWL4uw54zPYEIDhyIgWAAAAAAAAAAAAAAAAAAAAADAgje3dcf+mw/GT9YeiuqHthG4VFybi1afOjDedNyfKiwsz1BCA4cyIFgAAAAAAAAAAAAAAAAAAAADQZ6lUKp7d1xQ/Xn8wHtl+JLp6Uyd0rzARcePKafGGc2bHtLFlGWoJwEhgRAsAAAAAAAAAAAAAAAAAAAAASOtoW1fcu/Fw/OSFQ1FztP2E7yUi4uplU+JN586JWePLT7wgACOOES0AAAAAAAAAAAAAAAAAAAAA4EX1JFOxbvfRuHfjoXh0R330JFMZuXvJwonx5vPnxsJJozNyD4CRyYgWAAAAAAAAAAAAAAAAAAAAAPAHdhxpjfs2Ho6fb66N+taujN09Z+74+Nvz58byaWMydhOAkcuIFgAAAAAAAAAAAAAAAAAAAAAQjW3d8YsttXHfxsOxpbYlo7dPnTk2/vaCeXFqVWVG7wIwshnRAgAAAAAAAAAAAAAAAAAAAIARqrs3GY/vaoj7Nh2OtbsaoieZyuj906oq4/Vnz4pz5oyPRCKR0dsAYEQLAAAAAAAAAAAAAAAAAAAAAEaY/U3t8YNnD8QvNtdGY3t3Rm+PKy+OG1ZMjZtWTYu5E0Zl9DYA/E9GtAAAAAAAAAAAAAAAAAAAAABghGjp7InvrquJ7z+7P7p7Uxm9febscfHSVdPikoWToqSoIKO3AeDFGNECAAAAAAAAAAAAAAAAAAAAgGGuN5mKezceiq+v3R0Nbd0ZuzthVHHcuHJa3LRyWswaX56xuwDQF0a0AAAAAAAAAAAAAAAAAAAAAGAYe3ZfY3zhkV2xtbYlI/cSEXH23PFx80nT46L5E6KosCAjdwGgv4xoAQAAAAAAAAAAAAAAAAAAAMAwtL+pPb7yWHU8tO1IRu5VjSuL65ZPjeuXT40ZlWUZuQkAJ8KIFgAAAAAAAAAAAAAAAAAAAAAMI61dPfHP6/bGvz2zL7p6Uyd0a3RJYVyxZHLcsHxqnDxzbCQSiQy1BIATZ0QLAAAAAAAAAAAAAAAAAAAAAIaBZCoV9248HF9fuzvqW7sGfCcREWfPGR/Xr5galyycGGXFhZkrCQAZZEQLAAAAAAAAAAAAAAAAAAAAAPJYS2dP3L+pNn70/IGorm8b8J25E8rj+uVT49rlU2PqmNIMNgSA7DCiBQAAAAAAAAAAAAAAAAAAAAB5aFttS9z9/MH4+ebD0d6dHPCdVdPHxNsvmh+nzBwbiUQigw0BILuMaAEAAAAAAAAAAAAAAAAAAABAnujqScZD2+vi7ucOxvMHjp3QrSkVJfH2i+bH1UsnG88CIC8Z0QIAAAAAAAAAAAAAAAAAAACAIe5AU0f8x/qDcc8Lh+Joe/cJ3SotKojXnVkVf3nmrCgvLsxQQwDIPSNaAAAAAAAAAAAAAAAAAAAAADAEpVKpeGL30bjruQPx+K6GSGXg5tVLJ8fbLpwX08aWZeAaAAwuI1oAAAAAAAAAAAAAAAAAAAAAMIR09iTjF5sPx/ee2R/V9W0Zubli2ph496UL4qQZYzNyDwCGAiNaAAAAAAAAAAAAAAAAAAAAADAEHG3rih89fzB+9NyBaGjrzsjNKRUl8dYL58U1y6ZEQSKRkZsAMFQY0QIAAAAAAAAAAAAAAAAAAACAQbS7vi3+7dl9cf+m2ujsSWbk5rjy4njVKTPitWdWRXlxYUZuAsBQY0QLAAAAAAAAAAAAAAAAAAAAAHIslUrFM3ub4nvP7Iu1uxoydvekGWPjFadMj8sXTY6SooKM3QWAociIFgAAAAAAAAAAAAAAAAAAAADkSGtXTzyy/Uj88NkDsaW2JSM3y4oK4trlU+LlJ8+IJVMqMnITAPKBES0AAAAAAAAAAAAAAAAAAAAAyKLOnmQ8Xt0QD2ypjbW7GqKzJ5mRu3MnlMcrTp4R16+YGhWlZkQAGHn87wcAAAAAAAAAAAAAAAAAAAAAGdaTTMVvao7G6i118ej2I9Ha1ZuRu4UFibh04cR4xSkz4rSqykgkEhm5CwD5yIgWAAAAAAAAAAAAAAAAAAAAAGRAMpWK5/cfi9VbauOhbUeisb07Y7cry4ri5afMiFecPD0mV5Rm7C4A5DMjWgAAAAAAAAAAAAAAAAAAAABwAg4d64i7njsYq7fUxuHmzozenj2+PG45fWZct3xqlBUXZvQ2AOQ7I1oAAAAAAAAAAAAAAAAAAAAAMAB7j7bH///U3rhv0+HoSaYyevv0WZXxmtOr4oL5E6IgkcjobQAYLoxoAQAAAAAAAAAAAAAAAAAAAEA/7Khrje+uq4kHt9VFJrezCgsSceWSyfGa02fGsqljMncYAIYpI1oAAAAAAAAAAAAAAAAAAAAA0AcbDx6L76zbG4/trM/o3YrSwrh51fR41akzYtrYsozeBoDhzIgWAAAAAAAAAAAAAAAAAAAAAPwZqVQqntnbFN9dVxNP1TRm9PZJM8bGNcumxHXLp8ToEjMgANBf/vcEAAAAAAAAAAAAAAAAAAAAgD/Sm0zFr6sb4rvr9sYLB49l7O7iyaPj6qVT4sqlk2P62LKM3QWAkciIFgAAAAAAAAAAAAAAAAAAAABERHt3b6zbfTTW7KyPtbsaorG9OyN3Z48vj6uWTI6rl06JuRNHZeQmAGBECwAAAAAAAAAAAAAAAAAAAIARrL61K361sz7W7KyP39Q0RmdPMiN3p1SUxFVLp8RVSyfH0ikVkUgkMnIXAPhvRrQAAAAAAAAAAAAAAAAAAAAAGDFSqVTsbmiPNTuOxGM7G2LDwWORyuD9c+eOj9edOStOm1UZBYazACCrjGgBAAAAAAAAAAAAAAAAAAAAMKx19ybjt/ua4vHqhli7qyFqjrZn/B2XLpoUf332rFg2dUzGbwMAL86IFgAAAAAAAAAAAAAAAAAAAADDTn1rVzxe3RCP72qIdXuORmtXb8bfUZiIuHrZlPirs2bF/ImjM34fADg+I1oAAAAAAAAAAAAAAAAAAAAA5L1kKhVba1ti7a6GWLurITYdas7au4oLE3Hjimnxl2dWRdW48qy9BwA4PiNaAAAAAAAAAAAAAAAAAAAAAOSl3mQqnqo5Gg9tPRJrqxuivrUrq+8rKyqIl508PW45vSqmjCnN6rsAgPSMaAEAAAAAAAAAAAAAAAAAAACQV/Y3tcfPNhyOezcejsPNnVl/34zKsrhu2ZR49akzY9yo4qy/DwDoGyNaAAAAAAAAAAAAAAAAAAAAAAx5Hd298eiO+vjphkPxdE1j1t+3bGpFXLxwYly8YFIsmDQqEolE1t8JAPSPES0AAAAAAAAAAAAAAAAAAAAAhqRUKhVbalvinhcOxeotddHc2ZO1dxUXJuKMWePi4oUT48L5E2PKmNKsvQsAyAwjWgAAAAAAAAAAAAAAAAAAAAAMKY3t3fGLzbVxz4ZDsb2uNWvvGVNaFOfPnxAXL5gY584bH6NLTHEAQD7xPzcAAAAAAAAAAAAAAAAAAAAAg643mYqnao7GPS8cjjU7j0R3byor75k7oTzOnzcxLpg/IU6ZOTaKCguy8h4AIPuMaAEAAAAAAAAAAAAAAAAAAAAwaPY3tcfPNhyOezcejsPNnRm/X1yYiNOrxsX58yfEBfMnRNW48oy/AwAYHEa0AAAAAAAAAAAAAAAAAAAAAMipju7eeHRHffx0w6F4uqYx4/cnjS753WjWvAlx1pzxMaqkMOPvAAAGnxEtAAAAAAAAAAAAAAAAAAAAALIulUrFltqWuOeFQ7F6S100d/Zk9P60MaVx/YqpccnCibFkSkUkEomM3gcAhh4jWgAAAAAAAAAAAAAAAAAAAABkRXt3bzy7ryme2nM0nth9NKrr2zJ6v7gwEZcunBQvWTktzpwzLgoMZwHAiGJECwAAAAAAAAAAAAAAAAAAAICM6E2mYkttSzy152is23M01h84Ft29qYy/Z/Hk0XHTqmlx9dIpUVlenPH7AEB+MKIFAAAAAAAAAAAAAAAAAAAAwIDtb2qPdXsa46k9R+PpmsZo6ujJynvGlBbFNcumxE0rp8WSqRVZeQcAkF+MaAEAAAAAAAAAAAAAAAAAAADQJ509ydha2xIbDh6LjQebY8Oh5jjQ1JHVd541e1zctGpaXLxwUpQWFWT1XQBAfjGiBQAAAAAAAAAAAAAAAAAAAMCfSKZSUXO0/XdjWQePxcZDzbGtrjV6k6msv3vamNK4ceXUuGHFtJhRWZb19wEA+cmIFgAAAAAAAAAAAAAAAAAAAACRSqViS21L/GpnfbxwoDk2HmqO5s6enL2/uDARly6cFC9ZOS3OnDMuChKJnL0bAMhPRrQAAAAAAAAAAAAAAAAAAAAARqjeZCqeP9AUj2yvj0e3H4lDzZ0577B48ui4adW0uHrplKgsL875+wGA/GVECwAAAAAAAAAAAAAAAAAAAGAE6epJxm/2Nsaj24/Emh31cbS9O+cdxpQWxTXLpsRNK6fFkqkVOX8/ADA8GNECAAAAAAAAAAAAAAAAAAAAGObau3vjieqGeHj7kVi7qyFau3pz3mHR5NFx9pzxcfaccXFa1bgoKSrIeQcAYHgxogUAAAAAAAAAAAAAAAAAAAAwDNW1dMbaXQ3xq5318VRNY3T2JHP6/ikVJXHWnPFx9pzxcebscTFxdElO3w8ADH9GtAAAAAAAAAAAAAAAAAAAAACGgVQqFVtqW2Ltzob41a762Hy4JafvH1VcGKfNqoyz/3M4a+6E8kgkEjntAACMLEa0AAAAAAAAAAAAAAAAAAAAAPJUR3dvPFXTGL/aWR+PVzdEXUtXzt49Y2xprJg+NlZMGxMrp4+JFdPGRFFhQc7eDwBgRAsAAAAAAAAAAAAAAAAAAAAgD6RSqahr6Yrtda2xva4lnj9wLH5T0xidPcmsv3t0SeF/j2X953DWxNElWX8vAMDxGNECAAAAAAAAAAAAAAAAAAAAGGI6untjV31b7Khrje1HfjeataOuNZo6enLy/gmjiuPCBRPj5BljY+X0sTFnQnkUJBI5eTcAQF8Z0QIAAAAAAAAAAAAAAAAAAAAYRB3dvbH5cEtsOHgsNh1qiR1HWqLmaHskU7ntMWNsaVyyaFJctmhSrJw+NgoLjGYBAEObES0AAAAAAAAAAAAAAAAAAACAHEmlUrGvsSNeOHgsXjhwLDYcbI7tdS3Rm+PBrN+bP3FUXLpoUly6aFIsnjw6EgnDWQBA/jCiBQAAAAAAAAAAAAAAAAAAAJAlLZ09sfFQc2w4+LvBrBcOHIumjp5B7bRi2pi4dNGkuGThxJgzYdSgdgEAOBFGtAAAAAAAAAAAAAAAAAAAAAAypL27N57f3xRP722Kp2saY8vh5uhNDW6nksJEnDl7fFy4YEKcP29CTBtbNriFAAAyxIgWAAAAAAAAwP9l78+D7Uzzws7z9y5nuYuupCsp972yqpKiKAoKKKjKgsbYYIPxjD3hsSFsTxumY+gZr9PREbZjYgK7Y9ztNm1PM8E4xgs2DhxuM40XzGC7MBhqoyhTbFVAZi3KrNxTSl1tdznLu8wf73vOPedKulpS0tGVPp+oE+/zPu9ynnMyU3muss5XAAAAAAAAAAAAN2hUVPG51y/Er710Ln7t5XPx+dcvRlEtuJoVEcdWuvHsU+vxkaeOxTc9fiSWOtmilwQAcNOJaAEAAAAAAAAAAAAAAAAAAABco7Kq43feuDiNZv32axdiWFSLXlZERLz7vtX4yFPr8ZF3HItn7l+NNEkWvSQAgFtKRAsAAAAAAAAAAAAAAAAAAABgH9ujMj79lbPxsS+fiU+e3IhzO+NFLymyNIkn15fj6RMr8XUPr8WzTx2L+w71Fr0sAIDbSkQLAAAAAAAAAAAAAAAAAAAAYI9TF4fx8ZNn4mNfPhP/+aVzMS7rha1lfbkT7zyxEu88sRrvPLESTx9fiSfWl6ObpwtbEwDAnUBECwAAAAAAAAAAAAAAAAAAALjn1XUdXzi9FR/78pn4+JfPxO+9ubmQdTx6pB9f/eBavPu+3WDWsZXuQtYCAHCnE9ECAAAAAAAAAAAAAAAAAAAA7ilboyJe3NiJF85sxQtnduLFje147s2LcWpzdFvXsdLN4qsfOBTvfWgtvubBQ/HeB9biyHLntq4BAOAgE9ECAAAAAAAAAAAAAAAAAAAA7krndsbxwpnteGFjO148sz0dv3lxeNvXkkTEk8eW42seXIv3PngovuahtXhifTmyNLntawEAuFuIaAEAAAAAAAAAAAAAAAAAAAAHWl3X8ebFYTx/ajOee3Mznj/VPE5tjha6rqePr8Q3PHYkvuHRw/F1jxyOtX5noesBALjbiGgBAAAAAAAAAAAAAAAAAAAAB0ZV1/HS2Z34QhvKmkSzzg+KRS8tHj+61EazjsQHHj0cR5e7i14SAMBdTUQLAAAAAAAAAAAAAAAAAAAAuKO9cm4nPn5yIz558kx87rWLsT0uF72kiIh44FAvvunxI9Nw1onV3qKXBABwTxHRAgAAAAAAAAAAAAAAAAAAAO4oRVXH5167EB//8pn4xMmNeGFje9FLmnrvg4fiI08di299x7F4x/HlSJJk0UsCALhniWgBAAAAAAAAAAAAAAAAAAAAC3dhMI5feeFsfPzkmfiVF8/GhUGx6CVFREQvT+ObHjsS3/qOY/HsU+txfLW36CUBANAS0QIAAAAAAAAAAAAAAAAAAABuu6Ks4vlTm/HZl8/HJ1/YiN969XyU9aJX1Vhf7sRHnjoWH3nHsfjg40ei38kWvSQAAC5DRAsAAAAAAAAAAAAAAAAAAAC45QbjMn7njYvxG6+cj9945Xx87vULsTOuFr2sWF/uxBPry/HkseV4Yn053vvgoXjPA4ciTZJFLw0AgKsQ0QIAAAAAAAAAAAAAAAAAAABuus1hEb/92oX4jVfOx2++ej5+542LMS7rha3n/kO9eHISyzq2HE+tN9sjS52FrQkAgLdHRAsAAAAAAAAAAAAAAAAAAAC4IUVVx5sXB/HKuUG8em4nXjk3iFfOD+Llsztx8sxWVAtoZnWyJJ4+vhLvvm91+njq+HKsdCUWAADuNj7hAQAAAAAAAAAAAAAAAAAAAFdUVHW8dn4QL25sx8tnd+KVczvxyvkmmvXahWGUiyhltZY7Wbzrvt1g1jP3r8aT68uRZ+nC1gQAwO0jogUAAAAAAAAAAAAAAAAAAADEzriMr2xsxwsb2/Hixk68eGa7CWed24lxubhQ1qzlThbf/MTRePap9XjfQ2vx6NGlSJNk0csCAGBBRLQAAAAAAAAAAAAAAAAAAADgHnNmaxSffflcfP71i/FCG8t64+Jw0cu6rIcP9+Mj7zgWzz61Hl//yOHoZOmilwQAwB1CRAsAAAAAAAAAAAAAAAAAAADuchcG4/j1l8/Hr718Lv7zS+fi5JntRS/pitIk4msfWmvDWcfiifWlSJJk0csCAOAOJKIFAAAAAAAAAAAAAAAAAAAAd5mtURG/+cqF+LWXz8WvvXQunj+1GfWiF7WP+w/14useORwfevJofOiJ9Ti81Fn0kgAAOABEtAAAAAAAAAAAAAAAAAAAAOCAquo6Tl0cxlfO7sRLZ3fiKxvb8btvbMbvvnEhyju4mvX40aV4/yOH4+sfORxf98jheHCtv+glAQBwAIloAQAAAAAAAAAAAAAAAAAAwB1uc1jEV9pIVhPL2omvnN2Ol8/uxKCoFr28fSUR8c4TK/F1bTDr/Q8fjmMr3UUvCwCAu4CIFgAAAAAAAAAAAAAAAAAAACxAVddxfmccb22N4szWKM5sjePM1mh3f3s03d8clote7lWlScT9h3rx8JGleORwPx45shRPH1+J9z20Fof68gYAANx8PmUCAAAAAAAAAAAAAAAAAADALbI5LOKVczvxyrlBsz0/iFfb/dObwyjrRa/w+nSzZC6S9ciR/nT/ocP96GTpopcIAMA9REQLAAAAAAAAAAAAAAAAAAAA3oaiquPFM9vx/KnNeOnczjSS9cq5nTg/KBa9vBtyuJ/HE+vLzePYcjyxvhRPrC/Hg2v9yNJk0csDAICIENECAAAAAAAAAAAAAAAAAACAa1ZUdby4sR2/98bFeO7Nzfi9NzfjC6c3Y1hUi17aDelkSbz3wbV45r7VJpR1bDmeXF+OI0udSBKxLAAA7mwiWgAAAAAAAAAAAAAAAAAAALBHUVZxYVjEma1RfOHUVvzemxfj997cjOdPHdxgVkRElkS854FD8Q2PHYkPPHokvvahteh3skUvCwAAboiIFgAAAAAAAAAAAAAAAAAAAHe9oqzijYvDeP3iMC586Uyc3R7HuZ1RnDq7E+d3xnFhMI7zgyIuDoq4MChie1wuesk3RRIR77pvNb7h0SPxDY8djvc/fDhWe1IDAADcHXyyBQAAAAAAAAAAAAAAAAAA4K6wOSzi1XODeOX8zp7tIN68MIiyXvQKb60kIh483I/Hjy7FE+vL8f5HDsfXP3I4jix1Fr00AAC4JUS0AAAAAAAAAAAAAAAAAAAAOBDquo4zW6N4+dwgXjm3E6+cH8Sr53bilXb//KBY9BJvi8P9PB47uhyPry/FY0eX4vH15Xj86FI8cmQpenm66OUBAMBtI6IFAAAAAAAAAAAAAAAAAADAHaOo6njjQhvJOjeIl8/txKvnBvHK+WY7KKpFL/GWSSLi6HInjq10dx/L3Ti20onjK924/1AvHj+6HEeWO4teKgAA3BFEtAAAAAAAAAAAAAAAAAAAALitdsZlE8Y6txOvnG+2r7bBrDcuDKKsF73CW2Olm8XDh/vxyJGleORIPx4+shT3H+rF8TaUdWS5G3maLHqZAABwYIhoAQAAAAAAAAAAAAAAAAAAcF3quo5hUcXmqIytYRGbozI2h8WecRmbo0u3b1wYxltbo0W/hFvmcD+PJ9aXp5GsR47045HDzfbIUieSRCQLAABuFhEtAAAAAAAAAAAAAAAAAAAAYlRU8cLGdnzp9Fa8dG4nNgdFbI6K2By2Uaw2jjUZF1W96CUv3Fo/j2fuW42veuBQfNX9q/FV9x+KB9d6QlkAAHCbiGgBAAAAAAAAAAAAAAAAAADcQ+q6jjcvDuNLb23FF09vxZdOb8UX39qKlza2o9TFuqJDvTyeuX91Gst65v7VePhwXzALAAAWSEQLAAAAAAAAAAAAAAAAAADgLlPVdWxsjeLNzVG8eXEYpy4O46WzO/Gl05vxxbe2YnNYLnqJC5UmEScO9eLocjeW8zTW+nms9fM41OvE4aXJOI/D/U6sLeVxdKkT9x/qCWYBAMAdRkQLAAAAAAAAAAAAAAAAAADgAKjrOgZFFRcGRVwcFrE5KGJjuwllnbo4nMayTm0O49TmKMqqXvSSF2qpk8YjR5bi4cP9ePjwUjxypB8PH+nHY+vL8Z7Hj0U3TyMiYmNjK8qyWvBqAQCAGyGiBQAAAAAAAAAAAAAAAAAAsCBVXcfpzVG8cm4nXjm3E6+eH8TZ7XFsDovdWNawiIvDMi4Oi3s+jLXXsZVuPHK43waymlDWI4eX4uEj/Ti61IkkSS65JsvSaUALAAA42ES0AAAAAAAAAAAAAAAAAAAAbqGirOL1C8N45fxOvHx2EK+e34mXz+7EK+cH8dr5QQyLatFLvGNlScT9a/145HA/Hj26FA8f7scjbSzr4cNLsdzNFr1EAABggUS0AAAAAAAAAAAAAAAAAAAA3qbBuIxXzg/i1XM78fK5Qbxybqd9DOKNC4Mo60Wv8M7Vy9O5ONZ0e3gpHlzrRZ6li14iAABwhxLRAgAAAAAAAAAAAAAAAAAA2Edd17E1KuP05ihObw7j9OYo3rw4bCJZ55tg1unN0aKXecfoZEmsdvNY7WWx2stjpdtue3msdrM41MvjwcP9eORIPx49shTHVrqRJsmilw0AABxAIloAAAAAAAAAAAAAAAAAAMA9aRLHOrM1io3tcZzZGsXprVGcvjhstm0w6/TmMHbG1aKXe1sd7ufx6NGlWO3lsdrNY6WXTcNYkxjWaq/d7+bT8Wo3j26eLnr5AADAPUJECwAAAAAAAAAAAAAAAAAAuGvUdR2bwzLObI9iY3sUG1vj2NgexZk2krXRBrM2tpvtsLi34lh75WkSTx5bjqePr8Q7T6zEO9rt8ZVuJEmy6OUBAADsS0QLAAAAAAAAAAAAAAAAAAC44xVVHac3h/HGhWG81cawzrSRrDNtEKsJZI1iVNaLXu4dp5+ncf+hXjxyZCmePrESTx9fiadPrMQTR5ciz9JFLw8AAOCGiGgBAAAAAAAAAAAAAAAAAAALNxiX8cbFYbxxYRCvX7h0e3pzGNpYlzcJZN1/qBf37dnev9qL+w5141AvjyRJFr1UAACAm0pECwAAAAAAAAAAAAAAAAAAuCmKsoqLwyIuDstmOxjPjIu4OCxisx1fmB0Piji7M1708u8I961246HD/Tiy1InVXh6H2sdqP49DvSwO9TpxqJ/tzvfyWOlmAlkAAMA9SUQLAAAAAAAAAAAAAAAAAAC4RFXXcXZ7HKc2h3Hq4jDevDiKM9uj2GxjWJeEsYZF7IyrRS/7jpclEQ8e7scjh5fikSP9eOTIUvvox8OH+9HvZIteIgAAwIEhogUAAAAAAAAAAAAAAAAAAPeIuq5jUFRxYdAEsC4Mx7GxNQlljabBrFObwzi9OYqiqhe95AOpl6fx8OF+PHpkKR5uQ1mPttsHDvUiz9JFLxEAAOCuIKIFAAAAAAAAAAAAAAAAAAB3oLquY1hUsTkqY3NYxHBcxbCsYliUMSyqGBVVDNrtsKhiVDb7w6KKrWERFyePQdFEs4bNVhjr5lhf7sT9h3rx8OGlePRoPx45vBSPtNvjq91Ik2TRSwQAALjriWgBAAAAAAAAAAAAAAAAAMAtVtd1nN8p4s2Lw3jj4jDevDiMt7aGsTlsAlmbwyK22ljW5qiMrXZbCl7ddivdLI6vdOPEoV6cWOnGidVenFjtxn2ru+NjK93oZOmilwoAAHDPE9ECAAAAAAAAAAAAAAAAAIArKMoqdsZVFFUVZVVH0T7Kqo6yrqMom21ZNePtcRlvtpGsvY9hUS365dyzljtZrK90Yn25G+vLnTi20o1jy91L5taXu7HczRa9XAAAAK6RiBYAAAAAAAAAAAAAAABwU335ra34ud99M4ZFFU8eW47vec/90e+IUQBw69V1E7galVWMiipGZd1uq5m5Zn5rWMTFYREXBs3j4qCI84PxJXPb43LRL4srWOlmc/Gr9eVOrK9049hyG8Za6caxlU4cW+76LAIAAHCXEtECAAAAAAAAAAAAAAAAbpq//6kX4x/8yktzc//gV16Kf/AnvjYePbq0oFUBcDeo6zrObI/j9fODeP3CIF6/MIzXLwzitXb/1MVR7IzLqBe9UG6KNIk4sdqLB9d68cBaf2774KF+3L/WiyVhLAAAgHueiBYAAAAAAAAAAAAAAABwU/ziF05fEtCKiDizNYq/9K8+H//sT3999MUuAO5JdV3HsKhiMK5ipyhjZ1w249ltUcbOuIrBePf4xWERb7SxrDcuDmNYVIt+KdygpU4ah3p5HOrnzXZmvNrLY62fx+F+Jx5Y68WDa/24b7UbeZYuetkAAADc4US0AAAAAAAAAAAAAAAAgLetKKv4nz/2whWPv3R2J/7Fb7wW/4dvevQ2rgqAa1VWdZwfjGNjexxnt0dxdnsc26MyxlUd47KKoqxjXFUxLuv2UTWPqo6irGJY1G0EazaOVcag2A1l1Yt+kbxtvTyNE6vdOLrUidU9Iay949V+HmuTcS8TxAIAAOCWENECAAAAAAAAAAAAAAAA3raf/Z0347Xzg33P+YnPvBx/9H0PxFq/c5tWBXDvGhVVXBiM49ygiAuDcVzYKWYiWePY2B7FRrs9uz2OczvjqFSu7mkr3SzuO9SL+1d7cWK1G/cd6l2yf7ifR5Iki14qAAAATIloAQAAAAAAAAAAAAAAAG/LuKzix3/1paued3FYxE985pX489/65G1YFcDBUtd1nN8p4q2tUZwfjGNYVDEqqhiVVTOebKfjOkZlFYNxGRfaUNb5QRHnd8ZxYVDEoKgW/ZK4TbI0iV6WRi9Po5s3216eRj/PYq2fx6F+Hmu9dtvPY7U3v3+ol8fhpU4sdbJFvxQAAAC4biJaAAAAAAAAAAAAAAAAwNvyb3/nzXj9wvCazv0Xv/Fq/ImveyjuO9S7xasCuDOMiiouDMZxZnscb22N4q3NYbsdNduZcVHVi14ut1E3S+K+Q704utSN1V4Wq708VrrNdrWXxWo3j5V2O5nrd7LoT0NZWXTzNPI0WfRLAQAAgIUR0QIAAAAAAAAAAAAAAABu2Lis4h9/+qVrPn9YVPEPP/2V+Gt/4F23cFUAN19R1XFxMI7zgyLO7zTbC4NxnN9ptzPz53fGcWFQxPnBOHbG1aKXzgJkScTx1V7cf6h5PHBod3z/WrM9utSJJBHAAgAAgLdDRAsAAAAAAAAAAAAAAAC4YT/z+TfijYvD67vmc2/E93/gkXhiffkWrQrgyuq6jq1RGefbANZ0uzOO84MmfnVuGsnand8cloteOrfAcieLQ/081qaPTqz18kvmVntZdNI0sjSJPE0iax/5zHZ2vNbvRJYKZAEAAMCtJqIFAAAAAAAAAAAAAAAA3JBRUcWPf/ql676urCP+P598Mf77733PLVgVcC8pyirODy4NYc3FsQbjOL8zjnNtEOvCoIiiqhe9dG6CQ708HlzrxUOH+/HAWj8eXOvFseVudPM0ulka3Txpt2l0snYuS6bH+3kaeZYu+mUAAAAAb4OIFgAAAAAAAAAAAAAAAHBD/s3n34hTm6MbuvY/fuGt+NNvXIz3PHDoJq8KOMiKqo7zO+PY2B7FxvY4zm7Pjnfnzu40YaytUbnoJXMTdbIkljpZ9PO02XayWOqkcXS5Gw+u9eLBtX48uNaPhw4349Wer8kCAADAvc7vDgAAAAAAAAAAAAAAAADXbVhU8U9+9aW3dY8f+/gL8WN//H03aUXAohRVHRcG4zi/U8S5Nm51fjCOcztF7IzLGBZV+9gdD4oqRtP55tjFYRnnd8ZRL/oFMbXcyaKTJdHJ0uk2T5Potvt5lkYn3T0+iV5NQljN/qVRrMud1+9kkafJol8yAAAAcMCIaAEAAAAAAAAAAAAAAADX7d987o04tTl6W/f4zEvn4le/cjY++PjRm7Qq4HrUdR2bwzLOD8axMy5je1TGYFzF9riMnemjip1RM57Mn98p4vygiWWd2yni4rBY9EvhGnWyJA73O7G+3In1lW6zXW62R2fG68vdOLrciU6WLnrJAAAAAPsS0QIAAAAAAAAAAAAAAACuy7Co4p985qWrnnd8pRtvbe0f2vqxj78Q3/jYkUiT5GYtD+4pZVXHqKxiWDSPUVHFsKxia1jEuZ1xbGyP49zOOM5uj2NjezQdn223RVUv+iVwFUlEdPM0enka3Sxtxu222U9itZvH4aU81vqdWOvncXipE4f7eaz1m7nD7Vw/TyPx6y0AAABwFxHRAgAAAAAAAAAAAAAAAK7Lv/7t1+P05v5xrPsP9eJH/3fvje//p78e5T6Rnt97czN+8Qtvxe9/94mbvUy4Iw2LKs5uj+LM9jjObo9ia1jG9riMnfaxPapiMJ6f2xmVsT1u5meDWcOiEsE6gLIk4thKN46tdOP4SjdOrPbi+Eo3jq1248RKN46vduPYcjeWu1n08jTyNBG+AgAAALgCES0AAAAAAAAAAAAAAADgmg3GZfyTz7x81fN+4IOPxlPHVuKPfs0D8b/+1uv7nvv3Pvli/BdPH4s8S2/WMuGWqup6GrfaGVdN8GpUxk5RxvaojI02kLWxPY4zW6M4uz2OjXZ/a1QuevncRFkSsdbvxFo/j8NLnTjcz2Ot3R7ud+LwUrOdHD++0o0jS53IUlEsAAAAgJtBRAsAAAAAAACAt62s6tgelXGo7z9DAwAAAADc7f7V596It7ZG+57z4Fovvve9D0RExA9+y+Pxs7/zZgyK6ornv3R2J37md96MP/a+B2/qWmFWUdVxbmcc57bHcXZnFBcHxXwAa1zG9riMwZ65yfzOuIqdUTMe7vP3MwfXai9rw1dtBGsmhjWNZC3lsdZv5o8sdWK5m0WaCGIBAAAALIr/9zIAAAAAAAAAN+zM1ij+9i9+KT71wkbsjKt46HA//qtveSy+5z33R+LLAgAAAAAAd53BuIyf+MzLVz3vz37wsehkaUREHF/pxvd/4OH48V/d/7p/8KmvxHd/1X3R72Q3Za3cnYqyCVxtj8rYGjXb7TZstT0q4/xgHOd2xnF2e3d7dqcZXxgUi14+t0knS9oYVn7FKNbcsTaMlaf++xYAAADAQSOiBQAAAAAAAMANuTgo4s/85K/Hqc3RdO6184P46//+C3F6cxR/9oOPLXB1AAAAAADcCv/yt1+PM1ujfc95aK0X3/vV98/N/elvfDR++rdej/P7RIze2hrF//Lrr8Z/6feXD7S6rqOs6hgVVZTtuKzqKOs6qqqOoh1vDcu4OCzi4qBotsMiNodFXGznN2fmd2NZRYzKetEvkQU43M/j6HInji53Y325E0eXOnF0uRNHlrpxZGkmirXUicP9Tix1Un/gCwAAAMA9QkQLAAAAAAAAgBvyDz/9lbmA1qx/9OmX4g991X3xwFr/Nq8KAAAAAIBbZTAu4yc+8/JVz/uBb34s8iydm1vt5fFffvCx+J9/+eS+1/7T//xK/LGvfTDW+p23tdZ7TV3XMSrrGBZlDMZVDIpqZlzGsKiueTwsmv3BuIpRWV02glXVMZ3bPRbTfYiI6GZJHF7qxGovj36eRm/6yKKXp9HN0z3zafTzLI4ud5pQVhvMOrLUic6eX1MAAAAAYEJECwAAAAAAAIDrNiqq+JnPv3HF48Oiiv/f774ZP/jNj9/GVQEAAAAAcCv9r7/1emxsj/c956HD/fie99x/2WN//P0PxT//7CtX/AMaIiIuDov4ic+8HH/+W596W2u9U01iV4NxGYOiisG4jVe149nt9qiM7VEZW6MitqbjMrbb/a2Z44NxFdJV3GxZEtHvZLHczWKp0zyWO2n0O1ms9vI4stSJw/12u9SJI0t5u+3E4X4nljppJEmy6JcBAAAAwF1ORAsAAAAAAACA6/YrL56NzWG57zkffe60iBYAAAAAwF1iZ1zGP/3My1c97wc/+FjkWXrZY708jf/Th56I/+6jX9j3Hv/iN16LE6u9OLbSjfXlTqwvd+PocifW+nmkNynIU9V17IzL2BqWbZCqaMbjMoqyiixNIkuSZts+8svMlVUdFwdFnB+M4+KwiAuDIs7vFHGh3T8/aMYXBkVcHBQxLMSuuP06WRJH27jV+nI3jix34uhSJ47ObI8sdeJQP5/GspY6WXSzRAQLAAAAgDueiBYAAAAAAAAA1+2jz5266jknz2zHl05vxdMnVm7DigAAAAAAuFW2R2X8s197Jc7ujPc97+HD/fju99y37znf/dX3x0/+2ivxwsb2Fc8ZFlX8T//py5fMZ0nEkeUmrHVkqRPdNtZVRx11HU2cqp7fb+bqGBRVG8wqYmtUxvaoFLPijpFENOGqbhZLnXQasVreM7fcyaLfSaOXZ9HL0+jmafSydHfc7k/HeRpHljqx0s3EsAAAAAC4a4loAQAAAAAAAHBddsZlfOzLZ67p3I8+fyqePvHkLV4RAAAAAAA3YlxWcXFYxIWdIk5tDuPNi81jbnxxFBeHxTXd7we/+bHI27DVleRpEv/nZ5+I//Znfve611vWEWe2RnFma3Td18Lt1s/TWF/pxrHlThxt42/rK91YX2q3y51YX+7G0eVOrPXzSEWuAAAAAOCGiGgBANdsMC7j73/qK/HJFzbizNYovuqBQ/EDH3wsvu6Rw4teGgAAAAAAt9HHvnQmBkV1Ted+9LnT8V9/+Al/ujkAAAAAwC1QVnVsDou4OCxic1jEhUEx3b84LOPiYNxsh0VcHEzmd88dXuPv9V6LR4/04w+95/5rOvfbnj4WX/Pgofjc6xdv2vPDjcrSJJY7WSx10ljuZrHUaR6743TPfhbLnSz6e8/vZLHU3T2/c5WgHAAAAABwc4hoAQDXZDAu4wf/+W/GF05vTec+/eLZ+MxXzsb//bveHd/z1df2H7wBAAAAADj4/sNzp6753FfPD+J337gYX/3g2i1cEQAAAADAwVLXdVR1sx2W1Vzg6uKgjIvDJn612c5fGBbT8WwQa2tULvqlTP3gNz8eeXptf6BCkiTxf/nIk/FDP/Xbt3hV3GuyNInVbhZHljpxdLkTR5Y6c+Ojy504utSJo0vdONLO9XKxKwAAAAA4yES0AIBr8s9//dW5gNZEVUf8P3/5ZHzb08diteejBQAAAADA3e7CYBy/8uLZ67rmPzx3WkQLAAAAALij1HUdRVXHsKhiXFYxKusYFVWMyt39Zlu183XsjMrYGpexNSxie1TG1qiMrVHRbst2rjk2Kquo64hqJpZV1rvxrLvNY0eX4ru+6r7ruuYDjx6Jb3ni6HX/njN3pzxN4lAvj0P9vNn28ljt5XGon8WhXh4r3TyWu1ksd7NYabfLnWx3rtMc72RJJMm1xdwAAAAAgLuD0gUAcFV1Xcf/9zdfu+Lxczvj+PnnT8cffd+Dt3FVAAAAAAAswn/64ltRXOc3vH7++dPxF7/tqchSX1oBAAAAAK5NWdWxPSrj4rCI7XHZhKyKKoZFFcNyfjxsj42KKgZFGTvjKnbG5e5j1Mxtj8sYjMvYHjf75d1Ys1qQH/zmxyK/gd8D/gvf+lT82su/HuPSX4vbpZMl0c+z6HfS6OXpJeNenka/szvu5mnkaRJZmkSeJpEmzThNYjqfJkl08jQOH+pH1s7tbI8iqevpfpo012dJEmmaRJZELHWzaTCrl6fiVwAAAADADRHRAgCu6guntuL05mjfcz55ckNECwAAAADgHvAfnjt93de8tTWK33z1fHzg0SM3f0EAAAAAwG1X1XWMiirGZR3DsopxG7Iat3GrUVm325nHnvntURmbwyIuDovYmhlvDpvx1qhc9MvkGj11bDm+65n7bujap0+sxP/tO98V/4+PfiFGQlpzulkSS50sVnp5rHSzWOlmsdzNYqWbt9vJo9lf6mSxdEkYK2uDWM24l6e37A+8yLI01tdXpvsbG1tRltUteS4AAAAAgFkiWgDAVX385JmrnvOrXzkbw6KKXp7ehhUBAAAAALAIb22N4rMvn7uhaz/63GkRLQAAAAC4SYqyigvDIi7sFHF+MI6dcRnjso6iqmNcVlFUzbhox5NjRdWEr+YDV5Mg1m4Ia1g095kEsvYGsIpK7IjGSjeL/+67n3lbYabvfs/98dUPHIqPPn86vnBqMza2x3F2exQb2+MDF1Nb6WZxqJfHWj+PtaVOHO63434n1np5HOo3Qaz50NWecac5nia3JnYFAAAAAHC3EdECAK7qky9sXPWcQVHFr79yLr7lifXbsCIAAAAAABbhF54/HTf63bhf+MLp+G9/3zsiz/xhDAAAAADcHaq6iUoVVR1lVUdV11HWEVVVR1lP5iLKdr+q6hhXdYyLKsZVE6VqxvVcqKqomvHWqIwLgyIuDMZxflBMxxcGxYELC3F3SSLi/kO9+KbHj8QPfvPj8dDh/tu+5+Pry/Fffcvjl8wPxmWc2xm3Ya1xbGyP2u04zg3GUdd1JBERSRJJu7YkiUgiifZ/0/1OlsRKL4/VbhYr3SxWunms9Jrtcju32o67edr8M93+8z3557y8zFwd0YSyernfAwcAAAAAWAARLQBgX2e2RvE7r1+8pnM/eXJDRAsAAAAA4C72H547fcPXnh8U8asvnYsPP+n3kQEAAAC4NcqqjlFZxbCYBKmqGEzGRRXDcnd+9pzhzHbyGBRVDMZl7IzLGIyr6XZQlLHT7g+LatEvGW66JCKOrXTj/kO9uO9Qr9muNvuTx/GV7m2LRfU7WTzQyeKBtbcf6rpeaZJEmiXRyW77UwMAAAAAcB1EtACAfX3qhY2or/Hcj5/ciP/m2+tIkuSWrgkAAAAAgNvvtfOD+NzrF97WPT763CkRLQAAAIC7WF3XUdbttqqjjiZsNRiXMSiq+SBVG6nauz/cE7YaFXvGZR3DopyZr6eBrLK61v/HI9z9enkah3p5HOrnzbaXx2ovi7V+Jw71sljt5bHWn8w35x1Z6sSJ2xjIAgAAAACAm0FECwDY1ydOblzzua+dH8SLGzvx5LHlW7giAAAAAAAW4aPPnbrqOVkSUe7zPcVf/tKZGIzL6Heym7gyAAAAgNuvqJqQ02DchJwGRRN/avbLGJd1pGkSeZJEmkZkaRJZkkSeJpG248lcmiZR13VUdURZ1824iqiijqqaiVK18+NqNyw1F5yajutpcKqoqqjriDqaR9T19A/WnM7XzUxZRYzL5h7jqo5xe7+iaiJV46pujhfNXNWuuaqbdVbt/YCbI0uTWGvjVqu9PNamsatsGsWaBrJmY1jto5sLYQEAAAAAcG8Q0QIArmhcVvHpF89e1zWfOHlGRAsAAAAA4C700edP73u8l6fxx9//UPzkr71yxXO2RmV86oWN+H3vOnGzlwcAAAAcYFVdx864jK1hGdujMrZGRWyOdsc74zba1Iabymo3KFXWM3NVc68kiUgiiTSJSJJmOxlnSRJJEpG226KsY1A04atBUcVg3Maw2kDVlfaLSi4K7kXdLImVbh4rvSyWO1ms9PJY6WbtI4/ldrzczaKfp5G2obx05tedNHbnkiSJNJpg1t4oVj9PI0mSRb9kAAAAAAC444loAQBX9OuvnI/tcXld13zyhY3409/46C1aEQAAAAAAi3DyzFZ88fTWvud85Klj8b/5mgf2jWhFNDEuES0AAAC4vcqqjnHZRKDGZRXDsopRUceomIyrGM1sh5P9sjnnqucVzblFVUddN3Gpuo6YZKbqup4ZN9uiqtpIVhPLkqQCbkQnS6KbpdHLm0c3S6Obp7HcyWKpk8VSN4ulTtqMO034qt9JY7nb7Pc7WXtdMr22k7X3yZLpuJMl0W2jWAAAAAAAwJ1FRAsAuKJPnNy47mt+89ULcXFQxKG+jxkAAAAAAHeLjz53+qrnfOczJ+KJ9eV4932r8fypzSue94mTG7E5LGK15/eRAQAAuLvVdR1l1YSlyrqOoqxjPBOzujREVceorKKo6sh7nRgWZYyKKs5dHMRgXE6vGZf1XNBq9l6ToNWwjVpNnquoJKqAxcrSZC5U1c3S6HfSWO3msdrLY7WXtds8Dk32u3ms9vNY7Wax0sujPxPK6uWpqBUAAAAAABARIloAwBXUdR2fOHnmuq8rqzo+/ZWz8QfefeIWrAoAAAAAgNutruv46HOn9j1npZvFh55cj4iI73z3iX0jWsOiio99+Ux893vuv6nrBAAA4O5RVHUUZROLGldNFKqo6hiXbWRq9lg5f+64aLdtQGq6rZqg1TRqNRlPQldlE7oq586r2m1Mj03mZu81vV89P69bBSxSlibRSZPIsyQ6aRp5lkSeJtHJ0sjSJHpZGp0sjV6etNtmvwlctbGrmeDV3Hw7d7nre1kanXz2/un0OQEAAAAAAG4FES0A4LK+cnYnXjk3uKFrP3nyjIgWAAAAAMBd4vfe3IyXr/L7xd/+zuPRy9OIiPjOZ07E/+vjL+x7/kefOy2iBQAAsCB1XcfOuIqtURGbwzK2RkVsDcvYGZeRpklkaRJ50myztAmuZDOPPEkiTZMo2mDVqKzasFUzHpdN2Gp2PBiXsT1qnmN7VMb2zP7W7PyojFFZiU8B96ROG7vqZEl08zQ6aRK9ThZH+nms9Tux1m4PL+XTcbNtHqvdfHpdliaRJKJVAAAAAADAvUFECwC4rE+c3Ljhaz/1wtkoq9qfGgYAAAAAcBf46HOnr3rOdz2z+wcrPLDWj699aC1+67ULVzz/0185G+d2xnFkqXNT1ggAALBodV3HuKxjWFQxKMoYFk0Iqq7rqCOiriPqqNttRMzu1xFFVcWwrGJUtAGqoglTTbczc+Oyjqquo6zaR11HUdVRtePd+YhhUcbWsAlVbQ6L2Bo10SyRKoCIPE2il6fRzdLo5un8OGsCVkudLJY6afTzLPqdNJY6WfTztJ1v5np5Fp0siSxJIk2jiQ4mSaSTIOHMfJo0ccJu1jxXnjXjTiZ6BQAAAAAAcKNEtACAy/rEyTM3fO3ZnXH87hsX42seWruJKwIAAAAA4Har6jp+/vlT+55zdKkT3/DY0bm573zmxL4RrbKq4xe/+Fb8sfc9eFPWCQAA3NuqNmA1LpvI1PUEooqyis1RGVvDYrqdD07tjrdHRQzG1TSUNTueRLMAuH69fDdO1W+DVd18ErNq41btuNuGrnp5MjPejV/183R+/jLn9PI0OlkauT8oFAAAAAAA4K4gogUAXOLioIjffOX827rHJ17YENECAAAAADjgfvPV83Fqc7TvOd/xruOXfOHwO951Iv6n//Tlfb9A/vPPnRLRAgCAA66u66jq3W1V1zEqqxgVVYzKZtyEreoYF1UM9+wPijJ2xlUMxmUMiioG40mcand/px2Piuba6fVtMGtU1lGqVwH3sN6eYNTe0FSWJpFEEu3/IkkikkgiaX87p5lLIomINE2imyWRZ2l0syQ6aROb6mRJdLM08nbbac/Jkog0SZpHGpElSSRJMp1PkiSytBn38jT6nSyW2kjWUqfZ7+VppImYFQAAAAAAADdORAsAuMSvvLgR5dv8/xZ+8uRG/NcffuKmrAcAAAAAgMX46HOnr3rOdz1z3yVzx1a68Q2PHonPvHTuitd99uXzcXpzGCdWe29niQAAcNuNyyq2R2XsjJsA1LisIkuTyNNkum0eabOfJZElzbE0iSjriKKsoqjqKKomANWMqyjKvXO782VdT49P5stqd25c1VGUVYzbwNS4arbFJGZ1heOT/WLP/risY9w+x2woa7pd9F8I4J6RpUmsdLPpr7NZkkSaNqGm5tfWS+cjYhr3m2zrvduIKKs6sjSJfp5GL8+i32liVP09414nbc9pwk/9vN2fHe+5ppMlUdXNc5R182v7lcZV1cStJjGqNJrXkk4jVZNjzbibpdOYVSJABQAAAAAAwD1ORAsAuMQnTm7sezxNIn7fO4/Hf/zCW1c85/lTm3Hq4jDuO+TLTwAAAAAAB1FRVvEfn98/onX/oV687+G1yx77rmfu2zeiVUfEf/zCW/F9X//w21glAAB3g2FRxeawiIvDIobjav5gMrdpxu1OXTfXDooyBuNqbjwoqhiMy7ltVTXBlLqebJuISkzHERHNsWFRxc64nItlTfaLSj4KuPv18ibQ1M2aKFQ3S6PbRqQ6WRq9dr85njRzeRMPTCKJJGl+7W5+zd7dj3YuiSYKtdzNYqWbxUo3b8a9LFY6ebPtZrHczaMrFAUAAAAAAADsQ0QLAJhTVnV86oX9I1pf+9BafPd77t83ohUR8ckXNuKPvu/Bm7k8AAAAAABuk8+8dC7OD4p9z/kD7z4R6RW+xPpfvPNY/Pf/Mdk3MPDR506JaAEA3AJlVUdZ1VFUdQyLso1LNZGpYRuVGs7sD4syhmUddRuUmoRKkrh8ACVJdgNU1ey2qvfM1VHWEcNxFZujIjaHRRvLKqfjzWERo1KUCmBWJ0uin2fR66TRy7PIktiNWGVJdCchq9m4VTaZS2biVlc4L0/2RLDmz+uIVgEAAAAAAAAHiIgWADDn869fuOqXop596lh842NHopenMSyqK573yZMiWgAAAAAAB9VHnzt11XO+65kTVzy21u/Eh55cj499+cwVz/n86xfj1fM78fDhpRtaIwBwcBVlFUmSRJbenEBHVdcxGFcxKMoYtf8dO0mSSNvoUyTJNP7UhKEmByKKqo6irGJc1jGumu1kf1RWMd7n+LiqY1xW7aNujlWT8aXXjmavnTl+pYbU5d6dOnYjWWVVR1nvBrMmc5JUwL0qS5PopEl02hDU7DZPk/aRRp42504eeZo24ySJLI3I985PjyWRZ0nkSbLn+plxcunc7Hl5muxGrSYhqzZu1cSxkujkWayvr0xf18bGVpTllf9/WgAAAAAAAAD3MhEtAGDOJ05uXPWcZ9+xHv1OFh949HB86oWzVzzvMy+djVFRRTdPb+YSAQAAAAC4xQbjMn7pS1eOX0VEPHZ0Kd593+q+53znu0/sG9GKiPjoc6fjz37wseteIwDcCnVdT2NHWbIbv0iSaws9Ta7fGZcxKKoYzG7HVQyKKur62vNGyXQNMRfwuCTK0a5vEmQatYGmYib6NC6rKNrgU1nVs0/SbCa7MX+ormMu0lSUTbSpaGNRRRVRVNX0+KCoYnjJ62/iVjvj3bnJGrI0iX6+GxHpzTy62e44Iubey73v8X5/ABQAt1+aRHTaSFQna36tX+7msdTJYrmbxlIni5Vu1u7vbpc7WfQ6k+vaoFR6aRBrMt/N0shn5tJr/Hc2AAAAAAAAAHcPES0AYM7VIloPrfXiyfXliIh49qlj+0a0dsZV/Por5+Kbn1i/qWsEAAAAAODW+tQLG7E1Kvc957ueOXHVoMi3Pn0s+nkag32iFj//vIgWwJ2mbENLw6KK0cx2VOyOi6qOJCKSSCJJmtjS3nE686+JcVlP7zEqm6jTsKxifIX90SQEtWd/VFQxLneviYi5uEaepdFJd0MaedqEmVaXO1HVETvjMs5vDmMwboNOM2GnYdGEmarLNK6ypIk95WnabncDVmkSMZwJRV3ueq6srOrYGpWxFft/9gC4F+VpMo0MdrOk3aaRp82/8yb/fpoEFS83ztMkVrpZrPbyWOlmsdLLY7WXxUo3n5tf7TWBq7qup/HEyaOoJnO74cSyqiNv//3bzXf//dvNm/hVnopZAQAAAAAAAHB7iGgBAFOvXxjEl97a2vecZ586Nv1S1LNPrcf/+Av73/MTJzdEtAAAAAAADpiPPn/6qud857vvu+o5S50sPvKOY/Hz+9zvi6e34uSZrXjq2Mp1rRG4t9V1E3OYhJmKSXBpEndKItI26JQmSaRps02iCU0kSRM+SpOkDUVEVNVuMKKa2a8mEYk6YtxGpAZFOQ0mzcaTBuPd40VVR5rsxism4zSJaYBpdq6qYv75Jvtz69pdy+z8ZM2XnFfFzDWX3mP+3OY9HRbNe8i8so4oyzpGpdATwL1gqZPGSnc+NrXSxqaWOln08zR6eRr9TtZsZ8edNPp5Ft08jbwpSzbhySQiaT+PTOOTEdPjnWw+lNXN00ivEi4GAAAAAAAAAES0AIAZnzi5cdVznn3HbhDrwbV+PHVsOU6e2d73nv/Nt9fT8BYAAAAAAItXVnVcHBRxbmc89zjfzl3t94vfdWIlnji2fE3P9V3PnNg3ohUR8df//RfiifWlyNMkOlk6jctMxp0siaVO1nxxvZvHSi+L5U7zJfbVdm65m0WW+r3og6aaBoJ2Qz8RM1GBNigwMR8daBST4FEbVZoNAjUBotgd740HXRIW2o0WVRERdR11s4mIaMfNTl23+1FPj+/O19PjsXc/JvO79959jnruuWbNvw+XO1JPI1KjYjcoNSqrdrt7rKjqadhp8s9b3v7ztvtII8+acVk1oapRUU2jVVfar/Z5/bOvq77Me3vpe7L7LlR1xLhsnm9cNVsA4GBLIqbBqaVOGr02TtXvNPv9PIt+J42lNk7Vy9M2NJVGJ0um0anduWa+m6XX9bNBmsT054zVbh5L3SxyP1sAAAAAAAAAwIEhogUATH3i5Jl9jy910vj6R47MzT371LF9I1qvnh/EVzZ2rvnLVAAAAAAANOo2CDQu6yjaYMy4bOI3RRuRmRwfl1VsDou4OCxic1i22yIuDorYHLX7g2I6f2FQXBLouR7f9cx913zutzyxHqu9LDaH5RXP+d03LsbvvnHxbayosdRJY6WbR7/TfoE+3f1ifT7zZfs8TaObJ9FJL/1yfb3nnan3vFGXvG+XHL++6y+9X73v8aveb88Jk/BQ8/dKE1Iq9oSIirKKcfv31b5ru8z9L+dya67agFU1iVe1YwAAblyWxDSEOQlkzn7+nXwe7kw/DzefgTuXOT7dtiHN2fvkSRJpGpEmyTR2miZN4HS6jd39bpZGJ0+mYavJ5/DZCFY3a9bsD2UDAAAAAAAAAN4uES0AICIidsZl/NpL5/Y954OPH41ens7NPfvUevzT//zyvtd94oUNES0AAAAAYKGuN0hVlPU0OjSudq8pyj3nVXUbH5qf3zt32eurqn3uy19f3sGFoe985sQ1n9vN0/j2p4/Hv/2dN2/hiho74yp2xqNb/jwAANy5enka/Txttp2s3c+i12liU0nsxqBiMo5o4lAz4zxNYrmbxVIni+VOs13qtuNuFkuddDrfydIo6zrKso6ibj7LF1XVbpv92XGepZElSeRZE76af6SRXWF+cn7WPlIBKgAAAAAAAAAAES0AoPGZr5yLUbn/F7KefWr9krmveWgt1vp5XBgUV7zuEyfPxJ/6hkfe9hoBAAAA4Gar6zrKOqKq6qjqOsq6jqqK5svPk7mqjqqOqOo66tltNPN1vWcbl85d7tq6junc9Nw9186eW+19num9IyKu8Dztayqr5nWWM1/erur5L3NX9czvD7ZfxJ58HTuZmU6TJHq9zvTeO4NxlOXk/Wvf0/Y9a97P3WOz4yudN33tEZcft68r2rndcfuezo5nruXm+dqH1uKBtf51XfOdz5y4LREtAACuX54m0WujU1maTD9X1+1n7cmPCnNzEdMYVZomkbY/K0y22SRW1R7L0zQO9bJY7eXTx5X2lzvZNA41+1F+9rlnTaJZ/U4W3ax5DQAAAAAAAAAA3DtEtACAiGhCV1fz4ScvjWjlaRLf8sTR+A/Pnb7idb/56oXYHBax2vPRAwAAAOBmm0SeymomiNQGiYpqElCaiSfNnD/ZL2ZiUXP3mgSlqjqKPcf3Bph27xuXPMfk2mrmvGLyKKvpeFzWUVRVu50/VtV1pEnzJeyk/WJ20u5PxmmyG3sq6933pqrn36fZoJO2Ely/73zmxHVf8w2PHY315U5sbI9vwYoAAG6fLE2ikybRzdPI0yQ6WRqdLIlOmkaetftpEp0siTxLo9se3//cdPpzzaxJNOpK68jS5r5ZmkSWJJFnM+PJfJpEN0vb0FTWbDtpG83KpuEsAAAAAAAAAAA4qJQsAICo6zo++cLGvud81f2rcXy1d9ljH35qfd+IVlnV8ekXz8bvf/f1f7EKAAAAuLfUdX3Jl4Zv5B6zEaiinN+WVTMu6jrKcjfwVFTVfIhqZlzsGV96fHJtXPU+5cy6mjVUUbThqaKsLllrc37MRamm4SsRKOA2y9IkvuNd1/97vXmaxO9/14n4qd987RasCgC4VpOAU5YmkSQRk0ZTHXXs7TXNHsvba/LJI9uNNs0ey9IkenkaS50s+m2sqZ9n0e80c03AqT2WpxERMSyrGI6rGJVVDIvdx979uo5Y6uxev9TJ2hjU7v0nz9nN0rnXUe95jc1cPT02eV86k7DVNHbVhLBmw1fp2/yZFQAAAAAAAAAAuLlEtACA+MKprTi9Odr3nGefWr/isW95Yj3SJKLa5xubn3hhQ0QLAAAAboK6rqOaBJXq+ajS/Dguf2x2f8/8uKxjWFYxLqsYlXWM2i8tz24n5xRlHXU0a5lEq+qIqNr1VVUd1WS9VR3j9v5F1dyjKKvLzpXt7y+kSUSaJJEmEUnSfDk7SZp4SxLtsTSJ6pIw1e49ALj5/uTXPRzHVro3dO2f+aZH42c+/0YMiuomrwqAg6iTJdFtY0XdLIluPhm3j7yJGfUm51xhPyKany/Kyc8dzc8r48nPGe3PDJE24aPlbhZZHdHLk+jn2W6UaTbM1K6lnA30XhLQ3Z2v6mjiULOBqJl41O5cs83Sy0eYLjdb1XFpDLiaf0zmoo7o5HtjUO22DVy93WgxAAAAAAAAAADAnUZECwCIj588c9Vznn3q2BWPHVnqxHsfXIvffu3CFc/51MmNqOran8oLAADANAI1iS3VdRM/qtswVN1+QbiZb44XbWxpNA08VTEumi9Fj8o6xm3kadx+cbqKNuJUz94v9uzPr2N2Pbv7lwahJmucPedan2P2Nc09RxVXCWJNxs17dC+YvD+Ne+M1A9zpvuuZE/FDH378hq+//1Av/sZ3PxN//d8/H1uj8iauDGAxkmjDSTPRpF6+O+5k6fSzfDWNMcV0PPmsP/l5YRKSzdImIpu22yzdOx/tfDKdT9vg7Px18/NZ2hzL99xj9ro8TaKXTyJWTbCqm+8ZZ805edoErKq6CepGHVFF8/NQHc3PPfXM5/pue99J2Ol2/nfDLEtjfX1lur+xsRVlKeoIAAAAAAAAAABwNxDRAgDiEyc39j1+bKUbz9y/uu85zz61vm9E6+zOOH73jYvx3gfXbmiNAAAAd5pJBOlywaOqaqJPzXwTYCqm8aXmy8WToNJsdKmZb75cPPkS9dyXkOvdLydPr43dsFNR1VGUdRRVE5JqwlNVs5051nxJe/d1RMwnipq11NNxE62qp/Gq+WjVbNhq9zVeEqFq35eqlkMCgDtVJ0viyFInjix14vBSJ470O3FkKY/7D/XiGx8/Gu+5fzWStxk8+fZ3Ho+vun81PvbljfjC6c0YFtX0M8rks8y4qtptHcXks0xZxfa4iq1hEYNC9ITFSyIiSZptJMl0f/dYsue8ZPf49Lxk9x7tNbP3iZn7TD6377V3upMl0c2bSFE3a2JHk2DRZG4yrurJzwiTR7Vnf/efwSxN5u63G0NKprGlSRwpT2fek5nXH3Pvz/x7Mvu+zb2Xe97HTpZGJ21eY57uvqa8XUcnS6KTNvuTn5suidpOorixG7OdC1BNI1SXBq3Sdg39NpzVzZK3/esiAAAAAAAAAAAA8PaIaAHAPe7M1ih+542L+57z7JPrV/2ToJ99aj3+3594cd9zPnFyQ0QLAAAWoK6bLz8P2+jRsGgeo5n9UdmElSZfDs6zdpsmkadpM98+8vaLw6PZeFJx+bjSsKyiKKvpl5YnEaiIuGRu9gvO023Mf+l5ct1swGoSjBrPxBem4aiZkFRZtVmoNhBV13vDUZM1NPOTKFY1E6iajJtY1m39ywgAcE2yNInVbhaH+nkc6uWx2j4O9bJ22+yv9fMmlLXUhLKOLHViuZPdlhjMA2v9+N9/3UM3fH1R1bE9KmJrVMbWsIytURGbozK2hu3cqIxRsRv5LKrm8+okyjWJg47bbVnXMfeq97wHe9+RS/bnIkB7ju6zu/et3nvtfn8pLl3DldecJDGNC+VtgKhzhf0suTQIdLl17Pce7LfGJkTUhImaR/P37GQ8iRdFxPRze8TuZ/S6/UA/3W/vnSVJZOnuvfJ2m7UhpGxuv9mmaUzHe6+brGs26DQbugIAAAAAAAAAAADgziGiBQD3uE++sHHVc559av2q5zx9fCXuW+3Gqc3RlZ/r5Eb80IefuJ7lAQBwm9V1EwaqqjrKNhbUdovmvrzc7MfcYHp8eq89581MXumcup6vEs0Hji6/jkuPz6+/nIsezQeQmtdXX7qOK6x3ElKafAF/XFZRTEJS7RfyJ1/EL6o6kvZL4M2XrpsvYs9+CXvyJe6lpW7zuuqI7Z1RlNXua5yEoyZfEq/qOoo2TjVqY1iT8WhmPBvMGhVV7Hm7AAC4TlmaTGNDeZpMA0STcSdNI8+ac3bn21BRuhsryvcEjPJ979teM3P/+fvO33+lm0U/T+/6yE+eJrHW78Rav7PopQAAAAAAAAAAAAAACyaiBQD3uE+c3D+i1cmS+KbHj171PkmSxEfecSx++rdev+I5z53ajNObwzix2rvudQIAd76yqqexnkFRxqis25BPGXW0saAkiTRtPjtkbVAoS5NI23HaftG7bCNBRRs7KqpqZtweq+uoqjrSNIlsJkbUPEczN7132ty/KOtp6KhoA0jjmblJ/GjchpWqmYBRVcd0rq7racyoqiOiPa+KiJheN3/eJIZU1+3rq3ZjTlW9+9rmQk+XKUhdLio1mZ8LR1XNOvaGo6r2uSfHdvd3rwEA4M6QREwjnHPbSKZBzssf3z0WSRNYyiafl9vPxnk6u7/7WTpJJvHOywRU692F5XkWSfuZuyyqSCPmPptPxsnMzwG7PxO0PwvMnLd7zaWvbRIgTZIk0mjnkpi+1r3vyzRk2s6lbU8qSeZjVXk2H67aG6naG8G628NUAAAAAAAAAAAAAAAHkYgWANzDRkUVv/ri2X3P+cAjR2K5m13T/T785Pq+Ea2IiE+e3Ij/7fsevOY1AsDVzEaNJsGjqr40WlRFfUkEae78qm7OqZrAUV03AaN6JixU1XWMyipGRRNaGpVVu233iybCNGqP1XvXEbvPd7l11JPwUlzpWLMt6jrKNvQ0iT4VkwjUnrmyqqdfII+IS75YPvuF8umXzNsvqV9tfly20ayyikFRRam+BABw18nS3QBTmsY0xHS5ANPeUNMkarq7Pz9O0yZolM/Fi9J2fz5klGdtwGgmWBpx+ehpE4CKPcHWJLJ0Puw6G3TaG3Gafa2TmFPWRpQmYajZaFU6E7WaizjFlUNXk3Mn510uhHWnRpuyLI319ZXp/sbGVpRltcAVAQAAAAAAAAAAAABwrxLRAoB71OawiJ/5/BuxPS73Pe/Zp9av+Z7f+NiR6OVpDIsrf2HuZz7/ZpxY7cUTx5bigUP9yNI784uAAAdFPQ0zRZRtMKms6iiqqt3WUdZ1FGWz3T2+uy1mrps9VtZXOd4+T1HF7vlldcXnueTeM2u62jomc5eLUHGtvFkAAG9HPhOOmt3OxqTyNL0kMLX33MsfS6dhqTybD1LNnn+lMFU+E7Kau/ckApUmke85ns1EomYDV7P3mgSdAAAAAAAAAAAAAAAA7lQiWgBwj6jrOl7c2IlPvrARnzx5Jn7j1QtRXkN55MPXEdHqd7L4hkePxCdf2LjiOZ97/UL8pX/1+YiI6OVpPHZ0KZ5YX44n1ifb5Xjs6FL0O9k1Py9wMNQz4aNyuq2jrtsoUhVRRR1V1Zw3CSVV7Tnl3Hb32KioYlRWMSrqGJZVsz+ZK6sYzuxHNF8Az9ovgqcz2zRJ2kczV1V1jMoqxmUVo7Jut+24vd+4bM4pq9k1Tda++9ouF37au9097/LHrnj9Qv+qAgBwt0kiopun0c3SdpvMjNv9PI1Olk7jTullP1tf+lm7kzWxqDxLopMm0cnSdi6JPEujk7YBqTbadLmfA8rZz8lVHVXENCq1X8wqT3bvPYlUZXvnkknkqr02S+YiUwAAAAAAAAAAAAAAANx5RLQA4C42GJfx2VfOx6dObsQnXtiI184Pruv6J48txyNHlq7rmg8/tb5vRGvWsKjii6e34ount+bm0yTikSNL8fTxlXj6+Eq840Szffhw35dWuWNMvrxdVnWUVRM4KtrtZG5UNoGnYVHGoI0uDcdN1GnYxp2G7fGqirkvb+ezX/ZO05lxs50+T/vF8XISWapiOi6rmK6rKKsYV5NxHUVVtdt23M6P23OLybl798s6xu21VX1p7GoavKqaINRsXErsCQCAW2kSf+pkSXTaCNIk5JRdJuiUzMSeJvtZmkQS7dxVrr9yLGr+OZp7XttzTMJOk2jTZJy2EajpfDpz/kzIKr/C9bvnxFxoanpNe26a7r5WAAAAAAAAAAAAAAAAOAhEtADggNoelXFmaxRvbY3iTPt4a8/2K2d3YlhUN/wcH3lq/bqvefap9fgff+GGnzIiIqo64qWzO/HS2Z34xS++NZ3v5Wk8dWw53tHGtZ4+vhKPHO3HUieLXp5GL0sjz9K39+R3kbqNLF0SP5pGn5pz6oio64g6mrloY0h1tOOoo2rvUU4iTVUdRd3Ml+387LaqIorpeOb43LntE0dEtF/QnnxNe7pNJvtJ1LF73SRaNXl9k3EdEVmetedUsTMooiir6bqvtKZqEsOam5vcOy5Z+yQaBQAAd5o8TaKTNSHWziTOmqWXzGdt7CkiIpJk7jP4NJ808zm9kyXRzdLoZGl0s6Tdtvv57H7zHNNAVOyGoi4Xn2rCUklk6TXEqtJk7rkn48masjQRfwIAAAAAAAAAAAAAAIB7jIgWANxByqqOczvjS2JYZy4JZY1je1ze8vV8+AYiWg+u9eOpY8tx8sz2TV/PsKji997cjN97c/OK52RJRC9vo1p7HnmWRsxFoyYNpzYYNTMf0XxRPJ35AncSu+NI2i+DT75h3oanqmjCVJNA1WyoanauquuoZ7aTgNUl17b3mzW71tn9qmojWeVuOAsAABZpNnKUpZd+rk7aeNP8OIkk2d3Ozu1+Np9c3xzrZmnkbTCqMxOMmoyn4ag0aZ+/uUdM19Pux2zINSJLm2vytIk5Tfaz2XHahJ8m4zRpzs/a6FOWJpG356dps97sMq/xsu9J7Dlv7rXvnhd7fmYBAAAAAAAAAAAAAAAAuFeIaAFwT6vrJjRUVrvRoaKqoyirKOs6irK+ZLt7fhVlFVFU1RXvMSyax2h2PDM3aPe3RmWc2RrF2e1RlHdI9+ihw/1430OHb+ja73jX8Tj5Ky/d5BVdm7KO2B6XtyUyBgDAvamTJdFpo0xNIGpmOzOfpUkTPL1CXHV2nGbpNJZUFlVExFxcKZnZjySJbtaEo3p5Gt08nY577bi7dzxz7t757kx4Nk2SqOrdn2vKmZ91yrn9Ksp6N5I1ud/sfidLBJ0AAAAAAAAAAAAAAAAAuKVEtACYU9d1lHVMvxRdlHXUdUQdzRe8m3H7he+ZcUQzLso6RmUTiBq1oahRWcd4Op7M19Pj47KKYVE323Z/VMzfp6jq6ZfMY8864jJz1xbAqu+YYNWdJk0i/tK3PRV5emNfeP8TX/dw/C+//lpcHBY3eWUAALdOEjGNH+VpEln7WShNkkiT3ZDRZDw/lzSBozaCND/Xnhu74yxNIkua57hknCaRtedM7tGsrxlcrkk0mZq9X3qZe+Xtdnc/pvuz60in4/b47JMm8895tfXNX5pc9trdcy9/PJk/ad9zJs+Rpvu8zzNzk78ee9/L/Z7nZoehsiyN9fWV6f7GxlaUZXVTnwMAAAAAAAAAAAAAAAAA7kYiWgA34HKhqUsjTbuhprm5so5iEnaqqva8vde147K6/Pyee18pErX32vl1XPne3NseP7oUf/5bn4pve/rYDd/j8FIn/t4ff1/8X//15+PU5ugmrg4A7ixZmkQ3S6KbpdHJ0ui2AaZu3kSY8jSZiy1Nt7EbWJrdzp0XceVr0yQ6afNcnSyJPEuj0z7f3rksTXajqHVMx9WeOGrzMfBy883nw6qOadR0co9O2rzW3syjm+3Zb+fSJImqbu5fVc3n16quo6oiyrqefsau2s+jedasvXkf05nx7vwkglRW8/eq6rqdizacWk+fu3mPkuik6VwwK8/SyJKbH0cCAAAAAAAAAAAAAAAAAODWEdECbqq6ngk2lbsxp3FVx7hsx2UTcBqXdYzb/dlj47I5f3rO3v2qmZvEqNonbjYxt7tn7tKgVFHVUZbVpXMzoamyjssGp+BukUTEex88FB96cj2efWo93nXfaqQ3IR7x7vtX49/8H78pPv2Vs/G51y7ECxs78eLGdrx8dsc/QwAHQJo0gagsSZqYUZJcEjHKpjGjdPfcNCLL0siT2eN7z2/nkqscn3n+tD03nY1OxXx8qpnfc85MgGoylyXzYaskmrk0ndxr9/zZuUlgqZvtxpeyVHAJAAAAAAAAAAAAAAAAAAAWRUQLFqCs6hgWVYyKKgZFGaOyjqqqo46Iqm62Ue8ZRx113QShyklEqg1VFVUznotUteeUl5kv5q6fvbY5bzcgtScoVe0JSc0db47p4sDBcKiXx7c8cTQ+/NR6fMsTR+PocveWPE+epfHsU8fi2aeOTeeKsopXzw/ixY3teHFjJ17Y2I6vbGzHC2e2Y2tU3pJ1APeWNInoZmn08jS6eRrdbHebJs1nqcnnrqra/czV7DefZ6q6bmNJTSipiSal0c1392ePTSJPs8GmJNoQUzozH7Nxp/kA1Gzoae4+V7luso1kErG6fJRqOp5EsS4TsZo972YEFQEAAAAAAAAAAAAAAAAAAG4lES3uSHVdR1k3oZWybmJNk5jU9Jx2p55eE9P9oqxiZ9wEqgaX3VYxGJcxKKoYF81zVHX7vG04oazr6TqamMJuUKGsmqBVc107355TztxnWFRNLKuspuNh0cSmAG63d55YiQ89uR7PPrke731oLfJ0MXGUPEvj8fXleHx9Ob5tZr6u63hraxQnz2zHl9/aii+d3oovvbUVJ89sx7CoFrJWuFWSiOjl6fTRzdPIkmT6uWeyvdZY5SSklKXJnnGzn6dJ5Fk6jSvlaRN/auYnc2k738aUrnT+9Jp07vl2g04z++n8sSRJIpvGoWauTSPS2D0/SSKyJNlz/p77RjKNU3WyNHqTUFaeLuzXNwAAAAAAAAAAAAAAAAAAAG4vES2u2b/93Bvx+rmdGFd1jMsqxuWebVVHUTaBh9lHebm5ybg9Vl7mOADXZ6WbxbGVbvNY7sbx1W4cW+7Eg2v9+NqH1+KBtf6il7ivJEnixGovTqz24oOPH53Ol1Udr54fxJfe2oovt48vnd6Kl8/tXDEoxOJkSUSW7gac8pnxZH5yziSIFDETx5yJYs4P2vunu6Go/JL7NnGnfi9vIlBpGsW4bOJLaRL5TGRq9pq0HedtnCnbc8/0Muu+5HUlSWTp/PE0aYJUvTyLbt5s+3ka3SyNTtYEoq7XJOZZVvVcJOtG7gUAAAAAAAAAAAAAAAAAAAAHnYgW1+wnPvNyfPHU5qKXAXBPSZOI9eU2jLXSieNtJGvv9thKN5Y62aKXe0tkaRKPHV2Kx44uxe975/Hp/GBcxqvnB7E1KmNUVDEsqhgWZQza8e5cFYOiilFZRVFWkSRJJBExaQ7t3Y+IaGaasFNdNx2nuq6jqpuIUTPX7E/mJyGjNIlI23umSRJJMr+dnNcc373mStdO4kiT5e1tJc0en4Sl8ixttu24kzZxqbwNS3WyNgAVSbT/a2JWM+OkvelkPBuumo1HzYas7oSYU5alsb6+Mt3f2NiKsqwWuKKbK02SSLMk7tJ/3AEAAAAAAAAAAAAAAAAAAOC6iGgBwE00CRdN4kK9PI1+J4tulkY3T6OXp9HLmu10v30cWepcEsg6stSJLF1slOhO1e9k8Y7jK1c/EQAAAAAAAAAAAAAAAAAAAIC7kogWALdVN0uim6fRzdLotDGpTpY0kaksjU4bmZrOTc9NIkmSSCIiaZtSzV6zvzufRJLENGK1N2q1O06nc9NjWRJZMrtNI0+SyLLL32tyn8lY7AoAAAAAAAAAAAAAAAAAAAAAbh8RLYA7wOUjT23Eac+xvSGo2fDT/LnpFe45E4ja53mn90ySSNMmWDWNVyUR6dz+btwqS2eCWFnSRrKaWFaeNiEsAAAAAAAAAAAAAAAAAAAAAIC3S0QLuKNkSUTexpc6abPNszQ6aRKddj5v5ztZE31q8k0Re9tMs7uTcFN+SUhqn9jUZLxvyCqdu+cVI1Yzz7f3ebMkhKUAAAAAAAAAAAAAAAAAAAAAAK6TiBbcRSYBqknUqdOOJ+GpSeRp73wnuzQYNR+USiNPY3qP3QjUFYJRk2jUzD2uFMTqtPfszISqAAAAAAAAAAAAAAAAAAAAAADgakS0uKdkSUS/kzWPPI1+J41u1sSfkkgiSyPSJIk0abfp7jhLkkiSiCxNLj0nItK0OWd2vpul0c/T6OZp9C7z6Ga748kakiSax2QcEUl734jmWJbMhrDSabQqTQSoAAAAAAAAAAAAAAAAAAAAAAC4N4hocc3Wlzvx0FovOlnaPpLdbdps80nQafLImrDU7Hw2dzyd35893l4z2Z9GpGI3FLW3GTXZ76RNIKufZ3PbTpbepncLAAAAAAAAAAAAAAAAAAAAAAC4lUS0uGZ///veH6NRuehlAAAAAAAAAAAAAAAAAAAAAAAARLroBQAAAAAAAAAAAAAAAAAAAAAAAMD1EtECAAAAAAAAAAAAAAAAAAAAAADgwBHRAgAAAAAAAAAAAAAAAAAAAAAA4MAR0QIAAAAAAAAAAAAAAAAAAAAAAODAEdECAAAAAAAAAAAAAAAAAAAAAADgwBHRAgAAAAAAAAAAAAAAAAAAAAAA4MAR0QIAAAAAAAAAAAAAAAAAAAAAAODAEdECAAAAAAAAAAAAAAAAAAAAAADgwBHRAgAAAAAAAAAAAAAAAAAAAAAA4MAR0QIAAAAAAAAAAAAAAAAAAAAAAODAEdECAAAAAAAAAAAAAAAAAAAAAADgwBHRAgAAAAAAAAAAAAAAAAAAAAAA4MAR0QIAAAAAAAAAAAAAAAAAAAAAAODAEdECAAAAAAAAAAAAAAAAAAAAAADgwBHRAgAAAAAAAAAAAAAAAAAAAAAA4MAR0QIAAAAAAAAAAAAAAAAAAAAAAODAEdECAAAAAAAAAAAAAAAAAAAAAADgwBHRAgAAAAAAAAAAAAAAAAAAAAAA4MAR0QIAAAAAAAAAAAAAAAAAAAAAAODAEdECAAAAAAAAAAAAAAAAAAAAAADgwBHRAgAAAAAAAAAAAAAAAAAAAAAA4MAR0QIAAAAAAAAAAAAAAAAAAAAAAODAEdECAAAAAAAAAAAAAAAAAAAAAADgwBHRAgAAAAAAAAAAAAAAAAAAAAAA4MAR0QIAAAAAAAAAAAAAAAAAAAAAAODAEdECAAAAAAAAAAAAAAAAAAAAAADgwBHRAgAAAAAAAAAAAAAAAAAAAAAA4MAR0QIAAAAAAAAAAAAAAAAAAAAAAODAEdECAAAAAAAAAAAAAAAAAAAAAADgwBHRAgAAAAAAAAAAAAAAAAAAAAAA4MAR0QIAAAAAAAAAAAAAAAAAAAAAAODAEdECAAAAAAAAAAAAAAAAAAAAAADgwMkXvYB70QsvvBA/9VM/Fb/6q78aL7/8cuzs7MTx48fjoYceiu/4ju+IP/JH/kicOHFi0csEAAAAAAAAAAAAAAAAAAAAAAC4Y4lo3UZFUcTf+Tt/J/7xP/7HUVXV3LHXX389Xn/99fjsZz8bP/qjPxp/5a/8lfi+7/u+Ba0UAAAAAAAAAAAAAAAAAAAAAADgziaidZsURRF/4S/8hfiFX/iFq547GAzih3/4h+OFF16Iv/bX/tptWB0AAAAAAAAAAAAAAAAAAAAAAMDBki56AfeKv/t3/+5cQOv48ePxwz/8w/HLv/zL8du//dvxcz/3c/FDP/RD0el0puf8xE/8RPz0T//0IpYLAAAAAAAAAAAAAAAAAAAAAABwRxPRug2ef/75+PEf//Hp/qOPPhr/+l//6/i+7/u+eOCBB6LX68U73vGO+Mt/+S/HT/7kT8by8vL03L/1t/5WXLx4cRHLBgAAAAAAAAAAAAAAAAAAAAAAuGOJaN0GP/ZjPxZVVUVERJqm8aM/+qNx4sSJy577/ve/P/7m3/yb0/3z58/HP/pH/+i2rBMAAAAAAAAAAAAAAAAAAAAAAOCgENG6xd566634hV/4hen+t33bt8V73vOefa/5Q3/oD8X73ve+6f5P//RPR13Xt2yNAAAAAAAAAAAAAAAAAAAAAAAAB42I1i32y7/8y1EUxXT/e77ne67puj/8h//wdHzq1Kn47Gc/e9PXBgAAAAAAAAAAAAAAAAAAAAAAcFCJaN1in/70p+f2P/jBD17TdXvP+9jHPnbT1gQAAAAAAAAAAAAAAAAAAAAAAHDQiWjdYs8///x0fOzYsbjvvvuu6bqnn3468jyf7n/+85+/6WsDAAAAAAAAAAAAAAAAAAAAAAA4qES0bqG6ruOFF16Y7j/++OPXfG2e5/Hggw9O91988cWbuTQAAAAAAAAAAAAAAAAAAAAAAIADTUTrFjp//nyMRqPp/n333Xdd1x8/fnw6fvPNN2/augAAAAAAAAAAAAAAAAAAAAAAAA66fNELuJudOXNmbv/w4cPXdf3s+UVRxObmZqyurt6Utd2INE0iy3TXAIA7V5Yll9n3+QUAuLP5DAMAHDQ+vwAAB43PLwDAQePzCwBwEPkMAwAcND6/AAAHjc8v3Mn2/v15u4lo3ULb29tz+ysrK9d1/fLy8tz+1tbWQiNahw4tLey5AQBuxOHDy1c/CQDgDuMzDABw0Pj8AgAcND6/AAAHjc8vAMBB5DMMAHDQ+PwCABw0Pr/ALjm5W2g0Gs3tdzqd67o+z+cbZ0VRvO01AQAAAAAAAAAAAAAAAAAAAAAA3A1EtG6hqqrm9pMkua7r03T+L8/e+wEAAAAAAAAAAAAAAAAAAAAAANyr8kUv4G6WZdnc/vVGsIqimNvvdrtve01vx8WLOzEeC3kBAHeuLEvi8OHl6f7589tRlvUCVwQAcHU+wwAAB43PLwDAQePzCwBw0Pj8AgAcRD7DAAAHjc8vAMBB4/MLd7K9f3/ebiJat9DS0tLc/nA4vK7rR6PR3P6iI1pVVUdZimgBAHeydG6vLH1+AQAOAp9hAICDxucXAOCg8fkFADhofH4BAA4in2EAgIPG5xcA4KDx+YU7WXr1U+7aZ7/LHT58eG5/c3Pzuq6fPT9N01hbW7sp6wIAAAAAAAAAAAAAAAAAAAAAADjoRLRuoePHj0eSJNP9jY2N67r+rbfemo6PHDkSWZbdtLUBAAAAAAAAAAAAAAAAAAAAAAAcZCJat1C3240TJ05M9998883run72/EceeeSmrQsAAAAAAAAAAAAAAAAAAAAAAOCgE9G6xd71rndNxy+++GJUVXVN1505cybOnz8/3X/nO99509cGAAAAAAAAAAAAAAAAAAAAAABwUIlo3WLve9/7puPt7e340pe+dE3X/dZv/dbc/vvf//6buSwAAAAAAAAAAAAAAAAAAAAAAIADTUTrFvvwhz88t/9Lv/RL13Td3vM+9KEP3aQVAQAAAAAAAAAAAAAAAAAAAAAAHHwiWrfY13/918eDDz443f+pn/qpGI1G+16zsbERP/uzPzvd/8AHPhCPPPLILVsjAAAAAAAAAAAAAAAAAAAAAADAQSOidYulaRrf//3fP91/+eWX43/4H/6HK55fVVX81b/6V2Nra2s692f+zJ+5pWsEAAAAAAAAAAAAAAAAAAAAAAA4aES0boM/9af+VDz00EPT/X/2z/5Z/I2/8TdiOBzOnXfhwoX4i3/xL8Yv/dIvTec+8IEPxB/8g3/wdi0VAAAAAAAAAAAAAAAAAAAAAADgQMgXvYB7wfLycvzIj/xI/MAP/EAMBoOIaEJaP/dzPxff/u3fHsePH4/XXnstfvEXfzG2t7en1x05ciT+9t/+24taNgAAAAAAAAAAAAAAAAAAAAAAwB1LROs2+cAHPhB/7+/9vfhzf+7PxdbWVkREnD17Nv7lv/yXlz3/xIkT8Q//4T+Mhx9++HYuEwAAAAAAAAAAAAAAAAAAAAAA4EBIF72Ae8mHPvSh+Hf/7t/F937v90av17vsOUtLS/En/+SfjJ/92Z+NZ5555javEAAAAAAAAAAAAAAAAAAAAAAA4GDIF72Ae839998fP/IjPxJbW1vxmc98Jl577bW4cOFCrK6uxpNPPhnvf//7Y3V1ddHLBAAAAAAAAAAAAAAAAAAAAAAAuKOJaC3IyspKfPu3f/uilwEAAAAAAAAAAAAAAAAAAAAAAHAgpYteAAAAAAAAAAAAAAAAAAAAAAAAAFwvES0AAAAAAAAAAAAAAAAAAAAAAAAOHBEtAAAAAAAAAAAAAAAAAAAAAAAADhwRLQAAAAAAAAAAAAAAAAAAAAAAAA4cES0AAAAAAAAAAAAAAAAAAAAAAAAOHBEtAAAAAAAAAAAAAAAAAAAAAAAADhwRLQAAAAAAAAAAAAAAAAAAAAAAAA4cES0AAAAAAAAAAAAAAAAAAAAAAAAOHBEtAAAAAAAAAAAAAAAAAAAAAAAADhwRLQAAAAAAAAAAAAAAAAAAAAAAAA4cES0AAAAAAAAAAAAAAAAAAAAAAAAOHBEtAAAAAAAAAAAAAAAAAAAAAAAADhwRLQAAAAAAAAAAAAAAAAAAAAAAAA4cES0AAAAAAAAAAAAAAAAAAAAAAAAOHBEtAAAAAAAAAAAAAAAAAAAAAAAADhwRLQAAAAAAAAAAAAAAAAAAAAAAAA4cES0AAAAAAAAAAAAAAAAAAAAAAAAOHBEtAAAAAAAAAAAAAAAAAAAAAAAADhwRLQAAAAAAAAAAAAAAAAAAAAAAAA4cES0AAAAAAAAAAAAAAAAAAAAAAAAOHBEtAAAAAAAAAAAAAAAAAAAAAAAADhwRLQAAAAAAAADg/9/efYZXWWYLA14JhBIB6SCCYAM9NrChotgbllFU7NjGgl3HYXR0xrGPYxmPBSt2sDs6R/xsqCACNhARURGxABJCL4GEku+Hl+/FTgLZgWyTrff9613vfp6VJzlztiuLN2sDAAAAAAAAAAAAQNYxRAsAAAAAAAAAAAAAAAAAAAAAAICsY4gWAAAAAAAAAAAAAAAAAAAAAAAAWccQLQAAAAAAAAAAAAAAAAAAAAAAALKOIVoAAAAAAAAAAAAAAAAAAAAAAABkHUO0AAAAAAAAAAAAAAAAAAAAAAAAyDqGaAEAAAAAAAAAAAAAAAAAAAAAAJB1DNECAAAAAAAAAAAAAAAAAAAAAAAg6xiiBQAAAAAAAAAAAAAAAAAAAAAAQNYxRAsAAAAAAAAAAAAAAAAAAAAAAICsY4gWAAAAAAAAAAAAAAAAAAAAAAAAWccQLQAAAAAAAAAAAAAAAAAAAAAAALKOIVoAAAAAAAAAAAAAAAAAAAAAAABkHUO0AAAAAAAAAAAAAAAAAAAAAAAAyDqGaAEAAAAAAAAAAAAAAAAAAAAAAJB1DNECAAAAAAAAAAAAAAAAAAAAAAAg6xiiBQAAAAAAAAAAAAAAAAAAAAAAQNYxRAsAAAAAAAAAAAAAAAAAAAAAAICsY4gWAAAAAAAAAAAAAAAAAAAAAAAAWccQLQAAAAAAAAAAAAAAAAAAAAAAALKOIVoAAAAAAAAAAAAAAAAAAAAAAABkHUO0AAAAAAAAAAAAAAAAAAAAAAAAyDqGaAEAAAAAAAAAAAAAAAAAAAAAAJB1DNECAAAAAAAAAAAAAAAAAAAAAAAg6xiiBQAAAAAAAAAAAAAAAAAAAAAAQNYxRAsAAAAAAAAAAAAAAAAAAAAAAICsY4gWAAAAAAAAAAAAAAAAAAAAAAAAWccQLQAAAAAAAAAAAAAAAAAAAAAAALKOIVoAAAAAAAAAAAAAAAAAAAAAAABkHUO0AAAAAAAAAAAAAAAAAAAAAAAAyDqGaAEAAAAAAAAAAAAAAAAAAAAAAJB16tb0Acgeubk5UaeOuWsAQO1Vp05OBbH6BQCo3dQwAEC2Ub8AANlG/QIAZBv1CwCQjdQwAEC2Ub8AANlG/UJtVvZ/n7+2nNLS0tIaPQEAAAAAAAAAAAAAAAAAAAAAAABUkXFyAAAAAAAAAAAAAAAAAAAAAAAAZB1DtAAAAAAAAAAAAAAAAAAAAAAAAMg6hmgBAAAAAAAAAAAAAAAAAAAAAACQdQzRAgAAAAAAAAAAAAAAAAAAAAAAIOsYogUAAAAAAAAAAAAAAAAAAAAAAEDWMUQLAAAAAAAAAAAAAAAAAAAAAACArGOIFgAAAAAAAAAAAAAAAAAAAAAAAFnHEC0AAAAAAAAAAAAAAAAAAAAAAACyjiFaAAAAAAAAAAAAAAAAAAAAAAAAZB1DtAAAAAAAAAAAAAAAAAAAAAAAAMg6hmgBAAAAAAAAAAAAAAAAAAAAAACQdQzRAgAAAAAAAAAAAAAAAAAAAAAAIOsYogUAAAAAAAAAAAAAAAAAAAAAAEDWMUQLAAAAAAAAAAAAAAAAAAAAAACArGOIFgAAAAAAAAAAAAAAAAAAAAAAAFnHEC0AAAAAAAAAAAAAAAAAAAAAAACyjiFaAAAAAAAAAAAAAAAAAAAAAAAAZB1DtAAAAAAAAAAAAAAAAAAAAAAAAMg6hmgBAAAAAAAAAAAAAAAAAAAAAACQdQzRAgAAAAAAAAAAAAAAAAAAAAAAIOsYogUAAAAAAAAAAAAAAAAAAAAAAEDWMUQLAAAAAAAAAAAAAAAAAAAAAACArGOIFgAAAAAAAAAAAAAAAAAAAAAAAFnHEC0AAAAAAAAAAAAAAAAAAAAAAACyjiFaAAAAAAAAAAAAAAAAAAAAAAAAZB1DtAAAAAAAAAAAAAAAAAAAAAAAAMg6hmgBAAAAAAAAAAAAAAAAAAAAAACQdQzRAgAAAAAAAAAAAAAAAAAAAAAAIOsYogUAAAAAAAAAAAAAAAAAAAAAAEDWMUQLAAAAAAAAAAAAAAAAAAAAAACArFO3pg/A2lm5cmWMGDEi3njjjRg3blzMnDkzFi9eHE2bNo3NN988evbsGcccc0w0atSoSnkLCgri2Wefjffffz+mTJkSixcvjmbNmkXbtm2jZ8+eccQRR0SHDh3W6szz5s2L559/Pt57772YNGlSLFiwIJo0aRJt27aN7t27x5FHHhmdO3deq9wAQO1X3fXLueeeG0OHDl2rszzzzDPRtWvXStepXwDg96NLly7Vluvxxx+P7t27r3GNHgwAsK5+rfpFDwYAyLQPP/wwhgwZEmPGjImCgoIoKiqKxo0bR/v27WPHHXeM3r17x+abb17lvPovAECmVHf9ov8CAPwahg0bFq+//nqMGTMmZs2aFcXFxdG8efP4n//5n9h3332jV69ekZ+fX+W8mawzioqK4uWXX4633347Jk6cGPPmzYv11lsv2rRpE127do3evXunVQsBANmpuuuXG264IR5//PG1Osvtt98ehxxySKXr1C8A8Nv3/fffxyGHHBLLli2L888/Py644IIq58jWZ1rUOtR2OaWlpaU1fQiqZsKECXH11VfH+PHj17iuSZMmce2118bBBx+cVt6BAwfGHXfcESUlJatdU6dOnTj33HOjX79+UadOnbTP/PLLL8d1110XCxcuXOO6448/Pi6//PJo0KBB2rkBgNovE/XLPvvsE9OmTVur86TzAKH6BQB+X37NIVp6MABAdfi16hc9GAAgU2bOnBl//vOfY/To0Wtcl5OTE4cffnhcffXVsd5666WVW/8FAMiETNUv+i8AQCZ99dVX8fe//z0+/fTTNa5r1apV/PnPf44//OEPaefOZJ3x3nvvxV//+teYOXPmGtcdcMABcf3118f666+fdm4AoHbLVP1y8sknx4cffrhWZ0pniJb6BQB++1asWBF9+/aNjz/+OCJirYZoZeszLWodskFuTR+Aqhk2bFgcd9xxlQ6giIhYsGBBXHzxxfHEE09Uuvbaa6+Nf/3rX2t8o434+U39rrvuiosvvjjSnb/20EMPRf/+/St9o42IeOqpp+KUU06p9BwAQPbIRP2ycOHCtX54MB3qFwBgbdWvXz/atm272tf1YACA2mZN9YseDACQKT/++GP07t270gEUERGlpaXx8ssvx3HHHRfz58+vdL3+CwCQCZmqX/RfAIBMGjFiRBx//PGVDqCIiCgsLIz+/fvH3//+97R6JZmsM4YMGRJnn312pX+UGRHxxhtvxDHHHBNz585NKzcAULtlsn756quvquGEFVO/AMDvw7XXXpsM0Frb/dn4TItah2yRU5ru/8dQ4z766KM4/fTTU96IevbsGaeffnp06dIl6tevH1988UU8/PDD8fbbbydrcnNz44knnogdd9yxwryDBw+Oa665JonXW2+96NevXxx00EHRpk2bKCgoiNdeey3uu+++WLRoUbLuvPPOiwsvvHCNZx42bFicffbZyRtzXl5enHHGGXH44YdH+/btY968efH222/HPffcE4WFhcm+I444Im6++eaq/YAAgFonU/XLRx99FCeddFISP/7449G9e/dqObP6BQBIV0lJSfTt2zfGjh2b3FvTJ03pwQAANa2q9YseDACQCSUlJXHkkUfGN998k9zr2LFjnHvuudGjR49o2rRpFBQUxFtvvRX33ntvzJs3L1m32267xSOPPLLa3PovAEAmZLJ+0X8BADJl0qRJ0adPnygqKkruNW3aNM4555zYb7/9ok2bNjF79ux49913Y8CAASl/BHnyySfHVVddtdrcmawzJk6cGH369EmePc7JyYnjjjsu+vTpE5tsskksWrQoRo4cGffcc0989913yb7u3bvHo48+Grm5uVX6OQEAtUcm65fp06fH3nvvncQ33XRT9O7du1rOrX4BgN+Hm266KR599NGUe+eff35ccMEFae3P1mda1DpkE0O0skRRUVH06tUrfvrpp4j4+Y3lH//4Rxx33HEVrr/zzjvjnnvuSeKtttoqXnzxxXLrZs2aFfvvv3/yS2XTpk1j8ODBsemmm5Zb+91338VJJ52UvCnm5eXFq6++GhtttFGFZyguLo4DDzwwOXP9+vVj4MCBsdNOO1V4jlNOOSXlAYNBgwatdnAGAFD7Zap+ifj5gcEbbrghiT/88MNYf/311/nM6hcAoCquueaaGDx4cBKffvrp8Ze//KXCtXowAEBtUJX6JUIPBgDIjLI1Rrdu3eKhhx6KRo0alVs7derUOPHEE2PGjBnJvbvvvjv233//cmv1XwCATMlU/VJRbv0XAKA6rFy5Mv7whz/E119/ndzbYostYuDAgdGyZcty6+fPnx9nnnlmjBs3Lrn3wAMPxJ577llubSbrjNLS0ujTp0989tlnEfHzs8e333579OrVq9zaRYsWRb9+/eLDDz9M7t18881xxBFHVJgbAKjdMlm/REQMHTo0zj333CR+6aWXYsstt1znc6tfAOC3b9GiRXHFFVfEG2+8Ue61dIdoZeszLWodso2RbVni8ccfT960IiLOPffc1Q6giIi48MILY4cddkjiCRMmxPjx48utGzhwYMpU5htuuKHCN9qIiE6dOsXdd9+dTPpbtmxZ3HXXXas9w3PPPZdy5j/96U8VvtFGRLRs2TLuu+++yM/PT+7dfvvtq80NANR+mapfIiK+/PLL5Lpdu3bV8vBghPoFAEjfO++8kzKAYquttopLLrlktev1YACAmlbV+iVCDwYAyIyXXnopuc7Ly4vbb7+9wgEUERHt27ePG2+8MeXef/7znwrX6r8AAJmSqfolQv8FAMiMN954I2UARYsWLVY7gCIiYv31148BAwZE8+bNk3u33HJLrFy5stzaTNYZ7777bvJHmRERffv2rfCPMiMiGjVqFHfffXe0bds2uXfXXXfF8uXLV5sfAKi9Mlm/RKT2YPLy8lb7b0hVpX4BgN+2iRMnRu/evSscoFUV2fpMi1qHbGOIVhZYvnx5DBo0KIk33XTT6NevX6X7+vbtmxK/9957KXFJSUm8+OKLSdy5c+fYb7/91piza9euceCBBybxa6+9FosWLapw7TPPPJNcN2vWLI4//vg15u7QoUOccMIJSfzJJ5/Et99+u8Y9AEDtlKn65RerNq+7dOmylqcsT/0CAKRj7ty5cdVVVyVxXl5e3HLLLVGvXr0K1+vBAAA1rar1yy/0YACA6lZcXBwTJkxI4h133DHatWu3xj09evSI1q1bJ/Gqnyj+C/0XACBTMlW//EL/BQDIhLJDPC+77LLVDqD4RcuWLePMM89M4kmTJsXIkSPLrctknbFq7ry8vJTzVGT99dePs88+O4mnTp0ao0aNWuMeAKB2ymT9EpHag9l4440rfWYmXeoXAPhtmjNnTlx77bVx9NFHx/fff5/cX3WAZ7qy+ZkWtQ7ZxhCtLPDhhx/GzJkzk/iss86KvLy8Svftvvvu0apVq9hss81i5513TpkGGBExZsyYmDdvXhIfcsghaZ3n0EMPTa5LSkpi6NCh5db8+OOPKVOf999//7R+qTzssMNS4tdeey2tMwEAtUum6peInwd0TZo0KYm32GKLajmz+gUASNett94as2bNSuJzzjlnjZ9IpQcDANS0qtYvEXowAEBmzJkzJyVu0aJFWvs23HDD1eaI0H8BADInU/VLhP4LAJAZy5cvj48++iiJmzRpktIDWZPDDz88JS5bD2Syzli6dGm8//77SbzzzjtHq1atKs198MEHR506ddaYGwCo3TJZv/xi1SFa1dWDUb8AwG/T+++/HwcccEAMGjQoli9fntzfZZdd4qGHHqpyvmx9pkWtQzYyRCsLDBs2LLlu2LBhysTANWnUqFGMGDEihgwZEk888USceuqpKa+PHj06Je7evXtaeXfeeefIyclJ4uHDh5dbs7a5u3TpEuuvv/4acwMAtV+m6peIiClTpkRJSUkSV1fzWv0CAKTj008/jRdeeCGJO3XqFGedddYa9+jBAAA1aW3qlwg9GAAgM8o+qPfTTz+lta+wsDC5btSoUbnX9V8AgEzJVP0Sof8CAGTGjBkzYvHixUm8/fbbp/XHkxERLVu2jHbt2iXxJ598kvJ6JuuMsWPHptRG6eZu1qxZdO7cOYlXfYYZAMgOmaxfIiIWL14cP/74YxJXVw9G/QIAv02TJk2KhQsXJnHDhg3jiiuuiEceeSSlv5GubH2mRa1DNjJEKwuMGTMmue7WrVs0bNiwWvJ+9dVXyXVOTk7av/g1adIk5ZfKzz//fI25IyK23HLLtHLn5OREly5dkviLL76IFStWpLUXAKg9MlW/RERMnDgxJU63zqiM+gUASMc///nPKC0tTeK//OUvlf5DvR4MAFCT1qZ+idCDAQAyo0WLFtGyZcskHjduXMofLVRk3LhxMXXq1CTu2rVruTX6LwBApmSqfonQfwEAMmPevHkpcfv27au0v0WLFsn1d999F0uWLEniTNYZZXNXZbjFqucoLCyMgoKCtPcCADUvk/VLRMSXX36Z8uxMpnow6hcA+G3JycmJQw89NF555ZU49dRTIzd37cbzZOszLWodspEhWrVcaWlpyptLdf1yFhHx7bffJtetW7eu0nCLDh06JNdTp04t94Y4ZcqU5DonJydlfVVyFxcXx4wZM9LeCwDUvEzWLxE/N69/kZ+fHxtttFF8+eWXcfPNN0fv3r1jp512iq233jp69uwZffv2jYcffjjmzp1baV71CwBQmTfeeCPGjh2bxLvuumvss88+le7TgwEAasra1i8RejAAQOYcdthhyfXy5cujf//+UVRUVOHaOXPmxBVXXJFy7+STTy63Tv8FAMikTNQvEfovAEBmLFu2LCWu6gfh1qlTJ7leuXJl/PTTT0mcyTpj1f5ORESnTp3Szl120Mb333+f9l4AoOZlsn6JSO3BRPw8AOKHH36I//3f/43jjz8+unfvHltvvXXsvvvucdxxx8U999wT06dPr/Trql8A4LcpLy8vDjvssHjxxRfjtttuq/KAz7Ky9ZkWtQ7ZqG5NH4A1KygoiOLi4iTecMMNk+vCwsIYMmRIvPXWW/Hjjz/G7Nmzo2nTprHJJpvEPvvsE0cffXQ0atRotbkLCwuT69atW1fpXKt+qtby5ctj1qxZ0aZNm+TezJkzk+tmzZql9Ynmv2jVqlVKPGPGjJTvGwCo3TJZv0SkNq+bNWsW5513XgwdOrTCcxQUFMQHH3wQAwYMiPPPPz9OPfXU1eZVvwAAa1JaWhp33nlnyr1LL700rb16MABATViX+iVCDwYAyJxzzjknXnvtteQPGMaMGRO9e/eOfv36RY8ePaJp06Yxe/bsGD58eNx9990pD+mdfPLJ0bNnz3I59V8AgEzKRP0Sof8CAGTG+uuvnxLPnz+/SvvnzJmTEhcUFMQmm2wSEZmtM1bNHVG1Hk9FuQGA7JHJ+iWi/CDzW265JV566aVYuXJlyr7CwsIoLCyMsWPHxv333x+nnXZaXHjhhSlDulalfgGA36YTTzwxTjzxxGrLl63PtKh1yEaGaNVyZd8MWrZsGStXrozHH3887rjjjliyZEnK67/8kvbBBx/E/fffH1dccUUcfvjh5fIWFxfH4sWLk7jsL5mVKbt+3rx5KW+2q/7SWdXcTZo0SYmr+gsvAFCzMlW//GLV5vW0adNi2rRplZ5p4cKFcdNNN8XEiRPjxhtvrLCBrX4BANZk6NChMWnSpCTea6+9Ytttt610nx4MAFBT1rZ++YUeDACQKU2bNo1HH300zj333Jg8eXJE/PzJmP3791/tnvz8/LjooosqHBah/wIAZFp11y+/0H8BADKhbdu2Ubdu3Vi+fHlEREyYMCHtvQsXLowff/wx5d6qfZdM1hmr5q5Xr140bNiw2nIDALVbJuuXiNQeTFFRUbz44ouV5i0uLo777rsvPv/887jrrrsiPz+/3Br1CwBQmWx+pkWtQzbKrekDsGbz5s1LiRs0aBB/+tOf4qabbio3gKKsOXPmxJ///Oe4++67y71W9pfA9dZbr0rnKvsLX9l8RUVFGcsNANRumapfIn6eXDx79uxy93v27BkDBgyIYcOGxfjx42P48OHx73//O3bYYYeUdS+99FLccsstFeZWvwAAa/Lggw+mxOedd15a+/RgAICasrb1S4QeDACQeZ06dYqXXnoprrjiigr/6GBVjRs3jttuu221Ayj0XwCAX0N11i8R+i8AQObk5+fHVlttlcRffPFFMgi0Mq+99lqUlpam3CsuLk6uM1lnqGEA4Pcrk/XLypUrUz6E7hfdunWL2267LYYOHRrjx4+PkSNHxr333ht77713yroRI0bE5ZdfXuHXVr8AAJXJ5mda1DpkI0O0armybwYDBgyIV199NSIiWrZsGZdffnm8/vrrMX78+Bg9enQ88MADsfvuu6fsueuuu+Kll15Kubds2bKUOC8vr0rnqlu3bkr8y4TnX5SUlGQsNwBQu2WqfolI/fSHiJ8HdN16663x4IMPxr777htt27aNevXqRZs2baJXr14xePDg6N+/f+Tk5CR7HnnkkRg1alS53OoXAGB1Pv/88/j000+TePvtt49tt902rb16MABATViX+iVCDwYAyLylS5fGwIED48EHH0x56K4iCxcujH79+sWZZ54ZBQUF5V7XfwEAfg3VWb9E6L8AAJl10EEHJdelpaVx8803lxsuUdaiRYvi/vvvL3d/1d5LJuuMVXOXXVuZsmdRwwBA9slU/TJlypRYsmRJEufm5sbll18eTz/9dBx66KHRvn37qFevXrRo0SL22WefuO++++LWW29NqS9ef/31eP7558t9HfULAFCZbH6mRa1DNjJEq5Yr+6b4yx887LDDDvHKK6/EaaedFp06dYp69epFs2bNYs8994yBAwdG//79U/Zdc801MWfOnCResWJFyuur/qN6OnJzU/+ns3LlypR41fzVnRsAqN0yVb9E/Dyt+NBDD42uXbtGy5Yt44YbbojDDjtsjec544wz4rTTTku5d+edd5Zbp34BAFbnqaeeSolPOeWUtPfqwQAANWFd6pcIPRgAILNmzJgRxxxzTNxxxx0xa9asiIjYY4894r777otRo0bF+PHj45133okbb7wxNttss2Tf8OHD4+ijj47vvvsuJZ/+CwCQadVdv0TovwAAmdWnT59o2rRpEg8bNiyuvfba1f63fenSpXHJJZfEjz/+WO61evXqJdeZrDNWzV12bWXKnkUNAwDZJ1P1S0TEEUccETvssEO0adMmLrnkknL9lbIOO+ywuPzyy1PuDRgwoNzwB/ULAFCZbH6mRa1DNjJEKwttuOGGce+990azZs1Wu+aMM86IY445JomLioriscceS+I6deqkrK/qm07ZN+uyv1SuOkmwunMDANmnOuqXiJ8Hcd12223xzDPPxPvvvx+HHnpoWl//wgsvTGmmjxkzJqZOnZqyRv0CAFRk6dKl8eqrryZxq1atYr/99kt7vx4MAPBrW9f6JUIPBgDInKVLl8Yf//jH+PrrryPi54fm/vGPf8RDDz0Ue++9dzRv3jzq1asX7dq1i6OOOipefvnllH8/mjlzZvTr1y/l0y71XwCATMpE/RKh/wIAZFajRo3i+uuvT7k3ePDgOOqoo2LIkCFRWFgYy5YtixkzZsTzzz8fhx12WAwfPjwiIrp27Zqyb9V6IJN1hhoGAH7fMlW/bLrppnHzzTfH4MGDY/jw4XHWWWeldZ4TTzwxNt100ySeNm1afPLJJylr1C8AQGWy+ZkWtQ7ZyBCtWq6iN4Pzzjsv1l9//Ur3XnjhhZGXl5fEb775ZnLdsGHDlLXFxcVVOlfZ9WXP2aBBg4zlBgBqt0zVL+uiYcOGcdBBB6XcGzVqVEqsfgEAKvL2229HUVFREh922GEpjeDK6MEAAL+2da1f1oUeDABQmQcffDAmTZqUxOecc04cf/zxq11ft27duO6662KvvfZK7n377bcxaNCgJNZ/AQAyKRP1y7rQfwEA0rX//vvHZZddFjk5Ocm9L774Ii699NLYfffdY+utt44999wzrrzyyvjhhx8iIuLYY4+NY489NiXPeuutl1xnss5QwwAAmahf1lZOTk4cccQRKff0YACAqsrmZ1rUOmQjQ7RqubK/rNWpUycOPPDAtPa2bt06tt122ySePHlyzJkzJyIiGjdunDK1cNGiRVU6V9n1q36qVUSkDMmo7twAQO2WqfplXW233XYpcdlP4VS/AAAVee2111LiI488skr79WAAgF/butYv60oPBgBYnRUrVsTTTz+dxC1atIhzzjmn0n05OTlx1VVXpQwGfeaZZ5Jr/RcAIFMyVb+sK/0XACBdZ555Ztx+++3RsmXLNa7Lz8+P6667Lq699tpYsGBBymutWrVKrjNZZ6yae/HixVFaWlptuQGA7FHd9cu6qEoPRv0CAFQkm59pUeuQjQzRquVatGiRErdr1y4aNWqU9v4uXbqkxDNnzoyIn/+Bvnnz5sn9qg6nmDVr1hrPueovmVXNPXv27DXmBgBqt0zVL9V9rrlz56bE6hcAoKxly5bFiBEjknjjjTeOzp07VymHHgwA8GuqjvplXenBAACrM2nSpJRexz777JPyqZVr0qFDh+jWrVsST5kyJcml/wIAZEqm6pd1pf8CAFRFr1694vXXX48rr7wydtlll2jVqlXUrVs3GjduHN26dYuLL7443nrrrejTp09ElH9ut3Xr1sl1JuuMVXOvWLEi5s+fX225AYDsUp31y7ooO8hrTT0Y9QsAUJFsfqZFrUM2MkSrlttwww1T4oYNG1Zpf5MmTVLiVScqt2/fPrkuKCioUt5V17do0aLcuVY99+LFi6s0tXDGjBnJdU5OTrRr165KZwMAalYm65fqVK9evZRY/QIAlPXJJ5/E4sWLk3jfffddqzx6MADAr6W66pfqpAcDAPzihx9+SIk33XTTKu3fYostUuLp06cn1/ovAEAmZLJ+qU76LwBAZRo1ahR9+/aNxx57LEaMGBETJkyIjz/+OJ5++uno169fyh8yfvnll8l169atU57rzWSdsWp/p+z6quSuKBcAkH2qq35ZF6WlpSlx2R6M+gUASEe2PtOi1iEbGaJVyzVr1ixlWnFVP4WqqKgoJV71TXHVTx6fP39+2rlXrlwZ3333XRJvvvnm5daU/VTzyZMnp5U7IuLbb79Nrtu3bx/5+flp7wUAal4m65clS5bE1KlTY9y4cTF27Ngq5S07ubhZs2YpsfoFAChr1KhRKfHee++9Vnn0YACAX0t11S96MABAJhQXF6fEdevWrdL+sv/tLykpSa71XwCATMhk/aL/AgDURitWrIjPP/88ibfccsuU1zNZZ5Tty6y6viq58/LyomPHjmnvBQCyW2X1S0lJSfz0008xfvz4GD16dJVyV9aDUb8AAOnI1mda1DpkI0O0ssB2222XXM+dO7dKgyh+/PHHlLhDhw7J9bbbbpvy2vjx49PKOWnSpJThFl27di23Zm1zL1y4MKZMmZLEq37vAED2yET9UlRUFN26dYt99903+vTpExdffHGVzlS2Htlqq61SYvULAFDWmDFjkuuGDRuu9X/n9WAAgF9LddQvejAAQKaU/cOC6dOnV2l/2X9vWvUTxvVfAIBMyFT9ov8CAPxali5dGjNnzkx7/ccffxzz589P4t122y3l9UzWGWXvpZu7tLQ0Ze3WW29d5eGnAEDtUd31y5577hl77bVXHH300fHHP/6x3ND0NamsB6N+AQDSka3PtKh1yEaGaGWBnj17JtelpaXx2muvpbWvpKQk5dOpOnXqFE2bNk3iHj16pKx/991308pbdl3ZPBERO+ywQzRs2LDKuYcNGxYrV65M4t133z2tfQBA7ZKJ+iU/Pz9lIOiMGTPim2++SSvvsmXLYujQoUmcl5cX22+/fcoa9QsAsKoVK1akNG232WabyMvLW6tcejAAwK+huuoXPRgAIFM23njjlHjEiBFV2v/xxx8n1/n5+bHhhhsmsf4LAJAJmapf9F8AgEy7+eabo1u3brHddtvFgQceGMuXL09r38svv5xc5+TkxD777JPyeibrjA4dOsRGG21U5dyffvppzJ07d425AYDaL1P1S5cuXZLrZcuWxejRo9M+0+uvv54Sd+/ePSVWvwAA6cjWZ1rUOmQjQ7SywIEHHhj169dP4kceeSSWLFlS6b6XXnop5s2bl8QHHHBAyusbbLBBdOvWLYlfeeWVlDejipSUlMQzzzyTxO3atYsdd9yx3Lp69erFvvvum8Tvv/9+fPvtt5We+cknn0yuGzZsGPvvv3+lewCA2idT9ctee+2VEg8aNCit8zz77LNRUFCQxAcffHA0adIkZY36BQBY1ZQpU1Lql86dO691Lj0YAODXUJ31ix4MAJAJG264YWy++eZJ/PXXX8eoUaPS2vvOO+/E999/n8S77rpr1KtXL4n1XwCATMhk/aL/AgBkUrt27aKoqCgiIoqKimLkyJGV7vnhhx/iv//9bxL36NEj5Q8lIzJfZ/Tq1Su5/vbbb9M69xNPPJFc5+TkxGGHHVbpHgCg9slU/bK2PZh33303PvvssyTeYYcdYrPNNiu3Tv0CAFQmm59pUeuQbQzRygLNmjWLo48+OomnTp0a1113Xcpkv7K+//77uOWWW5I4Ly8vTjjhhHLr+vbtm1wvWrQo/vrXv64x7w033BDTpk1L4pNOOilycyv+n9HJJ5+cXK9cuTL69+8fS5cuXW3uBx54IMaOHZvEvXv3jkaNGq12PQBQe2WqfjnmmGNSao9nn302PvroozWeZdy4cfGvf/0rJe+ZZ55Z4Vr1CwDwi6+//jol3mSTTdYpnx4MAJBp1Vm/6MEAAJmyah0QEXHllVfG7Nmz17inoKAg/v73v6fcO/3008ut038BADIhU/WL/gsAkEn77bdfSq0xYMCANfZJioqK4sILL4xly5ZFxM9/4HjuuedWuDaTdcaxxx4beXl5Sfy3v/0t5syZs9rcQ4YMiSFDhiTxnnvuGR07dlztegCg9spU/XL44YdHfn5+Eg8bNiz+7//+b41n+f777+PKK69MudevX78K16pfAIB0ZOszLWodso0hWlniggsuiNatWyfxCy+8EBdeeGHMmDGj3NpRo0bFiSeeGAsWLEjunXHGGbHBBhuUW3vQQQfFNttsk8Rvv/12XHzxxSl7IyKKi4vjH//4Rzz99NPJvY022qjcwwGr6tq1axx44IFJPH78+PjjH/+Y8glYERErVqyIe+65J26//fbk3vrrrx/nnXfeanMDALVfJuqXzp07R58+fZJ4+fLlcfbZZ8f//d//RWlpacra0tLSeOGFF+LUU09N+YXvnHPOic6dO1d4ZvULAPCL7777LiVu06bNOuXTgwEAMq066xc9GAAgU44++ujYaqutknjatGnRu3fvGDFiRIXr33///ejTp0/MnDkzuXfooYdW+Oma+i8AQCZkqn7RfwEAMmmDDTaIgw46KInHjh0b/fv3j8WLF5dbO3HixDj22GNj4sSJyb0+ffrEDjvsUGHuTNYZ7dq1S+nRTJ06NU455ZSYPHlyubXPPvtsXH755Umcl5cXl1122WpzAwC1W6bql+bNm5cbgHXFFVfEY489FsuXLy+3fujQoXHCCSfErFmzknu9e/eOPfbYo8Jzq18AgHRk6zMtah2yTU5p2X9ppdaaMGFCnH766TFv3rzkXl5eXuy2226xySabxIoVK2Ls2LExfvz4lH0777xzPPzwwykT/lY1ZcqUOP7442Pu3LnJvfz8/Nhnn32iXbt2UVhYGO+8807K161fv34MGjQo5Y26InPmzIljjz02fvjhh+RevXr1Yq+99oqOHTvG/PnzY/jw4SnDNHJzc+Puu++OfffdN50fCwBQi2WiflmyZEmcdtppKZOOIyI6deoU3bt3j2bNmkVhYWGMGjUqpk+fnrLmyCOPjBtvvHG1E5cj1C8AwM/+9re/xbPPPpvEzz77bGy33XbrlFMPBgDIpOquX/RgAIBMmTFjRvTp06fcw3qdOnWK7bffPlq1ahXz58+PTz75JCZNmpSyZptttoknn3wyGjRoUGFu/RcAIBMyVb/ovwAAmVRQUBBHHnlkzJ49O7nXtGnT2GOPPWLDDTeMefPmxVdffVWuFtlxxx3jkUceiXr16q02dybrjOLi4jjppJPis88+S+7VqVMnevToEZtvvnkUFRXF6NGjY8qUKSn7/va3v8VJJ5205h8KAFCrZap+WblyZVx00UXxxhtvpNxv27Zt9OjRI1q1ahVz586Njz76KL799tuUNT169Ih777036tevv9pzq18A4Pdj6tSpKb2N888/Py644IK09mbrMy1qHbKJIVpZZtKkSXHeeefF999/n9b6vffeO26//fbIz89f47ovv/wy/vjHP0ZhYWGlORs1ahR33XVX7Lbbbmmd4aeffopTTz213CegVyQvLy+uv/76OOKII9LKDQDUfpmoXxYsWBB/+ctf4u23304rZ25ubpx88slx+eWXr/HhwV+oXwCA8847L956660kfuWVV2LzzTdf57x6MABApmSiftGDAQAyZcaMGXHBBRekPGBXmQMOOCD++c9/xnrrrbfGdfovAEAmZKp+0X8BADLpyy+/jLPOOqvcMNDV6dWrV9x0002rHWC+qkzWGQsXLowzzzyz3ICMiuTm5sYll1wSZ511Vlq5AYDaLVP1S0lJSVx33XUpH1BXmUMPPTRuuOGGtGoj9QsA/D6syxCtiOx9pkWtQ7YwRCsLlZSUxCOPPBJPP/10uU+W+sVmm20WZ511VvzhD39IO++CBQvijjvuiJdeeikWL15c7vW8vLw44IAD4rLLLot27dpV6czFxcVx3333xeDBg1MmH/4iJycnevbsGZdddll07ty5SrkBgNovU/XLq6++Gg899FBMmDChwtfz8vJi1113jQsuuCC23XbbKp1Z/QIAv2+nnXZajBw5MonffPPN2Gijjaoltx4MAJAJmaxf9GAAgExYtmxZvPzyy/Hwww/H5MmTK1yTk5MTXbt2jbPOOiv22WeftHPrvwAAmZDJ+kX/BQDIlHnz5sWdd94Z//nPf6KoqKjCNd26dYuzzz479t577yrlzmSdsWLFinjyySdj4MCBqx2iscMOO8Sll14aO+64Y5VyAwC1Wybrl/fffz/uv//++PDDD6OiP6/Pzc2N7bffPs4+++zo2bNnlXKrXwDgt29dh2hFZO8zLWodsoEhWlnu888/j2+++SZmzZoVK1eujFatWsU222wTm2222VrnLCkpiQ8//DCmTp0a8+bNiwYNGsRGG20U22+/fTRt2nSdzrtixYr45JNP4vvvv485c+ZEvXr1YoMNNojtt98+WrduvU65AYDskIn6paCgIMaMGROFhYVRVFQUzZo1i9atW8cOO+wQTZo0Wafzql8AgEzRgwEAso0eDACQKdOmTYtx48bFrFmzYvHixdGkSZOkzmjevPla59V/AQAyJVP1i/4LAJApS5YsiU8//TS+/fbbWLBgQTRo0CDatGkTXbt2rfIfZJaVyTqjtLQ0xo8fH5MmTYrZs2dHnTp1onXr1tG1a9fo0KHDOuUGAGq3TNYvc+bMiTFjxkRBQUEsXLgw6e1st9120apVq3XKrX4BANKRrc+0qHWozQzRAgAAAAAAAAAAAAAAAAAAAAAAIOvk1vQBAAAAAAAAAAAAAAAAAAAAAAAAoKoM0QIAAAAAAAAAAAAAAAAAAAAAACDrGKIFAAAAAAAAAAAAAAAAAAAAAABA1jFECwAAAAAAAAAAAAAAAAAAAAAAgKxjiBYAAAAAAAAAAAAAAAAAAAAAAABZxxAtAAAAAAAAAAAAAAAAAAAAAAAAso4hWgAAAAAAAAAAAAAAAAAAAAAAAGQdQ7QAAAAAAAAAAAAAAAAAAAAAAADIOoZoAQAAAAAAAAAAAAAAAAAAAAAAkHUM0QIAAAAAAAAAAAAAAAAAAAAAACDrGKIFAAAAAAAAAAAAAAAAAAAAAABA1jFECwAAAAAAAAAAAAAAAAAAAAAAgKxjiBYAAAAAAAAAAAAAAAAAAAAAAABZxxAtAAAAAAAAAAAAAAAAAAAAAAAAso4hWgAAAAAAAAAAAAAAAAAAAAAAAGQdQ7QAAAAAAAAAAAAAAAAAAAAAAADIOoZoAQAAAAAAAAAAAAAAAAAAAAAAkHUM0QIAAAAAAAAAAAAAAAAAAAAAACDrGKIFAAAAAAAAAAAAAAAAAAAAAABA1jFECwAAAAAAAAAAAAAAAAAAAAAAgKxjiBYAAAAAAAAAAAAAAAAAAAAAAABZxxAtAAAAAAAAAAAAAAAAAAAAAAAAso4hWgAAAAAAAAAAANQqs2bNil133TW6dOkS559/fk0fZ52UlpbGMcccE126dIkDDzwwlixZUtNHAgAAAAAAAACA34yc0tLS0po+BAAAAAAAAAAAQCZ06dIlY7mPPPLI+Oc//xkffPBB9O3bN7l/0003Re/evTP2dX8PzjrrrBg2bFjUq1cvXn311ejQoUNNH2mdjB07No4//vgoLS2N4447Lq655pqaPhIAAAAAAAAAAPwm5Nb0AQAAAAAAAAAAAOAXzzzzTAwbNiwiIvr27Zv1A7QiIrp16xYHH3xwREQ8/fTTMXz48Bo+EQAAAAAAAAAA/DYYogUAAAAAAAAAAECtMGfOnLj11lsjIqJp06Zxzjnn1PCJqs+ll14aeXl5ERFx7bXXRnFxcQ2fCAAAAAAAAAAAsl/dmj4AAAAAAAAAAABApnz11VeVrvnggw+ib9++SbzzzjvHE088kcljsRq33HJLLFiwICIizj777GjcuHENn6j6dOjQIY499th48skn48cff4wHHnggLrjggpo+FgAAAAAAAAAAZLWc0tLS0po+BAAAAAAAAAAAQE0xRKt2mDhxYhx55JFRWloazZs3j3feeScaNGhQ08eqVgUFBbHffvtFSUlJ1K9fP956661o3bp1TR8LAAAAAAAAAACyVm5NHwAAAAAAAAAAAADuuuuu+OUzIfv06fObG6AVEdGmTZs4+OCDIyKiuLg4HnjggRo+EQAAAAAAAAAAZDdDtAAAAAAAAAAAAKhREydOjKFDhyZx7969a/A0mbXq9/bss8/GzJkza/A0AAAAAAAAAACQ3QzRAgAAAAAAAAAAoEY98cQTyfVOO+0UHTt2rMHTZFb37t2jQ4cOERFRXFwczz77bA2fCAAAAAAAAAAAslfdmj4AAAAAAAAAAABANvvggw+ib9++SXzTTTdF7969y63r0qVLcv34449H9+7dY+XKlfHee+/FSy+9FF988UUUFBRE/fr1o23btrHLLrvEcccdFxtvvHFKnmXLlsVbb70VL7/8cnz99dcxc+bMyM/Pj06dOkXPnj3jxBNPjGbNmlXpexgxYkS8/fbb8fHHH0dhYWEsXLgwmjZtGm3bto3ddtstDj744Nhyyy2r+JNJz8KFC+PVV19N4gMOOKDSPSeffHJ8+OGHERFxzjnnxCWXXBIREd98803897//jREjRsSMGTNiwYIF0bx589hkk01i7733jiOPPDKaNGmS1rlWrFgRw4YNizfffDPGjx8fM2bMiCVLlkSTJk2iWbNmsfXWW8euu+4a+++/fzRq1Cjt7zcnJyf233//ePjhhyMi4rnnnot+/fpFnTp10s4BAAAAAAAAAAD8zBAtAAAAAAAAAACAGjB9+vT4y1/+kgyD+sWSJUti3rx58eWXX8aTTz4ZV199dfTp0yciIqZMmRJ/+tOfYsKECSl75s+fH+PGjYtx48bFk08+GXfffXfsuOOOlZ7hs88+i+uvvz7GjRtX7rXCwsIoLCyM8ePHxwMPPBC9evWKK6+8Mlq0aLEO33V5r732WixZsiSJ99hjjyrnKCkpif/93/+NRx55JFasWJHyWkFBQRQUFMSoUaNiwIABceWVV8bhhx++xnwTJ06MP//5zzFp0qRyr82ZMyfmzJkTkydPjpdffjluuOGGuPjii+Okk05K+7w9evRIhmjNmDEjRo4cuVbfNwAAAAAAAAAA/N7l1vQBAAAAAAAAAAAAfm9++umnOPbYY8sN0Cpr+fLl8be//S3eeeedmDx5chx77LHlBmiVNXfu3Dj33HNj+vTpa1w3ZMiQOPHEEyscoFVWaWlpDBkyJPr06ROTJ0+udH1VDB06NLlu3759bLzxxlXaX1paGpdcckk89NBD5QZolTVv3rzo379//L//9/9Wu2bChAlxwgknVDhAqyILFy6M6667Lu644460z7zTTjtFgwYNknjVnwEAAAAAAAAAAJA+Q7QAAAAAAAAAAAB+Zddee23MnDkzIiIOPPDAeOyxx2L06NHx6aefxqBBg2LHHXdMWX/TTTfFmWeeGfPnz4/8/Pw4//zzY8iQITF+/Ph4//3348Ybb4wWLVok6+fPnx8PPvjgar/+yJEj47LLLouSkpLk3h577BEDBgyIkSNHxvjx42P48OFx6623xlZbbZWsmTp1anKO6lBSUhIjR45M4m233bbKOZ5++ul46623IiJis802ixtvvDHefffd5Hu4/vrrY8MNN0zWl5aWxg033BBLliwpl6u0tDT69+8fRUVFERGRm5sbxx9/fDz11FPx0UcfxYQJE2L48OHx2GOPxb777puy98EHH4wpU6akdeb69evHFltskcTDhg2r8vcNAAAAAAAAAAAYogUAAAAAAAAAAPCrW7x4ceTm5sb1118fd955Z+yyyy7RrFmzaNiwYey4447x8MMPR8eOHZP133//fUybNi2aN28ezz77bFxwwQWx2WabRb169aJly5Zx1FFHxZNPPhn16tVL9rz22msVfu158+bFZZddFitXroyISM7x0EMPxb777hstWrSIevXqRZs2beKwww6L559/Pk477bRk/7Rp0+Lvf/97tfwcJk6cGMXFxUm8+eabVznHLwO9evfuHf/5z3/iqKOOig022CD5Ho455ph4/vnno1OnTsmewsLCeO+998rl+vDDD+Obb75J4iuuuCL+8Y9/xPbbbx9NmjSJunXrRps2bWKXXXaJAQMGxJlnnpmsXb58eQwePDjtc3fu3Dm5nj59ehQUFFTl2wYAAAAAAAAAAMIQLQAAAAAAAAAAgBpxxBFHxDHHHFPha/Xr14/jjz++3P2rr756tYOmNtlkkzjggAOSeM6cOTF9+vRy6wYNGhSzZ89O4ksuuWS154j4ecjW5ZdfHgceeGBy7/XXX4/Jkyevdk+6Pvvss5R41cFSVbHlllvGddddlzJEbFXNmzePSy+9NOXe6NGjy62bOHFiSrymn0tExMUXXxzNmjVbY87VKft/x7I/CwAAAAAAAAAAoHKGaAEAAAAAAAAAANSAfv36rfH1bbfdNiVu06ZNypCsinTp0iUlnjNnTkpcWloagwcPTuLWrVvHqaeemsZpIy666KKUPE899VRa+9ZkypQpKfFmm222VnlOPvnkqFu37hrX9OjRI3JycpK4oKCg0rxfffXVGl+vW7du3HbbbfHQQw/F66+/Hi+++GJ6B47yQ7TK/iwAAAAAAAAAAIDKGaIFAAAAAAAAAADwK9tggw1io402WuOaFi1apMTdunWL3Nw1P/LVtGnTlLioqCgl/vrrr2PWrFlJvOeee0a9evXSOHHEpptuGp06dUriDz74IK19azJ16tSUuOz3nK6dd9650jWNGjWK9ddfP4mXLFlSbk3nzp1T4osvvjiGDx8epaWlq83bo0eP2GOPPaJTp06Rl5eX9pnLfq9lfxYAAAAAAAAAAEDlDNECAAAAAAAAAAD4lXXs2LHSNXXr1k2JN9hggyrvKTv8aezYsSlx+/btK825qi5duiTXkyZNikWLFlVpf1mzZ89OrnNycmK99darco769etHhw4d0lrbsGHD5Hr58uXlXt9ll11SBoX99NNPceaZZ0bPnj3jr3/9a7z66qsxZ86cKp+xIo0aNUqJqysvAAAAAAAAAAD8ntStfAkAAAAAAAxLsLEAAAs/SURBVAAAAADVqXnz5lXek5+fv85fd8aMGSnxv//97/j3v/+9VrlKS0tj9uzZ5YZBVcWSJUuS6/z8/MjNrfrnQlbl66+av+yAsV9ev/322+Okk06KoqKi5P7MmTPjhRdeiBdeeCFycnLif/7nf2L33XePPffcM7bffvvIycmp8rkbN26cEq/6swAAAAAAAAAAANJT9SeOAAAAAAAAAAAAWCf16tWr8p61GdRU1oIFC9Y5x6rmz5+/TvtLSkqS67UdEtagQYN1OkNZW221VTz//POx0047Vfh6aWlpTJgwIe6///444YQTomfPnnHHHXfEokWLqvR1yn6/q/4sAAAAAAAAAACA9BiiBQAAAAAAAAAA8CurjoFYa2P58uXVmm/p0qXrtH/VAVjLli1b1+NUm0033TSefPLJeOGFF+KMM86IjTfeeLVrZ86cGffee28cdNBB8fXXX6f9NYqLi1Pi6h4GBgAAAAAAAAAAvwd1a/oAAAAAAAAAAAAA/DqaNGmSEj/wwAOx55571tBpIvLz85PrJUuW1Ng5VmfrrbeOrbfeOvr37x9Tp06N0aNHxwcffBCjRo2KwsLClLWFhYVx+umnxxtvvJHyfa1O2QFk6ewBAAAAAAAAAABS5db0AQAAAAAAAAAAAPh1tGjRIiWeO3duDZ3kZ82bN0+ui4uLY/HixTV4mjVr3759HH300XHLLbfEiBEj4sUXX4wTTzwx6tSpk6wpLCyM5557Lq18c+bMSYlX/VkAAAAAAAAAAADpMUQLAAAAAAAAAADgd2KbbbZJiceNG1el/VOmTImCgoJYuXJltZynY8eOKfFPP/1ULXnXRVFRUXzxxRcxefLkNa7baqut4u9//3tcf/31Kfc/++yztL7O9OnTU+KyPwsAAAAAAAAAAKByhmgBAAAAAAAAAAD8Tmy77bbRsGHDJH7zzTejpKQkrb2LFi2KY445Jnr27Bnbbrtt9OrVK4qLi9fpPBtvvHFK/OOPP65TvnWxZMmS2GuvvaJbt25x5JFHxh133JHWvl69eqXEs2bNSmvf1KlTU+KyPwsAAAAAAAAAAKByhmgBAAAAAAAAAAD8TtSrVy969+6dxIWFhXHvvfemtffuu++OhQsXRkTEsmXLYuONN4769euv03m22WablHjixInrlG9dNGzYMJo2bZrE7777bhQUFFS6b9q0aSnxBhtskNbX++KLL5LrnJyccj8LAAAAAAAAAACgcoZoAQAAAAAAAAAA/I6cfvrp0aBBgyS+995749FHH13jnueeey5lTU5OTpx77rnrfJYtt9wyGjdunMSrDpaqCUcddVRyXVJSEpdeemksXrx4teuXLVsWN954Y8q9vffeO62vter3utlmm0Xz5s2reFoAAAAAAAAAAMAQLQAAAAAAAAAAgN+R9u3bxzXXXJPEpaWlcdNNN8UJJ5wQr776ahQUFERJSUlMnz493n333TjttNPiqquuitLS0mTP6aefHltttdU6nyU3Nze6d++exB9//HGsXLlynfOuraOPPjo22mijlPMcfvjhMXjw4Pjuu++iuLg4li1bFj/99FO88sor0adPnxgxYkSyfpttton999+/0q+zcOHC+PLLL5N41113rd5vBAAAAAAAAAAAfifq1vQBAAAAAAAAAAAA+HUdccQRMWfOnLjllluSoVWffPJJfPLJJ5XuPfzww+NPf/pTtZ2lV69e8dZbb0VExNy5c2PChAmxzTbbVFv+qmjYsGHcfvvtcdppp8XChQsjImLq1KkpQ8dWp2PHjnHvvfdGbm7ln205evToWLFiRRIfcsgha39oAAAAAAAAAAD4Hav8aR0AAAAAAAAAAAB+c04//fQYOHBgdO7cOa31jRs3jquuuir+9a9/RZ06dartHPvss0/k5+cn8bBhw6ot99rYZpttYtCgQbH11luntT4nJyd69+4dTz31VLRq1SqtPe+++25yvdFGG0XXrl3X4qQAAAAAAAAAAEDdmj4AAAAAAAAAAAAANWO33XaL//73vzFs2LAYNmxYjBkzJgoLC2PBggWRl5cXzZs3jy233DL22GOP6NWrVzRu3Ljaz9CwYcM4/PDD4+mnn46IiFdeeSXOP//8av86VdGlS5d47rnn4oMPPojXX389JkyYEFOnTo1FixZFbm5utGjRItq1axe777577L///rHpppumnbukpCTeeOONJO7Tp08mvgUAAAAAAAAAAPhdyCktLS2t6UMAAAAAAAAAAADw+/Xtt99Gr1694pfH2V544YXYeuuta/hUmfHmm28mQ8Ly8/Nj2LBh0aRJkxo+FQAAAAAAAAAAZKfcmj4AAAAAAAAAAAAAv2+bbLJJ7L333kn81FNP1eBpMmvV761Pnz4GaAEAAAAAAAAAwDowRAsAAAAAAAAAAIAad9FFF0VOTk5ERLzyyisxd+7cGj5R9Zs8eXKMHDkyIiLy8/PjrLPOquETAQAAAAAAAABAdjNECwAAAAAAAAAAgBq3xRZbxCGHHBIREUuXLo1BgwbV8Imq38CBA6O0tDQiIk455ZRo0aJFDZ8IAAAAAAAAAACyW07pL0/kAAAAAAAAAAAAQA2aMWNG9OrVKxYvXhyNGzeOt99+O5o0aVLTx6oWP/zwQxx88MGxfPnyaNeuXQwZMiTy8/Nr+lgAAAAAAAAAAJDVcmv6AAAAAAAAAAAAABAR0bZt27jooosiImLhwoUxcODAGj5R9bn77rtj+fLlERFx1VVXGaAFAAAAAAAAAADVwBAtAAAAAAAAAAAAao2TTz45dt5554iIePTRR2PatGk1fKJ199lnn8V///vfiIj4wx/+EPvuu28NnwgAAAAAAAAAAH4bDNECAAAAAAAAAACg1sjNzY1bb701mjVrFkuXLo1//vOfNX2kdVJaWhrXX399lJaWRseOHePqq6+u6SMBAAAAAAAAAMBvRk5paWlpTR8CAAAAAAAAAAAAAAAAAAAAAAAAqiK3pg8AAAAAAAAAAAAAAAAAAAAAAAAAVWWIFgAAAAAAAAAAAAAAAAAAAAAAAFnHEC0AAAAAAAAAAAAAAAAAAAAAAACyjiFaAAAAAAAAAAAAAAAAAAAAAAAAZB1DtAAAAAAAAAAAAAAAAAAAAAAAAMg6hmgBAAAAAAAAAAAAAAAAAAAAAACQdQzRAgAAAAAAAAAAAAAAAAAAAAAAIOsYogUAAAAAAAAAAAAAAAAAAAAAAEDWMUQLAAAAAAAAAAAAAAAAAAAAAACArGOIFgAAAAAAAAAAAAAAAAAAAAAAAFnHEC0AAAAAAAAAAAAAAAAAAAAAAACyjiFaAAAAAAAAAAAAAAAAAAAAAAAAZB1DtAAAAAAAAAAAAAAAAAAAAAAAAMg6hmgBAAAAAAAAAAAAAAAAAAAAAACQdQzRAgAAAAAAAAAAAAAAAAAAAAAAIOsYogUAAAAAAAAAAAAAAAAAAAAAAEDWMUQLAAAAAAAAAAAAAAAAAAAAAACArGOIFgAAAAAAAAAAAAAAAAAAAAAAAFnHEC0AAAAAAAAAAAAAAAAAAAAAAACyjiFaAAAAAAAAAAAAAAAAAAAAAAAAZB1DtAAAAAAAAAAAAAAAAAAAAAAAAMg6hmgBAAAAAAAAAAAAAAAAAAAAAACQdQzRAgAAAAAAAAAAAAAAAAAAAAAAIOsYogUAAAAAAAAAAAAAAAAAAAAAAEDWMUQLAAAAAAAAAAAAAAAAAAAAAACArGOIFgAAAAAAAAAAAAAAAAAAAAAAAFnHEC0AAAAAAAAAAAAAAAAAAAAAAACyjiFaAAAAAAAAAAAAAAAAAAAAAAAAZB1DtAAAAAAAAAAAAAAAAAAAAAAAAMg6/x+tVASCqotVoAAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 6000x3000 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Data loaded successfully.\n",
"First few rows of the data:\n",
" NLOS RANGE FP_IDX MAX_NOISE FRAME_LEN PREAM_LEN CIR0 \\\n",
"0 0 3.90 745.0 967.0 2 0 401549.0 \n",
"1 0 0.66 749.0 1133.0 0 0 451165.0 \n",
"2 1 7.86 746.0 894.0 0 0 511541.0 \n",
"3 1 3.48 750.0 1127.0 2 0 419663.0 \n",
"4 0 1.19 746.0 1744.0 0 0 369171.0 \n",
"\n",
" CIR1 CIR2 CIR3 ... CIR1010 \\\n",
"0 176143.139130 172218.295753 170881.074380 ... 164661.802783 \n",
"1 248007.108944 247273.488409 242363.138758 ... 222944.309688 \n",
"2 282638.075317 277560.207867 262890.558709 ... 198740.768169 \n",
"3 143584.438466 152201.642761 144111.339108 ... 138569.940418 \n",
"4 149284.240427 145627.201594 140699.927983 ... 126080.397723 \n",
"\n",
" CIR1011 CIR1012 CIR1013 CIR1014 CIR1015 \\\n",
"0 170808.640426 169869.361433 170881.074380 172218.295753 176143.139130 \n",
"1 232368.316737 234558.979076 242363.138758 247273.488409 248007.108944 \n",
"2 226308.229453 238309.603004 262890.558709 277560.207867 282638.075317 \n",
"3 145046.920891 148356.463666 144111.339108 152201.642761 143584.438466 \n",
"4 128417.188951 130807.229975 140699.927983 145627.201594 149284.240427 \n",
"\n",
" RX_Level First_Path_Power_Level SNR Total_Distance \n",
"0 -27.806709 -32.018158 185.234375 8.164831e+06 \n",
"1 -23.050836 -34.255986 296.375000 8.806494e+06 \n",
"2 -28.334789 -43.509715 244.983333 8.363445e+06 \n",
"3 -33.611812 -41.706556 115.105263 6.868560e+06 \n",
"4 -21.081660 -23.834943 167.352941 8.364873e+06 \n",
"\n",
"[5 rows x 1026 columns]\n",
"Column headers:\n",
"Index(['NLOS', 'RANGE', 'FP_IDX', 'MAX_NOISE', 'FRAME_LEN', 'PREAM_LEN',\n",
" 'CIR0', 'CIR1', 'CIR2', 'CIR3',\n",
" ...\n",
" 'CIR1010', 'CIR1011', 'CIR1012', 'CIR1013', 'CIR1014', 'CIR1015',\n",
" 'RX_Level', 'First_Path_Power_Level', 'SNR', 'Total_Distance'],\n",
" dtype='object', length=1026)\n"
]
}
],
"source": [
"import pickle\n",
"\n",
"# File='data_original.pkl'\n",
"File = 'data.pkl'\n",
"\n",
"# Check if the file exists\n",
"if os.path.exists(File):\n",
" # If the file exists, load it\n",
" print(\"Loading data from pickle file...\")\n",
" with open(File, 'rb') as f:\n",
" data = pickle.load(f)\n",
" # plot_features(data, data['NLOS'], \"First_Path_Power_Level\", \"RX_Level\")\n",
" # plot_features(data, data['NLOS'], \"SNR\", \"RX_Level\")\n",
" # plot_features(data, data['NLOS'], \"SNR\", \"First_Path_Power_Level\")\n",
" snr_graph(data)\n",
" cir_graphs(data)\n",
" print(\"Data loaded successfully.\")\n",
"else:\n",
" # If the file doesn't exist, load and clean the data\n",
" print(\"Pickle file not found. Loading and cleaning data...\")\n",
" data = load_data(DATASET_DIR)\n",
" cir_graphs(data)\n",
" data = clean_data(data)\n",
" plot_features(data, data['NLOS'], \"First_Path_Power_Level\", \"RX_Level\")\n",
" snr_graph(data)\n",
" cir_graphs(data)\n",
" print(calculate_total_distance(data))\n",
" print(\"Data loaded and cleaned successfully.\")\n",
" print(\"Saving cleaned data to pickle file...\")\n",
" with open(File, 'wb') as f:\n",
" pickle.dump(data, f)\n",
" print(\"Cleaned data saved to pickle file successfully.\")\n",
"\n",
"print(\"First few rows of the data:\")\n",
"print(data.head())\n",
"\n",
"# Print Headers\n",
"print(\"Column headers:\")\n",
"print(data.columns)"
]
},
{
"cell_type": "markdown",
"id": "20d838f85d847ea0",
"metadata": {
"collapsed": false
},
"source": [
"# Data Preprocessing"
]
},
{
"cell_type": "markdown",
"id": "686f0615a70388cb",
"metadata": {
"collapsed": false
},
"source": [
"# Split the Data\n",
"\n",
"This code block splits the data into training and testing sets using the `train_test_split` function from the `sklearn.model_selection` module. The training set contains 80% of the data, and the testing set contains 20% of the data.\n",
"\n",
"The target column 'NLOS' is separated from the rest of the dataset, and the input data is scaled using the `StandardScaler` from the `sklearn.preprocessing` module. The `StandardScaler` standardizes features by removing the mean and scaling to unit variance.\n",
"\n",
"The random seed is set to 42 for reproducibility."
]
},
{
"cell_type": "code",
"execution_count": 54,
"id": "72c1e647b6c1992",
"metadata": {
"ExecuteTime": {
"end_time": "2024-03-21T13:39:00.691646Z",
"start_time": "2024-03-21T13:38:57.845121Z"
},
"collapsed": false
},
"outputs": [],
"source": [
"# Set random seed for reproducibility\n",
"tf.random.set_seed(42)\n",
"\n",
"# Drop the target column 'NLOS' from the data and assign the remaining data to X\n",
"X = data.drop('NLOS', axis=1)\n",
"# Assign the target column 'NLOS' to y\n",
"y = data['NLOS']\n",
"\n",
"# Split the data into training and testing sets with a 80:20 ratio\n",
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
"\n",
"# Initialize a StandardScaler object\n",
"scaler = StandardScaler()\n",
"# Fit the scaler to the training data and transform it\n",
"X_train = scaler.fit_transform(X_train)\n",
"# Transform the testing data using the fitted scaler\n",
"X_test = scaler.transform(X_test)"
]
},
{
"cell_type": "markdown",
"id": "862a9b7ee430a667",
"metadata": {
"collapsed": false
},
"source": [
"# Convolution Neural Network\n",
"\n",
"This code block constructs and trains a Convolutional Neural Network (CNN) for a binary classification task using TensorFlow. CNNs are a type of deep learning model primarily used for image analysis, but they can also be applied to other types of data that have a grid-like topology. Here's a step-by-step breakdown of the code:\n",
"\n",
"1. **Model Creation**: A Sequential model is created using Keras. This model is composed of the following layers:\n",
"\n",
" - **Conv1D layers**: These are convolutional layers that will convolve the input data with a set of learnable filters, each producing one feature map in the output. The kernel size is set to 3, and the activation function used is ReLU (Rectified Linear Unit).\n",
"\n",
" - **MaxPooling1D layers**: These layers are used to down-sample the input along its spatial dimensions (height and width). The pool size is set to 2.\n",
"\n",
" - **Dense layers**: These are fully connected layers. The first Dense layer has 64 units and uses the ReLU activation function. The second Dense layer has a number of units equal to the number of classes and uses the softmax activation function to output a probability distribution over the classes.\n",
"\n",
"2. **Model Compilation**: The model is compiled with the Adam optimizer, categorical cross-entropy loss function, and accuracy as the evaluation metric.\n",
"\n",
"3. **Model Training**: The model is trained on the training data for 10 epochs with a batch size of 32. The validation data is set to the testing set.\n",
"\n",
"4. **Model Evaluation**: The model's performance is evaluated on the testing set and the accuracy is printed.\n",
"\n",
"The mathematical concept behind the Convolutional layer (Conv1D) is the convolution operation, which is a mathematical operation on two functions that produces a third function. In the context of a CNN, the two functions are the input data and the kernel or filter. The convolution operation involves sliding the kernel across the input data and computing the dot product at each position.\n",
"\n",
"The mathematical formula for the convolution operation is: $$ (f * g)(t) = \\int_{-\\infty}^{\\infty} f(\\tau)g(t - \\tau) d\\tau $$ Where: \n",
"- $f$ and $g$ are the input data and kernel respectively\n",
"- $t$ is the position of the kernel\n",
"- $\\tau$ is a dummy integration variable\n",
"\n",
"In the context of a CNN, the integral is replaced by a sum over the discrete spatial dimensions (height and width) of the input data and kernel."
]
},
{
"cell_type": "code",
"execution_count": 55,
"id": "1c1dd203ad7db076",
"metadata": {
"ExecuteTime": {
"end_time": "2024-03-21T13:52:30.092323Z",
"start_time": "2024-03-21T13:39:00.693651Z"
},
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 1/30\n",
"1050/1050 [==============================] - 27s 25ms/step - loss: 0.5833 - accuracy: 0.7756 - val_loss: 0.4791 - val_accuracy: 0.8193\n",
"Epoch 2/30\n",
"1050/1050 [==============================] - 26s 25ms/step - loss: 0.4959 - accuracy: 0.8182 - val_loss: 0.4292 - val_accuracy: 0.8457\n",
"Epoch 3/30\n",
"1050/1050 [==============================] - 27s 25ms/step - loss: 0.4589 - accuracy: 0.8369 - val_loss: 0.4072 - val_accuracy: 0.8573\n",
"Epoch 4/30\n",
"1050/1050 [==============================] - 27s 25ms/step - loss: 0.4420 - accuracy: 0.8444 - val_loss: 0.4041 - val_accuracy: 0.8594\n",
"Epoch 5/30\n",
"1050/1050 [==============================] - 26s 25ms/step - loss: 0.4318 - accuracy: 0.8508 - val_loss: 0.3954 - val_accuracy: 0.8630\n",
"Epoch 6/30\n",
"1050/1050 [==============================] - 27s 25ms/step - loss: 0.4216 - accuracy: 0.8546 - val_loss: 0.3894 - val_accuracy: 0.8643\n",
"Epoch 7/30\n",
"1050/1050 [==============================] - 27s 26ms/step - loss: 0.4120 - accuracy: 0.8565 - val_loss: 0.3842 - val_accuracy: 0.8669\n",
"Epoch 8/30\n",
"1050/1050 [==============================] - 27s 26ms/step - loss: 0.4065 - accuracy: 0.8577 - val_loss: 0.3810 - val_accuracy: 0.8654\n",
"Epoch 9/30\n",
"1050/1050 [==============================] - 26s 24ms/step - loss: 0.3966 - accuracy: 0.8635 - val_loss: 0.3850 - val_accuracy: 0.8667\n",
"Epoch 10/30\n",
"1050/1050 [==============================] - 27s 26ms/step - loss: 0.3940 - accuracy: 0.8644 - val_loss: 0.3775 - val_accuracy: 0.8683\n",
"Epoch 11/30\n",
"1050/1050 [==============================] - 27s 25ms/step - loss: 0.3906 - accuracy: 0.8644 - val_loss: 0.3719 - val_accuracy: 0.8717\n",
"Epoch 12/30\n",
"1050/1050 [==============================] - 26s 25ms/step - loss: 0.3844 - accuracy: 0.8683 - val_loss: 0.3699 - val_accuracy: 0.8733\n",
"Epoch 13/30\n",
"1050/1050 [==============================] - 26s 25ms/step - loss: 0.3833 - accuracy: 0.8663 - val_loss: 0.3663 - val_accuracy: 0.8743\n",
"Epoch 14/30\n",
"1050/1050 [==============================] - 26s 25ms/step - loss: 0.3737 - accuracy: 0.8698 - val_loss: 0.3616 - val_accuracy: 0.8765\n",
"Epoch 15/30\n",
"1050/1050 [==============================] - 27s 25ms/step - loss: 0.3714 - accuracy: 0.8730 - val_loss: 0.3605 - val_accuracy: 0.8775\n",
"Epoch 16/30\n",
"1050/1050 [==============================] - 26s 25ms/step - loss: 0.3698 - accuracy: 0.8726 - val_loss: 0.3600 - val_accuracy: 0.8751\n",
"Epoch 17/30\n",
"1050/1050 [==============================] - 28s 27ms/step - loss: 0.3660 - accuracy: 0.8744 - val_loss: 0.3592 - val_accuracy: 0.8780\n",
"Epoch 18/30\n",
"1050/1050 [==============================] - 31s 30ms/step - loss: 0.3636 - accuracy: 0.8734 - val_loss: 0.3569 - val_accuracy: 0.8763\n",
"Epoch 19/30\n",
"1050/1050 [==============================] - 26s 25ms/step - loss: 0.3567 - accuracy: 0.8781 - val_loss: 0.3568 - val_accuracy: 0.8786\n",
"Epoch 20/30\n",
"1050/1050 [==============================] - 25s 24ms/step - loss: 0.3558 - accuracy: 0.8790 - val_loss: 0.3515 - val_accuracy: 0.8799\n",
"Epoch 21/30\n",
"1050/1050 [==============================] - 26s 25ms/step - loss: 0.3529 - accuracy: 0.8796 - val_loss: 0.3500 - val_accuracy: 0.8801\n",
"Epoch 22/30\n",
"1050/1050 [==============================] - 26s 25ms/step - loss: 0.3558 - accuracy: 0.8776 - val_loss: 0.3518 - val_accuracy: 0.8792\n",
"Epoch 23/30\n",
"1050/1050 [==============================] - 26s 25ms/step - loss: 0.3482 - accuracy: 0.8813 - val_loss: 0.3505 - val_accuracy: 0.8790\n",
"Epoch 24/30\n",
"1050/1050 [==============================] - 28s 27ms/step - loss: 0.3502 - accuracy: 0.8804 - val_loss: 0.3508 - val_accuracy: 0.8782\n",
"Epoch 25/30\n",
"1050/1050 [==============================] - 31s 29ms/step - loss: 0.3435 - accuracy: 0.8843 - val_loss: 0.3498 - val_accuracy: 0.8793\n",
"Epoch 26/30\n",
"1050/1050 [==============================] - 25s 24ms/step - loss: 0.3396 - accuracy: 0.8868 - val_loss: 0.3476 - val_accuracy: 0.8795\n",
"Epoch 27/30\n",
"1050/1050 [==============================] - 26s 25ms/step - loss: 0.3406 - accuracy: 0.8842 - val_loss: 0.3471 - val_accuracy: 0.8823\n",
"Epoch 28/30\n",
"1050/1050 [==============================] - 26s 25ms/step - loss: 0.3371 - accuracy: 0.8860 - val_loss: 0.3444 - val_accuracy: 0.8856\n",
"Epoch 29/30\n",
"1050/1050 [==============================] - 26s 25ms/step - loss: 0.3356 - accuracy: 0.8884 - val_loss: 0.3431 - val_accuracy: 0.8863\n",
"Epoch 30/30\n",
"1050/1050 [==============================] - 32s 31ms/step - loss: 0.3384 - accuracy: 0.8843 - val_loss: 0.3415 - val_accuracy: 0.8879\n",
"263/263 [==============================] - 1s 3ms/step\n"
]
}
],
"source": [
"# Initialize a Sequential model\n",
"model = Sequential()\n",
"\n",
"# Add a Conv1D layer\n",
"model.add(Conv1D(filters=64, kernel_size=3, activation='relu', input_shape=(X_train.shape[1], 1),\n",
" kernel_regularizer=regularizers.l2(0.001)))\n",
"model.add(BatchNormalization())\n",
"model.add(Dropout(0.5))\n",
"\n",
"# Add another Conv1D layer\n",
"model.add(Conv1D(filters=32, kernel_size=3, activation='relu', kernel_regularizer=regularizers.l2(0.001)))\n",
"model.add(BatchNormalization())\n",
"model.add(Dropout(0.5))\n",
"\n",
"# Add a Flatten layer\n",
"model.add(Flatten())\n",
"\n",
"# Add a Dense layer\n",
"model.add(Dense(16, activation='relu', kernel_regularizer=regularizers.l2(0.001)))\n",
"model.add(BatchNormalization())\n",
"model.add(Dropout(0.5))\n",
"\n",
"# Add the output Dense layer\n",
"model.add(Dense(1, activation='sigmoid'))\n",
"\n",
"# Define early stopping\n",
"early_stopping = EarlyStopping(monitor='val_loss', patience=10)\n",
"\n",
"# Compile the model\n",
"model.compile(loss='binary_crossentropy', optimizer=Adam(learning_rate=0.0001), metrics=['accuracy'])\n",
"\n",
"# Train the model\n",
"history = model.fit(X_train, y_train, epochs=30, batch_size=32, validation_data=(X_test, y_test),\n",
" callbacks=[early_stopping])\n",
"\n",
"# Evaluate the model\n",
"scores = model.evaluate(X_test, y_test, verbose=0)\n",
"\n",
"# Make predictions\n",
"y_pred = model.predict(X_test)\n",
"y_pred_classes = (y_pred > 0.5).astype(\"int32\")\n",
"\n",
"# Generate a classification report\n",
"report = classification_report(y_test, y_pred_classes)"
]
},
{
"cell_type": "markdown",
"id": "b5f3cff03a03da6a",
"metadata": {
"collapsed": false
},
"source": [
"# Plot the training and validation accuracy over epochs\n",
"\n",
"This code block plots the training and validation accuracy over epochs. The training accuracy is plotted in red, and the validation accuracy is plotted in blue. The x-axis represents the number of epochs, and the y-axis represents the accuracy. The plot shows how the accuracy changes over the course of training and validation."
]
},
{
"cell_type": "code",
"execution_count": 56,
"id": "89aa08d7d1866179",
"metadata": {
"ExecuteTime": {
"end_time": "2024-03-21T13:52:30.315374Z",
"start_time": "2024-03-21T13:52:30.093327Z"
},
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAj0AAAHFCAYAAAAZuEjoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACMWElEQVR4nOzdd3hT5dvA8e9J0klbSltWQUBEoNRSKsgssjfyAxRkCgqCslRQ9hJQhrhRQQQB5QVEEBSRJVMQlCJblCWrFFoooytpkvP+ERoonUnTpuP+XFcvyMkZz3lySm6edSuqqqoIIYQQQhRyGmcXQAghhBAiL0jQI4QQQogiQYIeIYQQQhQJEvQIIYQQokiQoEcIIYQQRYIEPUIIIYQoEiToEUIIIUSRIEGPEEIIIYoECXqEEMIBZJ1XIfI/CXqEyCVjx46lWrVqmf707ds3R9f49NNPqVatWq4fk1+NHTuW5s2bp/ve5cuXs6z/atWqceDAgRyX4/Tp0/Ts2TNb+8bFxREaGkpwcDDR0dE5vrYQIvt0zi6AEIXVkCFD6NGjh/X1559/zsmTJ5k3b551m5eXV46u0a1bNxo3bpzrxxREpUqVYtWqVdbX0dHRDBs2jFdffZWmTZtat1epUiXH19q0aRN//fVXtvbdsGED3t7emEwmvv/+e1599dUcX18IkT0S9AiRSypUqECFChWsr/38/HB1daVWrVoOu0aZMmUoU6ZMrh9TED1c15cvXwYsn4sjPwNbrV27lsaNG+Pi4sLq1asZPHgwGo00uguRF+Q3TQgnW7t2LTVq1GD16tU0atSIunXrcubMGUwmE19++SUdO3akZs2a1KpVix49erB//37rsQ93VfXt25cJEybw5Zdf0rRpU0JCQujRowdHjx7N0TEAO3fupGvXrtSsWZM2bdqwYcMGWrVqxaeffprp/a1evZquXbtSq1Ytatasyf/+9z9++eWXNPd/5MgRnn/+eUJCQmjWrBmLFi1KdZ7bt28zbtw46taty1NPPcV7772H2Wy2rbLTodfrmTNnDk2aNOGJJ57gmWeeYePGjan2OX78OP369aN27dqEhYXRv39/Dh8+DFjqM6X1rlq1apnWx5kzZzhy5AhNmzalU6dOXLlyhT179qTZLy4ujunTp9O4cWNq1arFs88+y86dO63vq6rKkiVLaNeuHTVr1qRVq1YsWrTIOq6ob9++abpODxw4kKo7LyfPHcDhw4d56aWXePLJJ6lfvz4jR47k2rVrGI1GwsPDGTVqVJr7at26NRMnTsywfoTIbdLSI0Q+YDKZWLx4Me+88w6xsbE89thjzJkzhxUrVjBq1CiqVavGtWvX+Oyzz3jttdfYuXMnHh4e6Z5r8+bNPPbYY0ycOBFVVZk9ezbDhw9n+/btaLVau47Zv38/Q4YMoVmzZrz22mtcuHCBKVOmoNfrM72v5cuXM2PGDIYPH07t2rW5ffs2Cxcu5M033yQsLMza4mQ2m3n99dfp378/r7/+Ot9//z1z5syhatWqNG7cGLPZzMCBA7ly5QpjxozB19eXr776imPHjlGqVCm7611VVYYOHcqhQ4cYMWIEjz32GFu3buWNN97AYDDQuXNn4uLiGDhwIPXr1+fTTz/FYDDwxRdfMGDAAHbu3Em3bt2Iiori+++/Z9WqVZm2oq1ZswZfX1+aNWuGq6srFStWZMWKFTRp0sS6j8lk4qWXXuK///5jxIgRVK5cmR9++IGhQ4eydOlS6tSpw5w5c1i6dCkvvvgijRo14tixY8ydOxej0cjgwYOzff/2PncnT56kT58+hIaGMmfOHEwmE++//z4DBgxg3bp1dO7cmW+++Ya4uDhrF25ERAQXLlxg1qxZdn9eQuSUBD1C5BOvvPJKqrEm169f54033kj1P3Y3NzeGDx/OP//8k2EXjdFoZNGiRdYvm/j4eMaMGcPff//NE088Ydcxn376KY8//jjz5s1DURQA/P39GTlyZKb3dOnSJQYMGMCQIUOs28qVK0fXrl2JiIigQ4cOgCX4GDJkCN26dQOgdu3abN26lZ07d9K4cWN2797N0aNHWbhwIU8//TQADRo0yHAQc3bt27ePPXv28OGHH9K+fXsAGjduTGJiInPnzqVjx46cOXOG2NhYXnjhBZ588kkAKleuzKpVq4iPj0/VXZhZt5nRaOTHH3+kY8eOuLq6AtClSxc+/fRTrl69StmyZQHYvXs3R44c4bPPPqNly5YA1K9fn0uXLrF//36qVq3KsmXL6NOnD2+99RYADRs2JDo6mj///NOmoAfse+7mz5+Pr68vixcvxs3NDbCMoRo1ahSnT5/m2WefZeHChWzevJlnn30WgHXr1lGpUiVrHQrhDBL0CJFPBAUFpXr9/vvvA3Dz5k3OnTvHhQsX2LFjBwAGgyHD81SpUiXVAOnSpUsDkJiYaNcxBoOBv/76i6FDh1oDHoC2bdsyevToTO9p7NixANy5c8d6DyndKw/fQ1hYmPXvrq6u+Pn5kZCQAMDBgwdxcXFJNQDb09OTJk2a8Oeff2Zahsz8/vvvKIpCkyZNMBqN1u3Nmzfnxx9/5PTp0zz++OP4+fnxyiuv0LZtWxo3bkyjRo2sAUd27dy5k5iYGFq2bMmdO3es1/n4449ZvXo1I0aMACwtIi4uLqkCOo1Gw8qVKwFLUGQ0GmndunWq89vbbWTPcxcREUGTJk2sAQ9YPr/t27dbX9euXZv169fz7LPPkpSUxC+//MLLL79sVxmFcBQJeoTIJzw9PVO9PnbsGG+//TbHjh3Dw8ODKlWqEBgYCGS+JszD3V4pg2QzG/+S2TG3bt3CZDLh7++fah+tVouvr2+m93Tx4kUmT57M77//jouLC5UrV6Z69erp3oO7u3uaMqTsc/v2bXx9fVMFXQAlS5bM9PpZuXXrFqqqZtj6cP36dYKCgli+fDlffPEFv/zyC6tWrcLd3Z3//e9/TJw40dpqk5U1a9YA0L9//zTvff/99wwZMgSdTsetW7fw9fXNcHDzrVu3AMvAeEew57m7detWmufhYc899xzjx4/n6tWrREREEB8fT+fOnR1SZiHsJUGPEPlQyjiSatWq8fPPP1O5cmU0Gg27du1i8+bNeVoWf39/XFxciImJSbU9JSDKiNlsZtCgQbi4uPD9998TFBSETqfjzJkzrF+/3qYylChRgtjYWEwmU6pxSZldPzu8vb3x9PRk2bJl6b5fsWJFwNKd9d5772EymTh69Cjr169nxYoVVKhQgYEDB2Z5nZiYGHbv3k2vXr1o27ZtqvcOHz7MBx98wI4dO2jVqhXe3t7WYOzBIO/kyZOoqoqPjw9gaYmpXLmy9f3IyEguXrxI7dq1Act4nQeltJplJrvPnbe3Nzdv3kxz/K5duwgKCqJUqVK0bduWGTNmsGnTJg4ePEijRo2sLYhCOIvM3hIiHzp37hy3bt3ihRdeoEqVKtb/9e/evRvIvNXG0bRaLU8++SS//vprqu3bt29P1SX0sNjYWM6fP89zzz1HSEgIOp3l/1j23EODBg0wGo1s27bNus1gMLB3715bbiWNunXrkpCQgKqqhISEWH/+/fdfPvvsM4xGI5s2baJ+/fpER0ej1WoJCwtj6tSp+Pj4EBkZCZDllPP169djNBrp168f9erVS/XTr18/vLy8rN1XderUITk52VpPYGlhGTduHAsWLKBmzZq4uLhYu5xSLF68mJEjR6LVavHy8iIqKirV+xEREVnWR3afuzp16rB3795UXZQnT55k0KBBnDhxArC0ILVv354NGzawd+9eunbtmuX1hcht0tIjRD706KOP4uXlxfz589HpdOh0OjZv3sz3338PZD4+JzeMGDGCvn37MmLECJ577jkiIyP5+OOPAdJ0OaXw9/enXLlyLF++nDJlyuDj48OePXusrSq23EODBg0IDw9n4sSJ3Lhxg3LlyrFs2TJu3ryZZTdLZpo0acJTTz3FkCFDGDJkCI899hhHjx7lk08+oXHjxvj5+fHkk09iNpsZOnQogwYNolixYvzyyy/cvXvXOq4mpfVlw4YNhIaG8sgjj6S6ztq1awkODqZSpUppyuDu7k6bNm1Yu3Ytly5domnTpoSFhTF27Fhef/11HnnkEdavX8/Zs2eZPn06fn5+vPDCCyxZsgRXV1fq1q3LkSNHWLFiBaNHj0aj0dCsWTO2b9/OzJkzad68OQcPHmTdunVZ1kd2n7shQ4bw/PPPM3jwYF544QWSkpL46KOPqFmzJo0aNbKe77nnnuP555+nePHi1kHZQjiTtPQIkQ95e3vz+eefo6oqr732GqNHjyYyMpJvv/2WYsWKcfDgwTwtT506dfj00085f/48Q4YM4euvv2bSpEkAFCtWLMPjPv/8c0qXLm39Aj9y5AhffPEFlStXtvke5s2bR6dOnfjkk094/fXXKVOmDN27d8/RfWk0Gr788ks6dOjAggULGDBgACtXruTFF1/kww8/BCyzkr766iu8vb2ZMGECgwcP5sSJE3z66afUr18fsKw/ExISwtixY9OsL3TkyBHOnDljnamWns6dO6OqKqtWrUKr1bJw4UJat27Nxx9/zNChQ7lw4QKLFy+mZs2aALz11luMHDmSDRs2MGjQINavX8+kSZPo168fAM8++ywvv/yy9f2//vqLTz75JMv6yO5zV6NGDb755huMRiOvv/46M2bMoHbt2ixYsCDVGKdatWrh6+tLhw4dsj32SYjcpKiSJU8IkYVff/2VMmXKEBwcbN12+vRpOnbsyOeff06LFi2cWDqRXx05coTu3buzfv166wB2IZxJureEEFn67bff2LhxI2+++SaPPvoo165ds7bYhIeHO7t4Ip85cOAABw4cYN26dYSHh0vAI/INCXqEEFkaM2YM7u7ufPHFF1y/fh1fX18aN27MqFGjUq3VIgRYBrF//fXXPP7448yYMcPZxRHCSrq3hBBCCFEkyEBmIYQQQhQJEvQIIYQQokiQoEcIIYQQRYIEPUIIIYQoEiToEUIIIUSRIFPWH3Djxl0cPZdNUcDf3ztXzl2YSb3ZTurMPlJv9pF6s4/Um+0yq7OU97JLgp4HqCq59hDm5rkLM6k320md2UfqzT5Sb/aRerOdI+pMureEEEIIUSRI0COEEEKIIkGCHiGEEEIUCTKmxwZmsxmTyWjTMYoCSUlJJCcbpP/WBlJvoNXq0Gjk/yVCCOEoEvRkg6qq3Llzk8TEOLuOv3lTg9lsdnCpCj+pN/Dw8MLHxw9FUZxdFCGEKPAk6MmGlIDHy6sErq5uNn8BabUKJlMRba7IgaJcb6qqYjDoiYuLBaB4cX8nl0gIIQo+CXqyYDabrAGPl5ePXefQ6TQYjUW7xcIeRb3eXF3dAIiLi8Xbu4R0dQkhRA7Jv6JZMJlMwP0vICHyUspzZ+tYMiGEEGlJ0JNNMqZCOIM8d0II4TjSvSWEEEKIjJlMuOzfh+ZaFObSZUiu3xC0WmeXyi7S0lNIvfPOVMLD62T4c+jQQZvPOWzYIBYtWpCtfZ977hk2bvzJ5mtk18aNPxEeXocNG9bl2jWEEKKoc93wI361g/Ht0gGfVwbg26UDfrWDcd3wo7OLZhdFVYvqKihpxcSkTWaWnGzgxo2r+PuXxcXF1a7zWgfk5mG0HBcXh16fBMCvv25l5cpvWbhwqfV9H5/iuLi42HTOO3duo9O54OnpmeW+sbGxeHp64ObmblvBH5DZQOaRI4dx5cplSpYsxbx5X9p9jfzOludPUSAgwDvd51hkTOrNPlJv9ilI9ea64Ud8BvQFVeXBjnb1Xrf7nUXfYOjYKcPjr1xRuHEj4y76gACVwMCsKyGzOkt5L7ukeyuPuG74Ea+Jo9FGRlq3mQIDiZsxJ9OHxl5eXl54eXlZ/67RaPD3D8jROX18imd73xIlSuToWpmJjb1JRMSfjBs3mXfemUpk5BUCA8vl2vWEEKLIMZnwmjg6TcADoKgqqqLgNXEMN9t1SPc/73o9tG7tSXR0xh1KpUqZiYiIxy0P5wlJ91YecPlpPT4D+qJ5IOAB0Fy9is+Avk5pJrx6NZLw8DosWfIVbds244MPZqOqKsuWLaZbt040bVqf//2vLYsX329FebB76513pvLppx8wefI4WrRoRNeuHdi06Wfrvg92bw0bNoilSxcxcuQwmjdvRI8eXTlw4Hfrvrdv32L8+Ldo1aox3br9j3Xrvic8vE6GZd++fRteXl60bt2OgICSqa4LkJiYyJw579C+fQvat2/B7NnvoNfrAUvANHnyOFq3bkKnTm1YsOAzVFW11sfVq/c/o0WLFjBs2CDA0p326qsvMW7cm7Rp04QtW34hPj6Od999m44dW9G0aX169XqW3bt3Wo/P6FqzZ89gzJg3UpX5ww/nMH36pGx9dkIIkdtc9u9DGxmZJuBJoagq2sgruOzfl+77rq5QrpyKoqTfkqMollYeV/s6UOwmQY+9VBXi47P+uXMHz7FvZhgtA3hNGA137mR9rlxoCz169AiLFn1Dt2492bTpZ777bgVjxkxkxYq1vPjiQBYv/pJ//jmV7rFr1nxHtWrVWbZsFU2aNOe9994lLi79VauXLVtMy5Zt+OabVTz+eFVmz55hXW15ypTx3LoVy+efL2LkyLf4+uuFmZb511+30KBBOBqNhkaNnmbTpp95sJd21qzpHD16hFmz3ufDDz/j2LHDLFz4BQDjxr3JjRsxzJu3gGnTZrJx44+sXftdturq2LGjPPpoZRYsWELdug34+OP3uXTpAh9+OI9vvvmO0NAwZs+eTnJycqbXatmyDX/+eYD4eEtdmc1mdu7cTosWbbJVDiFEAWUy4bJ3D6xYYfnz3pIo+ZH233+ytZ/mWlS62xUFxo7Vo6rph02qqjB2rJ68nqAq3Vv2UFV8O7bG5c8DOT6Voqpor0ZSskr5LPdNrlufWz9txpFPSffuPSlXznLt6OjrjB8/hTp16gLQufNzfP31Qs6fP0u1atXTHFulSlV69+4HwMCBg1m9egXnz58lJCQ0zb4NGoTTvv0zAPTrN4D+/Xty8+YNEhISOHjwD1atWke5cuV5/PGqvPjiIObOnZluea9di+LYsSM8/3xvAJo0aca6dd9z9OhhQkPDuHPnDjt3/sqHH35GzZq1AHjrrfGcPv0PZ86c5vjxo3z33Xprd9ibb44jMTExW3WlKAr9+r1kHadUq9aT9OjRm8qVqwDQs2cffvppHTdv3uDu3bsZXissrDbe3j7s3buH1q3bceTIXyQnJ1O3bv1slUMIUfA8PMShOLk7xMFe2jOn8fj8E9xXLucS5YmmZIb7luI6XqXLZPh+s2YmKlc2ce6cBh74b79WqxISYqZZs7wP+iTosVchWT+lbNlA69+ffLIOJ04cZ/78eVy4cJ5///2HGzduZJj/qnz5R6x/L1bMMn7IaEx/Eb1HHqnwwL7FrPuePXsaH5/i1sAL4IknamZY3l9/3YKrqyv16jUAsAYQv/yygdDQMK5cuYTJZKJ69SDrMaGhYYSGhrF9+zZ8fIqnGv/TuHFTgFTdWhkpUcIv1cDstm07sGfPTn788QcuXPjP2iJmNpu5ePFChtcCaN68FTt2bKN163Zs376NJk2aodPJr6MQhdGDA4IflDLEIasBwQ6RxUQa3cE/8Jz3Ma6/bEBRVfS48hQHuUbpDE9Zhij+0vyNFkhKgn37tGzdqiMkxESvXsZ7rT0GBg3yeKgozmnlAQl67KMolhaXhIQsd3XZvw/fns9mud+tFWssD2FmPD0dHmy5PtCh+tNP6/jkkw945pn/0aRJc4YOfZ0RI17J8Nj0Zn9lNBkwvS90VVXRanVpjslsQuG2bZvR6/W0adPEus1kMrFjxzbeeOOtTAOHzN5LbxFA00NNz64PdT7PmDGFY8eO0rZtezp3fg5//wBeeeXFLK8F0LJlG4YPH0x8fBy7d29n0qTpme4vhCigcjggOKeuXFG4vW43np99jDYm+n6xAkqSMGQEJf3NVFkxC9cHxubo27YnfsjrBI7QEv2fCTNpy6XBRGmi+LHrd/xYoxI7zlYiIcFyhw0bGunVy/If4P/9z8jHH5s4dUqDyaQ4tZUHJOixn6LAvRaLzCQ3bY45sBzK1UjrGJ4HqYqCuWwgyU2bO32xp3Xr1vDiiwPp1esFAO7evcvNmzcyDUJyqlKlR7l7906qGVj//PN3uvtevHiBf//9h9dff5Mnn7w/0Pn8+XNMmTKeXbt20qhROFqtltOnTxMaWguAPXt28vXXC5k4cRp37tzm2rUoSt9rkl29eiWHDv3JqFHjAEh4IJCNjLySYbnj4+PYunUTX365hKCgYAB+//03wBK0lS//SIbXmjnzfYKDn6BkyZIsX74MVbW0WAkhCp+UAcEZeXBAcHKjxg69tl4PrZtoib7THmif+s0YYBqU4Sr/cRDVxYWkbj1IHDICU9VqAIyZpaVHj/S/l8xoOUItBpu+gGOWbWXLmGnV2kjbtvdb/BUFJk3S06OHZakTZ7bygAxkzn1aLQkz5wD31zZIkfI6bsZspwc8AMWLF+fgwT+4ePECp079zZQp4zAajSQnG3LtmhUqVKRu3QbMnDmNM2dO8+ef+zNcAHHbts34+BSnU6euVK5cxfrTokVrKlWqzKZNGyhWzIu2bTvw8cfvcfLkcU6dOsmCBZ9Tu3ZdKld+jNq1n2LWrOmcPXuGQ4cO8u23S6hTpx5+fn6UKlWa//u/ZVy5cpmNG3+yBjHpcXV1w93dg507t3P1aiQHDvzOBx+8B0BycnKm10rRokVrVq5cTrNmLdDmg89fCOFgRiOuP/6QrV0zGhCcE65aExUT/0FD+q0qGkyU5xLGVwZz8+Ax4j76DFPVaiQnw7lzCqoK5cub08zA0mpVfHxUQOWpsheZzkT+ohbnKz3N+6Mv0bJl6us1a2aiVi3Ltlq1TE5r5QEJevJE8jP/486ibzCXLZtqu7lsYN705WbTa6+9SXx8PP3792LChLeoUuVxnn66Gf9mcxS/vcaPn4KHhweDBvVn7txZtG//TLpdZ7/+uoXWrdul6WYC6NLlWQ4e/IPo6Ou89tooqlSpyhtvDOXNN0fw5JO1efnlVwGYNGk67u4eDB7cn7ffnkinTl3o2rUbGo2GceMm8fffJ+jbtzs7dmzjhRdeyrDMLi4uTJ48jZ07f6VPn258+umH9Ov3Ev7+Afz776lMr5WiRYvWGAx6WrRondMqFELkJ4mJuC9eiF/9MDy//ipbh2guX3L4DF3XA/uYkTwm3e4psLTWTGcSyW3aYi4byOzZrtSpU4wKFbyoX9+Lnj09uXxZk2YGlsmkMHVqEsePx/PzkRIMXxZCTa9zuO3fS4nWTdD9FZFqf0WBCRP0VK1qYsIE57XygKzInEphWpG5oEhKSuLgwQPUr9/IOg5m+/ZtfP75x6xb93OGKzIXBn/+uZ/Zs99h9eofM0wsKisy5z6pN/sUyXrL4t9w5e4d3L9ehOeCz9BEXwfA7O8PhmSUuLvpD3Hg/rym5Cdrk/DWOAzNW+V4/Kb2n1MUe2cqrps2Uo8DRPAk5nRGtERRCo/5s9B37cbkyW7Mn2/5d8bdXaViRTMVK6r89ZeGmBgFVb0/Jmfz5oRURdSe/heffj3RnTmN6ubG3Tkfou/ZJ1v1lhVZkbmg0mod3mdb0Lm6ujJz5jQ6d36ODh06cfPmDb7++kuaNWvp7KLlmpiYGI4ePcw33yymY8f/SSZ1IQqAzFbVT67XAI+FX+CxeCGaO7ct75V/hIShI0jq2RfX7dvwGdAXVVFSBT4pQxz0rdvhunsHLociKN7zOZJr1yH+rXEkN2t5P/jJRuCguRaF2w/f4/b9d7gcPQxAMjqCOc6f1E1zT17c4RplqHBv3GHfvsm0b2+kUiUzpUqpaO71BW3frs1yTI7p8arc2rwD76GDcNu0EZ/XhpB45C8M9RvhNXV8nmUjyIq09Dwg11t6RLqOHDnMZ599xNmzpylWzLLS8qBBQ/D0dC+U9fbff+d5+eV+BAc/waxZH+DunnF+MmnpyX1Sb/YpSvWWYQ4qFEAFV1cUg2Xso7FqNRKGv4G+azd4oJs+/aCpHHEzZmPo2Anl+nU8P/sYjyVfodxbOyy59lPEvzUOJSEer4lj0g+4mjbD9eefcF/zHS67d6LcW2JE1ekwtGjF8j2PMiDhs3tHmQENGkyEcoSD1EENDORmxPFMW15UFdq08eTwYS21apnStPKkYjbj+cEcis15914dWdiTuyuFI1t6JOh5gAQ9+YvUmwQ9eUHqzT5Fpt5MJvxqB6PJJCUDQHKtMBJefwtD2/ZYm0jSOZfrgX0UT7jNbc/iGOqlba1Rrl/Hc95HeCxdZA1+0g0cUv7yQMAFkPxUPZKeex59py6o/v5of/yJFwb6EMRJ5jLaut8vtKWNsiXbgceuXVomTHDjnXf0NGmS9UBk100/49OvV7pdenB/5nJWARc4NuiRgcxCCCFEBrLKQZUifvJ0DO07ZhzwwP0hDj17Wv5M58teLVWK+GnvcuOPoyS8/Kp1zE+aNX5SfgwGjJUfI37MBG4cOMyakdvp+PNwEjz9ATB1eobli28zs+zHPMUfADzFH7Qse9ymiTRNmpj47beEbAU8AKq3T4YBD2Sduyu3SNAjhBBCZCC7U8k116859Lpq6dIY2nfMMtgCiJv7MRf7jWXQ7Br07OnJ7t06Fiy43zJs6NiJ2EMnGD9VpVqZWMZPVYk9dDxXx9Rku95yYap+ZmQgsxBCCJEBc8lS2dsvkxxU9tJci8oy/1VJrrPxR2/GD/Tk5k0NGo3Kyy8nM3DgQ+urabU0GlKDPUMAaji8rA/Lbn3kRr1lRoIeIYQQIh3KzRt4fPFppvtYV9XPKo2QHRL9AnmKP7lGxoGBK3oMS9wAqFHDxIcfJhEW5vyxkMn1G2IKDERz9Wrm2Qhyod4yI91bQgghxEN0B/ZTonk4btu2oOp0qOT9qvpKeH0ecYnKcEVlUDHghqurysSJerZuTcgXAQ8AWi1xM/JfNgIJeoQQQhQcJhMue/fgtnY1Lnv3gMnBKQ3MZjw++RDfzu3QRl7B+FgVYrfs4s7ib/N8VX1Fp2Xc8JsZrqgMCrUfjWb37nhGjDCQzkL2TmXo2CnfZSOQ7q1C6p13pvLLLxsyfP+TT+anStqZXaqq8sMP36dKp5CeYcMGcerUSX78cTOenlknZhVCiKxktkCgI75AlZgYvIcPxu3XrQAkde1G3NyPUL28MT0Rws12HfJ8Vf3wMU8RtjaGo//5YnrgK1uLkZqVbrFxv3ua3Fj5iaFjJ6fUW0Yk6MkDly8rXL+ecaNaQIBKYKBjH9rXXnuTV14ZBsCvv25l5cpvWbhwqfV9H5/idp338OFDfPDB7EyDnujo6xw/fpSSJUuxY8evdOiQP3KLCSEKrgcXCHyQ5upVfAb0zXHLgcv+fXgPehFt1FVUd3fi3n2PpN4vpE4H4YRV9ePjocpTPvz1X+qvaxM6xszyRFGcl7wz2/JRNgIJenKZXg8tWrgTHZ1x0FOqlJmIiHjc3Bx3XS8vL7y8vKx/12g0+PsH5Pi82VnL8tdft/DYY48TEhLKL79skKBHCJEzJhNeE0enWREZLOu9qIqC18Qx3GzXIfMWhPRSOSgKnh+/j+fsd1DMZoyPV+XOwqWYagTn6i1lJSkJlixx4eOPXblxI+X7w7JqT0r+K2dmKy+onDqmR6/XM378eOrUqUN4eDiLFy/OcN+tW7fSrl07wsLC6NmzJydOnEh1nunTp9OgQQMaNGjA5MmTSUhIyItbyJKrK5Qvr2bY/KgollaedBKH56pr16IYM+YNWrRoxHPPPcPixV9iutc3bjQamT17Bh06tKBVq8aMGfMG0dHXuXo1khEjXgEgPLwOhw4dTPfc27ZtoVatMBo1CufIkb+4ejUy1ft//32CV18dQIsWjejRoyvbtm22vrd//z5eeqk3LVo0ok+f5zl40LKY1qJFCxg2bFCq8zz33DNs3PgTYOlO+/DDOXTr9j+6du1AQkI8R48etl6nZctw3nxzBDExMeleq1+/nhw8+Ad6fRKtWzdh167t1v2MRiPt27ewlkWIgurKFYWjRzUZ/kRGZr4qzIPHHzmi4dAhOHIk+8fbK6sFAq0L3e37LcNzuG74Eb/awfh26YDPKwPw7dIBv1pB+LYIp9jM6ShmM0ndehC7eafTA55jxzTUr1+MyZPduXFDQ+XKZl57TU/KEoUZ5b8SWXNqS8+cOXM4fvw4S5cuJTIykjFjxhAYGEjbtm1T7Xf69GlGjRrFtGnTePLJJ1myZAmDBw9m69ateHh4MG/ePP744w++/PJLVFVl7NixfPDBB0ycODFXyx8fn/F7Wi24u1taRsePT6Zbt/TzK6mqwsiRqR/ejM5bzEFDY1RVZcKE0VSp8jhff72cmJgY3nvvXTQaDf37D2TNmlX89dchPvjgM9zd3Zk7dyaffPIBU6e+wzvvzGHChNGsX78p3S6yK1cuc+rUSYYMGUHNmrUoVqwYmzb9zIsvvgxAbOxN3nhjKK1bt2PcuEkcP36Md96ZSsWKj6LVahkz5g1efPFlWrRozZ49Oxg3bhQrV/6QrfvauPEnPvhgHi4urpjNKqNHv87zz/dm0qRpxMRE8+670/j22695/fW3OHfubKpr7dy53Xqtxo2bsGPHrzRp0hyAP/88gE6nIyystmM+ACGcQK+H1q097W51zvj4+/8w5UarNWR/AbviPZ/DGBKCMSgYU1ANjEHBGIOCcfl9b/pdY9ei0F6LQnV15e57H6Hv0TvH2c3Tc+WKwo0b989bogTExt6vx4eHOFSubCY5GQIDzbz1loHnn09Gq4Vdu3TW/FfSymMfpwU9CQkJrF69moULFxIcHExwcDCnT59m+fLlaYKevXv3UqVKFTp37gzAyJEjWb58OWfOnCEkJIRdu3bx/PPPExISAkDPnj1ZtWpVrt/Do49mnO+jZUsj//d/lrwpzZubUBQVVU3/l+mLL1xp2zbR+rpOnWIPNGfed/363RyW2CIi4k+ioq7y5ZdL0Gg0VKhQiaFDX+fdd9+mf/+BXL16FTc3N8qWLYuPT3EmTJjK7du30Wq1eHv7AGTYVbZ1qyUYCg0NQ6vV0rBh41RBz7ZtW/D2Ls7rr79lvfadO7fR6/Xs2LGVkJBQ+vcfCMALL7xIfHwCcXFx2bqvhg3DCQkJBeDGjRj69RtIjx69URSFwMByNG3anL//trQQ/vzz+lTX6tu3P0lJicTFxdGyZRumTBmPXq/Hzc2NHTu20axZC7ROGngnhCO4ukK5cioxMen/W5RVq3NOj88JNZu/e4pBj0vEQVwiUrdCqxpN+l1jWDqMzL4l0HfvmWHA83DQ8rDMxmVmJ1gsXtxM06YmFixIQqOx/Ad31apEqlQx82A+4gkT9EyY4MaECdLKYy+nBT2nTp3CaDQSFhZm3Va7dm3mz5+P2WxG80D+El9fX86cOUNERARhYWGsXbsWLy8vKlSoYH1/8+bNPPPMMwBs2bKFoKCgvL2hTCiK5R8MvT7j9/PShQvnuXPnNm3aNLFuM5vN6PV6bt++RadOXdi2bTOdOrUhLKw2Tz/djPbtO2br3Nu2baFhw3BrgNCkSTO2bPmFI0cOExpai4sXL1C1atVUn2+PHn0AWLr0K6pVS/25vfzyq9m+rzJlAq1/9/cPoF27jqxatZzTp//lv//Oc+bMv9ag6OLFCxleq1y58ri6unDgwO80bBjO7t07mTPnw2yXQ4j8SFFg7Fg9PXp4pvu+qqbtMjGbITER4uMV4uOhb8hBDh+ul+Hxk5rvQlGeSvd9ewMH15/W4f3ma1yiPNcpmW4Xl4pCQGkN3t/NQ/fvKbR/n0B38iS6v0+gvfCfNfN4ehRAe/0aLvv3pTvYNqctZFkFi6By+7aG9es1dOhgpHNnIwBPPJG2zCn5r4T9nBb0REdHU6JECVwf+G9BQEAAer2eW7du4efnZ93evn17tm/fTq9evdBqtWg0GhYsWEDx4pbuldGjRzN8+HDq1bP8MlatWpUvvvjC5jKlF3xkFpCcP59xy8vD/zH5++84Onf25PhxDWazgkaj8sQTZtatS0iz78GDmfSbOYDJZKJChUrMmvV+mveKFfOieHFfvv/+J/bt+419+/awYME8tm7dxGefLcz0vGfOnOa//85x8eJ/bN26KdV7mzZtIDS0Fjpdxo9cZu8p6XwQpofW53jwWYqOvs7AgX2pVi2IOnXq0alTF/bt+40TJ45leS2dTkfTpi3YtetXXFxcKFasmDVYchZFyTo4Tnlf/gdom4JWb1euKMTEZFzYkiUzbnVo3txEWKUbHPnPN9XaLxpMhD4aS/PmbuzYoWXYMHfi4xUSEh6+Tj0q8h+XKZ9q+jSolCCWI18eIr5mXYJD4JFHVGudZjdwOHTogcAhLg6v8aNxX/EtelypoznNdXPG6RhKJSVy6DEjbjVqQOeu1u1u//cN3q8NzfA4ax1cj0r3GXBzy14Ll5tbxt8h48bpef759INNUHB1VRk82EDTpsYC8xzmpcx+R22tL6cFPYmJiam+pOD+l5bBkDpnSGxsLNHR0UyePJnQ0FBWrFjBuHHj+OGHH/D39+fixYuULVuWWbNmYTQamTZtGrNmzWLGjBk2lcnfP213VVJSEjdvatBqFXS61L+wxW2Y9e3rq2HSpPtje8xmhUmTkvH1TfuPgC3nzQ6NxvJUpJS/UqVHuX49ioAAP7y8LPd84MB+fv75J6ZMmcbmzRtxcXGhdes2tG7dmuPHjzJwYH/u3LmFTqdNda4H7dixBW9vbz7/fGGqlpwlSxaxffs2Ro0aTcWKFfj999/QahVrIDNhwhiCgmpQoUIF/vnnn1TnfvXVl+jevSdubq4kJiZY30tISCA29iYajeVzURTF+neA337biY9PcT744BPrudau/Q5FsZQ9vWu9/HJ/unfvSatWbWjbth2jR4/C07MYLVu2wsXFOV1blgBZQ4kSxXB3T39c2MPSe45F1gpCven10KYNXMskt2WZMvDff6Rqdbh0Cf7v/2Dnqij+/s8nzWJ3ZrTMPN+HknsGUaJEV6Kj0563mKsBL8NNOvMDH/PGQ+8qxOLHtLg3ob9li48PfP459O5tGUpToQLcuGFpPXqYRgMVK2oIDPS2fIn98YflwDNnQFFwHfcWFTf7E3NIxZxO4KFRVCpW9SAwMJ0vwZo1ssxfVYrrlK9aGQLSfwZmzYKHRl1YqarC5MlakpO9iYuDuDjLuMyUv2s00K0bzJ0Lhw6lXUuxZEn46y+FcuXcAAcPhipkHPE76rSgx83NLU1wk/L64X/c586dS9WqVenduzcA06dPp127dqxZs4ZevXoxYcIElixZQmio5X/j7777Ln369GHEiBGUKpW9ZHEAN27cfXicG8nJBsxmMyaTitFo3/LeOp0Go9HM00+bqVXLxToQ7emnkzEa7TqlTcxmy02llL927bqULl2GyZMnMnjwUOLi7jJr1gzq1KmLqircuXOHZcu+xtu7OIGB5fjll42UKlUaLy8fXF0tv5THj5/g0Ucr4/bAv6xbtmyhVau2PPpolVTX7969F1u3bmbHju20aNGWBQu+4JNPPqJTpy4cO3aEPXt20adPfzw9i9GnTze+/XYZ4eFN2LXrV86dO0tISC28vHz48ssv2LJlC1WqPM7ixV+i0Wgxmy2fi6qq1r8DeHn5EBUVxf79+ylbNpAdO7axY8evVK9eA6PRTKdOz6a61o4d26zXMhrNBAeH4u7uzs8//8Tnn39l92efUyaTitlsJjY2HheX5Ez3VRTLPwrpPcciY/bUW05aW3JCVaFsWU+uX9dk2OpQurSZXbuS8PKCqlUtz+3x4xrGji0G93I4aTFiRoOKBgUTwZykFZsx99tLWJM1HAzR4nPzAt43LuCdFI0HiWgMlvtRgX004hBPYkKHFiOPcYaXWchRQjlcvgOnrvlx546Cq2sCMTGWb/nwcFciItL/Ujeb4cUXE7lxXY/HJx8SNXsFx0010PrXxzhiBJpawfzP08CfEekH/mZV4c03E7hxI+3gXn3lWjylOcS1TFqJSmuuE1HZFbeYtK33ZjP4+ChUrOjJxYtKqnpPmTo+cSKcPJn+f4xKlTLTpEk8b76pTbe1Z968BNzcTDwwsVQ8JLPf0ZT3sstpQU/p0qWJjY3FaDRauxqio6Nxd3fHx8cn1b4nTpygb9++1tcajYbq1asTGRnJuXPnSEhIoHr16tb3a9SogdlsJioqyqagR1XTDO536JeHouSPgWharZZZsz7go4/eY9Cgfnh4eNKsWUuGDXsNgK5du3P9+nWmT5/M3bt3qFYtiFmz3ker1VK5chWeeqoer776ElOnvmOd4XT8+DGuXr1Cx47/S3O9oKBgqlUL4pdffqZVq7a8995HfPzx+3z//UoCA8sxZcoMHn+8GgAzZsxh/vxP+fLLz3n00crMnv0hAQEl8fcP4PnnezFnzjtotRqef743MTHp/Hf0nubNW3HkyF9MnDgGRVEICqrBsGGvs2jRAgwGA+XKlU91rUqV7l8LLN1pzZq1ZO/e3VSv7vzxYek9m47YV9yX3XrT66FVK/vHeORUVuNy/vlHQ5s2xejXz8B77+nBZCLM5yydq+lo8s9XNGMHkZSlPZYuaBUtc3nTsn5JXBwBP/8fD09TMPv6YvL2QXvpIgownUm0xbLUhAkdn/AabdgCgOHxFtz6YBR/lwynQsX7dZrVAOdyumv4dO6N6/59/MJQhjMPbgBTMj9Oo1Hx81M5e1aDTmcJ9EqVut+15uKuJbCCkej/TOmmc9BgIrCCBhd3barP/+OPXdm1S8uRI1ru3k3/H+uUqePvv++GVqtSrBh4elr+LFZMxdNTxd9fRVWhaVMTtWqZOHLEErCmBExNm5rk9zWbHPFvm6JmZ7W5XJCYmEi9evVYvHgxdepY0iF89tln/P7773z77bep9u3fvz9VqlRJNQW9U6dOdOrUiY4dO9KkSRPWrl1LcLBlbYUTJ07QtWtXfv/991Rjg7ISE5N+S8+NG1fx9y+Li4t90xJSWnqEbZxdb2+/PZHy5R9hwIDBTiuDLc+fokBAgHe6z3FhlJMZNQ+ytd5UFdq08bR+eaU9n0poqJnNmxNy5T82Lj/9SKsBj/PXvZaW9Pi6J9LrkV185Dke3b+nUBITU72vAvU4wJ/U5Sn+4AD1rAOEk557HkPrtpjLlMVUugzmMmXBwwNMJvxqB6O5ehVUNc3xQKpBxqYKlUh6vidJ3XtirlgJgJ8mHWHAgvA05W1U9jQL7/QkKD4CczEvlnb7gc+ONSU5WSE5GQwGy59xcXDzZtbLy/n4qDz+uJnHHzczdKiBK1eUDANFgK5dDaiqwoIFSdZtvXt7sHWrpX49PFSCg83895/lmXswaNm8OQGjEXS6rMeXbN+uTVWOlSsTaN5cpp5nJbPf0ZT3sn0uZwU9AJMnT+bQoUO8++67XL9+nTFjxjBz5kxat25NdHQ03t7euLu7s3HjRsaOHcu0adMICwtj9erVrFy5ks2bN+Pv78/AgQO5efMm06ZNQ1VVpkyZQqVKlfjggw9sKo8EPfmLs+rt+PFj/PPP33zxxSd88813lC0bmPVBuUSCnvTp9fDkk8Uc0tpiT709/OX1sNz6MjMZTJSsG8zWyCdox+Y07w9iPq+wgJocRcv93x3V3R1T2XLozp+1bttGC0bwCZ8wgpb8at1+64efM0wZYE0FAfyqNrce30KxLOYZP24S2ksXcVu3Fs3dO9bjDOFPY6wWhPuiL6nHfmvApsVIGIf4417QlVz7Ke58vhDzo5XTvX5KwHnsmAaTyRJ4VK5spnVrI2fOaPn3Xw0XLiiYzfejj61b46lZ05xpoJri6NE4ypRR7x2nJTpaITTUTLVqZnS6nActKeVPGeKQW4FxYVNogp7ExESmTp3Kli1b8PLyYsCAAfTv3x+AatWqMXPmTLp2tYzCX716NYsXLyYqKoqgoCAmTJhgbdm5ffs2s2bNYteuXSiKQosWLRgzZgzFbFzNT4Ke/MVZ9bZo0QJWrlzOyy+/SvfuPfP8+g8qzEFPTlpqHNnaYk+9pVz/6FFNqi9YjUalZk3Ht/KcO6ewaJEr235K5mSUP27oqccBIqiNGS1ajDzJIWuLjaFRY5LDn8ZYvQamoCBMFR8FsLbUKOncqKoomMsGcjPieKapHNJP+lmOuBmz7+e+SkjA7ZcNuK9YjsuendbrqcAWWlu7xgA20YbWbEH19ubGibOQxYD9rAKPpCQ4d07D6dOWn1dfNVCsWMaB6iOPmAgPN1OrlokuXZLx9c342o4IWnbv1jJpkifTpyfw9NPSypMdhSboyW8k6MlfpN4Kb9DjiJaaLVu09OmT89YWe7q3FCXjL9GgIBO9eyfTvr2R8uXTnjC7wZ6qWr4gFy50ZetWrTW4W8nzPM93bE4neEgZV3Nn/iL06SQFfrCl5sHAR733zZ3tpJ0mE64H9lE84Ta3PYtjqJdx1mzN5Ut4vjcTjxWWYQuZda1l1spkLaudgYeqQvPmnvz9d+plQ7ZutS1w2bVLy4QJbrzzjp4mTWwPWgrS72l+4cigRxKOCiHynK2r+16/rnDypIYTJzScOKHl5EkN//6r4ZFHzERGKphMaVtbHL1Mv6paAq333nNj6dJEmjWzDEy939pjSQb5999aJk7UMnEi9OiRzCef3B8nkp31akqWNDNqlIElS1w4dep+INGypZEhITvp/OF3ALRmC0/xhzV4aH0v4AEwly6T7rkNHTtxZ9E3aVpqzGUDU7fUZCUla3aAN8kxdy23ngFz+UdIbtLMGvQowLuMZwSf8C7jU40Dyk66CXsnhCgKTJp0fxC42awwfrztE0pkgcCCTYKebJIGMeEMhfW5y+7qwMeOaejZ0yPDIKFmTSOXLrmk2mY2K8TGwpo1Ov73PyMuLukeapNDhzS8/bYbv/9u+Sfz449dmTNH/9A9KHz6aSK3byv8/LOOAwe0VKlyv6Xy9m2YN8+VEiUyD/b8/VXGjrV08Xh6qvTsmczAgQaqKqcp3m0A98OrtMFDShdVcv2GGd6LoWMnbrbrkDbbeC6mWXk4CGvJr5wkbVLPjIK1h9kbeKQEqpK/quiS7q0HpNd0ZjabuH79Ml5eJfDy8kn/wCxIN419pN4gLu4OcXGxlCr1SKoFH9NT0JrNMxoX8+B4nJgYheBgLxRF5dFHVYKDTdSoYSY42ERwsJly5VTatr0/sFVR7o0duRdQlC9vZtAgA336JOPllX45Mqu38+cV3n3XjfXrLZGTu7vKoEEGhg83ULx45l0t0dGWgbYpE0i//17HkCEeWdbLypUJbNigo2pVM716JePjA7pjRyj+fFc0MdGYSpVGc/06KDnsosohm563B2Z+5WQ8kSPktHsqpwra72l+IN1beUij0eLh4UVcXCwArq5u6aZEyIzZrGAyydNtq6Jcb6qqYjDoiYuLxcPDK8uAp6Axm+HXX7WYTKQKeCB1DqiSJVU2b46nalUzGc1LeLC1RVUVFi5M4OxZLV995cLlyxomT3Zn4UJX/vgj3vp9mp2s14sWuTB/vivJyZZg6vnnjYwZo6dcufvPZGZdLSVLpn52y5dXeeaZZLZt05GYmM6qwg90yz04Fsll7x58+vZAE3eX5JBQbq9Yg8sf+3PeRZWXtFriZszBZ0BfVEVJN1iLmzE71wMekO6pok5aeh6QUeStqip37twkMTF72b4fptFoMGeS8E6kT+oNPDy88PHxy1agXVD+B2k2Q8uWnhw/nvIFl1JYxa7ZTxm1tiQlwXffufDFF660a5fM5MmWFd+TkqBWrWKZrvdSqpSZbt2S+ewzN5o3NzJpkp7gYMc8i4mJ8OmnLsydm3aW0sODr103bsBn8Isoej2GhuHcWbYC1edenhqTKU+7qB5mz/OWrZlfhVxB+T3NT2T2Vi7J6iG0pKOwLW+EokCJEsWIjY2XB9wGUm+g1epsauHJ639MbZlyHhmppJp+/tZbbvzwgwu9eiVTo4aJESPud/vYs8ZNZl0WZrMl0PG8N/Rm924tzz3nyf2RMamldK+tXp3A4cPazLtA7Aw80ltvJmWhu5Rgz/3/vsFr5HAUsxl92w7c+fLrLKdz5yW7nzcnB2vOJkGP7SToySW58RDKA24fqTfb5WWdZXfK+SefJLFkiQubN+vYuDGB2rUtrSUxMQru7ipeXnm/YNvHH7vyzjuupBfwpMhO4JV+q0UgcTPmZKvVIrP1Zjw+/Qiv6ZMBSOzVl7i5H1uW/M1H5HfUPlJvtnNk0FO4BgoIIfJEypTzlIHDD1MUlTt3LEv/b9rkgqoq7N17/0s7IEC1DixOGRdTtaopT3LSvfaagd9/j8ff38zDc60trTxZz+pJWe9G80DAA6C5ehWfAX1x3fBjluVImUkE3J9JpKoUmzrRGvAkDHuduA/n5buAR4iCSn6ThCjC7F0VOTtTzi1dSirPP5/MwIHJPP54xmNi8npw6WOPqXz2WVKa8quqwrhxWQReJhNeE0eDqqZpK1JUFVVR8Jo4hpvtOmTabaOYTUzpfJCxUVWZ0vlfFMNjeL/5Gu6r/g+AuCkzSBw6ws47FEKkR4IeIYqo7CyUl9GqyDduKGi1UKGCmStXUi8OCODqqjJunJ4+fZIpXjw3Sv8AO8eIpLS0PDyuJqtWHpff96bq0nqYoqpoI6/gum0zhjbt090npWusc2QknQGmgjrTHUWfhKrVcvfDeeh79M7yHoQQtpGgR4giKrurIl++rHD4sPbeishaTpzQcO2aJVDS6dQ0AQ/AkiWJtGyZ+2ug5GRcjaLA2NGJ9Ohl6WczmRTGjk7MsJVH++8/uP3wPe7fLs1W2Yr37YGpQkWMIaEYQ2pirBmKMSQU3Z9/WFJBPDQ4QdEnoQIJQ16TgEeIXCIDmR8gA5nzD6k32+VWtvDly1346ae0yxpXqmSmRg0TFy9q+PvvjGch5RZrHqmHupmyu0if64YfKTZhNA2v/mBN5bCvbBfi37kfMGnOn8N9/VrcfliD7u8TDim3qtGA2ZzuMGoVMAeWy5NF+nJKfkftI/VmO1mcUAjhENWrmylXztJF9eBspgcXyvvnHw1Xr2qsqyDXqGFZFTllIPKDgZPJdH9hwVyVw3E1DwZMD6Zy0EZZBiIndeuJ7t+/cTn8l/UY1cUFQ7MW6Dt1odiMqWiuRWW6unDs9t/Q/X0S3dEj6I4eRnf8KNp//0HJZO0pBdBGXsFl/74sE28KIWwnQY8QBVh2VhZObyDytm1a3n/fjYiI9FsTzOb7wcurrybz6qvJGZbBGfmMXPbvy9a4Gp8Xe2Os8QSqnx/mEn6WP32K4zV2lDVgSpUH6l5VeXxnGUysarUkhz+Nvstz6Nt3RPUtYdnuWSzL1YVVP3+SGzVOFby4rfgWn9eGZHl/2Um8KYSwnQQ9QhRQGQ9Evp+voVQpMwcPxnPmjIYSJVRrCoXkZIWICC2KolK7tiVTeVSUgtmc/QG9KezNep0Tmqir2drPbdNG3DZttOsaCYOGkPDaKNSSJdO8Z2+2cnOFitm6dnYTbwohbCNBjxAFVHYGIqsqhIcX4+JFDSNH6hk71pKKoWlTI3PmJNGunZHSpdUcd1Hl5ZRz7bGjeH44N1v7JnZ7Hop5ocTGorl5EyX2Jtorl9HE3szyWOOTtdMNeFLYk608uX5DTIGBWSbezCxLuhDCfhL0CFFAZWetnOhoS+Ti7q4SH38/ivHwgP7973dZOaOLylbKndt4zpqBx+KFKGazpSspnTE9cD94iPtkfpogxGXvHny7dMjyetlqbdFqbRt7k48SbwpRFMmKzEIUYCnBilabttVAo1Hp0iWZRYsS+fvvOKZP12d4nrxeFdkmqorbdyvwa1Abz68WoJjNJHXuaknNoCjWYMG6exbBQ0pry8PHPXi8KbBcrrW2pHSNmcuWTbXdXDYwyxlnQoickZYeIQowozHj1p5lyxJp3Tr7LTZ5vSqyVSaLC2r/PonX2FG4/r4XAGOVx4mbOZfkJs0AMJfws3lcTX5obbGna0wIkXMS9AhRQP36q5YxY9z5+OOkdFcWbtUq/3VRPSyjxQXjJ76N7ugRPBZ+gWIyoXp4ED9yNImvDOPB5aHtDR7sHYjsULZ2jQkhckwWJ3yALE6Yf0i9ZSwmRmHSJDfWrLEsGNikiZFXXzVkmLE7v8pwccF7f6Zs07d/hrgZszCXf8TxhTCZcD2wj+IJt7ntWRxDPWltyS75HbWP1JvtZHFCIYogVYXVq3VMnuzGzZsaNBqVl19OZswYPcWKke8HIqeS2eKC9/5UtVruLPs/DK3a5V45UlpbArxJjrn7cNJ1IUQhI0GPEAXAhQsKb77pzq5dll/ZGjVMfPhhEmFh91f3nThRz6RJnkycmM8GIqcjq8UFAUu3lqdXHpVICFEUSNAjhJM9vKrywwICVA4e1LJrlw43N5U33zQwZIgBl4fSYTVpYuLkSYiJMdnebG5npnJ7ZXfFYVmZWAjhSBL0COFEGa+qfF/KqspvvKGne/dkHnvMsX0wOclUbi9zCb/s7ScrEwshHEjW6RHCiVJWVVaU9AMZRbHkznJzg3HjDLkS8PgM6Ivmoa4mzVVL4k3XDT869HoAukMH8Zo4JtN9cnutHCFE0SRBjxBOlLKqcnppJMCyqnKuZS3PIlM5YAlOTA4aFJ2URLHpU/Bt3xLd6X8x+/iggs2LCwohhL2ke0sUCtkZF5NetnFnM5stKSFKljTfSxlx/x40GpWaNbOf+NNW2c1U7rJ/X47Xk9EdOoj3iFfR/fsPAElduxH37hxc9u117lo5QogiRYIeUeBld1xMRET8g+vaOYytAZeqYm25SU6GPn08uHs37fFmcy628mDDYOKzZ8DeoCcpiWLvzcTjs49RzGbMJUtx972PMLTvCMjKxEKIvCVBjyjwspNtPDBQxdXV8dfObsC1e3c8+/bp+PlnHWfOaNiyJQFFsSwu3K1bMnfvKhw8qOXCBQWz+f6qyrm63k5yctb7AN5jRuK241eSevbG0LwV6B76ZyODmV+6Qwfxfm0Iun9OAfdbd1Q//9THy8rEQog8IkGPKPCyk208t1pMshNw6fVQq5YXSUn33z95UkNwsGWNnVmzLIlAt2/XWu/BZMrdVh6371bgPXokYFmPL91M5QAuLijJybj9/CNuP/+IuWQpkp57nqSefTBVD0p/5lfZQIxhtXHd9HO6rTtCCOEsMpBZFAoZZRu3jIvJvRWKszMQ+fZtDUlJChUqmHn1VQMbNsQTFGROs2/KPQC5t6pyQgJerw3BZ9hglMQEkoNqZJypXFG4s+Brbu7YR8LgoZgDAtBEX8fzi0/xe7oeJeqG4vNSn3RmfkXitvEnSzb0rt24ueeABDxCiHxBWnpEgaeqsGOHlo4dkzl82D3Ve2azwt9/a+jZ04NWrYy0amWkQoW0A5rtHQh95YpCdLSCn5+ZW7csXVMPcndXGTLEQMeORoKDzZm23CgKTJigZ8IENyZMcHwrj/afU/i83A/dqb9RFYWEN8eSMHI0rr/8nOVg4vjpM4mfPA3XX7fivnI5rps3ovvvfPr3gaWVSPXz5+5nX8r4HCFEviEJRx8gCUfzj+zUW0qw8957bkREaKle3YS7O9Zs44qi4uICBkPq6KF6dRMffJBEnTqW1ha9Hp58sli2BkLfuKGwd6/23o+OCxcybyzNy8SfmdWZ28rleI8dhZKQgKlUae7OX0Ry+NP3d7BxRWbXjRso3r9XlmW69cPP+X68jvyO2kfqzT5Sb7aThKOiSHs42AHw8FBp1sxE/fpG+vXzvLefwrJlCZQrp7J1q5atW3X88YeWU6e0lClz/zdn/34tnp6W8TeZDYS+eFGhUaPUuaC0WpXQUDMNGhjZskXHuXOWgCtPBiJnR3w83mNG4v7dCgAMTzfjzucLUUuVSr2fjYOJlaTEbO0naSSEEPmJBD0i33i4i6lECYiNvd+SEhCgcuWKwpQp7hw8aAl23N1V+vdPZuhQA6VLq6hq2mzjigLVqpkZNiyZ2Fj4808t5cvfD3oWLHDNtMUmZSB0lSoqpUubKVdOpWFDI40amahb14T3vf9kNG5sytlA5JzkvzKZcDmwDxJu4+JZHEO9hmj//cfSnfXvP6gaDQmjx5Pw2iiHdDdlNz2EpJEQQuQnEvSIfCHjqd/FrH8rVcrMnDlJHDyoxd1dpV+/ZIYNswQ7KbIaF1OiBLRunbr1pVYtE5cuKfzzT3rBgEqtWmZr8HTwYMZr/aQMRH4w4MqunOS/evjY4oC5uC9KYgKKwYCpTFlLd1bD8GyXJyvJ9RtiCgxEc/WqdfXmB6mKgrlsoKSREELkKzJ7S+QL2c1B1batiSlTkvjzz3imT9enCnhSNGli4rffEmjSJHtBx+jRBvbsSeCTT9LrskndYpPZ4oaK2cSUzgepViaWKZ0Popizd/2c5L/K8Njbt1AMBpKfCCF2+16HBjwAaLXEzZgDSBoJIUTBIQOZHyADmZ3rwXVq0pPbg4JVFdq08bQOhE4Zl7N5c0KW3VR2t9SYTPjVDkYTGZnhWjlq8eIkjBrzwAbVkr/CZMLzkw9Q7t7J8FhzYDluRhzPteAj/fsuV6DSSMjvqH2k3uwj9WY7Gcgs8qWc5L86d07h9GkNxYubuX07dQ4qRVF54oncHxT88CKH2R2Xk9La8vBvY0pLzZ1F31gDACXuLtp/TqH99x90/5xCt39v5vmvAOX2bbwmj7f9fsBhubMyImkkhBAFiQQ9wiFsyX/l4gJ//60hMNBMiRKW97Zs0TF5snu6x6mqkivr1qTH5nE5WWQqVwHv4a9gXLYY7el/0V65bFe5DHXqYq5Q0RKZaTSgKGguXsB1/74sj831GVSSRkIIUUBI0CMcIjvpGFxcYNAgd/bv1xEbq/DJJ4n06GEELDOfmjc30qCBidWrdZw965yp37YuEJhlpnJAiY/Dded26zZT6TKYqlbHWL06aLV4zv8sy3IlTJiSJrBw2bsH1y4dsjxWZlAJIYSFBD3CIbKT/+rKFYUrVywtQZ6eaqqusOBgMytXWgYSh4TkcOp3DqUMhM6O7LaiJPbuR1KP3piqVUP1LXH/DZMJtx9/sGsWlMygEkII28jsLeEwGeW/AktLT9OmRiZO1LNxYzynT8cxdGj6Wb7zJAeVg2S3FUX/XHeM9eqnDnggZ7OgZAaVEELYRIIe4TAXLijUqGHCZErbLPPtt4l8910iI0YYqFPHjItLxudRFJg4UU9QkOXPvGzlsVVy/YaY/fzJaBKGqiiYAstl2tpi6NiJO4u+wVy2bKrt5rKBqQZBO/pYIYQoaqR7S+SYqsKyZS5MmeJGQoLCo4+auXhRSTUmp2VL21prmjQxcfIkxMSY8vW0Tt3hQyhxd61JNh+Mz2xpbcnJLKiUY10P7KN4wm1u31uRWVp4hBAiNQl6RI5cvarwxhvubN9ueZQaNjTSo0cyI0Z4AM4Zk5NXtGdOU7x3N8sigMFPoLl5E+3VjDOVZ33CHMyCSjk2wJvkmLtk2PQkhBBFmFO7t/R6PePHj6dOnTqEh4ezePHiDPfdunUr7dq1IywsjJ49e3LixIlU7y9fvpymTZvy5JNPMmLECG7dupXLpS/aVBXWrtXRpEkxtm/X4eamMm1aEmvXJvL888YCMybHXpqoqxR/vguamzdJrhXGrZ+2cPPQCW798DN35i/i1g8/czPiuHQvCSFEPuLUoGfOnDkcP36cpUuXMmXKFObNm8emTZvS7Hf69GlGjRrF4MGDWb9+PUFBQQwePJjERMtsn40bNzJnzhzGjRvHypUruXr1KtOmTcvr2ylSxo9345VXPLh1S6FWLRO//prAK68kpywhw4QJeqpWNeXZ+jp5Sbl9i+LPd0V76SLGyo9xe/n34OVlbW3Rd+1maXWR7iUhhMhXnNa9lZCQwOrVq1m4cCHBwcEEBwdz+vRpli9fTtu2bVPtu3fvXqpUqULnzp0BGDlyJMuXL+fMmTOEhISwcOFCXn75Zdq0aQPA6NGjefvttzGZTGjliyfbbFlRuVkzI0uXuvDGGwZef92QZmCyLdO+C5SkJHxe6Inu7xOYSpXm9qofUEuWdHaphBBCZIPTgp5Tp05hNBoJCwuzbqtduzbz58/HbDaj0dxvhPL19eXMmTNEREQQFhbG2rVr8fLyokKFCsTFxXHy5ElmzZpl3f+pp55iw4YNeXo/BV12VlQuUcLM0aOWLOOtW5s4cCCeRx4pQoNHTCZ8Xh2I6+97MXt5c3vFGswVKzm7VEIIIbLJaUFPdHQ0JUqUwNXV1botICAAvV7PrVu38PPzs25v374927dvp1evXmi1WjQaDQsWLKB48eL8/fffANy8eZMePXpw+fJlGjVqxIQJE/Dx8cnz+yqoslpRGVTu3LG0BKW09hSpgEdV8RozCreff0R1deXOshWYQmo6u1RCCCFs4LSgJzExMVXAA1hfGwyGVNtjY2OJjo5m8uTJhIaGsmLFCsaNG8cPP/xAfHw8ANOmTePNN9/E19eXd955h9GjRzN//nybypQbY09Szpnfx7UoCowbp+f55zPKcq7g72/mxg2FcuVyP9jJb/XmMXcWHssWoyoKd7/4CmPjp9PNbO5M+a3OCgqpN/tIvdlH6s12mdWZrfXotKDHzc0tTXCT8trdPXXiyblz51K1alV69+4NwPTp02nXrh1r1qyhbt26AAwaNIgWLVoA8M4779C5c2euXbtG6dKls10mf//sp6e3VW6e21G6dYO5c+HQITA9NOGqZEk4fVqDj0+xPC1Tvqi3BQtgzkwAlHnz8Hmpr5MLlLl8UWcFkNSbfaTe7CP1ZjtH1JnTgp7SpUsTGxuL0WhEp7MUIzo6Gnd39zTdUidOnKBv3/tfNBqNhurVqxMZGUnJe4NIK1eubH3/0UcfBSAqKsqmoOfGjbsOXwhPUSwfVG6cOzeMGqVNN3/WvHkJGAwmYmLyphxOqzeTCZf9+1CuRaGWLoNy8ybeQ4agAAkj3yKhe1+IuZuHBcq+gvas5RdSb/aRerOP1JvtMquzlPeyy2lBT1BQEDqdjsOHD1OnTh0AIiIiCAkJSTWIGaBUqVKcPXs21bbz588TEhJCYGAgpUqV4tSpU4SGhgJw9uxZFEUhMDDQpjKpKrn2EObmuXPCbIYDB7TUr29CUSx5rwICzMTEKICCRqNSs6aZpk2dszJyXtab64Yf8Zo4OlXW9JRVlhP79CN+zMQCsehffn3W8jupN/tIvdlH6s12jqgzpwU9Hh4edO7cmalTp/Luu+9y/fp1Fi9ezMyZlm6E6OhovL29cXd3p3v37owdO5YnnniCsLAwVq9eTWRkJF26dEFRFPr3788nn3xC+fLl8ff3Z+rUqbRs2dLaClSUZHfa+c2bsHKlC8uWuXLunIb16xNo0MAS+MyZk8RLL1lae8zmwrui8oNcN/yIz4C+aX6jUtJLGJo2l054IYQo4JyahmLcuHFMnTqVfv364eXlxfDhw2ndujUA4eHhzJw5k65du9K+fXvi4+NZsGABUVFRBAUFsXTpUvz9/QF46aWX0Ov1jB49moSEBJo3b87UqVOdeGfOkd1p5y1amPjpJx16veVL3MtL5cIFhQYNLPt06GDJcn74sLbQrqicismE18TRoKrpD05WFLwmj+dmh06y4KAQQhRgiqpKA1uKmJjcGdMTEOCdK+d+mKpCmzaeHDmiyXDa+YMpMZ94wkT//sl07ZqMl1fqPXft0jJhghvvvKOnSZO8D3rsrrd7Y3JsSdrpsncPvl06ZHnqWz/8bH9urDyQl89aYSL1Zh+pN/tIvdkuszpLeS+7JOFoIaIoMHasPt2ByPf2wMVFpUsXI/37G6hd25xhj01BXFE5vTE5psBA4mbMSZsDKz4el8OHcPljP64/rcvW+TXXohxYWiGEEHlNgp5CplkzS9fU0aMazOb7EY1Wq/LYY2bWr0/gXq9goZLRmBzN1av4DOhL3NyPUL190P15AJc/DqA7fhTl4Xn5WTCXLuPIIgshhMhjEvQUMhm19phMCtOm6QtlwJPZmBxFVVEB71GvpT2sbCDJdetjrPMUnh9/gHIjBiWd9mZVUTCXDbR0lQkhhCiwJOgphGrXNqHRqNaWHq1WJSTEXGgHJLvs35eqS+thKYGQsfJjGJq3xPhUPZLr1sdcrrx1H1O5R/AZ0BdVUVIFPuq9/r+4GbNlELMQQhRwGU/zEQXW8uUuqbq2TKbCO+1cuX4d9+XLsrVvwujxxL/7Hvouz6UKeAAMHTtxZ9E3mMuWTbXdXDaQO4u+STsmSAghRIEjLT2FTHIyLFxoyWH2yCNmLl3SFLxp5yYTLgf2QcJtXDyLY6j30AyspCRct/yC+6r/w3X7tmyPzclqTI6hYydututg8+wvIYQQBYMEPYXMjz/quHJFQ0CAmVmzknj7bTcmTCg4rTwPz8AqTsoMrNmYy5TFfdUK3NatQXP7lvWY5Cdroz17BuXOnZyPydFq8/W0dCGEEPaToKcQUVX4/HNLK8/Agcm0amWiVauCM+08wxlYkZH4vNQ31SBlU2A59N16kNS9J6bHq1qPlTE5QgghMiJBTyFiMECjRiaiohT69zdkfUB+ktkMrHt/qoqC/tluJPXoY2mNeSCISRmT8/A6PeayllYiGZMjhBBCgp5CxM0Npk3TM3GiHldXZ5fGNlnNwALL9POk3v0y7H6SMTlCCCEyI0FPIVTQAh7I/mrHWe4nY3KEEEJkQKasFxKLFrnw++/agpnLJSkJt3VrsrWrrIoshBDCXtLSUwhcu6YwZYobBoPCr7/GExJidnaRsk377z/4DHoR3cnjwMMpUe+TVZGFEELklLT0FAKLFrlgMCg89ZSp4AQ8qorbim8p0boJupPHMQcEED9yNCiKdcaVdVeZgSWEEMIBJOgp4OLjYckSyyCeIUMKxowtJe4u3q8OxOe1ISgJCRgaNyV2xz4Sxk6UVZGFEELkGuneKuBWrnTh1i2FSpXMtG1rdHZxsqQ78hfeg15Ed/4cqlZLwpgJJAx/w9qCkzIDy/XAPoon3OZ2eisyCyGEEHaQoKcAM5lg/nxLK88rrxjyT1xgMqWdNq7R4PHl5xSbNhklORlTufLcmb8YY736aY9PmYEV4E1yzF3LQB8hhBAihyToKcA2btRx4YIGPz8zPXokO7s4QNo0EgCmMmUwly6Dy5HDAOjbdeTuR/NQS/g5qZRCCCGKIgl6CjCtFh591EyXLsl4ejq7NJmkkYiKQhsVharTETd9FkkvvUyBSQYmhBCi0JCgpwBr395ImzZGDPlh/HIWaSRUwFzCj6T+AyTgEUII4RQye6uA02rBw8PZpbifRiKjcEYBtNHXcdm/Ly+LJYQQQlhJ0FMAnT+vsHy5C0lJzi7JfQ5LIyGEEELkEgl6CqAvvnDljTfceeMNd2cXxSq76SEkjYQQQghnkaCngLlxQ2HVKhcA+vTJHzO2AJLrN8Ts75/h7HJVUTAFlpM0EkIIIZxGgp4CZskSFxITFWrWNNGwocnZxbHSXjgPiYnWQcsPkjQSQggh8gMJegqQpCRLni2wpJzIL5OglDu38XmhJ5qEBIyVH8NcNjDV+5JGQgghRH4gU9YLkNWrXYiJ0VC+vJlnnsknKSdMJrxfHYju338wlSnL7fW/YA4omXZFZmnhEUII4WQS9BQQZjPMn29p5Rk0yICLi5MLdE+xmdNx27oZ1d2dO0v/zzpQOblRYyeXTAghhEhNurcKiFu3oHx5FR8fld6988cAZrc13+H5yQcA3P1wHsaw2k4ukRBCCJExaekpIPz8YNWqRG7cUPD2dnZpQPdXBN5vDAMgYfgb6J/t7uQSCSGEEJmTlp4Cxt/f+SnHNdei8OnXCyUpCX2rNsSPn+zsIgkhhBBZkpaefObKFYUbN1JPy9q+XUvNmmYCAlQCAlQCA50Y+CQl4dO/F9qoqxirVuPu/EUySFkIIUSBIEFPPqLXQ+vWnkRHZ9wAV6qUmYiIeNzc8rBgKVQV71EjcIk4iNnXl9vLVqJ6+zihIEIIIYTtpHsrH3F1hXLlVBQl/ZYcRbG08ri65nHB7vH4Yh7uq1eiarXcWbgUc+XHnFMQIYQQwg4S9OQjigJjx+pR1fRXHVRVhbFj9U5ZlNBl+1aKTZsEQPy0d0lu0izvCyGEEELkgHRv5TPNmpmoVcvEsWMaTKb70Y1WqxISYqZZszxIPWEypVpc0BxQEp9BL6GYzST26kviwFdyvwxCCCGEg0nQk8+ktPb06OGZarvJlDetPK4bfsRr4mi0kZHWbapWi2IykfxUPeJmf0C+yX8hhBBC2EC6t/KhlNaelNSdGo1KrVqmXG/lcd3wIz4D+qJ5IOABUEwmVCCx1ws4ZwS1EEIIkXMS9ORDigIDBhgAS4uK2ZwHrTwmE14TR4OqktFlir33LpjyT2Z3IYQQwhYS9ORT3bsbqVnTEmDkRSuPy/59aCMjMwx4FEAbeQWX/ftytRxCCCFEbpGgJ59SFJg0SU/VqiYmTMj9sTyaa1EO3U8IIYTIb2Qgcz7WpImJ335LyJNrpWRHd9R+QgghRH4jLT35kKrCs896MHq0G7dv5801k+s3xBQYSEYJLlRFwRRYjuT6DfOmQEIIIYSDSdCTD/33n8KePTpWrHDB0zPr/R1CqyVh0NB031Lv9a3FzZgtebaEEEIUWBL05ENHj1oCixo1zLi45NFFk5LwWPktCqC6u6d6y1w2kDuLvsHQsVMeFUYIIYRwPBnTkw8dPWqJRUNC8m56eLF3pqI79TfmkqW4uX0vujP/WldkTq7fUFp4hBBCFHgS9ORDR45YAozQUHOeXM9l1w48F3wOwN2P5qGWLk1y6dJ5cm0hhBAir0j3Vj6jqnDsmCXoSVmnJzcpsTfxHvEqAIn9BmBo1TbXrymEEEI4g1ODHr1ez/jx46lTpw7h4eEsXrw4w323bt1Ku3btCAsLo2fPnpw4cSLd/b766iuaN2+eW0XOdZcuKcTGKri4qFSvnsstPaqK15iRaK9GYqz8GHFTZ+Tu9YQQQggncmrQM2fOHI4fP87SpUuZMmUK8+bNY9OmTWn2O336NKNGjWLw4MGsX7+eoKAgBg8eTGJiYqr9Ll26xLx58/Kq+Lni2jWF8uXNVK9uzvU0V25rvsN93VpUrZa7ny+EYsVy94JCCCGEE9kc9IwZM4bdu3djymEOpoSEBFavXs2ECRMIDg6mVatWDBw4kOXLl6fZd+/evVSpUoXOnTtToUIFRo4cSXR0NGfOnEm135QpUwgKCspRuZztqafMHDoUz4YNubsooebyJbzGvglAwsjRGJ+sk6vXE0IIIZzN5qDHy8uLCRMm0KhRIyZPnsz+/ftR1YyWtMvYqVOnMBqNhIWFWbfVrl2bI0eOYDan7tbx9fXlzJkzREREYDabWbt2LV5eXlSoUMG6z7p160hMTOS5556zuSz5kYdHLp7cbMZ7xKto7twmuXYdEt54KxcvJoQQQuQPNs/emjRpEhMnTuTPP/9k06ZNvPmmpbWgXbt2dOjQgVq1amXrPNHR0ZQoUQJXV1frtoCAAPR6Pbdu3cLPz8+6vX379mzfvp1evXqh1WrRaDQsWLCA4sWLA3Dz5k3mzp3L119/zbFjx2y9JavcyG+Vcs7snDsldsztPFseCz7D9bfdqJ6e3P3sSxSX/DeJz5Z6ExZSZ/aRerOP1Jt9pN5sl1md2VqPdn3bKYpC3bp1qVu3LiNHjuSrr77i66+/5ttvvyUwMJDu3bvTv39/3DIZlJKYmJgq4AGsrw0GQ6rtsbGxREdHM3nyZEJDQ1mxYgXjxo3jhx9+wN/fn3fffZcuXbrw+OOP5yjo8ff3tvtYR5z70iUIC4N69WDDhlz6pTh6FN55GwDlww/xqxeWxQHOlZufSWEldWYfqTf7SL3ZR+rNdo6oM7uCnvj4eHbs2MGmTZv47bffKF26NC+++CLt27cnOjqauXPn8scff7Bo0aIMz+Hm5pYmuEl57f7QisBz586latWq9O7dG4Dp06fTrl071qxZQ1BQEIcPH2bGjJzPPLpx4y529NRlSlEsH1R2zr1jh44bNzy4cMHEjRu5MKYnKQnfnr3QGQwYWrflTpceEHPX8ddxAFvqTVhIndlH6s0+Um/2kXqzXWZ1lvJedtkc9Lz66qvs27cPHx8f2rVrx7Jly6hZs6b1/apVq3Lnzh0mTJiQ6XlKly5NbGwsRqMRnc5SjOjoaNzd3fHx8Um174kTJ+jbt6/1tUajoXr16kRGRnL+/HmioqJo0KABAEajkeTkZMLCwli4cCF16mR/gK6qkmsPYXbOfeSIZYhVzZrmXClHsXenozt5AnNAAHc+mIeKQoYZRvOJ3PxMCiupM/tIvdlH6s0+Um+2c0Sd2Rz0BAQEsGDBAurVq4eSQf9LnTp1WL16dabnCQoKQqfTcfjwYWtgEhERQUhICBpN6vHVpUqV4uzZs6m2nT9/npCQELp06cIrr7xi3b5lyxa++eYbvvnmG0oXsFWFU3Ju5caihC6/7cZjvmU6/90PP0MtVcrh1xBCCCHyM5tnb02fPp2zZ8/y888/W7cNHTqUFStWWF+XLFmSxx57LNPzeHh40LlzZ6ZOncrRo0fZtm0bixcv5oUXXgAsrT5JSUkAdO/ene+++45169Zx4cIF5s6dS2RkJF26dMHf35+KFStaf/z9/dHpdFSsWDFNN1l+l5JzyyFBj8mEy949uK1djeuWX/AeNhhFVUns2x9Dm3Y5P78QQghRwNjc0vPhhx+ydu1a3n77beu2evXq8fnnn3Pz5k2GDh2a7XONGzeOqVOn0q9fP7y8vBg+fDitW7cGIDw8nJkzZ9K1a1fat29PfHw8CxYsICoqiqCgIJYuXYq/v7+txc+3oqIUrl/XoNGoBAfnbCVm1w0/4jVxNNrIyFTbTaVKE/f2uzk6txBCCFFQKaqNi+yEh4fz0UcfpRkrc+DAAd566y12797t0ALmpZiY3BnIHBDgneW5t2zR0qePJ9Wrm9i92/5BzK4bfsRnQF9QVR7sfEy59J3F32Lo2Mnu8+eV7NabuE/qzD5Sb/aRerOP1JvtMquzlPeyy+burcTERLy8vNJsL1GiBHfv5s+ZQAWBqys0bmykUaMcdG2ZTHhNHJ0m4AEsrxUFr4ljIIeraQshhBAFkc1BT+PGjXnnnXeIfKDr5Nq1a8yePZvw8HCHFq4oadrUxJo1icycqbf7HC7796GNjEwT8KRQVBVt5BVc9u+z+xpCCCFEQWVz0DN58mSSk5Np0aIF9evXp379+jRt2hSz2czkyZNzo4wimzTXohy6nxBCCFGY2DyQ2c/Pj5UrV3Lq1Cn+++8/dDodlSpVokqVKrlRviIhKcny4+ubs/OYS5dx6H5CCCFEYWJzSw9YFgAsUaIENWvWpEaNGnh4eHD+/Hk2btzo6PIVCXv3aqla1Zvu3XOWZTS5fkNMgYGoGayfpCoKpsByJNdvmKPrCCGEEAWRzS0927ZtY9KkSdy6dSvNeyVLlqR9+/aOKFeRkrIooZ9fDofya7XEzZiDz4C+qJB69ta9QChuxmzQanN2HSGEEKIAsrml5/3336dVq1b8/PPP+Pj4sHLlSubPn0+5cuV4/fXXc6GIhV9K+onQ0JzPqjJ07ETC0NfSDGY2lw3kzqJvCsR0dSGEECI32NzSc+nSJRYsWECFChV44okniI6OpmXLlmg0GubMmUPXrl1zo5yF2v30EzlblDCF5s4dAJLaP4OhU2fMpctYurSkhUcIIUQRZnNLj4+PD4mJiQA8+uijnDp1CoDKlStz+fJlx5auCLhxQ+HyZcvHEBLigPVzVBXXnb8CoO/dF33XbiQ3aiwBjxBCiCLP5qCnSZMmvP3225w5c4Z69eqxfv16Tpw4wapVqyglSSxtlpJvq3JlMw8ll7eL9uwZtBcvoLq6YmjYOOcnFEIIIQoJm4OeCRMmULFiRY4fP07Lli0JDQ3lueeeY/ny5YwZMyY3ylioOTqzuuuObQAk12sIxYo55JxCCCFEYWDzmJ6dO3cyevRoSpQoAcDcuXOZOnUqbm5uuLi4OLyAhV1oqIm+fQ00aOCYoMdluyXoMTRv6ZDzCSGEEIWFzUHP22+/zapVq6xBD5BuLi6RPU2bmmja1EG5sJKScN33GwCGZi0cc04hhBCikLC5e6tevXps2LABg8GQG+UROeCyfx9KYiKmMmUxBdVwdnGEEEKIfMXmlp4bN27w+eefM3/+fPz8/HBzc0v1/q+//uqwwhV2kZEK168rBAWZeaga7eK6w1L3hmYtIINVmYUQQoiiyuagp3v37nTv3j03ylLkrF2rY9o0dzp1Suarr5JyfD7rIGYZzyOEEEKkYXPQ06VLl9woR5GUMnMrJCTnixJqIq+gO/U3qkaD4emmOT6fEEIIUdjYHPT07dsXJZOuk2XLluWoQEWJI6erp3RtGcNqo5bwy/H5hBBCiMLG5qCnXr16qV4bjUYuXbrErl27ePXVVx1WsMLuzh04d84yjtwR6SdcHhzPI4QQQog0bA56hg0blu72tWvXsmXLFgYMGJDjQhUFx45ZWnnKlzfj75/D7OpGI667dgCyPo8QQgiREZunrGfkqaee4vfff3fU6Qq9lPQTjsi3pfsrAs3tW5h9fTGG1c7x+YQQQojCyOaWnsjIyDTb4uPjWbRoEeXKlXNIoYqCI0csLT2hoTnv2nJNWYW5SXNJLCqEEEJkwOagp3nz5iiKgqqq1gHNqqpStmxZ3n33XYcXsLAaONBAcLCZJk2MOT5XSlb1ZBnPI4QQQmTI5qDn4cUHFUXBxcWFgICATGd1idTq1DFTp07OV7VWbt5AdygCkEHMQgghRGZsHtNTrlw5du7cyV9//UW5cuUIDAzk7bffZuXKlblRPpEF1907UVQVY1ANzGUDnV0cIYQQIt+yOej58MMP+eKLL/D09LRuq1u3Lp9//jmfffaZQwtXWO3fr+WHH3RcuZLzljHreJ5mMmtLCCGEyIzNQc+aNWv46KOPaN68uXXbCy+8wNy5c1m1apVDC1dYffutC4MHe/B//+eSsxOpqqzPI4QQQmSTzUFPYmIiXl5eabaXKFGCu3fvOqRQhV3KdPXQ0JxNV9eePIH2WhSqpyfJ9Ro4omhCCCFEoWVz0NO4cWPeeeedVFPXr127xuzZswkPD3do4QqjhAT491/HrMRszareMBzc3XNcNiGEEKIwsznomTx5MsnJyTRv3pz69etTv359mjRpgslkYsqUKblRxkLlxAkNZrNCqVJmypTJ2UrMKVnVZRVmIYQQIms2T1n38/Nj5cqV/PPPP5w/fx6dTkelSpWoUqVKbpSv0LmfZDSHixLGxeFywLICtqzPI4QQQmTN5qDHYDDw0UcfUa5cOXr37g1A165dadiwIa+99houLjkcnFvIOSqzuuu+PSgGA6YKlTBVloBTCCGEyIrN3VszZsxg165dVK9e3bptyJAh7Ny5k9mzZzu0cIXRkSMOHs/TrAXIopBCCCFElmxu6dmyZQtff/01QUFB1m0tW7akdOnSDB48mIkTJzq0gIXNN98kcuSIlvr1c5Z+wmW7jOcRQgghbGFz0KOqKnq9Pt3tycnJDilUYfbIIyqPPJKzgEdz/hy68+dQdTqSwxs7qGRCCCFE4WZz91abNm2YNGkSBw8eJCEhgYSEBA4dOsTUqVNp2VJaHfJCStdWct36qN4+Ti6NEEIIUTDY3NIzbtw4JkyYQL9+/TCbzaiqik6no3PnzgwdOjQ3ylhofP21C7GxCp06JVOliv3T1VOyqssqzEIIIUT22Rz0eHh48MEHH3Dnzh0uXLiAyWTiv//+46effqJly5acOHEiN8pZKHz7rQvHjmmpWtVMlSp2dnEZDLjs2Q1AsoznEUIIIbLN5qAnxenTp1m3bh2bNm0iLi6Oxx57jPHjxzuybIWKXg+nTqXM3LJ/urrLnwfQxMdhDiiJMTjEUcUTQgghCj2bgp4rV66wbt061q9fz6VLl/Dx8SEuLo7333+f9u3b51YZC4VTpzQkJyuUKKHyyCM56NqyZlVvARqbh2QJIYQQRVa2gp41a9awbt06Dh48SKlSpWjevDmtW7fmqaeeIjQ0lKpVq+Z2OQu8lEUJQ0JMOVpWR7KqCyGEEPbJVtAzYcIEKlasyOzZs+nUqVNul6lQSlmUMCeZ1ZVr13A5fhRVUTA0laBHCCGEsEW2+kfeffddypcvz7hx42jQoAHjxo3j119/TXe9HpE+R+TcSpm1ZaxZCzUgwCHlEkIIIYqKbLX0dO3ala5du3Lz5k1++eUXNm7cyLBhw3B3d8dsNnPgwAEqVqwoebcyYDLBuXM5H8R8P6u6tPIIIYQQtrJpJKyfnx+9e/dm+fLl7Nixg6FDhxIUFMT06dNp3LgxM2fOzK1yFmhaLfz9dxzbt8dTqZKdg5hNJlx3bgcguZlMVRdCCCFsZff0nzJlyjBw4EDWrl3Lpk2b6NOnD3v27HFk2QoVFxd44gmz3YOYdUcPo7l5E7O3D8m1n3Js4YQQQogiwCFznitVqsSwYcPYuHGjI04n0mFNPdG4iSWCEkIIIYRNZKGXPNCvHwwf7s7Zs/bPVXeVrOpCCCFEjjg16NHr9YwfP546deoQHh7O4sWLM9x369attGvXjrCwMHr27Jkq3YXBYGD27Nk8/fTTPPXUUwwdOpSoqKi8uIUsGY2wejWsXOmCaudwHuX2LXQRfwKyPo8QQghhL6cGPXPmzOH48eMsXbqUKVOmMG/ePDZt2pRmv9OnTzNq1CgGDx7M+vXrCQoKYvDgwSQmJgLwySefsG3bNubOncuKFSswGo0MGzYM1d4ow4FOn9aQmAheXiqVK9tXHpfdu1BMJoyPV8X8SAUHl1AIIYQoGuzOvZVTCQkJrF69moULFxIcHExwcDCnT59m+fLltG3bNtW+e/fupUqVKnTu3BmAkSNHsnz5cs6cOUNISAg//PADEyZMoG7dugDW2WQXLlygUqVKeXxncOWKwo0blq6sLVss6/M8+qiJ48ctMWZAgEpgYPYDIMmqLoQQQuSc04KeU6dOYTQaCQsLs26rXbs28+fPx2w2o3kgr5Svry9nzpwhIiKCsLAw1q5di5eXFxUqVMBsNvPee+9Ro0aNNNe4e/duntzLg/R6aN3ak+jo1I1ox47paNnSUt2lSpmJiIjHzS0bJ1RVGc8jhBBCOIDTgp7o6GhKlCiBq6urdVtAQAB6vZ5bt27h5+dn3d6+fXu2b99Or1690Gq1aDQaFixYQPHixQFo2LBhqnMvW7aMEiVKUK1aNZvKlJOcWCnc3KBcOZWYGBVVTXtCRbG08ri5Ze962tP/or1yGdXNDWODRg4pY0GQcp9F5X4dQerMPlJv9pF6s4/Um+0yqzNb69FpQU9iYmKqgAewvjYYDKm2x8bGEh0dzeTJkwkNDWXFihWMGzeOH374AX9//1T7btu2jcWLF/P222+nOX9W/P297biTtGbNgod66KxUVWHWLC0lS2ZxLZMJ9uyBRYsAUJ5+moAKpR1SvoLEUZ9JUSJ1Zh+pN/tIvdlH6s12jqgzpwU9bm5uaYKblNfu7u6pts+dO5eqVavSu3dvwDJmp127dqxZs4ZBgwZZ99u2bRuvv/46ffr0oVu3bjaX6caNu3bPsHrQk09CrVqeHD2qwWy+H4ZqtSohIWaefDKBmJiMj3fd8CPFJoxGGxlp3WY+cIC4JcsxdCwaCV8VxfKAO+ozKQqkzuwj9WYfqTf7SL3ZLrM6S3kvu5wW9JQuXZrY2FiMRiM6naUY0dHRuLu74+Pjk2rfEydO0LdvX+trjUZD9erViXwgKPj5558ZPXo0PXr0YPz48XaVSVVx2EM4dqyeHj08U20zmRTGjtVbr5Ue1w0/4j2gb5odlDt38H6pL3cWfVNkAh9w7GdSVEid2UfqzT5Sb/aRerOdI+rMaVPWg4KC0Ol0HD582LotIiKCkJCQVIOYAUqVKsXZs2dTbTt//jzly5cH4Pfff2f06NH07t2bSZMm5XrZs6NZMxO1apnQai2fkFarUquWiWbNMkk4ajLhNXE0qCoPd1OmvPaaOMbS9SWEEEIImzgt6PHw8KBz585MnTqVo0ePWsfivPDCC4Cl1ScpKQmA7t27891337Fu3TouXLjA3LlziYyMpEuXLhiNRsaPH89TTz3Fyy+/THR0tPXn4e6zvKQoltYek8kSrqS08mQ26Mpl/z60kZFpAh7rOVUVbeQVXPbvc3yBhRBCiELOad1bAOPGjWPq1Kn069cPLy8vhg8fTuvWrQEIDw9n5syZdO3alfbt2xMfH8+CBQuIiooiKCiIpUuX4u/vz+HDh4mMjCQyMpLw8PBU51+2bBn16tVzxq0B91t7Dh/WZt3KA2iuZW8V6ezuJ4QQQoj7FDU/LFucT8TEOH5g2e7dWiZN8mT69ASefjrzoMdl7x58u3TI8py3fviZ5EaNHVXEfElRICDAO1c+k8JK6sw+Um/2kXqzj9Sb7TKrs5T3ssupLT1FQZMmJk6ehJgYU5YPeHL9hpgCA9FcvYqSzs6qomAuG0hy/YbpHC2EEEKIzEiW9fxEqyVuxhzAEuA8KOV13IzZoNXmedGEEEKIgk6CnnzG0LETdxZ9g/rQoovmsoFFbrq6EEII4UjSvZUPGTp2Ii4pEZ8hL2N8vBpxcz6wdGlJC48QQghhNwl68ilN5BUAjGFPFvpBy0IIIURekO6tfEp76RIApvKPOLkkQgghROEgQU8+pb10AQBzhYpOLokQQghROEjQk09pLktLjxBCCOFIEvTkR6qKVoIeIYQQwqEk6MmHlBs3UBISLIsRlivv7OIIIYQQhYIEPfmQ9vJFAMyly4Cbm5NLI4QQQhQOEvTkQ5pL94KeRyo4uSRCCCFE4SFBTz5kna7+iIznEUIIIRxFgp58SJPSvVVeWnqEEEIIR5GgJx/S3uveMkn3lhBCCOEwEvTkQ9K9JYQQQjieBD35kHUgs3RvCSGEEA4jQU8+o9y+hebuHUAWJhRCCCEcSYKefEZzr2vLHBAAnp5OLo0QQghReEjQk8/IIGYhhBAid0jQk89oZbq6EEIIkSsk6MlnUrq3ZDyPEEII4VgS9OQz1u6tCtLSI4QQQjiSBD35jObyvYHM0r0lhBBCOJQEPfmM9tIFQLq3hBBCCEeToCc/iY9Hc/MmAGZZjVkIIYRwKAl68hFtStdWcV9Un+JOLo0QQghRuEjQk49Yu7ZkjR4hhBDC4SToyUesqzHLeB4hhBDC4SToyUdSurcku7oQQgjheBL05COae91bZuneEkIIIRxOgp58RGtdjVmCHiGEEMLRJOjJRzT3VmOW6epCCCGE40nQk18kJaG9fg2Q2VtCCCFEbpCgJ5/QRl4GQPUshlrCz8mlEUIIIQofCXryCc3FBxKNKoqTSyOEEEIUPhL05BPW6eqyRo8QQgiRKyToySc0l+8NYpagRwghhMgVEvTkE9qU7q1HKjq5JEIIIUThJEFPPqFJSTYq09WFEEKIXCFBTz6hvbdGj4zpEUIIIXKHBD35QXIymquRgHRvCSGEELlFgp58QHM1EsVsRnVzQy1Z0tnFEUIIIQolCXrygVRdWxr5SIQQQojcIN+w+YA155aM5xFCCCFyjQQ9+YC1pUdybgkhhBC5RoKefOD+dHUJeoQQQojc4tSgR6/XM378eOrUqUN4eDiLFy/OcN+tW7fSrl07wsLC6NmzJydOnEj1/pIlS2jcuDFhYWGMHz+exMTE3C6+w0gKCiGEECL3OTXomTNnDsePH2fp0qVMmTKFefPmsWnTpjT7nT59mlGjRjF48GDWr19PUFAQgwcPtgY2mzdvZt68eUybNo2lS5dy5MgR3nvvvby+HbtpL14ApKVHCCGEyE1OC3oSEhJYvXo1EyZMIDg4mFatWjFw4ECWL1+eZt+9e/dSpUoVOnfuTIUKFRg5ciTR0dGcOXMGgGXLltGvXz+aNWtGzZo1efvtt1mzZk3BaO0xm9FEXgFkTI8QQgiRm5wW9Jw6dQqj0UhYWJh1W+3atTly5AhmsznVvr6+vpw5c4aIiAjMZjNr167Fy8uLChUqYDKZOHbsGHXq1LHuX6tWLZKTkzl16lSe3Y+9NNeiUJKTUXU6zGXKOrs4QgghRKGlc9aFo6OjKVGiBK6urtZtAQEB6PV6bt26hZ+fn3V7+/bt2b59O7169UKr1aLRaFiwYAHFixcnNjYWvV5PqVKlrPvrdDp8fX2JioqyqUyKkvP7yuicGZ07ZeaWuVx5FJ3W8QUooLKqN5GW1Jl9pN7sI/VmH6k322VWZ7bWo9OCnsTExFQBD2B9bTAYUm2PjY0lOjqayZMnExoayooVKxg3bhw//PCDdd/0zvXwebLi7+9t623k/Ny3owHQPlqJgIDcu35BlZufSWEldWYfqTf7SL3ZR+rNdo6oM6cFPW5ubmmCkpTX7u7uqbbPnTuXqlWr0rt3bwCmT59Ou3btWLNmDc8991yqYx88l4eHh01lunHjLqpq0yFZUhTLB5XRuT1O/EMxIKl0IHExdx178QIsq3oTaUmd2UfqzT5Sb/aRerNdZnWW8l52OS3oKV26NLGxsRiNRnQ6SzGio6Nxd3fHx8cn1b4nTpygb9++1tcajYbq1asTGRmJr68vbm5uxMTE8NhjjwFgNBq5desWJW3MY6Wq5NpDmNG5NZfuTVd/pIL8AqQjNz+TwkrqzD5Sb/aRerOP1JvtHFFnThvIHBQUhE6n4/Dhw9ZtERERhISEoHko/1SpUqU4e/Zsqm3nz5+nfPnyaDQaQkJCiIiIsL53+PBhdDod1atXz9V7cATtZVmNWQghhMgLTgt6PDw86Ny5M1OnTuXo0aNs27aNxYsX88ILLwCWVp+kpCQAunfvznfffce6deu4cOECc+fOJTIyki5dugDQq1cvFi1axLZt2zh69ChTp06le/fuNndvOYPk3RJCCCHyhtO6twDGjRvH1KlT6devH15eXgwfPpzWrVsDEB4ezsyZM+natSvt27cnPj6eBQsWEBUVRVBQEEuXLsXf3x+ADh06cOXKFSZPnozBYKB169a89dZbzry17FFVtFcuA9LSI4QQQuQ2RVWlVzFFTEzuDGQOCPBO99xKdDQBwY+hKgoxl6LhoRloRVlm9SbSJ3VmH6k3+0i92UfqzXaZfo/eey+7JOGoE2kv3Us/UTZQAh4hhBAil0nQ40TW7OoynkcIIYTIdRL0OJH24r2ZWxL0CCGEELlOgh4nsk5Xr1DRySURQgghCj8JepxIureEEEKIvCNBjxOlJBuV7i0hhBAi90nQ4yyqak1BYZbuLSGEECLXSdDjJMrtW2jiLAlGTeXKO7k0QgghROEnQY+TpHRtmUuWggKQLkMIIYQo6CTocZL72dVlPI8QQgiRFyTocZKU1ZhN5SXnlhBCCJEXJOhxEut0dUk0KoQQQuQJCXqcRJvSvSXT1YUQQog8IUGPk2hSBjLLmB4hhBAiT0jQ4yTWFBSPyBo9QgghRF6QoMcJlLi7aGJjAWnpEUIIIfKKBD1OYF2JuUQJVC9vJ5dGCCGEKBok6HECa9eWTFcXQggh8owEPU6guXhvELPM3BJCCCHyjAQ9TqC9t0aPqYK09AghhBB5RYIeJ7AuTCgtPUIIIUSekaDHCSQFhRBCCJH3JOhxgpTVmM3SvSWEEELkGQl68lpiIpro64CkoBBCCCHykgQ9eUx75TIAZi9vVN8STi6NEEIIUXRI0JPHUuXcUhQnl0YIIYQoOiToyWPaSykLE0rXlhBCCJGXJOjJY9bp6o/IIGYhhBAiL0nQk8fut/RI0COEEELkJQl68pj2wTE9QgghhMgzEvTksZTuLZN0bwkhhBB5SoKevGQwoLkaCUj3lhBCCJHXJOjJQ5rIKyiqiurujlqypLOLI4QQQhQpEvTkIWt29fKyRo8QQgiR1yToyUPWhQlljR4hhBAiz0nQk4es09UfqejkkgghhBBFjwQ9eUhrXZhQWnqEEEKIvCZBTx7SSAoKIYQQwmkk6MlD2kspa/RI95YQQgiR1yToySsmE5rIy4B0bwkhhBDOIEFPHtFEXUUxGlFdXDCXLuPs4gghhBBFjgQ9eURzr2vLHFgOtFonl0YIIYQoeiToySPaSxcAybklhBBCOIsEPXlEc0kSjQohhBDOJEFPHtHKasxCCCGEU0nQk0c0l1NWY5aWHiGEEMIZJOjJI9aBzBL0CCGEEE4hQU9eMJtTZ1gXQgghRJ5zatCj1+sZP348derUITw8nMWLF6e7X9++falWrVqan3HjxlnPM336dBo0aECDBg2YPHkyCQkJeXkrmbt+HUWvR9VoLFPWhRBCCJHndM68+Jw5czh+/DhLly4lMjKSMWPGEBgYSNu2bVPt9+mnn5KcnGx9feTIEV5//XV69eoFwLx58/jjjz/48ssvUVWVsWPH8sEHHzBx4sQ8vZ8MXbBMVzeXDQQXFycXRgghhCianBb0JCQksHr1ahYuXEhwcDDBwcGcPn2a5cuXpwl6fH19rX83mUx8+OGHDBw4kJCQEAB27drF888/b33ds2dPVq1alWf3kqX//gNk5pYQQgjhTE7r3jp16hRGo5GwsDDrttq1a3PkyBHMZnOGx61du5bbt2/z8ssvW7f5+vqyefNmbt++ze3bt9myZQtBQUG5Wn6bXJCFCYUQQghnc1pLT3R0NCVKlMDV1dW6LSAgAL1ez61bt/Dz80tzjKqqfPXVV7zwwgsUK1bMun306NEMHz6cevXqAVC1alW++OILm8ukKHbcSHbOmdLS88gjuXKNwiilnqS+sk/qzD5Sb/aRerOP1JvtMqszW+vRaUFPYmJiqoAHsL42GAzpHnPgwAGioqLo3r17qu0XL16kbNmyzJo1C6PRyLRp05g1axYzZsywqUz+/t427Z9t91p6PIOq4hmQS9copHLtMynEpM7sI/VmH6k3+0i92c4Rdea0oMfNzS1NcJPy2t3dPd1jNm/ezNNPP51qjE9cXBwTJkxgyZIlhIaGAvDuu+/Sp08fRowYQalSpbJdphs37qKqNt5IFhQF/O8FPbdLlCI55q5jL1BIKYrlAc+Nz6Swkjqzj9SbfaTe7CP1ZrvM6izlvexyWtBTunRpYmNjMRqN6HSWYkRHR+Pu7o6Pj0+6x+zZs4dhw4al2nbu3DkSEhKoXr26dVuNGjUwm81ERUXZFPSoKo5/CFXV2r1lKv+IPOQ2ypXPpJCTOrOP1Jt9pN7sI/VmO0fUmdMGMgcFBaHT6Th8+LB1W0REBCEhIWg0aYt18+ZNLl26RO3atVNtTwlqzpw5Y9127tw5AMqXL58LJbeNEnsT4uMBMJWT2VtCCCGEszgt6PHw8KBz585MnTqVo0ePsm3bNhYvXswLL7wAWFp9kpKSrPufPn0aNze3NIFMmTJlaNy4MZMmTeL48eMcO3aMSZMm0aFDh3QHQ+c1a/qJUqUhg247IYQQQuQ+p67IPG7cOIKDg+nXrx9vv/02w4cPp3Xr1gCEh4ezceNG6743btzAx8cHJZ2h2u+//z7VqlVj0KBBvPLKKzzxxBNMnz49z+4jMynZ1U2PSCuPEEII4UyKqkqvYoqYGMcPLPNYMA+vSePRd+7KnS+XOPbkhZiiQECAd658JoWV1Jl9pN7sI/VmH6k322VWZynvZZckHM1l2ospLT2yMKEQQgjhTBL05CaTCe2RwwAoej2YTM4tjxBCCFGESdCTS1w3/Ihf7WBc/9gPgMeXX1heb/jRySUTQgghiiYJenKB64Yf8RnQF01kZKrtmqtX8RnQVwIfIYQQwgkk6HE0kwmviaNBVXl4nplybwSW18Qx0tUlhBBC5DEJehzMZf8+tJGRaQKeFIqqoo28gsv+fXlaLiGEEKKok6DHwTTXohy6nxBCCCEcQ4IeBzOXLuPQ/YQQQgjhGBL0OFhy/YaYAgNR01k5GkBVFEyB5Uiu3zCPSyaEEEIUbRL0OJpWS9yMOQBpAp+U13EzZoNWm+dFE0IIIYoyCXpygaFjJ+4s+gZz2bKptpvLBnJn0TcYOnZyUsmEEEKIokvn7AIUVoaOnbjZrgOuB/ZRPOE2tz2LY6jXUFp4hBBCCCeRoCc3abUkN2oMAd4kx9wFSS4nhBBCOI10bwkhhBCiSJCgRwghhBBFggQ9QgghhCgSJOgRQgghRJEgQY8QQgghigQJeoQQQghRJEjQI4QQQogiQYIeIYQQQhQJEvQIIYQQokiQFZkfkEFidIecMzfOXZhJvdlO6sw+Um/2kXqzj9Sb7TKrM1vrUVFVVZIjCCGEEKLQk+4tIYQQQhQJEvQIIYQQokiQoEcIIYQQRYIEPUIIIYQoEiToEUIIIUSRIEGPEEIIIYoECXqEEEIIUSRI0COEEEKIIkGCHiGEEEIUCRL05CK9Xs/48eOpU6cO4eHhLF682NlFyve2bt1KtWrVUv2MGDHC2cXKtwwGAx07duTAgQPWbZcuXaJ///7UqlWL9u3b89tvvzmxhPlTevU2Y8aMNM/et99+68RS5g/Xrl1jxIgR1K1bl8aNGzNz5kz0ej0gz1pmMqs3edYyduHCBQYMGEBYWBhNmzblq6++sr7niOdNcm/lojlz5nD8+HGWLl1KZGQkY8aMITAwkLZt2zq7aPnWmTNnaNasGdOnT7duc3Nzc2KJ8i+9Xs+oUaM4ffq0dZuqqgwdOpSqVauyZs0atm3bxrBhw9i4cSOBgYFOLG3+kV69AZw9e5ZRo0bRpUsX6zYvL6+8Ll6+oqoqI0aMwMfHh+XLl3P79m3Gjx+PRqNh9OjR8qxlILN6GzNmjDxrGTCbzQwaNIiQkBB++OEHLly4wMiRIyldujQdO3Z0yPMmQU8uSUhIYPXq1SxcuJDg4GCCg4M5ffo0y5cvl6AnE2fPnqVq1aqULFnS2UXJ186cOcOoUaN4OHXe/v37uXTpEitXrsTT05PHHnuM33//nTVr1jB8+HAnlTb/yKjewPLsDRgwQJ69B5w7d47Dhw+zd+9eAgICABgxYgSzZ8/m6aeflmctA5nVW0rQI89aWjExMQQFBTF16lS8vLyoVKkSDRo0ICIigoCAAIc8b9K9lUtOnTqF0WgkLCzMuq127docOXIEs9nsxJLlb2fPnqVSpUrOLka+98cff1CvXj1WrVqVavuRI0eoUaMGnp6e1m21a9fm8OHDeVzC/CmjeouLi+PatWvy7D2kZMmSfPXVV9Yv7hRxcXHyrGUis3qTZy1jpUqV4qOPPsLLywtVVYmIiODPP/+kbt26DnvepKUnl0RHR1OiRAlcXV2t2wICAtDr9dy6dQs/Pz8nli5/UlWV8+fP89tvv7FgwQJMJhNt27ZlxIgRqepRQK9evdLdHh0dTalSpVJt8/f3JyoqKi+Kle9lVG9nz55FURTmz5/P7t278fX15cUXX0zV/VAU+fj40LhxY+trs9nMt99+S/369eVZy0Rm9SbPWvY0b96cyMhImjVrRps2bXj33Xcd8rxJ0JNLEhMT03xRp7w2GAzOKFK+FxkZaa23jz76iMuXLzNjxgySkpKYOHGis4tXIGT03Mkzl7lz586hKAqVK1emT58+/Pnnn0yaNAkvLy9atWrl7OLlG++99x4nT57k+++/Z8mSJfKsZdOD9XbixAl51rLhk08+ISYmhqlTpzJz5kyH/dsmQU8ucXNzS/NhpLx2d3d3RpHyvXLlynHgwAGKFy+OoigEBQVhNpt56623GDduHFqt1tlFzPfc3Ny4detWqm0Gg0GeuSx07tyZZs2a4evrC0D16tX577//WLFihXwR3fPee++xdOlSPvzwQ6pWrSrPWjY9XG+PP/64PGvZEBISAlgmHrz55ps8++yzJCYmptrHnudNxvTkktKlSxMbG4vRaLRui46Oxt3dHR8fHyeWLH/z9fVFURTr68ceewy9Xs/t27edWKqCo3Tp0sTExKTaFhMTk6ZZWKSmKIr1SyhF5cqVuXbtmnMKlM9Mnz6dr7/+mvfee482bdoA8qxlR3r1Js9axmJiYti2bVuqbVWqVCE5OZmSJUs65HmToCeXBAUFodPpUg2yioiIICQkBI1Gqj09e/bsoV69eqmi+b///htfX18ZA5VNoaGhnDhxgqSkJOu2iIgIQkNDnViq/O/jjz+mf//+qbadOnWKypUrO6dA+ci8efNYuXIlH3zwAR06dLBul2ctcxnVmzxrGbt8+TLDhg1LFQAeP34cPz8/ateu7ZDnTb59c4mHhwedO3dm6tSpHD16lG3btrF48WJeeOEFZxct3woLC8PNzY2JEydy7tw5du3axZw5cxg4cKCzi1Zg1K1bl7JlyzJu3DhOnz7Nl19+ydGjR3nuueecXbR8rVmzZvz5558sWrSIixcv8n//93+sW7eOl156ydlFc6qzZ8/y+eef8/LLL1O7dm2io6OtP/KsZSyzepNnLWMhISEEBwczfvx4zpw5w65du3jvvfd45ZVXHPe8qSLXJCQkqKNHj1Zr1aqlhoeHq19//bWzi5Tv/fvvv2r//v3VWrVqqY0aNVI//fRT1Ww2O7tY+VrVqlXV/fv3W1//999/au/evdUnnnhC7dChg7p3714nli7/erjetm7dqj7zzDNqSEiI2rZtW3Xz5s1OLF3+sGDBArVq1arp/qiqPGsZyare5FnLWFRUlDp06FD1ySefVBs1aqR+8cUX1u8ARzxviqqms0qXEEIIIUQhI91bQgghhCgSJOgRQgghRJEgQY8QQgghigQJeoQQQghRJEjQI4QQQogiQYIeIYQQQhQJEvQIIYQQokiQhKNCiHyrefPmXLlyJd33li1bRr169XLlumPHjgVg1qxZuXJ+IYRzSNAjhMjXxo8fT/v27dNsL168uBNKI4QoyCToEULka97e3pQsWdLZxRBCFAIypkcIUWA1b96cJUuW8Mwzz1CrVi0GDRpEdHS09f2zZ88yYMAAnnzySRo3bsy8efMwm83W99evX0/btm0JDQ2lR48enDx50vpeXFwcb7zxBqGhoTRt2pSffvopT+9NCOF4EvQIIQq0Tz/9lIEDB7Jq1SoSExMZPnw4ADdv3qRXr16UKlWK1atXM2XKFL799luWLVsGwJ49e5gwYQL9+vXjxx9/5IknnmDw4MEYDAYAtm7dSnBwMBs2bKBdu3aMHz+eu3fvOu0+hRA5JwlHhRD5VvPmzYmOjkanS90THxgYyM8//0zz5s1p2bIl48ePB+DSpUu0bNmSn376if3797N48WK2bdtmPX7FihX/3879urQTBnAcf6ughgljZpkmwwRRNBmEBZugSxpEsFiGRsGgGJxJDTIw+AeIRTBrs4pJWDl0xXLNA8HJoeGL4zvHt/mdG/d+wcHx/Die59KH53nuKJfL3N7eUiwWSaVS9cPKtVqN4+Nj1tbWODw85OnpifPzcwCiKGJqaoqLiwvGx8db+AYk/STP9EhqaxsbG8zNzTWU/R2CJicn6/dDQ0Ok02mCICAIAnK5XEPbiYkJwjDk5eWFx8dHlpaW6nW9vb1sbW01POvLwMAAAG9vbz83MUktZ+iR1NYGBwfJZrP/rP++ChTHMd3d3fT19TW1/TrPE8dxU7/venp6mspcGJc6m2d6JHW0SqVSv69Wq0RRxOjoKCMjIzw8PPD+/l6vv7+/J5PJkE6nyWazDX3jOCafz3N3d9fS8UtqHUOPpLYWRRFhGDZdr6+vwJ+fFN7c3FCpVNje3mZmZobh4WHm5+ep1Wrs7OwQBAHX19ecnJywvLxMV1cXKysrXF1dcXl5SbVa5eDggI+PD3K53C/PWNL/4vaWpLZWKpUolUpN5ZubmwAsLi5ydHTE8/Mzs7Oz7O3tAZBKpTg7O2N/f5+FhQUymQyrq6usr68DMD09ze7uLuVymTAMGRsb4/T0lP7+/tZNTlJL+fWWpI6Vz+cpFosUCoXfHoqkDuD2liRJSgRDjyRJSgS3tyRJUiK40iNJkhLB0CNJkhLB0CNJkhLB0CNJkhLB0CNJkhLB0CNJkhLB0CNJkhLB0CNJkhLB0CNJkhLhE5gE1vjr0Y+JAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA+4AAAIhCAYAAADQLeBrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACm2klEQVR4nOzdd3xT9f7H8ddJ0qR7D0bZq4DsoSiIOHCjIo6fCo6rqCgqbtSr6L0ucF4RFRX3liuCC5zodTEUkD3KLnQPupJm/P4oDdQySpM2Tft+Ph59QE5Okk/qJwff+X7P9xgej8eDiIiIiIiIiDRKpkAXICIiIiIiIiIHp+AuIiIiIiIi0ogpuIuIiIiIiIg0YgruIiIiIiIiIo2YgruIiIiIiIhII6bgLiIiIiIiItKIKbiLiIiIiIiINGIK7iIiIiIiIiKNmIK7iIiI1JnH4wl0CSIiIk2egruISDN39913061bt0P+jB071qfXeO655+jWrVu9P6axuvvuuznxxBMPeF95eTkDBgxg/PjxB318Tk4OPXv25Nlnnz3sa+3YsYNu3brx3//+F4D//ve/dOvWjR07dtT6MbX10Ucf8fjjj3tv1+a1/KUhX8sXS5cuZeLEiRx33HH06tWLk046ifvuu49NmzYFrKaq/96H+/n999858cQTufvuuwNWq4iIVLIEugAREQmsCRMmcPHFF3tvz5gxg9WrVzN9+nTvtsjISJ9e44ILLmDYsGH1/phgFBoayplnnsns2bPJy8sjPj6+xj7z5s3D5XJx/vnnH/Hzn3DCCXzwwQckJyf7o9xqXnjhBQYPHtwgrxWMZs6cyVNPPcXQoUO55557SEpKYuvWrbz33nucd955PProo5x55pkNXldycjIffPCB93Z2djY33ngj119/PSeccIJ3e+fOnZk+fbrPn38REfGdgruISDPXtm1b2rZt670dHx+P1Wqlb9++fnuNFi1a0KJFi3p/TLAaM2YMH3zwAV9++SWXXnppjfs/+eQThgwZQmpq6hE/d3x8/AG/DKgPDflajd3333/Pk08+ycSJE7nxxhu92wcPHsy5557Lbbfdxt13303Xrl3p0qVLg9b298931ayFtm3b1vjc9+jRowErExGRg9FUeRERqZX//ve/9OjRg48++ojjjjuOwYMHs3HjRlwuFzNnzuSss86id+/e9O3bl4svvpjffvvN+9i/T3sfO3Ys9957LzNnzuSEE06gV69eXHzxxaxYscKnxwD88MMPjB49mt69e3Pqqafy2Wefccopp/Dcc88d8v199NFHjB49mr59+9K7d2/OOeccvvzyyxrvf/ny5Vx00UX06tWLESNG8Oqrr1Z7nsLCQiZPnszgwYMZNGgQ06ZNw+12H/K1e/fuTZcuXZg3b16N+9asWcO6desYM2YMAGvXruXGG2/kmGOOoWfPngwbNox///vflJeXH/C5DzSlfMGCBYwaNYrevXtz3nnnsXbt2hqPO9zrnHjiiezcuZNPPvnE+/wHeq2ff/6ZSy65hAEDBnD00Udz2223sWvXriP+vdZVVlYWkydPZvjw4fTu3ZsxY8bw7bffVtvn559/5sILL6Rfv34MGjSI66+/vtpU9m3btnHddddx9NFH06dPHy666CIWLlx4yNedPn06HTt25IYbbqhxX0hICA899BBms5mXX34ZgKuuuorRo0fX2HfChAmMGjXKe3vJkiVcdtll9OnTh8GDB3PXXXeRl5fnvf9gn9O62n+qfNUU+6+++ooJEybQt29fjj32WGbMmEFxcTH33HMPAwYM4Nhjj2XatGnV1j+w2+1MnTqV4cOHc9RRR3H22WfzxRdf1LkuEZHmRsFdRERqzeVyMWvWLB5++GEmT55Mp06deOKJJ5gxYwYXXXQRr7zyCv/6178oKCjg5ptvpqys7KDPNX/+fL799lvuu+8+nnrqKXJycpg4cSIul6vOj/ntt9+YMGECLVu25LnnnuPSSy/lgQceqBYUD+Sdd97h/vvv5+STT+all17iiSeewGq1cvvtt7N7927vfm63m1tuuYUzzjiDmTNn0r9/f6ZOncpPP/3kvf/qq69m4cKF3HXXXTz22GP88ccftQoo559/Pn/++Sfbt2+vtn3OnDnExsZyyimnkJWVxaWXXkpZWRmPPfYYL7/8MmeeeSZvvfUWb7755mFfA+C7777jpptuolu3bjz//POcfvrp3HHHHdX2qc3rTJ8+naSkJIYPH37Q6fFz5szhqquuomXLljz11FNMnjyZP//8k4suuojc3Nxa/17rKicnhzFjxrBkyRImTZrEc889R+vWrbnhhhuYO3cuANu3b2fChAkcddRRvPDCCzz88MNs3ryZ8ePH43a7cbvdXHvttZSVlTF16lRmzJhBbGws119/PVu3bj3g6+bl5bFy5UpGjBiBYRgH3Cc2NpZjjz3W+yXCqFGjWLVqVbXnLCoq4scff+Scc84BYPHixVxxxRWEhobyzDPPcM8997Bo0SLGjRtX7YubA31O/em+++6ja9euvPDCCwwZMoRnn32WMWPGEBoayvTp0xk5ciSvvPIKX331FVC5gOENN9zA+++/z5VXXskLL7xAv379mDRpEnPmzPFrbSIiTZWmyouIyBG57rrrqp0Hm5WVxaRJk6otYGez2Zg4cSLr1q076JR7p9PJq6++6j1/tqSkhLvuuos1a9Zw1FFH1ekxzz33HF26dGH69OnewJSQkMCtt956yPe0fft2/vGPfzBhwgTvttatWzN69GiWLl3qPQ/Z4/EwYcIELrjgAgAGDBjA119/zQ8//MCwYcP48ccfWbFiBS+//DLHH388AEOGDDnownT7O+ecc3jyySeZN2+etw6n08m8efM4++yzsVqtrF+/nu7du/Pss896fwfHHnssP//8M7///vshF7ir8vzzz9O7d2+mTZsG4F1H4Mknn/TuU5vX6dGjB1arlfj4+AP+N3a73TzxxBMMHTq02nP379+fM844g1dffZU777yzVr/XunrttdfIy8tj/vz5tG7dGoDhw4dzxRVXMHXqVM466yxWrFhBeXk51157LSkpKUDlaRrffvstpaWllJWVkZ6ezoQJExg+fDhQOUNi+vTpOByOA77uzp07AbyveTDt2rXj22+/pbCwkJEjR/Lggw/y2WefeUfpFyxYgMvl4qyzzgIq/xt16NCBl156CbPZDECfPn28ayTsf5rF3z+n/jRs2DBuueUWALp06cJnn31GQkIC999/PwDHHHMM8+bN448//uD000/nl19+4aeffuLpp5/mjDPO8D5HWVkZTzzxBGeddRYWi/6XVETkUDTiLiIiR6R79+7Vbj/55JNcfvnl5OXlsWTJEmbPnu0dzTxYsIHKha/2X/SqKjQdapT+UI9xOBz8+eefjBw5stoo52mnnXbYUHD33Xdz++23U1RUxLJly/j000955513Dvge+vXr5/17VXAtLS0FKqcxh4SEVAub4eHh3sB3KPHx8YwYMaLadPmffvqJ3Nxc7zT5oUOH8vbbb2Oz2di4cSPffvstL7zwAnl5eYf8XVcpLy9n1apVjBgxotr2008/vdptX18HYPPmzWRnZ3tDZ5W2bdvSr18/Fi1aVG37oX6vdbVo0SL69etXI0CPGjWK7Oxs0tPT6dOnDzabjTFjxvDwww/z008/kZaWxqRJk4iMjCQxMZHOnTvzz3/+k7vuuot58+bhdruZPHnyQc9Nr5oiHhIScsj6qsK3x+MhPDyck08+udrsjM8//5whQ4aQkpJCWVkZy5cvZ/jw4Xg8HpxOJ06nkzZt2tCpUyd+/vnnas/998+pP+3/3yoxMRGo/DKjimEYxMTEsGfPHgB+/fVXDMNg+PDh3rqdTicnnngi2dnZbNiwod5qFRFpKvT1poiIHJHw8PBqt//66y8efPBB/vrrL8LCwujcuTOtWrUCDn2N77CwsGq3TabK75IPdT74oR5TUFCAy+UiISGh2j5ms5nY2NhDvqdt27Zx//338+uvvxISEkLHjh1JS0s74HsIDQ2tUUPVPoWFhcTGxtaYHp2UlHTI169y/vnnc+2117Jq1Sp69uzJnDlz6NWrl7cWt9vNU089xTvvvENpaSktW7akd+/e2Gy2Wj1/YWEhHo+HuLi4atv/Ps3d19cBKCgoAPYFu/0lJiayevXqatsO9Xutq8LCQtq0aXPA14fKqeidO3fm7bffZubMmXz88ce8+eabREdHc8kll3DLLbdgGAazZs3ihRde4Ouvv2bOnDmEhIRw8skn8+CDDxITE1Pj+au+KKgaeT+Y7du3ExER4e3Pc845h7lz57J27VoSExP5/fffeeSRR7y1ut1uXn75Ze958fv7+3+bv39O/elAq8wf6vUKCgrweDz079//gPdnZWXV6xcNIiJNgYK7iIjUWXFxMVdffTXdunXj888/p2PHjphMJhYuXMj8+fMbtJaEhARCQkLIycmptr0q1B+M2+1m/PjxhISE8PHHH9O9e3csFgsbN27k008/PaIa4uLiyM/Px+VyeUdTgUO+/v6GDRtGcnIyn332GW3atOG7777j3nvv9d4/c+ZMXn/9dR588EFGjhxJVFQUgHdE/nBiY2MxmUw1fkd/r8/X16l6LaDGa0Hl5cf+/uVBfYiJiSE7O/uArw94a9h/6vvSpUv54IMPePHFF0lLS+P0008nJSWFKVOm8MADD7B27Vq++uorXn75ZeLi4njggQdqPH9CQgJ9+/Zl/vz53Hzzzd4vmPZXXFzMzz//XO00iiFDhpCUlMSXX35JUlISNpuNkSNHAhAREYFhGFxxxRUHvITc37/UakyioqIIDw8/6DoM7dq1a+CKRESCj6bKi4hInaWnp1NQUMC4cePo3LmzN6D8+OOPwKFHz/3NbDbTv3//GiuGf/fddzidzoM+Lj8/n82bNzNmzBh69erlnVZfl/cwZMgQnE4n33zzjXebw+GoMY35UO/hvPPOY/78+Xz33XeYzeZqU82XLl1K586dOf/8871hOjMzk/Xr19eqTpvNRr9+/ViwYEG10ezvvvuu2n61fZ0DBdIqHTp0ICkpic8++6za9u3bt7Ns2bKDjr7606BBg/jzzz9rjHzPnTuXpKQk2rVrx+uvv86IESNwOBxYrVaGDBnCv/71LwAyMjL4888/OfbYY1mxYgWGYdC9e3cmTZpE165dycjIOOhr33jjjWzevJmnnnqqxn0ul4sHHniA8vJyrr76au92s9nM2Wefzffff89XX33FySef7B3JjoyMpEePHqSnp9OrVy/vT5cuXXjuuef4/fff/fErqxeDBw+mtLQUj8dTrfb169fz/PPPH/LzKSIilTTiLiIiddahQwciIyN58cUXsVgsWCwW5s+fz8cffwwc+nz1+nDTTTcxduxYbrrpJsaMGUNGRgbPPvsswEFX905ISKB169a88847tGjRgujoaH766Sfv6OCRvIchQ4YwdOhQ7rvvPnJzc2ndujVvvvkmeXl5NabwH8zo0aN56aWXeOGFFzjttNOqTUvu3bs3M2bMYObMmfTt25etW7fy0ksv4XA4al3nrbfeyuWXX86NN97IRRddxObNm3nxxRer7VPb14mOjmb16tUsWrSo2jnOUBnqb731ViZPnsxtt93GqFGjyM/PZ/r06cTExHDllVfWqt7DmT17do3p6iaTiXHjxnHllVcyd+5crrjiCm688UZiY2OZM2cOv/32G4888ggmk4ljjjmGJ554ghtuuIHLLrsMs9nM+++/j9VqZcSIEbRu3ZrQ0FDuvPNOJk6cSGJiIr/88gtr1qxh3LhxB61r2LBh3H333UydOpU1a9Zw/vnnk5yczI4dO3jvvfdYs2YNDz/8sPc0iCrnnHMOs2bNwmQy1ZgSf+uttzJ+/Hjv77Nq9fjly5dXW1ixsRk+fDiDBg1iwoQJTJgwgU6dOrFixQr+85//MGzYMOLj4wNdoohIo6fgLiIidRYVFcWMGTOYOnUqN998MxEREXTv3p23336ba665hiVLltRqRXV/GThwIM899xzPPvssEyZMoHXr1vzzn/9k0qRJREREHPRxM2bM4OGHH+buu+/GarXSuXNnXnjhBR555BGWLFlSbcX8w5k+fTpPPPEE//nPf7Db7ZxxxhlceOGFNWYCHEz79u0ZNGgQixcv5uGHH65237XXXkt+fj5vvvkmzz//PC1btuScc87BMAxeeuklioqKDvv8AwcO5OWXX+app57ixhtvJDU1lUceeYTrrrvuiF4nOjqaq666ikceeYR//OMfvPbaazVea/To0URERPDSSy9xww03EBkZybBhw7j11ltrfd7/4cyYMaPGNrPZzLhx40hKSuK9997jySef5N///jcVFRWkpaUxY8YMTjrpJADS0tJ48cUXef7557n11ltxuVwcddRRzJo1i44dOwIwa9YsnnzySR5++GGKiopo3749Dz300AGvu76/K6+8kn79+vHGG2/w+OOPk5eXR1JSEscddxwPP/wwnTt3rvGYtLQ0unbtSn5+PkOGDKl239ChQ3n11VeZPn06N910EyEhIfTs2ZPXXnvtoFdvaAxMJhMzZ87k2Wef5aWXXiI3N5eUlBSuvPLKA17nXkREajI8vq78IiIi0kh8++23tGjRgp49e3q3bdiwgbPOOqtaWBMREREJJhpxFxGRJuN///sfX3zxBbfffjsdOnQgMzOTF154gY4dOzJ06NBAlyciIiJSJxpxFxGRJqO8vJxnn32W+fPnk5WVRWxsLMOGDeO222474GXJRERERIKBgruIiIiIiIhII6bLwYmIiIiIiIg0YgruIiIiIiIiIo2YgruIiIiIiIhII6bgLiIiIiIiItKIKbiLiIiIiIiINGK6jvt+cnP30NjX2DcMSEiICopapXFSD4k/qI/EH9RH4g/qI/GVekj8oS59VPWY2lBw34/HQ9B8WIOpVmmc1EPiD+oj8Qf1kfiD+kh8pR4Sf6ivPtJUeREREREREZFGTMFdREREREREpBFTcBcRERERERFpxHSOu4iIiIiISC14PB7cbhdutzvQpUgjYxhQXl5ORYWj2jnuZrMFk8n38XIFdxERERERkcNwOisoLMyjoqI80KVII5WXZzrAlzoGcXFJ2GxhPj23gruIiIiIiMgheDwecnN3YzKZiIlJxGy2YBhGoMuSRsZsNnC59g23ezweiosLyc/PJjk51aeRdwV3ERERERGRQ3A6K/B43MTEJGG1hga6HGmkLBYTTmf1EffIyBjy8spwuZyYTNY6P7cWpxMREREREakFw1B8kiPjr5kZ6jwRERERERGRRkzBXURERERERKQRU3AXERERERFpgh5+eApDhw486M8ffyw54ue88cbxvPrqS7Xad8yYs/nii3lH/BqH88cfSxg6dKDfn7cx0+J0IiIiIiIiTdDNN9/OddfdCMC3337N+++/zcsvv+G9Pzo65oif85FHpmGxhNRq35dffpPwcN8ugyaVFNxFRERERESaoMjISCIjI71/N5lMJCQk+vScRxL24+LifHot2UfBXUREREREpA48Hg/lf7v8V30KtZj8ev34XbsyuOCCUVx99XW8//47jBx5GpMm3clbb73GvHlzyM7OIiYmlnPOGc1VV40HKqfK9+s3gH/841oefngK0dHRZGdn8/PPPxITE8v48RM47bQzgcqp8lddNZ4zzjibG28cz6BBR7N8+Z8sW/YnyckpTJp0B0cfPQSAwsICHn/8YRYv/o3Y2HguvXQsTzzxGP/735FP53e73bz//tt88slscnNz6NnzKG655Q46deoMwLffLuCVV14kM3M3rVq1Zvz4Gzj++BMA+Oij93n//bfJz8+jQ4dO3HTTbfTp09f3X7aPFNxFRERERESOkMfj4er3l7Mio6jBXrNPq2hevriPX8M7wIoVy3n11bdwu9189dXnfPjhe0yZ8jCtW6fy+++/8MQTj3HcccfTrVtajcfOnv0h11xzPddeewMff/wB06Y9wtChw70j/ft7881Z3Hbb3dx22928+OJ0Hn/833z88TxMJhMPPHAPDoeDGTNeJScni8ce+1ed389rr73MnDmzueuue0lNbcs777zBbbdN5L33/kt5eRn/+tf93HnnvfTvP5DvvvuGKVPuZc6cL9i9exczZjzLww9Po0OHjnz00Xvcf/9dfPLJl5hMgV0eTovTiYiIiIiI1IF/43PgXHjh/9G6dSpt2rQlJaUF99zzAAMHDqZly1ace+4YEhIS2Lx50wEf27lzVy699HJat07l6quvxW63H3TfIUOGcsYZZ9O6dSqXX/4PsrIyycvLZdu2rSxZsoh7751Cly5dGTJkKFdeOb5O78Xj8TB79odcffV1DB06nPbtO3DXXfdhMpmYP/8LsrOzcDqdJCUl06JFS/7v/y7jsceexGq1sWvXLgzDoEWLFrRs2YprrpnAP//5L9zuhptVcTAacQ8iHo+Hlbv2MCQmPNCliIiIiIg0a4Zh8PLFfYJ6qnyVli1bef/ev/9AVq1ayYsvTmfr1s2sX7+O3Nzcg4bX1NQ23r9HRFSOsjudzgPu26ZN2/32jfDuu2nTBqKjY2jdOtV7/1FH9a7Te8nPz6OoqJAePY7ybrNYLKSl9WDr1i2cc85ojj12KJMm3UDbtu0YOnQ4Z599LqGhoRx99BA6duzMuHEX07VrN4YOHc6oUedhsQQ+NmvEPYh8tiqTK99dxozvNwa6FBERERGRZs8wDMJCzA32Ux+hHcBqtXr/Pm/eHG65ZQIOh53hw0/k2WdfIDk55aCPDQmpucK8x+M54L4HCsAejwez2VLjMQd7jsOxWm0H3O52u3C7XRiGwdSpzzBz5uuccMJJ/PLLT1x11WVs2LCO0NBQZs58nf/850X69RvAF1/M46qrLiM7O6tOtfiTgnsQMZsqP6i/bMoNcCUiIiIiItIUzZkzmyuvvJqbbrqN0047k5iYWPLycuscpGujffsO7NlTREbGTu+2devW1Om5IiMjiY9PYNWqv7zbnE4n69atpW3bdmzduoXp05+hR4+jGD9+Am+99SEpKSn8/vuvrFy5grfeeo3+/QcyceKtvPvubBwOOytWLPP1Lfos8GP+UmtpKZVTT1bvKsLl9mCqp2/cRERERESkeYqJiWHJkkUMHTqc0tJSZs58HqfTSUWFo95es23bdgwePIRHH32Im2++nfz8XF599aXDPu63336pdttqtdK//0AuuugSXn31JRITk0hNbcM777yBw2HnxBNH4na7mDPnYyIjIxk58nQ2b05n164MunZNw2az8dprLxMfn8DAgYNZtuwPysrK6NSpS3299VpTcA8i7eLCCbWYKHW42JZfRvt4nesuIiIiIiL+c/PNt/PIIw9yxRWXEBcXx0knnUJoaBjr16+r19e9554HmDr134wffwVJSUmcccbZvPvum4d8zO2331TtdlJSMp988gUXX3wZJSUlTJ36MCUlxRx1VB+ee+4l73XlH354Gi+88BxvvvkacXFxXHvtjQwefAwAkyffz+uvv8LTT08lJaUF//znQ7Rv36F+3vQRMDz1OechyOTk7KGx/zb+8d4yVmQU8a8zunFa94OfayJyMIYBiYlRQdHv0nipj8Qf1EfiD+oj8VVteqiiwkFu7i4SEloSEmI98E5SZ+Xl5SxZ8jvHHHOc9zz47777hhkznuXjj+cFuLras1hMOP+2WOGheqeq92pD57gHmarp8msyiwNciYiIiIiIiO+sViuPPvoQr732MhkZO1m5cgWvvTaTESNODnRpjYamygeZtOTK4L5WwV1ERERERJoAk8nEI488yfPPP8P7779NRETl+efXXHN9oEtrNBTcg0z3FpXBfV1WMW6PFqgTEREREZHg16dPX2bOfD3QZTRamiofZDrEh2O1mChxuNhRUB7ockRERERERKSeKbgHGYvZRPeW0QCszdwT4GpERERERESkvim4B6GjWlUFd53nLiIiIiIi0tQpuAeho1rHALA2S8FdRERERESkqVNwD0K99gb3dVnFeHTBUhERERERkSZNwT0IdUmJxGIyKCp3klGkBepERERERESaMgX3IGSzmOmcFAHAOp3nLiIiIiIiBzBhwtU8+OB9B7xvwYIvOe20ETgcjoM+fteuDIYOHciuXRkADB06kD/+WHLAff/4YwlDhw6sdW3fffcN+fl5ALz66kvceOP4Wj/2SIwZczZffDGvXp67ISm4B6m05Mrrua9RcBcRERERkQM4+eRT+fXX/1FRUVHjvu+++5oTTjgRq9Va6+f79NOv6NWrj8917d69i/vvv5vy8srZw//3f2N55JFpPj9vU6bgHqTSUiqDuxaoExERERGRAxkx4mTKyspYsuT3attLSopZtOg3TjnltCN6voSEREJCQnyu6+/rdIWHhxMdHePz8zZllkAXIHVTFdzXZVYuUGcYRoArEhERERFpZjwecJY13OtZwuAI/r8/Li6OgQOPZuHC7xkyZKh3+08/LSQ6OoZ+/QaQnZ3Fs88+wZIli7Hby+nQoSO33HIHvXv3rfF8Q4cO5D//eZH+/QdSUlLM1KmP8Msv/yMhIZFRo86ttu+KFct44YXnWL9+LYZh0Ldvf+6++34SExO54IJRAFxwwSjuuecBdu3K4M8/lzJ9+kwAVq5cwfPPP8uGDeuIi4vn0kvHce65YwB4+OEpREdHk52dzc8//0hMTCzjx0/gtNPOPMJfJod9rd27d/P44/9i5coV2GyhnHTSKUyceCsWi4UNG9bz5JOPsWHDOqKiojnnnNFcc821daqhNhTcg1TnxAjMBuSXVZC5x06L6NBAlyQiIiIi0nx4PMT+9zxCdh/4nO/6UNFyEAXn/feIwvvJJ4/k+eefweW6B7PZDFSeX37SSadgMpl46KF/EhkZxUsvvYbb7ebFF5/jyScf44033j/k806b9ijbtm1h+vSZFBTk8/DDU7z3FRcXc+edt3DRRZfyz38+RE5ONo888hBvv/0at9xyBy+//AbXXHM5L7/8Bh07duLtt9/wPnbLls3cdNP1XHTRJUye/E9WrVrJk08+RlxcAsOHjwBg9uwPueaa67n22hv4+OMPmDbtEYYOHU5kZOQR/DYP/1rPPDOVsLBwXnvtXfLz87jvvjtp164Do0dfwL///QC9e/fl/vv/xbZtW7nvvjvp2bMngwcfe0Q11Jamygep0BAzHRP3LlCn6fIiIiIiIg0vCGa9Dh8+gtLSMpYv/xOoDNWLF//GKaecjsfjYdiwE5g06Q7atWtPhw4dGT36QjZvTj/kcxYXF/P9999wyy130K1bGkcfPYQrrrjae7/dXs7ll1/NFVdcTatWrenduy8nnHCi93ljY+O8f9ps1Qcg5837hK5du3HttTfQtm17Tj/9LM4//yLeffdN7z6dO3fl0ksvp3XrVK6++lrsdjubN2864t/N4V5r165dREZG0qJFS3r16sO0ac8yZMhxAOzenUFMTAwtWrTkmGOO5ZlnZtCtW9oR11BbGnEPYt2SI9mQXcLazGKGd04MdDkiIiIiIs2HYVSOfjfiqfIA4eERHHvsUH744Vv69x/ITz/9QMuWrUhL6w7AeeeN4Ztv5rNy5Qq2bt3CunVrcbvdh3zO7du34nK56NKlq3db9+49vH9PSEjk9NPP4oMP3mHDhvVs2bKZjRvX12phuy1bttCjR89q23r16s2nn8723k5NbeP9e0RE5Si70+k87HMf6Wtdeuk4HnnkQX788XuOPvpYTjppJF27VobzsWOv5KWXnufTT//LsccO5dRTzyAhIRGn89C/u7rSiHsQq1pZXgvUiYiIiIgEgGFASHjD/dRxhP+UU07jp58W4vF4+O67rzn55FMBcLvdTJp0A++//w4pKS245JJx3Hffg7V+3v0XmbNY9i1al52dxeWXX8QffyyhW7fu3HTTrVx88WW1es4DrXLvcrlxufYF4gMtkPf3Be/88VojR57O7Nmfcd11N1JWVso//3kXM2fOAOCyy67ggw/mcOml48jI2MnNN1/Pp59+csQ11JaCexDzriyvS8KJiIiIiMhBDBlyHGVlpfzxxxKWLl3sXU1+y5Z0li37g2eemcG4cVdx7LFDyc3NAQ4dhNu2bYfFYmHNmtXebRs2rPP+/ccfvycqKoapU5/hwgv/jz59+pGRsdN7/6EW1m7bth2rVq2stm3VqhW0bdvuyN50LRzutV566Xny8vI499wxTJ36DFdffT0LF36H3W7nmWeeICQkhIsvvoznnnuJUaPO4/vvv/V7jVUU3INY1+RIDCCnxEFOsT3Q5YiIiIiISCNktVo5/vgRTJ/+NB07dqZNm7YAREZGYTKZ+Pbb+ezevYvvv/+GWbNeAsDhcBz0+SIiIjnttDN55plprFq1kj/+WMKsWTO990dHx5CZuZslSxaxc+cO3n77dRYu/M77nKGhYQBs3Lie0tLSas993nkXsGHDel566Xm2bdvKl19+xn//+xGjR19Q5/e/adNGfvvtl2o/hYUFh32tbdu28PTTU9m4cQPp6Zv47bef6dKlGzabjRUrlvH009PYtm0La9euZvnyP+nWrVudazwcneMexMJCzLSPD2dzXilrs4oZGmkLdEkiIiIiItIInXLKqXzxxTwmTpzk3ZacnMJtt93N66+/wksvPU+bNu24+ebb+fe/H2DDhnUkJBx8Ha1Jk+7g6aenMWnSDURFRTFmzMU8//wzAJx44iksX/4n9913F4Zh0L17D2688RZeffUlHA4HsbGxnHrq6dx//2Suv35itedt0aIFU6c+zYwZz/L++2+TktKCG2+cxJlnjqrze//gg3f44IN3qm17+unnGTTo6EO+1u23T+bJJx/jxhvH43K5OPbY47jlljsAeOihR3nqqce5+urLMZvNnHjiyVx55TV1rvFwDE9dTgZoonJy9tDYfxuGAYmJUd5a7/9iLV+uyeLaY9tx9RD/Tx+RpufvPSRSF+oj8Qf1kfiD+kh8VZseqqhwkJu7i4SEloSE1DwvWgTAYjHVWJzuUL1T1Xu1oanyQU7nuYuIiIiIiDRtCu5BzhvctbK8iIiIiIhIk6TgHuS6JlUG98w9dvJLD76AhIiIiIiIiAQnBfcgF2mz0DauclVGjbqLiIiIiIg0PQruTUBass5zFxERERGpb1rXW46Uv3pGwb0J0AJ1IiIiIiL1x2w2A+Bw2ANciQQbl8sJgMnkW/TWddybAC1QJyIiIiJSf0wmM2FhkRQX5wNgtdowDCPAVUlj43YbuFz7Rtg9Hjd79hRgtYZiMpl9em4F9yag296p8hmF5RSWVRATFhLgikREREREmpbo6HgAb3gX+TuTyYTbXf067oZhIjo63ucvehTcm4Do0BBaxYSSUVjOuqxiBreLC3RJIiIiIiJNimEYxMQkEBUV553+LFLFMCAuLoL8/BL2P63dYgnxy+wMBfcmontKpIK7iIiIiEg9M5lMmEzWQJchjYxhQGhoKCEhFdTHGoZanK6JqJouv0YL1ImIiIiIiDQpCu5NRPe9C9St0wJ1IiIiIiIiTYqCexNRNeK+Lb+MYrvOuREREREREWkqFNybiLhwKylRNkCj7iIiIiIiIk2JgnsTounyIiIiIiIiTY+CexOiBepERERERESaHgX3JqR7ShQA6xTcRUREREREmgwF9yak296p8lvySimrcAW4GhEREREREfEHBfcmJDHCSmKEFQ+wXue5i4iIiIiINAkK7k1M2t5R97WaLi8iIiIiItIkKLg3MWlVC9RpxF1ERERERKRJUHBvYqpG3LVAnYiIiIiISNOg4N7EpO1dWX5zbgnlWqBOREREREQk6Cm4NzHJkVbiwkJweWBjTkmgyxEREREREREfKbg3MYZhaIE6ERERERGRJkTBvQnyBnctUCciIiIiIhL0LIF8cbvdzoMPPsiCBQsIDQ3lqquu4qqrrjrgvtdffz3fffddtW0vvvgiI0aMoLCwkMGDB1e7LzY2lt9//73eam/MqlaW14i7iIiIiIhI8AtocJ86dSorV67kjTfeICMjg7vuuotWrVpx2mmn1dh306ZNTJs2jSFDhni3xcTEALBx40ZiY2P57LPPvPeZTM13MkHVAnWbckpwON1YLc33dyEiIiIiIhLsAhbcS0tL+eijj3j55Zfp2bMnPXv2ZMOGDbzzzjs1grvD4WDHjh306tWLpKSkGs+Vnp5Ohw4dDnhfc9Qy2kZ0qIWiciebckvovjfIi4iIiIiISPAJ2FDs2rVrcTqd9OvXz7ttwIABLF++HLfbXW3f9PR0DMOgTZs2B3yujRs30r59+/osN6gYhqHp8iIiIiIiIk1EwEbcs7OziYuLw2q1erclJiZit9spKCggPj7euz09PZ3IyEjuvPNOFi1aRIsWLZg4cSLDhw8HKqfRO51OxowZQ2ZmJgMHDmTy5MkkJycfUU2G4Z/3Vp+qajxcrWkpkSzaVsC6rOKgeF/ScGrbQyKHoj4Sf1AfiT+oj8RX6iHxh7r00ZHsG7DgXlZWVi20A97bDoej2vb09HTKy8sZOnQo48eP5+uvv+b666/ngw8+oFevXqSnpxMfH8/kyZPxeDw8/fTTXHfddXz00UeYzeZa15SQEDxTyg9X66DOSby5eAcbc0tJTAye9yUNJ5j6XRov9ZH4g/pI/EF9JL5SD4k/1FcfBSy422y2GgG96nZoaGi17RMmTGDs2LHexejS0tJYtWoVH374Ib169eLzzz/HMAzv4/7zn/8wdOhQli9fTv/+/WtdU27uHjweX95V/TOMymY4XK2p4ZX/adfsKmJ3ZiEWsxaok0q17SGRQ1EfiT+oj8Qf1EfiK/WQ+ENd+qjqMbURsOCekpJCfn4+TqcTi6WyjOzsbEJDQ4mOjq62r8lk8ob2Kh07dmTjxo0AhIWFVbsvISGB2NhYMjMzj6gmj4eg+bAertZWMaFEWM2UOFxsyiml695z3kWqBFO/S+OlPhJ/UB+JP6iPxFfqIfGH+uqjgA3Ddu/eHYvFwrJly7zbli5dSq9evWpcyu3uu+9m8uTJ1batXbuWjh07UlxczKBBg/jtt9+892VmZpKfn0/Hjh3r9T00ZibDIC1l7wJ1WVqgTkREREREJFgFLLiHhYVx7rnnMmXKFFasWME333zDrFmzGDduHFA5+l5eXg7AiSeeyLx585gzZw5bt25l+vTpLF26lMsuu4zIyEgGDBjAo48+yooVK1i1ahWTJk1i2LBhdOvWLVBvr1HotneUfZ1WlhcREREREQlaAT3xefLkyfTs2ZPLL7+cBx98kIkTJzJy5EgAhg4dyhdffAHAyJEjeeCBB3jhhRc466yz+O6773jllVdITU0F4PHHH6dHjx6MHz+esWPH0rp1a5544omAva/GomrEfY2Cu4iIiIiISNAyPB6dyVElJ6fxL0hhGJCYGFWrWrfklnLB60uwWUwsnHgcZpOucSFH1kMiB6M+En9QH4k/qI/EV+oh8Ye69FHVY2pDS403YW3iwggLMWF3utmSVxrockRERERERKQOFNybMLPJ2HeeuxaoExERERERCUoK7k1cVXBfq/PcRUREREREgpKCexPnvSRc5p4AVyIiIiIiIiJ1oeDexKWlVC52sC6rBLdW2xAREREREQk6Cu5NXPv4cGwWE6UVLrbnlwW6HBERERERETlCCu5NnMVk0DUpAtB57iIiIiIiIsFIwb0Z8C5Qp5XlRUREREREgo6CezOgBepERERERESCl4J7M1C1QN3arGI8WqBOREREREQkqCi4NwMdE8IJMRsU213sLCwPdDkiIiIiIiJyBBTcm4EQs4nOiVqgTkREREREJBgpuDcT3vPctUCdiIiIiIhIUFFwbybSkrVAnYiIiIiISDBScG8mvAvUZWqBOhERERERkWCi4N5MdEqMwGwyKCx3krnHHuhyREREREREpJYU3JsJm8VEx4RwANZogToREREREZGgoeDejHTXAnUiIiIiIiJBR8G9GemWXHWeuxaoExERERERCRYK7s2Id8RdC9SJiIiIiIgEDQX3ZqRLUgQmA/JKK8gpcQS6HBEREREREakFBfdmJDTETPt4LVAnIiIiIiISTBTcm5mq6fLrFNxFRERERESCgoJ7M9MtZe8CdVpZXkREREREJCgouDcz3ZOrFqjTyvIiIiIiIiLBQMG9memSHIEBZBU7yNUCdSIiIiIiIo2egnszE2G10DYuDNB0eRERERERkWCg4N4MpWmBOhERERERkaCh4N4MpWmBOhERERERkaCh4N4MVV0STgvUiYiIiIiINH4K7s1Q16TK4L6ryE5BWUWAqxEREREREZFDUXBvhqJCLaTGhgI6z11ERERERKSxU3BvptKSdZ67iIiIiIhIMFBwb6bSvOe5K7iLiIiIiIg0ZgruzZQ3uGdpgToREREREZHGTMG9meqWXBncdxSUs6fcGeBqRERERERE5GAU3Jup2LAQWkbbAFifrenyIiIiIiIijZWCezOWllK5QN0anecuIiIiIiLSaCm4N2NpyVUL1Ok8dxERERERkcZKwb0Z66aV5UVERERERBo9BfdmrGrEfVt+GSUOLVAnIiIiIiLSGCm4N2MJEVaSI614gA1ZJYEuR0RERERERA5Awb2Z8y5Ql6Xp8iIiIiIiIo2RgnszVzVdfp0WqBMREREREWmUFNybuaoF6nRJOBERERERkcZJwb2Z6743uG/JK6W8whXgakREREREROTvFNybucQIK/HhIbg9sCFbC9SJiIiIiIg0NgruzZxhGHSvWqBO0+VFREREREQaHQV38Z7nvi5LC9SJiIiIiIg0Ngru4l1ZXiPuIiIiIiIijY+Cu3gXqEvPLcXudAe4GhEREREREdmfgruQEmUjJtSCy+1hU44WqBMREREREWlMFNyl2gJ1azN1nruIiIiIiEhjouAuwL4F6tZm6Tx3ERERERGRxkTBXYB9C9St1QJ1IiIiIiIijYqCuwCQtnfEfWNOCRUuLVAnIiIiIiLSWCi4CwCtY0KJslmocHlIzy0NdDkiIiIiIiKyl4K7AJUL1HnPc9cCdSIiIiIiIo2Ggrt46Tx3ERERERGRxkfBXbyqgvs6rSwvIiIiIiLSaCi4i1fVAnXrs0twuj0BrkZERERERERAwV320yYujAirGbvTzZY8LVAnIiIiIiLSGCi4i5fJMOiarAXqREREREREGhMFd6lGC9SJiIiIiIg0LgruUk3Vee5aoE5ERERERKRxUHCXavYP7i4tUCciIiIiIhJwCu5STbu4cGwWE2UVbrbnlwW6HBERERERkWZPwV2qMZsMuiZVjrqvydICdSIiIiIiIoGm4C41dE/RAnUiIiIiIiKNhYK71NBNC9SJiIiIiIg0GgruUsP+I+5ujxaoExERERERCSQFd6mhQ3w4VrNBicPFzoLyQJcjIiIiIiLSrCm4Sw0Ws4nOexeoW6vp8iIiIiIiIgEV0OBut9u55557GDhwIEOHDmXWrFkH3ff666+nW7du1X6+//577/2vv/46w4YNo1+/ftxzzz2UlelSZr7YN11eK8uLiIiIiIgEkiWQLz516lRWrlzJG2+8QUZGBnfddRetWrXitNNOq7Hvpk2bmDZtGkOGDPFui4mJAWD+/PlMnz6dadOmkZCQwOTJk5k2bRr3339/g72XpqZbslaWFxERERERaQwCNuJeWlrKRx99xL333kvPnj055ZRTuPrqq3nnnXdq7OtwONixYwe9evUiKSnJ+2O1WgF48803ufzyyxkxYgS9e/fmwQcfZPbs2Rp194F3xD2rGI8WqBMREREREQmYgAX3tWvX4nQ66devn3fbgAEDWL58OW63u9q+6enpGIZBmzZtajyPy+Xir7/+YuDAgd5tffv2paKigrVr19bfG2jiOiZEYDEZFJU72VVkD3Q5IiIiIiIizVbApspnZ2cTFxfnHTUHSExMxG63U1BQQHx8vHd7eno6kZGR3HnnnSxatIgWLVowceJEhg8fTlFREXa7neTkZO/+FouF2NhYdu/efUQ1GYbv76u+VdVY37XaQkx0SoxgXVYx67KKaR0bWr8vKA2moXpImjb1kfiD+kj8QX0kvlIPiT/UpY+OZN+ABfeysrJqoR3w3nY4HNW2p6enU15eztChQxk/fjxff/01119/PR988AGJiYnVHrv/c/39eQ4nISHqSN9GwDRErf3axbEuq5ite+wkJgbP70ZqJ5j6XRov9ZH4g/pI/EF9JL5SD4k/1FcfBSy422y2GsG66nZoaPXR3QkTJjB27FjvYnRpaWmsWrWKDz/8kEmTJlV77P7PFRYWdkQ15ebuobGfzm0Ylc3QELW2j7EB8OfmPHJytLp8U9GQPSRNl/pI/EF9JP6gPhJfqYfEH+rSR1WPqY2ABfeUlBTy8/NxOp1YLJVlZGdnExoaSnR0dLV9TSaTN7RX6dixIxs3biQ2NhabzUZOTg6dOnUCwOl0UlBQQFJS0hHV5PEQNB/Whqg1be/K8msyi3G7PRiaP9SkBFO/S+OlPhJ/UB+JP6iPxFfqIfGH+uqjgC1O1717dywWC8uWLfNuW7p0Kb169cJkql7W3XffzeTJk6ttW7t2LR07dsRkMtGrVy+WLl3qvW/ZsmVYLBbS0tLq9T00dZ0SIzAbkF9WQVbxkZ12ICIiIiIiIv4RsOAeFhbGueeey5QpU1ixYgXffPMNs2bNYty4cUDl6Ht5eTkAJ554IvPmzWPOnDls3bqV6dOns3TpUi677DIALrnkEl599VW++eYbVqxYwZQpU7jwwguPeKq8VBcaYqZDQgSg67mLiIiIiIgESsCmygNMnjyZKVOmcPnllxMZGcnEiRMZOXIkAEOHDuXRRx9l9OjRjBw5kgceeIAXXniBjIwMunTpwiuvvEJqaioAZ555Jjt37uT+++/H4XAwcuRI7rjjjkC+tSYjLSWSjTklrM3cw/DOCYEuR0REREREpNkxPB6dyVElJ6fxL0hhGJCYGNVgtX7wx06e+H4Tg9rGMuOC3vX/glLvGrqHpGlSH4k/qI/EH9RH4iv1kPhDXfqo6jG1EbCp8hIchnSIxwAWbytgU05JoMsRERERERFpdhTc5ZDaxoVxQpdEAN5asiPA1YiIiIiIiDQ/Cu5yWJcPqlxL4Ks1WewuKg9wNSIiIiIiIs2LgrscVs+W0QxoE4PL7eG9P3YGuhwREREREZFmRcFdamXsoDYAfLJiF4VlFQGuRkREREREpPlQcJdaObZ9HF2SIiircPPx8oxAlyMiIiIiItJsKLhLrRiGwdi957p/8EcG5RWuAFckIiIiIiLSPCi4S62d0i2ZltE28ssq+GxVZqDLERERERERaRYU3KXWLCaDSwdUjrq/vWQHTrcnwBWJiIiIiIg0fQruckRG9WpBTKiFnYXlfLc+O9DliIiIiIiINHkK7nJEwkLMXNSvNQBvLt6Bx6NRdxERERERkfqk4C5H7IK+rbBZTKzLKmbR1oJAlyMiIiIiItKkKbjLEYsND+HcXi0AeHPx9gBXIyIiIiIi0rQpuEudXDIgFbMBi7YVsCZzT6DLERERERERabIU3KVOWsWEckpaMgBvLtoR4GpERERERESaLgV3qbNxgyovDffdhmx2FJQFuBoREREREZGmScFd6qxLUiTHdojD7am8rruIiIiIiIj4n4K7+GTcoDYAzFu5m9wSR4CrERERERERaXoU3MUn/VNj6NkiCofLwwd/7gx0OSIiIiIiIk2Ogrv4xDAMxg2uHHX/eNkuShzOAFckIiIiIiLStCi4i8+Gd0qgbVwYe+xO5qzYHehyREREREREmhQFd/GZ2WQwdmDlCvPvLt1Bhcsd4IpERERERESaDgV38YszeqSQGGElq9jBV2uyAl2OiIiIiIhIk6HgLn5htZj4v/6tAXhr8Q7cHk+AKxIREREREWkaFNzFb0b3aUmE1czmvFJ+2pQX6HJERERERESaBAV38ZtIm4Xz+7QE4K3F2wNcjYiIiIiISNOg4C5+9X/9WxNiNlieUcTynYWBLkdERERERCToKbgHEaM0m/D//QvyNge6lINKjLRxRo8UAN5YpFF3ERERERERXym4BxFb+peEL3sJFtwX6FIOaezAVAzgp/Q8NuWUBLocERERERGRoKbgHkQqWg6q/MuGBRj2osAWcwjt4sM5oUsiAG8t2RHgakRERERERIKbgnsQccWn4YzvCi4H1vT5gS7nkMYNSgXgqzVZ7C4qD3A1IiIiIiIiwUvBPZgYBvYuowCwbZgT2FoO46iW0fRPjcHl9vDeHzsDXY6IiIiIiEjQUnAPMlXBPWT7/zDKcgNczaGNG9wGgDkrdlNUXhHgakRERERERIKTgnuQccd2hJZ9MTwubJu+CHQ5h3Rs+zi6JEVQWuHi42W7Al2OiIiIiIhIUFJwD0ZHnQ+AbcOnAS7k0AzDYOzec93f/2Mn5RWuAFckIiIiIiISfBTcg1HP8wAIyfgdU3HjHsk+pVsyLaNt5JdV8NmqzECXIyIiIiIiEnQU3INRbBsqWg7CwINt0+eBruaQLCaDSwdUjrq/vWQHTrcnwBWJiIiIiIgEFwX3ILVvdfnGPV0eYFSvFsSEWthZWM5367MDXY6IiIiIiEhQUXAPUvbOZ+ExTIRk/ompaFugyzmksBAzF/ZrBcBbi3fg8WjUXUREREREpLYU3IOUJzyJitbHAWDbMDfA1RzehX1bY7OYWJtVzKJtBYEuR0REREREJGgouAexqunyoUEwXT42PIRze7UA4M1F2wNcjYiIiIiISPBQcA9i9o6n4TGFYMldgzlvfaDLOaxLBqRiNmDRtgLWZO4JdDkiIiIiIiJBQcE9iHlC43C0HQ4Ex3T5VjGhnJKWDMCbi3YEuBoREREREZHgoOAe5Oyd964uv3EuBMGib+MGVV4a7rsN2ewoKAtwNSIiIiIiIo2fgnuQc3QYicdsw1KQjiVnVaDLOawuSZEMaR+H21N5XXcRERERERE5NAX3IOexRuJofzIQHNd0B7h8cBsAPluVSV6pI8DViIiIiIiING4K7k1A+d7V5W0b5oLHHeBqDq9/agw9W0Rhd7r54I+dgS5HRERERESkUVNwbwIc7U7EHRKJuXgnlt1/BLqcwzIMg3F7R90/WraLEoczwBWJiIiIiIg0XgruTYElDEfHU4HgmS4/vFMCbePC2GN3MmfF7kCXIyIiIiIi0mgpuDcRVavLh278DNyuAFdzeGaTwdiBlSvMv7t0BxWuxj/FX0REREREJBDqHNw3bdrEnj17APjpp5948MEH+eijj/xWmBwZR5thuG2xmMqyCcn4LdDl1MoZPVJIiLCSVexg/tqsQJcjIiIiIiLSKNUpuH/wwQeMGjWKNWvWsHr1aq6//nq2b9/Os88+y7PPPuvvGqU2zFbsnc4Agme6vNVi4v/6twbgzcU7cAfBdehFREREREQaWp2C+yuvvMLjjz/O4MGDmT17Nt27d+eVV17h6aef1qh7ANm7nAOAbdMX4AqOy6yd36clEVYzm3NL+V96XqDLERERERERaXTqFNwzMzMZMGAAAN9//z0nn1x5HfEWLVpQUlLiv+rkiFS0OgZ3WBImewHW7T8FupxaibRZOL9PSwDeXLQ9wNWIiIiIiIg0PnUK7h07dmTevHl8/PHHZGRkcPLJJ1NRUcGsWbNIS0vzd41SWyYz5Z3PAoJnujzA//VvTYjZYHlGEct3Fga6HBERERERkUalTsH9rrvu4tVXX+W+++7jkksuoVOnTjz66KN8/fXX3Hvvvf6uUY6Aveu5AFg3zwdnWWCLqaXESBtn9EgB4A2NuouIiIiIiFRjqcuDhgwZwq+//sqePXuIiYkBYMKECUyePJmQkBC/FihHxpnSH1dUKuY9O7Bu/Q5HpzMDXVKtjB2Yyty/dvNTeh6bckrolBgR6JJEREREREQahTpfDu5///sfTqcTgI8//ph77rmH559/HocjOBZFa7IMA3vnswEI3TA3wMXUXrv4cE7okgjA20t2BLgaERERERGRxqNOwf3555/n5ptvZseOHSxatIj777+fli1b8vXXX/Poo4/6u0Y5QlWry1u3fIPhKA5wNbU3blAqAF+tySJzjz3A1YiIiIiIiDQOdQruH374Ic899xx9+vTh008/ZdCgQTz44IM89thjfPHFF/6uUY6QM7EnztiOGC471s0LAl1OrR3VMpr+qTE43R7eXapRdxEREREREahjcC8sLKRjx454PB5++OEHRowYAUBkZCQul8uvBUodGAb2zqMAsG0MnunyAOMGtwFgzordFJVXBLgaERERERGRwKtTcE9LS+PVV19l+vTp5OXlccopp5CZmclTTz1F3759/Vyi1IW9S2Vwt25biFGeH+Bqau/Y9nF0SYqgtMLFx8t2BbocERERERGRgKtTcJ8yZQpLlizhjTfe4NZbb6V169a88sor7Ny5kwceeMDfNUoduOK74kzojuGuwJb+ZaDLqTXDMBi791z3137fxtLtBYEtSEREREREJMDqdDm4tLQ0Pv3002rb7rjjDqxWq1+KEv8o73IOkblrsG2YS3mPSwJdTq2d0i2ZL1Zn8duWfG7+70qeOrcng9vFBbosERERERGRgKjz5eBWr17NbbfdxnnnnceoUaO44447WLRokT9rEx9VTZcP2fkLRklWgKupPYvJ4IlzenJshzjsTje3zlnFb1vyAl2WiIiIiIhIQNQpuH/99ddceOGFeDweRo8ezejRozEMg6uuuopvvvnG3zVKHbmj21KR0g/D48a26fNAl3NEbBYT00b1ZGjHeOxON7fNWcXPmxXeRURERESk+anTVPlnn32W22+/nSuuuKLa9tdff53nnnuOk08+2R+1iR/Yu5xDSOafhG6cS3nvKwNdzhGxWkxMHdWDyfPWsHBTLnd8uorHz+7BsE4JgS5NRERERESkwdRpxH379u3eS8Dtb8SIEWzevNnnosR/7J3OxINByK7FmPbsDHQ5RyzEbOKxs7tzYpdEKlwe7py7moUbcwJdloiIiIiISIOpU3Dv1KkTP/74Y43tCxcupHXr1j4XJf7jjmxJRaujAbBtnBfgaurGYjbx8JlpnNw1Cafbw13z1vDdBoV3ERERERFpHuo0VX7ixIlMnDiR5cuX06dPHwCWLVvG/PnzmTp1ql8LFN/Zu5yDNeM3bBs+pazfdYEup04sZhP/OjMNswnmr83mnnmr+feZ3Tm5W1KgSxMREREREalXdRpxHzFiBC+//DJ2u5333nuP//73v3g8Ht59913OOOMMf9coPrJ3OgOPYSYk+y/MBemBLqfOLCaDB09P4/Tuybg8cN/na1iwNnhWyxcREREREamLOo24AwwZMoQhQ4ZU22a329m+fTtt2rTxuTDxH09YAhVthmHd9gO2DXMpHXRLoEuqM7PJ4IHTumEyGXy+KpN/frEWl8fD6d1TAl2aiIiIiIhIvajzddwPZNGiRYwcOdKfTyl+Ut7lHABsGz4FjyfA1fjGbDK4/9SunHNUC9weeOCLdXy2anegyxIREREREakXfg3uR8put3PPPfcwcOBAhg4dyqxZsw77mB07dtCvXz9+//1377bCwkK6detW7efoo4+uz9KDjqPDqXhMViz5GzDnrQ10OT4zGQb3jOzCeb1b4AEe+mo9c/9SeBcRERERkaanzlPl/WHq1KmsXLmSN954g4yMDO666y5atWrFaaeddtDHTJkyhdLS0mrbNm7cSGxsLJ999pl3m8kU0O8kGh2PLRpHuxHYNs+vnC6f0D3QJfnMZBjcfXIXzIbBx8t38a8F63F6PIzu3TLQpYmIiIiIiPhNwNJtaWkpH330Effeey89e/bklFNO4eqrr+add9456GPmzp1LSUlJje3p6el06NCBpKQk709CQkJ9lh+U7Huny4dumBv00+WrmAyDO0/qzEX9WgHw6Ncb+HhZRoCrEhERERER8Z9aj7gvXrz4sPusW7eu1i+8du1anE4n/fr1824bMGAAL774Im63u8aIeX5+PtOmTWPWrFmcddZZ1e7buHEj7du3r/VrN1f29ifjsYRhLtqKJWsZzpR+h39QEDAMg9tGdMJsMnh36U4e/3YjLreHi/q3DnRpIiIiIiIiPqt1cB87dmyt9jMMo1b7ZWdnExcXh9Vq9W5LTEzEbrdTUFBAfHx8tf0fe+wxzjvvPLp06VLjuTZt2oTT6WTMmDFkZmYycOBAJk+eTHJycq1q2Vf7Ee0eEFU11qlWaziODiOxbfiU0A1zKWnRNII7VPbdpBM6YjYZvLV4B098vwmXx8OlA1MDXVqj41MPieylPhJ/UB+JP6iPxFfqIfGHuvTRkexb6+C+dq1/FzQrKyurFtoB722Hw1Ft+y+//MLSpUurncO+v/T0dOLj45k8eTIej4enn36a6667jo8++giz2VzrmhISoo7wXQROnWsdcBFs+JSw9M8IO2cqNLG1AB4a3ZuoCBszftjE0z+kExZuZfzxnQJdVqMUTP0ujZf6SPxBfST+oD4SX6mHxB/qq48CtjidzWarEdCrboeGhnq3lZeXc//99/PAAw9U276/zz//HMMwvPf/5z//YejQoSxfvpz+/fvXuqbc3D2N/tRvw6hshjrXGnc08dZoTHt2UfDXtzhbH+P3GgPtygGtcJRX8Mpv23jki7UU7SnniqPbBrqsRsPnHhJBfST+oT4Sf1Afia/UQ+IPdemjqsfURsCCe0pKCvn5+TidTiyWyjKys7MJDQ0lOjrau9+KFSvYvn07N910U7XHX3PNNZx77rk89NBDhIWFVbsvISGB2NhYMjMzj6gmjyd41myrc60mG/aOpxO29gNsG+ZS0arpBXcwuPa49phMBjN/2cr0n7bgdHv4xzHtAl1YoxJM/S6Nl/pI/EF9JP6gPhJfqYfEH+qrjwI2T7p79+5YLBaWLVvm3bZ06VJ69epVbWG63r17s2DBAubMmeP9Afj3v//NzTffTHFxMYMGDeK3337zPiYzM5P8/Hw6duzYUG8nqNi7jALAtvEzcDsDXE39uWZIO64/rj0AL/68lZd/2RrYgkREREREROogYME9LCyMc889lylTprBixQq++eYbZs2axbhx44DK0ffy8nJCQ0Np165dtR+oHLFPSEggMjKSAQMG8Oijj7JixQpWrVrFpEmTGDZsGN26dQvU22vUKlKPwx0aj6k8j5AdPwe6nHp11TFtuXFYBwBm/rqVF3/egkdfpYqIiIiISBAJ6MpkkydPpmfPnlx++eU8+OCDTJw4kZEjRwIwdOhQvvjii1o9z+OPP06PHj0YP348Y8eOpXXr1jzxxBP1WXpwM1mwd668pJ5tw9wAF1P/Lh/chpuHV86+ePW3bcz4n8K7iIiIiIgED8OjBOOVk9P4F6QwDEhMjPK51pCM34j9ZAxuazS5V/0JZpv/imyk3vtjJ099vwmAsQNTmXh8h1pfvrAp8VcPSfOmPhJ/UB+JP6iPxFfqIfGHuvRR1WNqo2ldC0xqraLlYFwRLTA5irBu/SHQ5TSI/+vfmjtO7AzAW0t28MzCdI28i4iIiIhIo6fg3lwZJuydqxapa/rT5atc2K8Vd59cGd7fXbqTJ7/fpPAuIiIiIiKNmoJ7M+ZdXX7zAqgoDXA1Def8Pq2455QuAHzwZwaPf7sRt8K7iIiIiIg0UgruzZgzuQ+u6HYYzjJsW74JdDkN6rzeLfnnyK4YwOzlu3jsmw0K7yIiIiIi0igpuDdnhkF51aj7hk8DXEzDG9WrBQ+c1g0D+GTFbh5ZoPAuIiIiIiKNj4J7M1c1Xd669XsMe1GAq2l4Z/ZM4cEzumEy4NOVu7n/i7UUlVcEuiwREREREREvBfdmzhWfhjOuK4bbgTX9q0CXExCnd0/hX2ekYTZg/tpsxsxawty/dmv0XUREREREGgUF9+bOMLyj7qEbm990+Soj05J5/oLedIgPJ7+sgn8tWM9V7y5j9e49gS5NRERERESaOQV38Qb3kO3/wyjLDXA1gTOgTSzvjuvPLcM7EmE1s2r3Hq54508eXrCeglJNnxcRERERkcBQcBdcsR2pSOqN4XFh2/RFoMsJKIvZxKUDU/n4yoGc0SMZDzDnr92c/9piPlqWgcut6fMiIiIiItKwFNwF2O+a7s1wdfkDSYy08eDpabx8UR+6JEVQVO5k6rcbGff2HyzfWRjo8kREREREpBlRcBcA7J3PBiAk43dMxbsCXE3j0Tc1hjcv68+dJ3UmymZhfXYJV7+/nClfriWnxBHo8kREREREpBlQcBcA3FGtqWg5CAMPtk2fB7qcRsViMrigbytmXzWQc3q1wAA+X53FmFmLeXfpDpwud6BLFBERERGRJkzBXbzKO2u6/KHEhVu5b2RXXrukLz1aRFHicPH0D+lc8tYfLN6WH+jyRERERESkiVJwFy97pzPxGCZCMv/EVLg10OU0Wj1bRvPaJX25b2QXYsNC2JxbyoSP/mLyvDXsLioPdHkiIiIiItLEKLiLlycimYrWxwJg2zgvwNU0bibD4JxeLZl91UAu7NsKkwHfrM/mgteW8Nrv23A4NX1eRERERET8Q8FdqqlaXT5U0+VrJTo0hDtO6sxbl/Wnb+toyp1uZvxvCxe/sYSfN+cFujwREREREWkCFNylGnvH0/GYQrDkrsGctz7Q5QSNrsmRzLyoDw+e3o2ECCvbC8q55b8ruW3OKnYUlAW6PBERERERCWIK7lKNJzQOR9vhANg2zA1wNcHFMAzO6JHCx1cO5NIBqZhNBj9uyuWi15fw0s9bKK9wBbpEEREREREJQgruUoO9anX5jXPB4wlwNcEn0mbhlhM68u64/gxqG4vD5eGV37Zx0etL+GFDDh79TkVERERE5AgouEsNjg4j8ZhtWArSseSsCnQ5QatjQgTPj+nFY2d3JyXKRkaRnTvmruam/65kS15poMsTEREREZEgoeAuNXiskTjanwyAbcOcwBYT5AzD4KSuSXx05UCuOroNIWaD37bk839vLOW5HzdT6tD0eREREREROTQFdzmg8r2ry9s2zAOPLm3mq7AQM9cP7cAHlw/kuA7xON0e3ly8nQteW8yCtVmaPi8iIiIiIgel4C4H5Gh3Iu6QCMzFO7Hs/iPQ5TQZbeLCeGb0UTx5bk9axYSSVezg3s/Xct2HK9iQXRzo8kREREREpBFScJcDs4Th6HAqADZd093vju+UwIdXDOTaY9ths5j4Y0chl731B9O+3UhReUWgyxMRERERkUZEwV0Oyt7lHABCN34Gbp2L7W82i4mrh7TjoysHclLXRNwe+HBZBufPWsInK3bhcmv6vIiIiIiIKLjLITjaDMNti8VUlk1Ixm+BLqfJahkdymNn9+D5Mb3oEB9OQVkFj3y9gSvf/ZO/MooCXZ6IiIiIiASYgrscnNmKvdMZAISufi/AxTR9g9vF8e64/kw6oSMRVjNrMou56r1lPPjVOnJLHIEuT0REREREAkTBXQ6pvPtFAIRumINt/ScBrqbps5hNXDIgldlXDeKsnikAfLYqk/NnLebdpTtwurTCv4iIiIhIc6PgLofkbDGAkgE3ARD1/R2Yc1YHuKLmISHCygOndWPW//Wle0okJQ4XT/+QziVv/cGirfmBLk9ERERERBqQgrscVung23C0GY7hLCfmy2sw7IWBLqnZ6NUqmtcv7ce9p3QhNiyEzbml3PDxX9w1dzW7isoDXZ6IiIiIiDQABXc5PJOZopHTcUWlYi7aStQ3t4BHU7YbiskwOLd3S2ZfNZCL+rXCZMB3G3K44LUlvPLrVuxO/bcQEREREWnKFNylVjyhcRSdNhOP2YZty9eEL50e6JKanejQEG4/sTNvj+1Pv9QY7E43L/2ylQtfX8LCjTl4PLp8nIiIiIhIU6TgLrXmTO5N8fEPAxD++zRCtv0Q2IKaqS5Jkbx0YW8ePjON5EgrGYXl3P7pam7670q25JUGujwREREREfEzBXc5IuU9Lqasx6UYeIhecCOmou2BLqlZMgyDkWnJfHTlIK4Y3IYQs8FvW/L5vzeW8p+F6ZQ4nIEuUURERERE/ETBXY5Y8fEPUZHcB5O9gOivxoOzLNAlNVvhVjM3DOvAB5cPZGjHeJxuD28t2cGYWUv4YnWmps+LiIiIiDQBCu5y5Mw2ik6biTs0npDsv4hceB8oIAZUm7gwnj7vKJ46tyepsaHklDh44Mt1XPP+ctZlFge6PBERERER8YGCu9SJO6o1RSNn4DFMhK39gNDV7wS6JAGGdUrg/csHMmFoe0ItJpZnFDHunT947JsNFJRVBLo8ERERERGpAwV3qbOKNkMpOfpOACJ/vB9L5p8BrkgAbBYTVx7dlo+uHMgp3ZJwe2D28l2MmbWY2cszcLk1O0JEREREJJgouItPyvrfgL3jaRhuB9FfXYtRlhvokmSvFtGhPHJWd168sDedEsMpLHfy2DcbGff2nyzZkhfo8kREREREpJYU3MU3hsGek57GGdsRc3EG0QtuALdWNG9MBrSJ5e2xA7h9RCeibBbWZRUz5sVfueezNWQUlge6PBEREREROQwFd/GZxxpF0Wkv47GEY93xPyJ+nxbokuRvLCaDi/q3ZvZVAzm3VwsMAxaszeaC1xbz3I+bKbbryxYRERERkcZKwV38wpXQjT0nPgFA+B/PY03/MsAVyYHEhVu579SufDZxKIPaxuJweXhz8XZGv7qYj5dl4NT57yIiIiIijY6Cu/iNvcsoSvtcA0DUN5Mw528KcEVyMD1bxTDjgl48eW5P2sWFkV9WwePfbuSSN5byc3qerv8uIiIiItKIKLiLX5UMuQdHq6MxVRQT/eU14CgJdElyEIZhcHynBN6/fAB3nNiZmFALm/NKueWTlUyc/Rcbs/XfTkRERESkMVBwF/8yh1A08gVcESlY8tcT9f3toNHbRs1iNnFhv1Z88o/BXDYwlRCzwe9bC7j0raU8vGA9OSWOQJcoIiIiItKsKbiL33kikik69SU8JguhG+cRtvzlQJcktRAVauHm4R358IqBnNw1EbcH5vy1m/NfXcys37ZRXuEKdIkiIiIiIs2SgrvUC2fLgRQf9wAAEb88TMjOXwNckdRWamwYj57dg1cu7kPPFlGUVrh44ectjHltCV+szsStGRQiIiIiIg1KwV3qTXmvKyjvOhrD4yJ6/vWYincFuiQ5An1axzDrkr78+4w0WkTZyNxj54Ev13HFO3/y547CQJcnIiIiItJsKLhL/TEM9pzwOM6E7pjKcoiefx24dL50MDEZBqd2T+ajKwcyYWh7Iqxm1mQWM/6D5dw1dzU7CsoCXaKIiIiISJOn4C71KySMwtNfxm2NJmT3UiJ/fijQFUkdhIaYufLotsy+ahCje7fEZMB3G3K44LUlPP3DJorKKwJdooiIiIhIk6XgLvXOHdOePaf8B4Cwv17Htm52gCuSukqIsDL5lC68M24AQ9rH4XR7eHfpTka/upj3/9iJ0+UOdIkiIiIiIk2Ogrs0CEf7kykZeDMAUT/chTlndYArEl90TozgP+f34tnRR9ExIZzCcidPfr+Ji95YysKNOXi0gJ2IiIiIiN8ouEuDKR10K462J2A4y4n58hqM8oJAlyQ+OrZDPO+MG8DkU7oQHx7Ctvwybv90Ndd/tIK1mXsCXZ6IiIiISJOg4C4Nx2Sm6JTncEW1wVy0lahvbgaPplYHO4vJYHTvlsy+ahBXDG6D1WywdHsh497+kylfrSNrjz3QJYqIiIiIBDUFd2lQntA4ik5/GY/Zhm3rt4Qv+U+gSxI/ibRZuGFYBz6+ahCnpiXhAT5flcn5sxYz85ctlFW4Al2iiIiIiEhQUnCXBudMOoo9wx8FIHzRk1i3fhfgisSfWkaH8u8zu/PaJX3p0yqacqebl3/dxuhXFzP9p82s2lWkc+BFRERERI6AgrsEhL37hZT1HIuBh6ivJ2Iq2hboksTPjmoZzcsX9+Gxs7vTKiaUnBIHbyzazhXvLuOsmb8z7duNLN6Wj9OtEC8iIiIiciiWQBcgzVfxsClYsv8iJGsZ0V9eQ8H5c8ASFuiyxI8Mw+CkrkkM65jADxtz+H5DLr9sziOr2MGHyzL4cFkGMaEWhnVK4ITOiRzdLpbQEHOgyxYRERERaVQU3CVwzDaKTptJ3EenE5KziqiF97DnxKfAMAJdmfiZ1WJiZFoyI9OSsTvdLNqazw8bc1i4MZfCciefrcrks1WZhIWYOLZDPCd0TmRox3gibTpEiYiIiIjo/4oloNxRrSgaOYOYuf9H6NqPqEjpT/lRYwNdltQjm8XEsE4JDOuUwORTPCzfWcj3G3L4YWMumXvsfLs+h2/X52AxGQxqG8sJXRIZ3imBhAhroEsXEREREQkIw6NVorxycvbQ2H8bhgGJiVFBUeuRCPtjBpG/PoLHFELBebNxtugf6JKarMbaQx6PhzWZxXun1OewJa/Me58B9G4VzYguiZzQJYHWMTqlItAaax9JcFEfiT+oj8RX6iHxh7r0UdVjarWvgvs+wfBhbbIHFo+H6K/GY0v/EldkS/Iv+BJPeGKgq2qSgqWHtuSW8v3GypH41bv3VLuvS1IEI7okMqJzIp0SwzF0ekWDC5Y+ksZNfST+oD4SX6mHxB/qO7hrqrw0DobBnpOewpy/AUv+RqIXTKBw1LtgUos2V+0TwrkyoS1XHt2W3UXlLNyYyw8bc/hjRyEbskvYkF3CzF+2khobyojOiZzQJZGjWkZhUogXERERkSZGI+77CYZv2Zr6N4LmvA3EfnwWpooS7G1HUNHmeJwJ3XEmdscTlhDo8pqEYO+hgtIKfkzP5YcNOfy+NR+Ha9+bSIywMrxzAiM6JzKgTQwWs654WV+CvY+kcVAfiT+oj8RX6iHxB02Vb0DB8GFtDgcW68bPiJl/XY3trvBkXAndcSak4UzsjjOhB664TmC2BaDK4NWUeqjE4eTXzZUr1P8vPY8Sh8t7X5TNwtCO8VzUvzU9W9TugCi115T6SAJHfST+oD4SX6mHxB80VV6aHUfns8iPmIN1+49Yctdgzl2DuXAr5tIszKVZWLcv9O7rMVlwxXbyjso7E3rgSuyOOzxFl5VrBiKsFk7ulsTJ3ZJwON0s3l7ADxsqLzOXX1bBl2uy+HJNFmf2SOaGYR1IitSXPCIiIiISfDTivp9g+Jat2X4j6CjBkrcOS+4ab5i35K7FZC884O7u0LjKMJ/QvXKUPrE7zviuYNFq5M2hh1xuDysyivhkxS6+XJMFQFiIiSuPbsslA1KxWTSF3lfNoY+k/qmPxB/UR+Ir9ZD4g6bKN6Bg+LDqwLIfjwdT8a7KMJ+zem+YX4O5YBOGx11zd8OEK6ZDZZhP7O4N9u6o1GY1Ot/cemjlriKe+n4Tf+2qXJm+VbSNm4Z35MQuiVqN3gfNrY+kfqiPxB/UR+Ir9ZD4g4J7AwqGD6sOLLXgLMeSvwFzzhrvCL0lZzWm8rwD7u62RuFKSMOZ0B1H62NxdDwdTOYGLrrhNMce8ng8fLU2i+k/biar2AFAv9QYbjuhE91SIgNcXXBqjn0k/qc+En9QH4mv1EPiDwruDSgYPqw6sNSRx4NRmr0vyOeuwZKzBnP+Bgx3RbVdnXFdKB10K/bOZ4LR9KZUN+ceKqtw8eai7by1ZAd2pxsDGNWrBdcf156ECGugywsqzbmPxH/UR+IP6iPxlXpI/EHBvQEFw4dVBxY/c1VgLthUGeSz/iJ07Qfe8+adCWmUDL4NR4fTmtRUevUQ7C4q57kfN7NgXTYAEVYz/zimLRf1a41V57/XivpI/EF9JP6gPhJfqYfEHxTcG1AwfFh1YKlfhr2IsOWvELb8ZUyOynOiKxKPovTo23G0O6lJBHj10D7Ldxby5PebWJNZDEBqbCi3DO/I8Z0SdP77YaiPxB/UR+IP6iPxlXpI/KG+g3tAh5bsdjv33HMPAwcOZOjQocyaNeuwj9mxYwf9+vXj999/r7b99ddfZ9iwYfTr14977rmHsrKy+ipbmjCPLZrSwbeSN/ZXSgbchDskgpCclcR8fgWxH59NyLYf0BG96ejTOobXL+3H/ad2JSHCyo6Ccm7/dDU3fPwXG7NLAl2eiIiIiAgQ4OA+depUVq5cyRtvvMEDDzzA9OnT+eqrrw75mClTplBaWlpt2/z585k+fToPPfQQb7zxBsuXL2fatGn1Wbo0cZ7QWEqPuZO8sb9S2u96PJYwQrKWETvvMmL/ex4h2/+nAN9EmAyDs49qweyrBnLF4DZYzQaLtxVw6VtLeeybDRSUVhz+SURERERE6lHAgntpaSkfffQR9957Lz179uSUU07h6quv5p133jnoY+bOnUtJSc1RsDfffJPLL7+cESNG0Lt3bx588EFmz56tUXfxmScsnpJj7yV37C+U9hmPx2wjZPcSYudeTMycCwjJ+C3QJYqfRFgt3DCsAx9eOZATuyTi9sDs5bsYPWsx7y7dgdNV8xKDIiIiIiINIWDBfe3atTidTvr16+fdNmDAAJYvX47bXfN/kPPz85k2bRoPPfRQte0ul4u//vqLgQMHerf17duXiooK1q5dW39vQJoVT3gSJUPvJ2/sz5T2uhKPyYo14zdiPxlDzKf/h2X30kCXKH7SOiaMx0f14MULe9MlKYI9didP/5DOxW8s5ef0A19SUERERESkPlkC9cLZ2dnExcVhte67BFNiYiJ2u52CggLi4+Or7f/YY49x3nnn0aVLl2rbi4qKsNvtJCcne7dZLBZiY2PZvXv3EdUUDGtRVdUYDLU2RZ7IFpQO/xfl/a8nbOlzhK5+H+uOn7Du+AlHuxGUDr4NZ0rfQJd5SOqh2hnYNpa3x/Zn3srdzPjfFrbml3HLJys5tn0ck0Z0okNCeKBLDCj1kfiD+kj8QX0kvlIPiT/UpY+OZN+ABfeysrJqoR3w3nY4HNW2//LLLyxdupTPPvusxvOUl5dXe+z+z/X35zmchITarejXGARTrU1SYjfoMB3y74Afp8Gyd7Fu/R7r1u+h6+kwYjK07BPoKg9JPVQ7V58YzYXHduD57zYy6+fN/LIln9/fWMrYY9pxy8ldiA1v3td/Vx+JP6iPxB/UR+Ir9ZD4Q331UcCCu81mqxGsq26HhoZ6t5WXl3P//ffzwAMPVNu+//Ps/9j9nyssLOyIasrNbfyXgDCMymYIhlqbh3g47lFMR11L+OJnsa2bjbH+S1j/JfaOp1M6+FZcid0DXWQ16qG6uWZwKqd1SeCZheks3JjL679s4ZM/dnDtce0Z3aclFlPz+ppefST+oD4Sf1Afia/UQ+IPdemjqsfURsCCe0pKCvn5+TidTiyWyjKys7MJDQ0lOjrau9+KFSvYvn07N910U7XHX3PNNZx77rlMmTIFm81GTk4OnTp1AsDpdFJQUEBSUtIR1eTxBM9C4cFUa3Pgim7PnpOeprT/jYQvfgrbhrnY0r/Emv4V9s5nUzpoEq74Lod/ogakHjpyqbFhPHFOTxZtzeepHzaxKaeUqd9u5ONlGdx6QieObh8X6BIbnPpI/EF9JP6gPhJfqYfEH+qrjwK2OF337t2xWCwsW7bMu23p0qX06tULk2lfWb1792bBggXMmTPH+wPw73//m5tvvhmTyUSvXr1YunTf4mDLli3DYrGQlpbWUG9HBABXXCf2jHye/Iu/obzTWRh4CN04l7j3TiTq64mYC9IDXaL4weB2cbw9dgB3ntSZmFAL6bml3Dj7L279ZCXb8nU1CxERERHxr4CNuIeFhXlHzB955BGysrKYNWsWjz76KFA5+h4VFUVoaCjt2rWr8fiUlBQSEhIAuOSSS7j//vvp2rUrycnJTJkyhQsvvPCIp8qL+IsroRt7TnuR0pzVRCx6Etvm+YSu/wTbhrnYu51PycCbccfU7GsJHhaTwQV9W3FqWhKv/LqND5dl8FN6Hr9uyefodnG0iw+jfXw47eLDaBcXTnx4CIZWvRERERGROjA8nsBNCCkrK2PKlCksWLCAyMhI/vGPf3DFFVcA0K1bNx599FFGjx5d43HdunXjzTff5Oijj/ZumzlzJq+//joOh4ORI0fywAMPeM9/r62cnMZ/XothQGJiVFDUKvtYslYQvuhJbFu/BcBjslCediGlA27CHZ3aoLWoh+rHltxSnlmYzs+bD3zJuCibZW+ID6NdfDjt4sNpHx9GakwYVkvAJj/VmfpI/EF9JP6gPhJfqYfEH+rSR1WPqdW+gQzujU0wfFh1YAlult1/ELHoSazbFwLgMYVQnnYh5WkX4GwxoEGuQ6Ieql+rdu9hXeYetuSVsTW/lC15ZewqLOdgv2qTAa1iQmkfH07bvaG+fRCM0quPxB/UR+IP6iPxlXpI/KG+g3vApsqLNEfOFv0pHPUOloxFlQF+58+ErX6HsNXv4IpKxd75bOxdzsGZ2FMXEw1SPVtE0bNF9QOw3elme0EZW/NK2bpfoN+aV0qJw8WOgnJ2FJTXeK5Im7lyuv1+o/Tt4sJoExuco/QiIiIiUjcacd9PMHzLpm8Em5aQnb8SuuZ9rOlfYaoo8W53xnbC3mUU9i7n4orr5NfXVA81Hh6Ph9wSB1vzK0N81Sj91rwyMmoxSt8ubu859PHhdEoIp2tyJGEh5gapXX0k/qA+En9QH4mv1EPiD5oq34CC4cOqA0sT5SzDuvU7Qjd8inXLtxguu/euisSelSG+8zl+OR9ePRQcDjdKfyAG0D4+nG4pkaQlR5KWEknXpEiiQv0/uUp9JP6gPhJ/UB+Jr9RD4g8K7g0oGD6sOrA0fYZjD9bNC7Bt+BTr9h8x3E7vfRUtBmDvPIryzmfjiUiu2/Orh4Kax+Mht7Rib6AvZWt+GZtzS9mYU0J2seOAj0mNDSUtOZKue8N8WnIkceFWn+pQH4k/qI/EH9RH4iv1kPiDgnsDCoYPqw4szYtRno9t0+fYNswlZOevGHsnT3sMExWthmDveg72jqfjCY2r/XOqh5qsnBIH67KKWZdZzNqsYtZl7iGjyH7AfZMjraSlRJGWHOkdoU+KtNZ6MTz1kfiD+kj8QX0kvlIPiT8ouDegYPiw6sDSfJlKdmPb+FlliM/8w7vdY7LgaDMce5dzcHQYiccaecjnUQ81L4VlFZVhPquYtXsD/bb8sgPuGx8eQrf9RuW7pUTSKjr0gGFefST+oD4Sf1Afia/UQ+IPCu4NKBg+rDqwCICpaBu2DXMJ3TAXS+5q73aPJRR7u5OxdxmFo90IsITVeKx6SIrtTjZkl3hH5ddmFbM5txT3AfohymbZd858ciTdkiNpExeGxWyoj8RnOh6JP6iPxFfqIfEHBfcGFAwfVh1Y5O/MeRuwbfgU24ZPsRRu9m53h0Ti6HhaZYhPHQbmEEA9JAdWXuFiY04JazOLvSP0G3NKqHDVbJKwEBNdkyM5pnMix7eLpUtiRKO93rw0bjoeiT+oj8RX6iHxBwX3BhQMH1YdWOSgPB4sOSv3hvi5mIszvHe5Q+OwdzoTe5dROFsdTWJyrHpIDqvC5SY9t9R7zvzazGLWZxdjd7qr7dcpMZzTu6dwWvdkUqJsAapWgpH+TRN/UB+Jr9RD4g8K7g0oGD6sOrBIrXjcWHYvJXTDp9g2foapLMd7lysiBfNRoylodSIVLQaByf+XCpOmy+n2sC2/lDWZxfy+vZBv1mR6R+UNYECbGE7vkcKJXRKJtKm35ND0b5r4g/pIfKUeEn9QcG9AwfBh1YFFjpjbScjOXytH4tO/xGQv3HeXLRZH+5Owtz+FirYnHHZhO5EqVceizTvy+WZdNl+syeLPHft6y2YxMaxjAmf0SGZI+zgsZlMAq5XGSv+miT+oj8RX6iHxBwX3BhQMH1YdWMQnLju27QuJ3vEN7nVfYirP997lMVmpSB2CvcOpONqfjDuyVQALlcbuQMeiXUXlfLUmiy9WZ7Ilb9/K9bFhIYzslsTpPZLp2SJK58OLl/5NE39QH4mv1EPiDwruDSgYPqw6sIivvD2UlY9l11Ksmxdg3byg2sJ2ABVJvXF0OAV7+5G4EntUPlBkr0MdizweD2uzivlydRbz12aRV1rhva9tXBindU/m9O7JpMbWvOqBNC/6N038QX0kvlIPiT8ouDegYPiw6sAivjpgD3k8mAs2Yd28ANvmBVh2L8VgX4O5IltXhvgOI6lodQyYrYEpXhqN2h6LnG4Pi7bm8+WaLH7YkEP5fgvb9W4Vzendkzm5WxKxYSENULU0Nvo3TfxBfSS+Ug+JPyi4N6Bg+LDqwCK+qk0PGaU5WLd+i23zAqzbF2I4y733ua1RONqOwNHhFBztTsRji2mgyqUxqcuxqMThZOHGXL5cncWibfne68ZbTAbHdYjnjB7JHNcxAZtF58M3F/o3TfxBfSS+Ug+JPyi4N6Bg+LDqwCK+OuIecpZh3fEz1s3zsW3+BlNZtvcuj8lCRcujvaPx7ui29Ve4NCq+Houyi+0sWJvNF6szWZ9d4t0eZbNwUtdETu+RTN/WMZh0ikaTpn/TxB/UR+Ir9ZD4g4J7AwqGD6sOLOIrn3rI48aSuaxyJH7L11jy1lW725mQhr39SBwdRuJM7g2GRk6bKn8eizbmlPDVmiy+WpNF5h67d3vLaBundU/mjO4ptE8I97FiaYz0b5r4g/pIfKUeEn9QcG9AwfBh1YFFfOXPHjIVbsG2+WusWxYQkrEIw+Py3ucKT8HR/mQcHUbiSD0OLKE+Vt44GeX5hOxaQsjuxYTsWoIl+y+csZ0o6/MP7F1GgdkW6BLrRX0ci9weD3/uKOSL1Zl8uz6HEse+fuqeEslp3ZMZ0SWRxAgrIbq8XJOgf9PEH9RH4iv1kPiDgnsDCoYPqw4s4qv66iGjPB/r1u+wbv4a67bvMVXsm/7ssYTjaDOMipR+uBJ74EzsgTs8JfhWqvd4MBduxrJrMSG7FhOyewmW/I0H3d0dlkjZUWMpO2ocnvCkBiy0/tX3sai8wsVP6Xl8uTqTX7bk43JXfxGbxUR0qIVIm4Vom4WoUAtRtr0/odX/9O6393a41awp+I2E/k0Tf1Afia/UQ+IPCu4NKBg+rDqwiK8apIdcdkJ2/uodjTcX76qxizs0HmdCd5x7g7wzoQeu+M6Na4TaZceSvbIypO8N6qay3Bq7OeM6U9FiIBUtB+FM6oV12w+E/fWa9317TFbsXc+hrPc/cCYd1dDvol405LGooLSCBeuy+WpNJit37cHXlzMZEGmrRdC3WYgMtZAUYaVLUoSuP18P9G+a+IP6SHylHhJ/UHBvQMHwYdWBRXzV4D3k8WDJWUXI9oVYclZjyVmDuWBTtWn13l1NFlxxnXEmVIX5ymDfUKPVNaa9Zy3HcNmr7eMx23Am96Gi5UAqWgyiouVAPKFxNZ/MVYEt/SvCVrxCyO6l3s2OVsdQ1ucfONqPBJO5vt9SvQnUscjl9lDicLLH7mRPefU/i8qdFO/9c4+96j4Xe+wV7LG72FNegcNVt2L7tY7mlhM60aNF7f5xldrRv2niD+oj8ZV6SPxBwb0BBcOHVQcW8VWj6CFnOZa89VhyVmPOXYMldzWWnNWY7IUH3N0dlrR3ZL67N9S7YjuB2Ydrf9dy2rs7LME7ml45on7UEc8KsOz+g7AVr2Lb9DmG2wmAK7otZb2upLz7RXhs0XV/HwHSKPqoDuxON3vKK4N8UXkFxXYXRfaKfQH/b0F/j93FlrxS7HuvP39692QmDG1Pi+imuWZDQwvWPpLGRX0kvlIPiT8ouDegYPiw6sAivmq0PeTxYCre5Q3x5pzVWHJXYy7YjHGAydEekxVnfJfKc+arRugTexx49BvqNu295SBcMR38di6+qXgXoSvfJGzlW5jsBQC4QyIo734RZb2uxB3bwS+v0xAabR/Vg91F5bzw8xa+WJ0FVJ5ff+mA1owb3IYIqyXA1QW35tRHUn/UR+Ir9ZD4g4J7AwqGD6sOLOKroOuhilIsuWuxeEfm12DOXYPJseeAu7siWlSOyCd0xxnbCUvBRt+nvfv9PZURuv6/hC1/FUv++spaMHC0P5myPldT0frYRr9wX9D1kR+s3r2HZxam8+eOypkh8eEhXHdce0Yd1QKzqXH/92qsmmMfif+pj8RX6iHxBwX3BhQMH1YdWMRXTaKHPB5Me7bvPWd+9b5AX7T1kA9zh8ZXTnlvMZCKVoPrNO3drzweQnb8RNjyV7Ft/da72ZmQRlnvqynvem6jvYxek+ijOvB4PPywMZfnfkxne0E5AJ0TI7h5eAeOaR8f4OqCT3PtI/Ev9ZH4Sj0k/qDg3oCC4cOqA4v4qin3kOEoxpy7dt90+4JNuKLb1cu0d38z528i7K9ZhK75EMNZBlSeX1/W8zLKjxqHOyIlwBVW15T7qDYqXG4+WpbBq79to6i8ct2CYzvEcdPxHemUGBHg6oJHc+8j8Q/1kfhKPST+oODegILhw6oDi/hKPdS4GeUFhK55n7AVr2Eu3gmAxxSCvfPZlPW5Gmdy7wBXWEl9VKmwrIJXf9vGh8sycLk9mAw4r3dLxh/bjvhwa6DLa/TUR+IP6iPxlXpI/EHBvQEFw4dVBxbxlXooSLidWDfPJ3z5q4TsWuTdXNFyMKV9/oGjw6lgCtzCaOqj6rbll/Hcj+n8sLFywcMIq5krBrfh/wakYrOYAlxd46U+En9QH4mv1EPiDwruDSgYPqw6sIiv1EPBx5K1vPI8+I3zMNwVALiiUisvJ9fjYjy2mAavSX10YH/sKOCZH9JZk1kMQIsoGzcO68DItCSMRnqaRiCpj8Qf1EfiK/WQ+IOCewMKhg+rDiziK/VQ8DKV7CZ05VuVl5MrzwPAYwmnvPsFlPUchyuhW4PVoj46OLfHw1drsnj+p81kFTsA6NkiikkndKRP64b/kqUxUx+JP6iPxFfqIfEHBfcGFAwfVh1YxFfqoSbAWUbo+jmELX8FS966fZvjOmPveDqOjqfjTOpVrwvxqY8Or7zCxbtLd/L6om2UVbgBOKlrIjcO60BqbFiAq2sc1EfiD+oj8ZV6SPxBwb0BBcOHVQcW8ZV6qAnxeAjZ+QthK2Zh3fo9htvhvcsVlYq94+nYO52Bs8UAMPx7nrX6qPZyShy89PMW5q7cjdsDIWaDi/q15qqj2xIVGrh1ChoD9ZH4g/pIfKUeEn9QcG9AwfBh1YFFfKUeapoMxx6sW77Flv4l1q3feS8pB+AKT8bR8TTsHU+notUxYA7x/fXUR0dsY3YJzyzcxO9bCwCICbUw/th2jO7dEou5eS5gpz4Sf1Afia/UQ+IPCu4NKBg+rDqwiK/UQ81ARRnW7QuxbfoC65ZvMDmKvHe5bbHYO5yKo9PpONoMA7OtTi+hPqobj8fDL1vyeXZhOptzSwFoFxfGxOM7cnyn+Ga3gJ36SPxBfSS+Ug+JPyi4N6Bg+LDqwCK+Ug81My4HITt+xpb+Bbb0+d5F7QDcIZE42p9UeV582xFgjaj106qPfON0e/j0r1289PNW8ssqrxQwsE0MtwzvRLeUyABX13DUR+IP6iPxlXpI/EHBvQEFw4dVBxbxlXqoGXM7Cdm1COumL7Glf4m5ZLf3Lo/ZhqPtCdg7nY6j/SmHvcSc+sg/iu1OXl+0nfeW7sDh8mAAZ/ZM4frj2pMcVbfZEMFEfST+oD4SX6mHxB8U3BtQMHxYdWARX6mHBACPG0vmn9jSv8S26UvMRVv33WWyUJF6HPaOZ2DvcCqe8MQaD1cf+deuonKe/2kz89dmA2CzmOieEknrmFBax4TROjaU1jGhpMaGER8e0mSm1KuPxB/UR+Ir9ZD4g4J7AwqGD6sOLOIr9ZDU4PFgzl2DbdPn2NK/qnaJOY9hoqLlYOydzsDR8TTcka0A9VF9WbmriKd/SGdFRtFB9wkLMVWG+ZjQvYE+jNS9wb5ldChWS/AsdKc+En9QH4mv1EPiDwruDSgYPqw6sIiv1ENyOOb8TZUL26V/SUj2imr3VaT0qzwnvvMZxHfqpT6qBx6Ph/VZJWzNL2VnYTk7C8rZUVjGzoJyMvfYOdSv2wBSomy0jg0ldb+R+taxYaTGhBIdamlUo/U6Hok/qI/EV+oh8QcF9wYUDB9WHVjEV+ohORKmou3Y0r/Clv4Fll1LMPaPjXHtcUSk4opsjTuqNa6o1L1/tsYd2bLOK9bLwTmcbnYVlbOzsJwdBeXs3BvoK2+XUe50H/LxkTZzjUBfOQU/lJSoUCymhg31Oh6JP6iPxFfqIfGH+g7uFh9qExGRJs4d3YayvtdQ1vcaTCWZWDfPx7bpS0J2/oKRvwVr/pYDPs6DgTs8eV+Qrwr2kftuH24BPKnJajHRLj6cdvHhNe7zeDzklVawo6DMO1K/s7DMG/JzShwU212szSpmbVZxjcebTQYJ4SEkRFgrf8KtJERU3o4Pt+7bHhFCeIi5UY3ci4iINHUK7iIiUivuiBTKjxpH+VHjMNnzSXBuY8+ODZj27MS0ZwfmPTsx7dmJec8ODJcdc2km5tJMQjL/OPDzWaMqA31ka9xRqX8L+K1wR6SAETznaweaYRjecN2ndc0vRcorXJWBfu/ofMZ+o/YZheU4XB6yih1kFTsO+1qhFhPxfwv31f6+9yc+3IotiM65FxERaawU3EVE5Ih5QuMgsS32yD41p4N5PBjleZj37Ngb5PcG++Kd+26X52Fy7MGUuxZL7toDv4YpBHdkK1xRrSqDfWQrXDHtcSb1whXXBUzm+n+jTUhoiJlOiRF0SoyocZ/b4yG72EFuyX4/pQ5ySyrIK91/ewWlFS7KnW4yCsvJKCw/7OtG2sx7Q31VmN8X7hMjrPQzzIR5PFSeoS8iIiIHouAuIiL+ZRh4whJwhiVAcp8D71NRirk4Y+9I/Q5MezIq/yzeG+yLd2G4KzAXba12qboqHks4FUm9cCb3wZnSh4rkPrij21WeLCZHzGQYpETZSKnFtePLKlz7hfsKcksc5O0X9HNLHN6w73B5KLa7KLaXsTW/7KDPGR8eQq+W0fRqFU2vVlH0SIkiNERfzIiIiFRRcBcRkYYXEo4rrjOuuM5UHOh+twtTSWaNkXpz/gYs2X9hqijBuut3rLt+3/cQWyzO5MoQXxXo3REtGuwtNRdhIWZSY8NIjQ075H4eT2Vo3zd6vy/oV4X7nGIHm/NKySutYOGmXBZuygUqz7fvmhRRLcy3ig7VefUiItJsKbiLiEjjYzLjjmqFO6oVzr/f53ZhLtiEJWs5IVnLsGQux5KzGpO9AOv2hVi3L/Tu6opIwZncd79A37tymr/UO8MwiAq1EBVqoX1CzcX0KveByJhwfl69ixUZe/gro4i/dhWRXexgTWYxazKL+XBZBlA5Kt+7VbQ3zHdPidSovIiINBu6HNx+guESELpchfhKPST+0Oj6yOXAkrsWS9ZyLFnLCMlajjlvPYan5uXRnDHtK0fkk/tWhvmkoyDkwMFS6teB+sjj8ZC5x86KjCL+2lUZ5tdlFeN0V2+0qlH5/cN8y2ibRuWboUZ3PJKgox4Sf9B13BtQMHxYdWARX6mHxB+Coo8qSrFkr6wclc9aTkjmsgOfL2+YcMV33TsiXzk670xIA7M1AEU3L7Xto/IKF+uyiquF+ZySmqvfJ0ZYOapllDfMp2lUvlkIiuORNGrqIfEHBfcGFAwfVh1YxFfqIfGHYO0jozwfS9YKQrKWe0fnzSWZNfbzmKw4E3vsXfiuHxWpx+KObBWAipu2uvaRx+Nh9x47f2UUsWLvz/rsElx/G5W3mAy6JkfuDfKVgT4lSqPyTU2wHo+k8VAPiT8ouDegYPiw6sAivlIPiT80pT4yleyuPE8+a/neQL8Mk72wxn7OuC442hxPRZvjcbQ6Bqw1L6smR8affVRe4WJNZrH3PPkVGUXkldZc+jAp0kq35MjKBfZiQkmNDaN1TCitYkKx6przQakpHY8kMNRD4g/1Hdy1OJ2IiDRr7ogWODq2wNHx1MoNHg+moq2VIT5zOSG7FmHJXoElfwOW/A2w4lU8phAqWg6kIvV4HG2Px5l4lK4rH2ChIWb6pcbQLzUGqByVzygq56/9Fr1bn11CdrGD7OK8Go83gOQoG6mxoaTGhNE6NnTv6vmVt6NC9b9MIiISOBpx308wfMumbwTFV+oh8Yfm1kdGeQEhO3/Guu1HrNt/xLxne7X73aFxOFKHVo7Gtzked1TrAFUaXBq6j8orXKzO3MPm3FJ2FpSzo7CcHQVl7Cwop7TCdcjHxoRaaL13dP7v4T4p0opJ0+8Dprkdj8T/1EPiDxpxFxERCTBPaCyOTmfi6HRm5Yh84Ras2ytDfMjOXzCV5xO6cR6hG+cB4Izt5J1WX9F6CB5rZIDfgUDlqHz/1Fj6p8ZW2+7xeMgvq2BHwb4gv6OwzHs7r7SCwnInhbv3sHr3nhrPa7OYaBUdum+UPmbv32PCNAVfRET8QsFdRETkSBgG7tgOlMd2oLzX5eB2Yslctvca8j9iyfwTS8EmLAWb4K/X8JgsVKQMoKJt5Wi8M6m3ptU3MoZhEB9uJT7cSu9W0TXuL3W42FlYVmOUfkdhGbuK7NidbjbnlbI5r7Tmc1M5Bb9LUgRn90zh+E4JWMwK8iIicmQ0VX4/wTA9RlN5xFfqIfEH9dHBGfZCQnb+sm9a/d8uQee2xVCROhRH1bT66DYBqjTwmkIfOd0edheV1xil31lYfsAp+PHhIYw6qgXn9GpBamxYgKpuWppCH0lgqYfEH7SqfAMKhg+rDiziK/WQ+IP6qPZMhVuxbv8J6/aFhOz4GZOjqNr9zpgO3nPjK1KPxWOt3T/gTUFT76OqKfjb88v4eXMec1dmkrvf9eePaRfHeb1baBTeR029j6T+qYfEHxTcG1AwfFh1YBFfqYfEH9RHdeR2Yslavvf8+J+w7F6K4dk3IusxzDhb9MeROhRXVCoeWwye0Fjctlg8thjcobFgaTqjtM2tj5wuNz+m5/HJil38viWfqresUXjfNLc+Ev9TD4k/KLg3oGD4sOrAIr5SD4k/qI/8w3DsIWTHL1h3/EjIth+xFG4+7GM8Zps3yFeG+v3+tO277bHFVO7nDf7RYGpcS9s05z7aWVjGp3/t1ii8HzTnPhL/UA+JPyi4N6Bg+LDqwCK+Ug+JP6iP6oepaHvlSvW7FmOU5WKyF2LYCyr/LC+oNjpfF25r1EHCfUzlNksYmK14TNbKP80hYLbhMYXsvb13e9VtU9W2EDxmG5hCKr8cqOWl0dRHGoX3B/WR+Eo9JP6g4N6AguHDqgOL+Eo9JP6gPgoAjwejogSjvACTvQDDXohRnl8j3HtDvr2wcr/yAkwVxQ1XJsYBQr6t8ksA09++DLBYsYZHUe6x4QkJxxMSiSckYu/fI/beDsdjjdh7e/+fcDCa1oi0RuHrRscj8ZV6SPxB13EXERERMAw81kg81kjcpB7ZY10VGI6ivaE+/8Dh3l4ILjuGywEuB4bLgeGu2LutAtyOyj9d9r3bHfv2Zd//oRh49j7GXuvyQo/s3Xh5LOHVg741cr/QH4E7JAL2C/pu694vBsLicUW3xx3ZolGF/9YxYUwY2oHxQ9pVG4X/bWvlj0bhRUSaLwV3ERGRps4cgicsAVdYgv+f2+MBj2tvkLdXfkngcmC494b6v4f8/b4MMNwOomxuSgrywFFSOaOgogSjohTDUbzv7xUlGBXF+/7ucQNgOEsxnKVQVsfSTVZc0W1wRbfFHdMWV3R7XNFtccW0wxXdFkLC/fiLqj2L2cSJXRI5sUtijVH41xdt5/VF2zUKLyLSzCi4i4iISN0ZBhgWMFkqp68DtZ1pahgQlRhF2ZFMT/V4wFm+X8j/+89hQr+jBFNpJuY9OzDcDiwFm7AUbDrgS7nCk3HvF+Qr/2yHO7ot7vDkWp/L7wuNwouICCi4i4iISDAxDAgJwxMShofEuj+P24mpeBfmom2YC7dgLtqGqXBr5e2irZjshZhLszCXZhGye0mNh3ssobiiK4O8K6atN9C7Ytrjik4Fs82HN1mTRuFFRJo3LU63n2BYkEKLZ4iv1EPiD+oj8YfG3EdGeQHmoq2YC7dhKtrq/bu5aCum4gzvdP0D8WDgjmzpHaV3R7fDHZ6Mx2TeO0pvqjy33jDhMUx7Zy2Yqm3HMPbeV7XdAJMZD/vud7kN/sjYw3cb81iRsQc3JtwYRIWGMKJLMseltSU2uS3hVjOmBpgdECiNuY8kOKiHxB+0OJ2IiIhIA/OExuIMjcWZ3KfmnS4H5j07MBVtw1w1Sr931N5cuBXDWYq5OANzcQZk/FavdY7c+8P+A/weYH3lz0Z3K+a4+/M/0yA2hKQRHmojwmoh0mYmwmohwmYmsupPm4UI635/Ws3/396dR7dR3X0D/86MrF2yJctrFm/ZHMdkcUroQgN5EghteQilp6UcaGnSlh5I09PSltbQh/RAkzZQKFtfypIChyUUKBCgzznBLS9N+gYKgewJjRXbJHFsy6v2bWbePyTLVmwndiJbkvP9nKMz0tVIvnJ+vvHXd+YOTDoNzPE2nUaEMIn/AEBElMkY3ImIiIjGQtJCzquEnFeJyKnPqSqEQFd8hn7g0Hsh0BV7Dkp8QT9l0C3ersixxxh4Xhi0D6AMah/0Hhi0j6ogEpURiUZhUHyYIbZihtiKm/AmuqNmvONeiLflOmxXauHD2M6Jl0QhFuYHBXrTKWHfotNgut2IqnwjpuYZIImTJ+irqop2TwhHu/w41hNAlcOEumm5/GMGEU0IBnciIiKiVBEEqEYHokYHosV1ae1KMNgHofkd5DRtg+nY/4U94sY10nZcI22HLOTguLUOn1g/h72Gz+IE8uELyfCFZXhD0aStLxyFogKyoqIvGEVfMArgzJf700oCyuxGVDlMqMw3ojLfhCqHEaW5+ow+dF9VVXT5wnB2+XG0yw9npw9HO/042uWDLywn7TuzwIRrF03B5XMKodNwXQEiGj88x32QbDivhefg0LliDVEqsI4oFVhHE0iOIKftA2ibGqBt3gZNX3PS09H8uQhVrEC4fAWihRckXd9eVVUEIgp84Si8oViQ94VkeIfZ9vgjaO6OBd5QdPh1APQaERX5RlTm94d6EyodRhRbdGc1e30uddTjD8fDeSyYH+30wdnlhzsYHXZ/SRQw3WbAlFw9Pvy0F8H4Z7Qbc3DN/BJcM78U+SbtmD8DpRfHIkqF8T7HncF9kGz4YeXAQueKNUSpwDqiVGAdpYmqQup1Qtu0DbrmBmjaPkxabE82FiFcvhzhihUIT/08oBn7ZeYUVUVrX3AgEMdnrlu6/QjLw/9jm7TSKYE+NktfYNaeNtCPpo7cwUhi1nxwn7r9Q052AACIAjA1zxDrg8OEqvi2zGZATnzFfncwgtf2tuHFj0+gwxsGAORIAlbOKcR1dVMxo8A0hu8YpRPHIkoFBvcJlA0/rBxY6FyxhigVWEeUCqyjzCAEuqFt+Qd0zduQ8+m7ECO+xHOqRo/w1C8iXLECobL/gmoqPKevFVVUnOgNxA5D7xwU6HsCkJXhi8Ci08QD9MDh9pX5JtiNORAEIamOPMEomrqGBnRXPFgPpzRXnwjm/e9dbjeO+tD3qKzgH0c68fyuEzjQ5km0f2Z6Hq6rm4LPVdgz+tQA4lhEqcHgPoGy4YeVAwudK9YQpQLriFKBdZSB5BByTuyErvltaJvejq2MP0ikaCHC5SsQqlgB2T4nfnm7cxeVFXzaG4iF7UGB/nhvACNM0CNXr0GVw4TpNgN6wzIOt7rR5hn53Psiiy4RzPtn9SvyjTDkSCn5DKqqYm+rG1s+OoF/HOlE/98hymwGXLtoCr5cU5Syr0WpxbGIUoHBfQJlww8rBxY6V6whSgXWEaUC6yjDqSqkrkPQNW2Dtvlt5HTsSXpatkxDqHw5whWXIVK6BJBSf253OKqgpWfwOeh+OLt8ONEbxEgl4zBpkw+3j2/Nuolbk/mkO4gXP2rFa/tOJha0s+o1uPqCEnx9QSkKLbozvANNJI5FlAqTOriHQiH8+te/xrZt26DX67F69WqsXr162H23bt2KRx55BCdPnsTcuXNRX1+PCy64IPH84sWL4fF4kl7z0UcfwWQa/flF2fDDyoGFzhVriFKBdUSpwDrKLqKvDdrmhtjt2HYI8sDstqK1IDz9EoTLlkG2lkE1OqAYC6DmmFM2Kz9YMCKjuTsW6I/3BlBebEWRXkKF3YhcQ05qvogcguhrh+htg+Rrg+hrg+iNb33tgJQDRW+HqrdB0dugGPrv26Ea7FB0NnglK7YedmPLx6040RcEEFvgbvksB66rm4q5xaP7hZ3GF8ciSoXxDu5pvRzcpk2bsH//fjz99NNobW3FbbfdhtLSUqxcuTJpvw8//BC333477r77bixatAjPP/88vve97+Ef//gHTCYT2tvb4fF40NDQAL1en3id0Wic6I9ERERENCkppmIEa65HsOZ6IBKA9vj2+AJ3f4cYcEHf+Ab0jW8kvUaVdFCMBVAMDijGQijxQB97XBAL+IYCKEYHVK111CFfnyNhTpEFc4osY/9lWVUhhPog+k6OEMrjbYGus/guJcsHsFbS4Wa9DZ4CK1qCBhwLGtDdaMHuRjP+Yy3AvMpyzC6bBsGYD0Vvh6K3ATnGcfmDBxFlr7QFd7/fj5deegmPP/44ampqUFNTgyNHjuC5554bEtxdLhduvvlmXHXVVQCAW265BZs3b4bT6cQFF1wAp9OJgoICTJs2LR0fhYiIiOj8kmNAuOIyhCsug1dVoGnfHZuJb90J0dcB0e+CEPVDkEOQPMcheY6f8S1VUXtKsHdAjYf6wWFfMRZA1eUNH2zlCES/Kx7KT44YyoVocFQfU5V0UEzFkE3FUMzFUEz9tyJAiUAM9kAI9kAMdMe2wW6Iwfj9QA8EJRz7HvjakIc25AGYP/g0dz+A/fHbqV9Xb0vM4PfP5quSFlBkCKoMKNH4/WjsvqpAiLdBjUJQZCC+3+D9ocqx/fqfS+w36L0SX0MGRBGK1gpVa4aqtSTdlMGPdRaoORYoOsuQ/dQcE/8QQXSO0hbcDx8+jGg0ioULFyba6urq8Oijj0JRFIjiwEqeV1xxReJ+MBjEU089hfz8fFRVVQEAGhsbUVFRcc59yobxpL+P2dBXykysIUoF1hGlAutokhBEyCWLEChZhMDg9og/FqL9nRADsa3gd0EMdA60+zsg+DshRrwQlDAkb+uQBfGGo4oaKIZ8qMYCKHo7EHXD3tcKwe+CMOLZ78kUXR4Uc0lSIJf775tLoJiKoeptZ1+gqhr7HgS7k4K9EOyGGOxByN2J1vZWeHtdsCpu2AQP7PBAK0QTYR++trP72qmkAFI0CPg7zvotVEGEmmOOh3szVJ31lPB/SpveBsUyBbJ1euzog3HGsYhS4WzqaCz7pi24u1wu2Gw2aLUDC5k4HA6EQiH09vbCbrcPec3OnTuxevVqqKqKe++9N3H+utPpRCAQwA033ICmpiZUV1ejvr5+zGE+Pz97zjPKpr5SZmINUSqwjigVWEeTlQVA0eh2jQQAbwfgc8W3HYDXFd+e0h7sg6BEIfnaAV974i0SUz6iBrCUANbSEbYlgKUEYo4Bo7vg27mwAige9hkjABuAQFjGqx+fwOZ/NaGxwwMjQsgXPLiiSodrqvWYZYlA8HcD/i5AiQCCFPuMogYQT70/8FgRJHjCKrqDKnr8UXT6ZXT6Fbh8Ubh8Mtp9UXT7ZciQEIUY30qQISIKCQpERFURGkGGBQGYEUBdsYRlFXosKJCgjXqAkAcIuWPboDt+3x2/H39OiUJQFQhhNxB2j/1baHQAedMBWxmQV5Z8P3cakKM/83uMEsciSoXxqqO0BfdAIJAU2gEkHofDw19rc+bMmfjrX/+Kd955B7/4xS8wdepULFiwAEePHkVfXx9+8pOfwGw24/HHH8eNN96It956C2azedR96urK/AUpBCFWDNnQV8pMrCFKBdYRpQLriJLZAb0d0M8GHKfZTQ5B9HfFDscPdEIKdsNcUIJeJReyqRiqIR8QThPJFQB9UQCekfeZYJdV2bC8Mg/vNffg+V0n8F6zHo81Ao81AnOL7LhucR2W1zigkQY+lz8so80dRJsnhHZPCG3uUNLjdk8IkZGupTeITiOi2KpDsUWHIosOxVZ97L419ri5y4/X9rXh/zV144OTwKMnAZNWwhXVhVh1QTHmFJ0mpKgqIAchhDwQwx4Ig2+hgfunPicGuiC6j0EM9QH+ztit9aNhv4RsKoJimQbZOg2KdTpk69T4dhoUUwkgnXmxQo5FlApnU0f9rxmNtAV3nU43JKD3Px68wNxgDocDDocD1dXV2LNnD7Zs2YIFCxbgySefRCQSSczA33vvvVi6dCneeecdXHnllaPuk6oia35Ys6mvlJlYQ5QKrCNKBdYRjYmog2wuhWwuBRD7xdfssCA6eHG6LKwnAQI+W27HZ8vtcHb68MJHJ/C/B9txsN2LO946jAff1WJWoTkRyt3B6BnfUxRil8crsuhRHA/ixRZdPKjrUWTRIdeggXCa43XLbEYsneFAuyeENw+0Yeu+NrS6Q3h5z0m8vOckZheacVVtMVbOKYRFf2q0EADJANVogGIsHPv3JOSG6D4GyXMMkvsYRPensTUT3J9Cch+DEPVD8rVD8rUjp+3DIa9XBQmKuQSyZSDMy5ZpUKzxoG8sih2l0L8/xyJKgfGqo7QF96KiIvT09CAajUKjiXXD5XJBr9fDarUm7bt3715IkoSamppEW1VVFZxOJ4DYTP3g2XudToepU6eivb0dRERERETZpMphwh2XzcItXyjHX/eexEu7T6LDG0aHtztpP4tOE58lHwjlRfFQXmzVocCkTZqlPxdFFh3WXFSG7yyZjg8/7cXr+9rwTmMnPunwYtPfG/HAu0fxX7Mc+O95xVg0Nfe0fwwYLVVnhVxQA7mgZpgnVQjBnkSIF+PhXvJ8CtEdWxAxaXHE1veGvoWYA9kyBYp1GuAogykqQZX0sUUAJW18q4ttRS1UjS65TdJCFbVQJR2gGdQm6aCKsfsQNTx5nlIibcG9uroaGo0Gu3fvxuLFiwEAu3btQm1tbdLCdADw8ssv48SJE3jyyScTbQcOHMDcuXOhqipWrFiBm2++GV/96lcBxFasb2lpQWVl5cR9ICIiIiKiFLIZtVhzURluWDwN/3R2wR2MoKj/UHaLDmbdxP8qLwoCLiyz4cIyG3oDEfzvoQ68vu8knJ1+/O1gB/52sAPTbQb897xifLmmCA6T9sxvejYEAarBjqjBjmjRgqHPq0psEUT3sVi49xyPzdjHZ/BFzwkISgSavmagrxk4th2GceimKoiJMA8x9seARMDXGCBbp0POq4RsmwHZNgPRvMoJWZCPsk/agrvBYMCqVauwfv16bNiwAR0dHdi8eTM2btwIIDb7brFYoNfr8Y1vfANf//rX8fTTT2Pp0qXYunUr9u7di02bNkEQBFxyySV46KGHMGXKFNjtdjzwwAMoLi7G0qVL0/XxiIiIiIhSQqsRsXx2Qbq7MUSeIQffXDQF1y4sxYE2D17f14Zth134tCeAh7c34f/saMLFVfm4qrYYF5XboREncOZZEKGYiqCYihAtWTz0eSUK0dsWOwzfcwwWtRt+tweQQ4AchhC/QQ5BGLYtHG8LJbaJNlUe6IaqANHgiJcgzOnYPaRNNpfGgnxeJaK2GZDzqiDbqmLn7HP2/rwlqGr6zuQIBAJYv349tm3bBrPZjDVr1uDGG28EAMyePRsbN25MzKK/8847uO+++9DS0oKZM2fi9ttvx6JFiwAAoVAI999/P9588014vV5cdNFFuPPOO1FSUjKm/nR2Zv6CFIIAOByWrOgrZSbWEKUC64hSgXVEqcA6yiz+sIyGT1x4bV8b9p0cWEW+wKzFlTVFuHJeMabmjcfc9tlLeQ0p8gihfnDgD0OI+CD1NUPqbYSmxwmp1wkx0DXi26oaI6K2qkSQl/NmxB9XAJrM+p6ej86mjvpfM6p90xncM002DPj8z4nOFWuIUoF1RKnAOqJUYB1lLmenD1v3t+GtA+3oG7SY3mem52FVbTGWznBApxn/i/KdSSbVkBDsgdR7FFJPIzQ9jYn7krsFgjL8goQqBCiWqZBtlYjmzUjM1su2GbFFATlLPyEY3CdQJvywnkkmDSyUnVhDlAqsI0oF1hGlAuso84WjCv7p7MLr+9rwfktPYtF/q14Tu6xcbQlmFJjS1r+sqCE5EjtXv6cRUq8TUo8Tmt5GSD2NscvmjUDRWgbOoc+rQjSvEoqpGKrBDkVvg6rLPf3lE2nUxju4p+0cdyIiIiIimvz6z9FfPrsArX1BvLG/DVv3t6HDG8aLH7fixY9bUVNswVW1xbhsTgFMWkaUIaSc2OHxtqrkdlWFEOyOz87HAn1s2wjJ/SnEsAdixx7kdOwZ9m1VQYSqy42FeH08zOttUOI3VW+DYrDH2/rDfh4g5Yz/Z6YknHEfJKP/yhaXFX8RpIzGGqJUYB1RKrCOKBVYR9lJVlS819KDrfva8K6zC7IS+8fTa0Qsm+XAoqm5qC21otxuhDjOh3pP2hqSQ5D6WuKz9EcT4V4MdEEI9kAMe876rRWtNR7m86Do7Ymw3z+Tn9Smt0Ex5McujzeJccadiIiIiIgmFUkU8PkKOz5fYUeXL4y/HWzH6/va0NITSFxWDohdq35eiQW1pVZcUGJFTYklLZfBy0qSDrJ9FmT7rOGfl8MQgr0Qgz0Qg92xMB/sSWxj97sH2gLdEEJ9EKBCDLuBsBuSu2XU3VF0ebGV/o0FUIyFsW3S41hb7PB9npd/KlY9ERERERGlTb5Jixs+Mw3XL56KPSfc2NHUjX2tbhxs88ATimJncw92NvcAAAQAlQ4jLii1orbEitpSK8psBggMemMnaaGaCiGbCiGfee8YRYYQdsdC/CmBPyn8B5LDv6DKEEO9EEO9QPcnp/0SqqQ7fbg3xdsNBefVIfsM7kRERERElHaCIGDB1FwsmJoLAIjKCho7fdjb6sbeVjf2nfSgtS8IZ6cfzk4/Xt3bBgDI1Wswr8QaC/OlFtQUW2HUSun8KJOXKEHV2yDrbaN/japCCPVC9HVA9PffXEMf+zsghvogyCFInuOQPMfP+NaK3j7izH2k9EIo5tJz+LCZhcGdiIiIiIgyjkYSMafIgjlFFnx94RQAQKcvjP2JIO/GoXYv+oJR/KupG/9q6gYAiAJQ5TDhglJrYmZ+ap6es/LpIgiJsC/nzz79vtHgQIjv3/pOCffx+4IShRjshhjsHnYWX9Hb0bV696RZNZ/BnYiIiIiIsoLDpMUlMx24ZKYDABCRFfzH5cO+Vjf2xQN9myeEIy4fjrh8eGXPSQCAzZAzcK58qRVziy0w5KRmVl5VVYSiCnxhGd5QNGnrC0fhDcW2vpAM76BtKKqgzGbE3GIzqossqMw3QiNNjpB51jR6KNZpUKzTTr+fqsTOz/cPmrX3JYf7SPHiSRPaAa4qnyQbVpKctKte0oRhDVEqsI4oFVhHlAqsIzqVyxuKh3hPfFbeg4icXBySAMwsMMeDvAVLZheho9MLb2ggaJ+6HTaYh6LwhuXEqvjnQqcRMavAhOoiC6rjYb7cboQk8kiBbDDeq8ozuA+SDQM+/3Oic8UaolRgHVEqsI4oFVhHdCbhqIJPOrzYd3JgVr7DG0751xEAmHQSTFoNTFoJZl3y1qTVwKyTYIo/1ogCnJ1+HGz34HC7B97Q0CXiDDki5hSaUV1siQX6IjOm2Qzjfok8GjteDo6IiIiIiOgsaTUiaktjK9CjLtbW5g5i30lP7BD7k2609ASg14gwazUw6aTEdtjgPWg7eF9DjnTWgVpRVRzvDeJQmwcH2z041O7F4XYPAhEFH59w4+MT7sS+Jq2E6iIz5vaH+WIzSq08h3+yY3AnIiIiIqLzSrFVj2KrHitmF2TEURuiIGC6zYDpNgMury4EAMiKipYePw61eXGo3YODbV78x+WFLyzjw2N9+PBYX+L1uXpN0iH2c4stKDRrJ32YV1QVbe4Qmrr9aO7yJ7bN3X5UF1nw4DXzJs33gMGdiIiIiIgow0iigMp8EyrzTfhyTRGA2CXyjnb5cSg+K3+wzYMjLh/6glG819KD91p6Eq+3G3Pis/LmeKi3wGHSpuvjnJOIrOBYbyARzpu6/GjuDqCl249gVBn2Nd3+1J8OkU4M7kRERERERFlAI4mYVWjGrEIzrqqNtYWjsevdH2r34FCbFwfbPTja6UO3P4IdR7ux42h34vWFZi1Kc/WwGbWwG3NgM+QM3DfmwG7UwmbMgVWvSct59P6wjObu2Ix5U9fA9nhvAPIIR0PkSLGjFSrsRpTbjajIH9hOltl2gMGdiIiIiIgoa2k1IuYWxw6Px/xYWzAi44jLh4Ntnthh9u1eNHf50eENj2phPkkA8pLC/UCoj4X85LA/1kvr9fjDgw5vH5hJb/eERnyNSSuhzG5Ehd0QD+YmVOQbUZqrh+Y8WHmfwZ2IiIiIiGgS0edIAwvyxfnDMo64vOj0hdHtj6DH378ddD8QgTsYhawCXb4wunyjO9xcrxETgf7UcJ9nyEFvIJI0g94XjI74XnZjTvLMud2I8nzjeXHO/ukwuBMREREREU1yRq2E+VNyz7hfRFbQG4gMCfeDH3f7w7HAH4ggFFUQjCpodYfQ6h55xvxUpVYdygeF8/6gnmvIOZePOWkxuBMREREREREAIEcSUWDWocCsO+O+qqrCH5GHBPueQeG+OxCBVadBeX48oNuNKLMboB/j4fXnOwZ3IiIiIiIiGjNBEGLXs9dqMDXPkO7uTGpiujtARERERERERCNjcCciIiIiIiLKYAzuRERERERERBmMwZ2IiIiIiIgogzG4ExEREREREWUwBnciIiIiIiKiDMbgTkRERERERJTBGNyJiIiIiIiIMhiDOxEREREREVEGY3AnIiIiIiIiymAM7kREREREREQZjMGdiIiIiIiIKIMxuBMRERERERFlMAZ3IiIiIiIiogzG4E5ERERERESUwRjciYiIiIiIiDIYgzsRERERERFRBmNwJyIiIiIiIspgmnR3IJMIQrp7cGb9fcyGvlJmYg1RKrCOKBVYR5QKrCM6V6whSoWzqaMx7auqqjq2LhERERERERHRROGh8kREREREREQZjMGdiIiIiIiIKIMxuBMRERERERFlMAZ3IiIiIiIiogzG4E5ERERERESUwRjciYiIiIiIiDIYgzsRERERERFRBmNwJyIiIiIiIspgDO5EREREREREGYzBPUuEQiHU19dj8eLF+MIXvoDNmzenu0uUhd5++23Mnj076bZu3bp0d4uyRDgcxle+8hW8//77ibZjx47hxhtvxIIFC/ClL30JO3bsSGMPKRsMV0d33333kLHp2WefTWMvKRO1t7dj3bp1uPDCC3HxxRdj48aNCIVCADgW0eidro44FtFotbS0YM2aNVi4cCEuueQSPPHEE4nnxms80qTkXWjcbdq0Cfv378fTTz+N1tZW3HbbbSgtLcXKlSvT3TXKIo2Njbj00ktx1113Jdp0Ol0ae0TZIhQK4dZbb8WRI0cSbaqq4pZbbsGsWbPwyiuvoKGhAWvXrsXf/vY3lJaWprG3lKmGqyMAcDqduPXWW3H11Vcn2sxm80R3jzKYqqpYt24drFYrnnvuOfT19aG+vh6iKOLnP/85xyIaldPV0W233caxiEZFURR8//vfR21tLV599VW0tLTgJz/5CYqKivCVr3xl3MYjBvcs4Pf78dJLL+Hxxx9HTU0NampqcOTIETz33HMM7jQmTqcTs2bNQkFBQbq7QlmksbERt956K1RVTWp/7733cOzYMWzZsgVGoxFVVVXYuXMnXnnlFfzwhz9MU28pU41UR0BsbFqzZg3HJhrR0aNHsXv3bvzrX/+Cw+EAAKxbtw6/+93v8MUvfpFjEY3K6eqoP7hzLKIz6ezsRHV1NdavXw+z2Yzy8nJ89rOfxa5du+BwOMZtPOKh8lng8OHDiEajWLhwYaKtrq4Oe/bsgaIoaewZZRun04ny8vJ0d4OyzL///W8sWbIEL774YlL7nj17MHfuXBiNxkRbXV0ddu/ePcE9pGwwUh15vV60t7dzbKLTKigowBNPPJEIW/28Xi/HIhq109URxyIarcLCQvzhD3+A2WyGqqrYtWsXPvjgA1x44YXjOh5xxj0LuFwu2Gw2aLXaRJvD4UAoFEJvby/sdnsae0fZQlVVNDU1YceOHfjTn/4EWZaxcuVKrFu3Lqm2iE513XXXDdvucrlQWFiY1Jafn4+2traJ6BZlmZHqyOl0QhAEPProo/jnP/+JvLw8fOc730k6VJXIarXi4osvTjxWFAXPPvssLrroIo5FNGqnqyOORXQ2li1bhtbWVlx66aW4/PLLsWHDhnEbjxjcs0AgEBgSrPofh8PhdHSJslBra2uilv7whz/g+PHjuPvuuxEMBnHHHXeku3uUhUYamzgu0VgcPXoUgiCgsrIS119/PT744AP86le/gtlsxooVK9LdPcpQ99xzDw4ePIiXX34ZTz31FMciOiuD6+jAgQMci2jMHnzwQXR2dmL9+vXYuHHjuP5uxOCeBXQ63ZB/7P7Her0+HV2iLDRlyhS8//77yM3NhSAIqK6uhqIo+NnPfoZf/vKXkCQp3V2kLKPT6dDb25vUFg6HOS7RmKxatQqXXnop8vLyAABz5sxBc3MzXnjhBf6yTMO655578PTTT+P+++/HrFmzOBbRWTm1jmbOnMmxiMastrYWQGzx1Z/+9Ke45pprEAgEkvZJ1XjEc9yzQFFREXp6ehCNRhNtLpcLer0eVqs1jT2jbJOXlwdBEBKPq6qqEAqF0NfXl8ZeUbYqKipCZ2dnUltnZ+eQQ8SITkcQhMQvyv0qKyvR3t6eng5RRrvrrrvw5z//Gffccw8uv/xyAByLaOyGqyOORTRanZ2daGhoSGqbMWMGIpEICgoKxm08YnDPAtXV1dBoNEmLGuzatQu1tbUQRf4T0uhs374dS5YsSfor4KFDh5CXl8d1EuiszJ8/HwcOHEAwGEy07dq1C/Pnz09jryjbPPDAA7jxxhuT2g4fPozKysr0dIgy1sMPP4wtW7bgvvvuw5e//OVEO8ciGouR6ohjEY3W8ePHsXbt2qQ/6uzfvx92ux11dXXjNh4x9WUBg8GAVatWYf369di7dy8aGhqwefNmfOtb30p31yiLLFy4EDqdDnfccQeOHj2Kd999F5s2bcJ3v/vddHeNstSFF16IkpIS/PKXv8SRI0fw2GOPYe/evfja176W7q5RFrn00kvxwQcf4Mknn8Snn36K559/Hq+99hpWr16d7q5RBnE6nfjjH/+I733ve6irq4PL5UrcOBbRaJ2ujjgW0WjV1taipqYG9fX1aGxsxLvvvot77rkHP/jBD8Z1PBLU4S6oShknEAhg/fr12LZtG8xmM9asWTPkr4JEZ3LkyBFs2LABu3fvhslkwrXXXotbbrkl6fB5otOZPXs2nnnmGSxZsgQA0NLSgttvvx179uxBWVkZ6uvr8bnPfS7NvaRMd2odNTQ04MEHH0RzczOmTJmCH//4x7jsssvS3EvKJI899hh+//vfD/vcJ598wrGIRuVMdcSxiEarvb0dd911F3bu3AmDwYDrr78eN910EwRBGLfxiMGdiIiIiIiIKIPxUHkiIiIiIiKiDMbgTkRERERERJTBGNyJiIiIiIiIMhiDOxEREREREVEGY3AnIiIiIiIiymAM7kREREREREQZjMGdiIiIiIiIKIMxuBMRERERERFlME26O0BERETpsWzZMpw4cWLY55555hksWbJkXL7uL37xCwDAb3/723F5fyIiosmGwZ2IiOg8Vl9fjy996UtD2nNzc9PQGyIiIhoOgzsREdF5zGKxoKCgIN3dICIiotPgOe5EREQ0rGXLluGpp57ClVdeiQULFuD73/8+XC5X4nmn04k1a9Zg0aJFuPjii/Hwww9DUZTE86+//jpWrlyJ+fPn49prr8XBgwcTz3m9Xvz4xz/G/Pnzcckll+CNN96Y0M9GRESUTRjciYiIaEQPPfQQvvvd7+LFF19EIBDAD3/4QwBAd3c3rrvuOhQWFuKll17CnXfeiWeffRbPPPMMAGD79u24/fbb8e1vfxtbt27FvHnzcNNNNyEcDgMA3n77bdTU1ODNN9/EFVdcgfr6eng8nrR9TiIiokwmqKqqprsTRERENPGWLVsGl8sFjSb5zLnS0lK89dZbWLZsGZYvX476+noAwLFjx7B8+XK88cYbeO+997B582Y0NDQkXv/CCy/gkUcewY4dO7B27VqYzebEAnThcBj3338/Vq9ejd///vdobm7Gli1bAAAejweLFy/GX/7yF8yfP38CvwNERETZgee4ExERncfWrVuHyy67LKltcJBftGhR4v60adOQl5cHp9MJp9OJmpqapH0XLlwIl8sFt9uNpqYmXHvttYnntFotbrvttqT36mexWAAAoVAodR+MiIhoEmFwJyIiOo/l5+ejrKxsxOdPnY2XZRmiKEKn0w3Zt//8dlmWh7zuVJIkDWnjQYBERETD4znuRERENKLDhw8n7re0tMDj8WD27NmoqKjAgQMHEIlEEs9//PHHsNvtyMvLQ1lZWdJrZVnGsmXLsGvXrgntPxER0WTA4E5ERHQe83g8cLlcQ25+vx8A8Mwzz+Dvf/87Dh8+jPr6enz+859HeXk5rrzySoTDYfzP//wPnE4nGhoa8NBDD+Gb3/wmBEHADTfcgK1bt+LVV19FS0sLNm7cCFVVUVNTk+ZPTERElH14qDwREdF5bMOGDdiwYcOQ9h/96EcAgKuvvhr33XcfWltbsXTpUvz6178GAJjNZjzxxBP4zW9+g1WrVsFut+Pb3/42brrpJgDAZz7zGdx555145JFH4HK5MG/ePDz66KPQ6/UT9+GIiIgmCa4qT0RERMNatmwZ1q5di69+9avp7goREdF5jYfKExEREREREWUwBnciIiIiIiKiDMZD5YmIiIiIiIgyGGfciYiIiIiIiDIYgzsRERERERFRBmNwJyIiIiIiIspgDO5EREREREREGYzBnYiIiIiIiCiDMbgTERERERERZTAGdyIiIiIiIqIMxuBORERERERElMH+P/Y2LBUnl1YXAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 1200x600 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Test loss: 0.34150493144989014\n",
"Test accuracy: 0.8878571391105652\n",
"Classification Report: \n",
" precision recall f1-score support\n",
"\n",
" 0 0.86 0.92 0.89 4192\n",
" 1 0.92 0.85 0.88 4208\n",
"\n",
" accuracy 0.89 8400\n",
" macro avg 0.89 0.89 0.89 8400\n",
"weighted avg 0.89 0.89 0.89 8400\n"
]
}
],
"source": [
"# Plot the training and validation accuracy over epochs\n",
"plt.plot(history.history['accuracy'], 'ro-', history.history['val_accuracy'], 'bv--')\n",
"plt.title('Training and Test Accuracy')\n",
"plt.xlabel('Epoch')\n",
"plt.ylabel('Accuracy')\n",
"plt.legend(['Training Accuracy', 'Test Accuracy'])\n",
"plt.show()\n",
"\n",
"# Plot the training and validation loss over epochs\n",
"plt.figure(figsize=(12, 6))\n",
"plt.plot(history.history['loss'], label='Training Loss')\n",
"plt.plot(history.history['val_loss'], label='Validation Loss')\n",
"plt.title('Training and Validation Loss Over Time')\n",
"plt.xlabel('Epoch')\n",
"plt.ylabel('Loss')\n",
"plt.legend()\n",
"plt.show()\n",
"\n",
"# Print the testing loss and accuracy\n",
"print('Test loss:', scores[0])\n",
"print('Test accuracy:', scores[1])\n",
"\n",
"# Print the classification report\n",
"print('Classification Report: \\n', report)\n"
]
},
{
"cell_type": "markdown",
"id": "dba8a77d06dc51f8",
"metadata": {
"collapsed": false
},
"source": [
"# Visualize Weights and Biases\n",
"\n",
"This code block visualizes the weights and biases of the model. For each Dense layer in the model, the weights and biases are extracted and plotted as histograms. The weights are plotted in the left subplot, and the biases are plotted in the right subplot. The x-axis represents the value of the weights or biases, and the y-axis represents the frequency of occurrence of each value. The histograms show the distribution of the weights and biases in each layer."
]
},
{
"cell_type": "code",
"execution_count": 57,
"id": "9739272beb4981b6",
"metadata": {
"ExecuteTime": {
"end_time": "2024-03-21T13:52:30.700421Z",
"start_time": "2024-03-21T13:52:30.315374Z"
},
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1oAAAHBCAYAAABwnMo3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABsaElEQVR4nO3de1yUdf7//+cAy0HJVETS9FerhhrCgJBa4iJ+zXSzclE6mpq2mMe2Ugqp1NRM0M0M87AesrRSs2w117Z2Xft0UFsUzPxgopVnBfMYJ4Hr94cxnyZAGLyYYehxv93mpnO939f1fr2ui5lrXjPXwWIYhiEAAAAAgGk8XB0AAAAAANQ3FFoAAAAAYDIKLQAAAAAwGYUWAAAAAJiMQgsAAAAATEahBQAAAAAmo9ACAAAAAJNRaAEAAACAySi0ANR53FcdAAC4Gwot1Dvvvfee2rdvryNHjrg6lKuSk5OjZ599VrGxsYqIiFBcXJw2bdpUaf/i4mINGjRIDz/8sBOj/D+9evXSM888Y/o8+/fv1wMPPHA1oQFAncO+6sr7qiNHjqh9+/Z67733rtivJvsewFm8XB0AgPKKior06KOP6sKFCxo/fryaN2+ujz76SE888YSKioo0YMCAcvMsXrxYX3/9tbp06eL8gCWlpaXJ39/f9OVu3rxZu3btMn25AICrUxf2VbW17wHMQKEF1EH/+c9/lJWVpbVr1yosLEyS1L17dx07dkxLliwpt/PKysrSokWLFBgY6IJoL7v55ptdNjYAwPnqwr6KfQ/qMg4dhFsrLS3Va6+9pp49e8pqtWr06NE6d+5cuX7ffvutRo4cqc6dO6tz584aM2aMDh8+bGvfvn272rdvry+//FLDhw+X1WpV9+7dlZqaqpKSElu/zz//XPfee68iIiJ0yy23aNSoUTpw4IDdWJ988oni4uIUGhqq7t27a/r06crLy3MoL39/f913330KDQ21m96mTRsdOnTIblpRUZESExP18MMP6/e///0Vl3v27FndfPPNev31123Tjh8/rvbt22vixIm2aaWlperatasWLVokSSosLFRKSopiYmLUqVMn3XXXXeUODfn14RunTp3SE088oS5duuiWW27R888/r5dfflm9evWym+/SpUtKSUlR9+7dFR4eruHDh+uHH36QJL366qtKS0uTJLVv316vvvqqpOptBwCoK9hXObav+qWTJ09q5MiRCgsLU0xMjObNm2eX66/3PUeOHFFiYqKio6MVEhKiW2+9VYmJiTpz5oytz549ezR06FBFRkYqIiJCw4YNU0ZGht24//3vfzV48GBZrVZ16dJFTz/9tH788Udbe2lpqW2f1qlTJ/Xq1Utz5szRpUuXqp0b6j8KLbi11NRUzZ8/X4MGDVJaWpoaN26sOXPm2PX57rvvdP/99+v06dOaNWuWZsyYocOHD+uBBx7Q6dOn7fpOmDBBkZGRWrhwofr3768lS5Zo7dq1kqTDhw9r9OjR6tSpkxYsWKAZM2bou+++U0JCgkpLSyVJGzZs0JgxY9SmTRvNnz9fY8eO1d///neNHj3aoQs63HbbbXrhhRdksVhs0y5duqStW7eqXbt2dn3nz5+v4uJijR8/vsrlNm7cWOHh4friiy9s07788ktJl3cqZTIzM3X27Fn17NlThmFozJgxeuedd/TII49owYIFioiI0BNPPKH169dXOE5RUZGGDh2qnTt3atKkSZo5c6aysrK0bNmycn03bdqk/fv366WXXtLkyZO1Z88ePfHEE5Kk+Ph4DRo0SJK0evVqxcfHV2s7AEBdwr7KsX3VL7366qsKCAjQ/PnzNXDgQC1cuFCzZs2qsG9+fr6GDBmiAwcOaPLkyVq6dKmGDBmiDz/8UC+//LIk6eLFi3r00UfVpEkTvfrqq3r55ZeVn5+vESNG6MKFC5Kkr776SsOGDZOvr6/mzp2rSZMmaceOHRoyZIgKCgokSX/729/09ttva8yYMVq2bJkeeOABLV26VAsWLHAoP9RzBuCmzp07Z4SEhBipqal200eMGGEEBwcbhw8fNgzDMJ588knjtttuMy5cuGDrc+bMGSMyMtJ46aWXDMMwjG3bthnBwcHGyy+/bLesXr16GSNHjjQMwzA2btxoBAcHGydOnLC1Z2ZmGn/961+NCxcuGKWlpcYf/vAHY8SIEXbL+OKLL4zg4GBjy5YtV5XvjBkzjODgYOOjjz6yG79Tp05GZmamYRiGMXjwYGPw4MFXXM6iRYuM8PBwo6ioyDAMw5gwYYLxpz/9yW6dvfLKK0ZsbKxhGIbx2WefGcHBwcaHH35ot5wJEyYY3bt3Ny5dumQYhmHExsYaTz/9tGEYhrF27VojODjY+Prrr239L1y4YHTt2tW23LJ5YmJibLEYhmG8/PLLRnBwsG17zZs3zwgODra1V7UdAKAuYV9Vs33V4cOHjeDgYCMhIaHc8kNCQowzZ84YhmG/79m7d6/xwAMPGIcOHbKbZ+TIkcYdd9xhGIZh7Nq1ywgODjbS09Nt7T/88IORkpJiHD9+3DAMw7jvvvuM/v37G8XFxbY+Bw8eNDp27GisXLnSMAzDGD58uPHII4/YjfPmm28a69evv/IKwm8Kv2jBbWVkZOjSpUuKjY21m96vXz+759u2bVOXLl3k6+ur4uJiFRcXy9/fX1FRUXa/7EhSRESE3fPrrrvOdiiF1WqVj4+PBg0apBkzZuh//ud/1KFDBz3xxBPy9/fXwYMHdeLECfXq1cs2TnFxsW655Rb5+/vr888/r1GehmEoJSVFK1as0IgRI9SnTx9Jlw/ne+aZZzR06FDbsfHVERMTo7y8PGVmZtrWz9ChQ+Xn56evvvpKkvTpp5+qZ8+eki7/4mWxWBQTE2OXV69evZSTk6P9+/eXG2Pbtm1q3bq1OnXqZJvm7+9fbltJUlhYmH73u9/Znrdq1UqSdP78+Qrjr2o7AEBdwr6qZvuqMr9eT3369NGlS5ds+7Bf6tixo9566y1df/31+v7777V161YtXbpUBw8eVFFRkSTppptuUtOmTfXYY4/p+eef18cff6xmzZpp4sSJuu6665Sfn6/MzEzFxMTIMAzb+mndurXatm1rWz9du3bV559/rgcffFBLlixRdna2Bg8erHvuucfhHFF/cTEMuK2y49ubNGliN/3XJ9mePXtWmzZtqvBys02bNrV77uvra/fcw8PDdhhFq1attHLlSi1evFjvvvuu3njjDTVq1EgPPvig/vKXv+js2bOSpKlTp2rq1Knlxjp16pRjCeryIXjPPPOMPvzwQ40YMUKJiYm2trlz56q0tFSjR49WcXGxpP+731RxcbE8PT3tDuco0759e7Vo0UJffPGFmjRpolOnTum2225T586dtWPHDsXExOibb77R448/Luny+jMMQ507d64wxlOnTqljx452086cOaOAgIByfSua1qBBA7vnHh6Xv/+p7DDAqrZDRTkDgKuwr6rZvqrMr9dT2bqo6Bw3SVq+fLkWLlyos2fPqlmzZurUqZP8/PxshwU2bNhQq1at0oIFC/SPf/xDq1evlq+vr+655x49++yzOn/+vEpLS/W3v/1Nf/vb38ot38fHR5L06KOPqmHDhlq3bp1mz56t1NRU3XTTTXr22WfVrVu36q461HMUWnBbZTut06dPq02bNrbpZTuRMtdcc41uu+02PfLII+WW4eXl2EsgLCxMaWlpKioqUnp6ulavXq2FCxeqQ4cOtuPRExMTK7xs7bXXXuvQWBcuXFBCQoIyMjI0adIkDR061K79o48+0tGjR8t9sylJISEhmjlzpuLi4ipcdkxMjL788ksFBATo97//vQIDA9W1a1etWbNGn332mXx9fdW1a1dJl9dfgwYN9MYbb1S4rBtuuKHctKCgIH3//fflpv/6PIOautJ2+PW3nwDgSuyrar6vksoXVLm5uZIq/uJuw4YNeumllzRx4kTFxcXZirLHH39cX3/9ta1fmzZtbBcQ2b17tz744AO9/fbb+v/+v/9P999/vywWi4YNG6Y777yz3Bh+fn6SLhe3Dz30kB566CGdPn1aW7du1cKFCzVu3Dh9/vnn8vb2rjQn/HZw6CDcVkREhHx9fbV582a76Vu2bLF73qVLF2VnZ6tjx44KDQ1VaGioOnXqpNdff10ff/xxtcd7/fXXFRsbq6KiInl7e+vWW2/VtGnTJEnHjh1TmzZtFBAQoCNHjtjGCQ0NVVBQkObMmaO9e/dWe6zi4mI99thj+vrrr/Xyyy+X23FJ0oIFC/Tuu+/aPUJCQhQSEqJ33323wsP0yvTs2VNff/21Pv30U9uOtlu3bjpy5Ijeeecdde/e3baT6NKli/Ly8mQYhl1e3377re3k5l/r0qWLjhw5ov/93/+1TSsoKND//M//VHsdlCn7hatMVdsBAOoS9lU131dJly8h/0sffvih/Pz8ZLVay/VNT09Xo0aN9Oijj9qKrJ9++knp6em2oyQ2b96sbt26KScnR56enoqIiNCUKVPUqFEjHTt2TP7+/rr55pt18OBBu/Vz00036dVXX9X27dslSffff7+mT58u6XLRFxcXp4ceekjnz5/XxYsXq70OUb/xixbcVsOGDTV69GjNnTtXfn5+6tatm7Zu3Vpu5zV69Gjdf//9GjlypB544AH5+Pho9erV+uSTTzRv3rxqj9etWzfNnj1bY8aM0eDBg+Xp6al33nlH3t7eio2Nlaenp5544gk9//zz8vT0VGxsrM6fP6/XXntNJ0+eVEhISLXHWrVqlf773//qvvvu03XXXVfusrPh4eFq3759hetEUrlL7VaUi4eHh/7zn//or3/9q6TL3yw2bNhQ6enpmjFjhq1vTEyMbrnlFo0ePVqjR49W27ZttXv3bs2bN089evQod0iLJPXv31+LFy/WmDFj9Pjjj6tRo0Zavny5Tp8+rZYtW1Z7PUhSo0aNJEkbN26U1WqtcjsAQF3Cvqrm+ypJ+uc//6mgoCDddttt+uyzz7R69Wo9/vjjFZ6TGxYWprffflsvvfSSYmNjderUKS1dulS5ubm2X+o6d+6s0tJSjRkzRgkJCWrYsKH+8Y9/6MKFC7bzyp588kklJCToqaee0t13362SkhItW7ZMmZmZGj16tCTplltu0bJly9SsWTNFRETo5MmTWr58ubp06VLhfhG/TRRacGsjR45UgwYNtGLFCq1YsUIRERF6+umnNWXKFFufDh06aNWqVXr55ZeVmJgowzAUHBys+fPn6//9v/9X7bE6dOighQsXav78+XryySdVUlKiTp06admyZbbDQeLj49WwYUMtWbJEq1evVoMGDdS5c2fNnj1brVu3rvZY//znPyVdvqT56tWry7Xv27ev2suqiJ+fn7p27Wr3i5aXl5eioqLsLoQhXf5FafHixXrllVe0aNEinT59WkFBQXrkkUc0ZsyYCpfv5eWlpUuXasaMGZoyZYq8vLx09913q3Hjxvruu+8cirVPnz764IMP9Mwzz2jQoEGaMmVKldsBAOoS9lU1l5ycrA8//FCvv/66AgMDNWnSJA0ZMqTCvn/605905MgRrVu3Tm+99ZaCgoIUExOjBx98UM8995wOHDigtm3basmSJXrllVeUnJys/Px8269VZedWRUdHa+nSpUpLS9P48eP1u9/9TiEhIVq+fLnCw8MlXT4c0dvbW+vWrdP8+fN1zTXXqFevXnrqqaeuOmfUHxbDcOCGCQBQDfv379fBgwfVp08fu5OcBw0apOuuu852E2IAAID6il+0ACcqKSmp8maQFotFnp6eToqoduTl5enxxx/Xgw8+qNtvv10lJSXatGmT9uzZowkTJrg6PADAFfxW9lVAbeMXLcCJevXqpaNHj16xT5cuXfTmm286KaLas3nzZi1dulQHDhyQYRi6+eabNWrUKEVHR7s6NADAFfyW9lVAbaLQApxo3759tpsmVqZhw4acawQAcBn2VYA5KLQAAAAAwGTcRwsAAAAATEahBQAAAAAmo9ACAAAAAJNRaAEAAACAybiP1i+cPn1Bzr40iMUiBQRc45Kxa1t9zk0iP3dHfnVDWZyonLO2obv8zfySO8YsuWfcxOw87hi3O8YsVR63WfsmCq1fMAy57I/DlWPXtvqcm0R+7o78UNc5exu649+MO8YsuWfcxOw87hi3O8Ys1V7cHDoIAAAAACaj0AIAAAAAk1FoAQAAAIDJKLQAAAAAwGQUWgAAAABgMgotAAAAADAZhRYAAAAAmIxCCwAAAABMRqEFAAAAACaj0AIAAAAAk1FoAQBQAwkJCXrmmWcqbf/iiy/Uv39/Wa1WDRkyRIcPH3ZidAAAV6PQAgDAQR9++KG2bt1aafuxY8c0ZswYxcXF6d1331XTpk01evRoGYbhxCgBAK5EoQUAgAPOnj2rlJQUhYaGVtpn7dq16tSpk4YPH66bbrpJM2fO1NGjR7Vjxw4nRgoAcCUKLQAAHDBr1izdc889ateuXaV9MjMzFRUVZXvu5+enkJAQZWRkOCFCAEBdQKEFAEA1ffnll/rvf/+r0aNHX7FfTk6OmjdvbjctICBAJ06cqM3wAAB1iJerAwBw9Tw8LPLwsNTKsj09q/4+prTUUGkp556gfissLNTkyZP1/PPPy9fX94p98/Pz5e3tbTfN29tbRUVFDo9rqZ2XdqXjmDmeh4dFllpMoGzRXl4equj0N8Oom+9NtbGuaxsxO487xu2OMUuVx21WHhRagJvz8LDo2sYN5FWNgqgmmjRpWGWf4pJSnTubVyc/0ABmSUtLU6dOndSjR48q+/r4+JQrqoqKitSoUSOHxw0IuMbhea6GmeOVlBryrKUvgX6pceOK36ecNX5NOXvbmoGYnccd43bHmKXai5tCC3BzHh4WeXl66PF3din71EWnj9+uub9euT9CHh4WCi3Uax9++KFyc3MVEREhSbZC6qOPPtKuXbvs+gYFBSk3N9duWm5urjp27OjwuKdPX6jw1xqzWSyXP2yYNZ6np4eaNGno8vemM2d+UklJqdPHvxKz17UzELPzuGPc7hizVHncZdOvFoUWUE9kn7qob46dd3UYQL315ptvqri42PZ89uzZkqQJEyaU62u1WpWenm57np+fr71792rs2LEOj2sYcuoHF7PHqwvvTXX1g5+zt60ZiNl53DFud4xZqr24KbQAAKiG66+/3u55w4aXD1e74YYbVFJSoh9//FHXXnutvL29NXDgQC1dulSLFy9WbGys5s+fr1atWqlr166uCB0A4AJcdRAAgKt0/PhxRUdH2w4hbNWqlV599VWtW7dOgwYN0tmzZzV//vxavTAEAKBu4RctAABq4KWXXrL9v1WrVtq3b59de0xMjGJiYpwdFgCgjuAXLQAAAAAwGYUWAAAAAJiMQgsAAAAATEahBQAAAAAmo9ACAAAAAJNRaAEAAACAyWpcaCUkJOiZZ56xPd+7d6/i4+NltVo1cOBA7dmzx67/xo0b1bt3b1mtVo0ZM0Y//vijrc0wDM2ePVvdunVTly5dlJKSotLSUlv7mTNnNG7cOEVERKhXr1764IMP7JZd1dgAAAAA4Ew1KrQ+/PBDbd261fY8Ly9PCQkJioqK0nvvvaeIiAiNHDlSeXl5kqTdu3crOTlZY8eO1erVq3X+/HklJSXZ5l++fLk2btyotLQ0zZs3Txs2bNDy5ctt7UlJSbpw4YJWr16tUaNG6dlnn9Xu3burNTYAAAAAOJvDhdbZs2eVkpKi0NBQ27RNmzbJx8dHiYmJatu2rZKTk9WwYUNt3rxZkrRy5Ur169dPAwYMUIcOHZSSkqKtW7fq8OHDkqQ33nhD48ePV1RUlLp166YJEyZo1apVkqRDhw5py5Ytmj59uoKDgxUfH6+7775bb731VrXGBgAAAABnc7jQmjVrlu655x61a9fONi0zM1ORkZGyWCySJIvFos6dOysjI8PWHhUVZevfokULtWzZUpmZmTp58qSOHz+uW265xdYeGRmpo0eP6tSpU8rMzFSLFi3UqlUru/Zdu3ZVa2wAAAAAcDYvRzp/+eWX+u9//6sNGzZoypQptuk5OTl2hZckBQQEaP/+/ZKkU6dOqXnz5uXaT5w4oZycHEmya2/WrJkk2dormvfkyZPVGtsRP9dqTlU2pivGrm31OTep/udXE+60Lur79nOX/Op6fAAA1FS1C63CwkJNnjxZzz//vHx9fe3a8vPz5e3tbTfN29tbRUVFkqSCgoJK2wsKCmzPf9kmSUVFRVUuu6p2RwQEXOPwPGZx5di1rT7nJtX//KqrSZOGrg6hRur79qvv+QEAUFdVu9BKS0tTp06d1KNHj3JtPj4+5QqboqIiW0FWWbufn59dUeXj42P7vyT5+fnVeNm/Lgar4/TpCzIMh2e7KhbL5Q9Crhi7ttXn3KS6k5+np0edKHLOnPlJJSWlVXesI+rK9qst7pJfWZwAANQ31S60PvzwQ+Xm5ioiIkLS/xVDH330kfr376/c3Fy7/rm5ubZD/oKCgipsDwwMVFBQkKTLhwCWnYdVdjhhWXtl815p2b8+3LA6DEMu+0DiyrFrW33OTar/+TnCHddDfd9+9T0/AADqqmpfDOPNN9/Uhg0btH79eq1fv169evVSr169tH79elmtVu3atUvGz3tzwzC0c+dOWa1WSZLValV6erptWcePH9fx48dltVoVFBSkli1b2rWnp6erZcuWat68ucLDw3X06FGdOHHCrj08PNy27CuNDQAAAADOVu1C6/rrr9cNN9xgezRs2FANGzbUDTfcoL59++r8+fOaMWOGsrOzNWPGDOXn56tfv36SpAceeEAffPCB1q5dq6ysLCUmJqpnz55q3bq1rX327Nnavn27tm/frjlz5mjIkCGSpNatWys6OloTJ05UVlaW1q5dq40bN+qhhx6SpCrHBgAAAABnc+iqg5Xx9/fXokWLNHnyZK1Zs0bt27fX4sWL1aBBA0lSRESEXnjhBc2bN0/nzp1T9+7dNW3aNNv8I0aM0OnTpzV27Fh5enpq0KBBGjZsmK09JSVFycnJuvfeexUYGKgXX3xRYWFh1RobAAAAAJytxoXWSy+9ZPc8LCxM77//fqX94+LiFBcXV2Gbp6enkpKSlJSUVGF7QECAFi5cWOmyqxobAAAAAJzJ4RsWAwAAAACujEILAAAAAExGoQUAAAAAJqPQAgAAAACTUWgBAAAAgMkotAAAAADAZBRaAAAAAGAyCi0AAAAAMBmFFgAAAACYjEILAAAAAExGoQUAAAAAJqPQAgAAAACTUWgBAAAAgMkotAAAAADAZBRaAAAAAGAyCi0AAAAAMBmFFgAADvjhhx80YsQIRUREqGfPnlqyZEmlfUeNGqX27dvbPbZs2eLEaAEAruLl6gAAAHAXpaWlSkhIUGhoqN5//3398MMPevLJJxUUFKS77rqrXP8DBw4oNTVVt956q23atdde68yQAQAuQqEFAEA15ebmqmPHjpoyZYr8/f1144036tZbb1V6enq5QquoqEhHjhxRaGioAgMDXRQxAMBVOHQQAIBqat68uebOnSt/f38ZhqH09HR99dVX6tKlS7m+Bw8elMViUevWrV0QKQDA1fhFCwCAGujVq5eOHTum2NhY3XHHHeXaDx48KH9/fyUmJmrHjh267rrrNG7cOMXExDg0jsViVsTVG8dZ4zlTXcvJHdc1MTuPO8btjjFLlcdtVh4UWgAA1MC8efOUm5urKVOmaObMmXr22Wft2g8ePKiCggJFR0crISFBH3/8sUaNGqXVq1crNDS02uMEBFxjduh1arza1qRJQ1eHUCl3XNfE7DzuGLc7xizVXtwUWgAA1EBZsVRYWKgJEyYoMTFR3t7etvbRo0fr4Ycftl38okOHDvrmm2+0Zs0ahwqt06cvyDDMjb0iFsvlDxtmjefp6VEnipwzZ35SSUmpq8OwY/a6dgZidh53jNsdY5Yqj7ts+tWi0AIAoJpyc3OVkZGh3r1726a1a9dOly5d0sWLF9W0aVPbdA8Pj3JXGGzTpo2ys7MdGtMw5NQPLs4ezxnqaj7uuK6J2XncMW53jFmqvbi5GAYAANV05MgRjR07VidPnrRN27Nnj5o2bWpXZEnSM888o6SkJLtpWVlZatOmjVNiBQC4FoUWAADVFBoaqpCQEE2aNEnZ2dnaunWrUlNT9dhjj0mScnJyVFBQIOnyxTI2bNig9evX64cfflBaWprS09M1ePBgV6YAAHASCi0AAKrJ09NTr732mvz8/HTfffcpOTlZDz/8sIYMGSJJio6O1qZNmyRJffr00eTJk7VgwQL1799f//73v7VkyRK1atXKlSkAAJyEc7QAAHBAUFCQ0tLSKmzbt2+f3fP4+HjFx8c7IywAQB3DL1oAAAAAYDIKLQAAAAAwGYUWAAAAAJiMQgsAAAAATOZwofXDDz9oxIgRioiIUM+ePbVkyRJb2/Tp09W+fXu7x8qVK23tGzduVO/evWW1WjVmzBj9+OOPtjbDMDR79mx169ZNXbp0UUpKikpL/+9O7mfOnNG4ceMUERGhXr166YMPPrCLa+/evYqPj5fVatXAgQO1Z88eR1MDAAAAAFM4VGiVlpYqISFBTZo00fvvv6+pU6dqwYIF2rBhgyTpwIEDeuqpp/TZZ5/ZHgMHDpQk7d69W8nJyRo7dqxWr16t8+fP293Icfny5dq4caPS0tI0b948bdiwQcuXL7e1JyUl6cKFC1q9erVGjRqlZ599Vrt375Yk5eXlKSEhQVFRUXrvvfcUERGhkSNHKi8v76pXEAAAAAA4yqFCKzc3Vx07dtSUKVN04403KiYmRrfeeqvS09MlXS60br75ZgUGBtoefn5+kqSVK1eqX79+GjBggDp06KCUlBRt3bpVhw8fliS98cYbGj9+vKKiotStWzdNmDBBq1atkiQdOnRIW7Zs0fTp0xUcHKz4+HjdfffdeuuttyRJmzZtko+PjxITE9W2bVslJyerYcOG2rx5s2krCgAAAACqy6FCq3nz5po7d678/f1lGIbS09P11VdfqUuXLrp48aJOnjypG2+8scJ5MzMzFRUVZXveokULtWzZUpmZmTp58qSOHz+uW265xdYeGRmpo0eP6tSpU8rMzFSLFi3sbvIYGRmpXbt22ZYdGRkpi8UiSbJYLOrcubMyMjIcSQ8AAAAATFHjGxb36tVLx44dU2xsrO644w7t2bNHFotFCxcu1KeffqrGjRvrkUce0Z/+9CdJ0qlTp9S8eXO7ZQQEBOjEiRPKycmRJLv2Zs2aSZKtvaJ5T548KUnKyclRu3btyrXv37/foZx+rtOcqmxMV4xd2+pzblL9z68m3Gld1Pft5y751fX4AACoqRoXWvPmzVNubq6mTJmimTNnKiQkRBaLRW3atNHgwYP11Vdf6bnnnpO/v79uv/12FRQUyNvb224Z3t7eKioqUkFBge35L9skqaioSPn5+ZXOK6nK9uoKCLjGof5mcuXYta0+5ybV//yqq0mThq4OoUbq+/ar7/kBAFBX1bjQCg0NlSQVFhZqwoQJ2rlzp2JjY9W4cWNJUocOHfT999/r7bff1u233y4fH59yhU9RUZH8/PzsiiofHx/b/yXJz8+v0nl9fX0lqcr26jp9+oIMw6FZrprFcvmDkCvGrm31OTep7uTn6elRJ4qcM2d+UklJadUd64i6sv1qi7vkVxYnAAD1jUOFVm5urjIyMtS7d2/btHbt2unSpUu6ePGimjZtate/TZs22rZtmyQpKChIubm55ZYXGBiooKAgSZcPASw7D6vscMKy9srmvdKyf324YVUMQy77QOLKsWtbfc5Nqv/5OcId10N93371PT8AAOoqhy6GceTIEY0dO9Z2bpQk7dmzR02bNtWbb76pYcOG2fXPyspSmzZtJElWq9V2dUJJOn78uI4fPy6r1aqgoCC1bNnSrj09PV0tW7ZU8+bNFR4erqNHj+rEiRN27eHh4bZl79q1S8bPnyYMw9DOnTtltVodSQ8AAAAATOFQoRUaGqqQkBBNmjRJ2dnZ2rp1q1JTU/XYY48pNjZWX331lZYuXapDhw7prbfe0vr16zV8+HBJ0gMPPKAPPvhAa9euVVZWlhITE9WzZ0+1bt3a1j579mxt375d27dv15w5czRkyBBJUuvWrRUdHa2JEycqKytLa9eu1caNG/XQQw9Jkvr27avz589rxowZys7O1owZM5Sfn69+/fqZua4AAAAAoFocOnTQ09NTr732mqZNm6b77rtPfn5+evjhhzVkyBBZLBa98sormjdvnl555RVdf/31mjNnjiIiIiRJEREReuGFFzRv3jydO3dO3bt317Rp02zLHjFihE6fPq2xY8fK09NTgwYNsvuFLCUlRcnJybr33nsVGBioF198UWFhYZIkf39/LVq0SJMnT9aaNWvUvn17LV68WA0aNDBhFQEAAACAYxy+GEZQUJDS0tIqbOvdu7fd+Vu/FhcXp7i4uArbPD09lZSUpKSkpArbAwICtHDhwkqXHRYWpvfff/8KkQMAAACAczh06CAAAAAAoGoUWgAAAABgMgotAAAAADAZhRYAAAAAmIxCCwAAAABMRqEFAAAAACaj0AIAAAAAk1FoAQAAAIDJKLQAAAAAwGQUWgAAAABgMgotAAAAADAZhRYAAAAAmIxCCwAAAABMRqEFAAAAACaj0AIAAAAAk1FoAQAAAIDJKLQAAAAAwGQUWgAAAABgMgotAACq6YcfftCIESMUERGhnj17asmSJZX23bt3r+Lj42W1WjVw4EDt2bPHiZECAFyNQgsAgGooLS1VQkKCmjRpovfff19Tp07VggULtGHDhnJ98/LylJCQoKioKL333nuKiIjQyJEjlZeX54LIAQCuQKEFAEA15ObmqmPHjpoyZYpuvPFGxcTE6NZbb1V6enq5vps2bZKPj48SExPVtm1bJScnq2HDhtq8ebMLIgcAuAKFFgAA1dC8eXPNnTtX/v7+MgxD6enp+uqrr9SlS5dyfTMzMxUZGSmLxSJJslgs6ty5szIyMpwcNQDAVbxcHQAAAO6mV69eOnbsmGJjY3XHHXeUa8/JyVG7du3spgUEBGj//v0Oj/VzrVbrysZx1njO4unpuu+UDcNQaalRbro7rmtidh53jNsdY5Yqj9usPCi0AABw0Lx585Sbm6spU6Zo5syZevbZZ+3a8/Pz5e3tbTfN29tbRUVFDo8VEHDNVcVa18erLYH+PiopNdSokZ/LYigpNeTpUfknNndc18TsPO4YtzvGLNVe3BRaAAA4KDQ0VJJUWFioCRMmKDEx0a6w8vHxKVdUFRUVydfX1+GxTp++IKP8jyKms1guf9gwazxPTw81adLw6hdUQ438vOTpYdHj7+xS9qmLTh+/XXN/vXJ/hM6c+UklJaV2bWava2cgZudxx7jdMWap8rjLpl8tCi0AAKohNzdXGRkZ6t27t21au3btdOnSJV28eFFNmza1TQ8KClJubm65+Zs3b+7wuIYhp35wcfZ4tS371EV9c+y8S2OobH2647omZudxx7jdMWap9uLmYhgAAFTDkSNHNHbsWJ08edI2bc+ePWratKldkSVJVqtVu3btkvHzntswDO3cuVNWq9WpMQMAXIdCCwCAaggNDVVISIgmTZqk7Oxsbd26VampqXrsscckXb4ARkFBgSSpb9++On/+vGbMmKHs7GzNmDFD+fn56tevnytTAAA4EYUWAADV4Onpqddee01+fn667777lJycrIcfflhDhgyRJEVHR2vTpk2SJH9/fy1atEjp6emKi4tTZmamFi9erAYNGrgyBQCAE3GOFgAA1RQUFKS0tLQK2/bt22f3PCwsTO+//74zwgIA1EH8ogUAAAAAJnO40Prhhx80YsQIRUREqGfPnlqyZImt7fDhwxo2bJjCw8P1xz/+UZ999pndvF988YX69+8vq9WqIUOG6PDhw3btr7/+unr06KGIiAhNmjRJ+fn5trbCwkJNmjRJUVFRio6O1rJly+zmrWpsAAAAAHAWhwqt0tJSJSQkqEmTJnr//fc1depULViwQBs2bJBhGBozZoyaNWumdevW6Z577tHYsWN17NgxSdKxY8c0ZswYxcXF6d1331XTpk01evRo2xWZPvroI6WlpemFF17QihUrlJmZqdTUVNvYKSkp2rNnj1asWKHJkycrLS1NmzdvlqQqxwYAAAAAZ3LoHK3c3Fx17NhRU6ZMkb+/v2688UbdeuutSk9PV7NmzXT48GG98847atCggdq2basvv/xS69at07hx47R27Vp16tRJw4cPlyTNnDlT3bt3144dO9S1a1e98cYbGjp0qGJjYyVJU6dO1YgRIzRx4kQZhqG1a9fqb3/7m0JCQhQSEqL9+/dr1apV6tu3r7Zt23bFsQEAAADAmRz6Rat58+aaO3eu/P39ZRiG0tPT9dVXX6lLly7KzMzUzTffbHdFpcjISGVkZEiSMjMzFRUVZWvz8/NTSEiIMjIyVFJSoq+//tquPTw8XJcuXVJWVpaysrJUXFysiIgIu2VnZmaqtLS0yrEBAAAAwJlqfDGMXr166cEHH1RERITuuOMO5eTklLvjfUBAgE6cOCFJV2w/f/68CgsL7dq9vLzUuHFjnThxQjk5OWrSpIm8vb1t7c2aNVNhYaHOnj1b5dgAAAAA4Ew1vrz7vHnzlJubqylTpmjmzJnKz8+3K4QkydvbW0VFRZJ0xfayGzxW1m4YRoVtklRUVFTl2NVlsTjU3RRlY7pi7NpWn3OT6n9+NeFO66K+bz93ya+uxwcAQE3VuNAKDQ2VdPlqgBMmTNDAgQPtrhIoXS6CfH19JUk+Pj7lCp+ioiI1atRIPj4+tue/bvfz81NJSUmFbZLk6+srHx8fnT17ttKxqysg4BqH+pvJlWPXtvqcm1T/86uuJk0aujqEGqnv26++5wcAQF3l8MUwMjIy1Lt3b9u0du3a6dKlSwoMDNTBgwfL9S87pC8oKEi5ubnl2jt27KjGjRvLx8dHubm5atu2rSSpuLhYZ8+eVWBgoAzD0JkzZ1RcXCwvr8sh5+TkyNfXV40aNVJQUJCys7MrHbu6Tp++oJ8vgug0FsvlD0KuGLu21efcpLqTn6enR50ocs6c+UklJaWuDqPa6sr2qy3ukl9ZnAAA1DcOnaN15MgRjR07VidPnrRN27Nnj5o2barIyEh98803tsMAJSk9PV1Wq1WSZLValZ6ebmvLz8/X3r17ZbVa5eHhodDQULv2jIwMeXl5qUOHDurYsaO8vLzsLm6Rnp6u0NBQeXh4yGq1XnHs6jIM1zxcOTa5uX9+dYmr14U7bj/yc93fKwAAtcmhQis0NFQhISGaNGmSsrOztXXrVqWmpuqxxx5Tly5d1KJFCyUlJWn//v1avHixdu/erUGDBkmSBg4cqJ07d2rx4sXav3+/kpKS1KpVK3Xt2lWS9OCDD2rp0qX65JNPtHv3bk2ZMkX33nuv/Pz85OfnpwEDBmjKlCnavXu3PvnkEy1btkxDhgyRpCrHBgAAAABncqjQ8vT01GuvvSY/Pz/dd999Sk5O1sMPP6whQ4bY2nJychQXF6e///3vmj9/vlq2bClJatWqlV599VWtW7dOgwYN0tmzZzV//nxZfj4T+s4779TIkSP1/PPPa/jw4QoLC9PEiRNtYyclJSkkJERDhw7V1KlTNW7cOPXp08cursrGBgAAAABncvhiGEFBQUpLS6uw7YYbbtDKlSsrnTcmJkYxMTGVtickJCghIaHCNj8/P82aNUuzZs2q0dgAAAAA4Cw1vo8WAAAAAKBiFFoAAAAAYDIKLQAAAAAwGYUWAAAAAJiMQgsAAAAATEahBQAAAAAmo9ACAAAAAJNRaAEAAACAySi0AAAAAMBkFFoAAAAAYDIKLQAAAAAwGYUWAAAAAJiMQgsAAAAATEahBQAAAAAmo9ACAAAAAJNRaAEAAACAySi0AAAAAMBkFFoAAAAAYDIKLQAAAAAwGYUWAAAAAJiMQgsAAAAATEahBQBANZ08eVLjx49Xly5d1KNHD82cOVOFhYUV9h01apTat29v99iyZYuTIwYAuIqXqwMAAMAdGIah8ePHq1GjRlq1apXOnTunSZMmycPDQ08//XS5/gcOHFBqaqpuvfVW27Rrr73WmSEDAFyIQgsAgGo4ePCgMjIy9Pnnn6tZs2aSpPHjx2vWrFnlCq2ioiIdOXJEoaGhCgwMdEW4AAAX49BBAACqITAwUEuWLLEVWWUuXrxYru/BgwdlsVjUunVrZ4UHAKhj+EULAIBqaNSokXr06GF7XlpaqpUrV6pbt27l+h48eFD+/v5KTEzUjh07dN1112ncuHGKiYlxeFyL5arCdngcZ433W/LrdeqO65qYnccd43bHmKXK4zYrDwotAABqIDU1VXv37tW7775bru3gwYMqKChQdHS0EhIS9PHHH2vUqFFavXq1QkNDHRonIOAas0Kuk+PVd02aNKy0zR3XNTE7jzvG7Y4xS7UXN4UWAAAOSk1N1YoVK/Tyyy8rODi4XPvo0aP18MMP2y5+0aFDB33zzTdas2aNw4XW6dMXZBimhH1FFsvlDxtmjefp6XHFIuO34syZn1RSUmo3zex17QzE7DzuGLc7xixVHnfZ9KtFoQUAgAOmTZumt99+W6mpqbrjjjsq7OPh4VHuCoNt2rRRdna2w+MZhpz6wcXZ4/0WVLY+3XFdE7PzuGPc7hizVHtxczEMAACqKS0tTe+8847++te/6s4776y03zPPPKOkpCS7aVlZWWrTpk1thwgAqCMotAAAqIYDBw7otdde05///GdFRkYqJyfH9pCknJwcFRQUSJJ69eqlDRs2aP369frhhx+Ulpam9PR0DR482JUpAACciEMHAQCohn/9618qKSnRggULtGDBAru2ffv2KTo6WjNnzlRcXJz69OmjyZMna8GCBTp27JhuuukmLVmyRK1atXJR9AAAZ3P4F62TJ09q/Pjx6tKli3r06KGZM2eqsLBQkjR9+nS1b9/e7rFy5UrbvBs3blTv3r1ltVo1ZswY/fjjj7Y2wzA0e/ZsdevWTV26dFFKSopKS//v5NEzZ85o3LhxioiIUK9evfTBBx/YxbV3717Fx8fLarVq4MCB2rNnj8MrAwCAyiQkJGjfvn0VPqTLxVZcXJytf3x8vD766CN9/fXXeu+993TLLbe4KnQAgAs4VGgZhqHx48crPz9fq1at0ssvv6wtW7Zo7ty5ki4fVvHUU0/ps88+sz0GDhwoSdq9e7eSk5M1duxYrV69WufPn7c7fn358uXauHGj0tLSNG/ePG3YsEHLly+3tSclJenChQtavXq1Ro0apWeffVa7d++WJOXl5SkhIUFRUVF67733FBERoZEjRyovL+9q1w8AAAAAOMyhQuvgwYPKyMjQzJkzddNNNykqKkrjx4/Xxo0bJV0utG6++WYFBgbaHn5+fpKklStXql+/fhowYIA6dOiglJQUbd26VYcPH5YkvfHGGxo/fryioqLUrVs3TZgwQatWrZIkHTp0SFu2bNH06dMVHBys+Ph43X333XrrrbckSZs2bZKPj48SExPVtm1bJScnq2HDhtq8ebNpKwoAAAAAqsuhQiswMFBLlixRs2bN7KZfvHhRFy9e1MmTJ3XjjTdWOG9mZqaioqJsz1u0aKGWLVsqMzNTJ0+e1PHjx+0Oq4iMjNTRo0d16tQpZWZmqkWLFnbHtkdGRmrXrl22ZUdGRsry822cLRaLOnfurIyMDEfSAwAAAABTOHQxjEaNGqlHjx6256WlpVq5cqW6deumAwcOyGKxaOHChfr000/VuHFjPfLII/rTn/4kSTp16pSaN29ut7yAgACdOHHCdsWmX7aXFXNl7RXNe/LkSUmXr/TUrl27cu379+93JD39XKc5VdmYrhi7ttXn3KT6n19NuNO6qO/bz13yq+vxAQBQU1d11cHU1FTt3btX7777rr755htZLBa1adNGgwcP1ldffaXnnntO/v7+uv3221VQUCBvb2+7+b29vVVUVGS7HO4v28v+X1RUpPz8/ErnlVRle3WZcQfomnLl2LWtPucm1f/8qqtJk4auDqFG6vv2q+/5AQBQV9W40EpNTdWKFSv08ssvKzg4WDfddJNiY2PVuHFjSVKHDh30/fff6+2339btt98uHx+fcoVPUVGR/Pz87IoqHx8f2/8lyc/Pr9J5fX19JanK9uo6ffqC0+9mbbFc/iDkirFrW33OTao7+Xl6etSJIufMmZ9UUlJadcc6oq5sv9riLvmVxQkAQH1To0Jr2rRpevvtt5Wamqo77rhD0uXzosqKrDJt2rTRtm3bJElBQUHKzc21a8/NzVVgYKCCgoIkXT4EsOw8rLLDCcvaK5v3Ssv+9eGGVTEMuewDiSvHrm31OTep/ufnCHdcD/V9+9X3/AAAqKscvo9WWlqa3nnnHf31r3/VnXfeaZv+yiuvaNiwYXZ9s7Ky1KZNG0mS1WpVenq6re348eM6fvy4rFargoKC1LJlS7v29PR0tWzZUs2bN1d4eLiOHj2qEydO2LWHh4fblr1r1y4ZP3+aMAxDO3fulNVqdTQ9AAAAALhqDhVaBw4c0GuvvaY///nPioyMVE5Oju0RGxurr776SkuXLtWhQ4f01ltvaf369Ro+fLgk6YEHHtAHH3ygtWvXKisrS4mJierZs6dat25ta589e7a2b9+u7du3a86cORoyZIgkqXXr1oqOjtbEiROVlZWltWvXauPGjXrooYckSX379tX58+c1Y8YMZWdna8aMGcrPz1e/fv3MXFcAAAAAUC0OHTr4r3/9SyUlJVqwYIEWLFhg17Zv3z698sormjdvnl555RVdf/31mjNnjiIiIiRJEREReuGFFzRv3jydO3dO3bt317Rp02zzjxgxQqdPn9bYsWPl6empQYMG2f1ClpKSouTkZN17770KDAzUiy++qLCwMEmSv7+/Fi1apMmTJ2vNmjVq3769Fi9erAYNGtR0vQAAAABAjTlUaCUkJCghIaHS9t69e6t3796VtsfFxSkuLq7CNk9PTyUlJSkpKanC9oCAAC1cuLDSZYeFhen999+vtB0AAAAAnMXhc7QAAAAAAFdGoQUAAAAAJqPQAgAAAACTUWgBAAAAgMkotAAAAADAZBRaAAAAAGAyCi0AAAAAMBmFFgAAAACYjEILAAAAAExGoQUAAAAAJqPQAgAAAACTUWgBAAAAgMkotAAAAADAZBRaAAAAAGAyCi0AAAAAMBmFFgAAAACYjEILAAAAAExGoQUAAAAAJqPQAgAAAACTUWgBAAAAgMkotAAAAADAZBRaAAAAAGAyCi0AAAAAMBmFFgAA1XTy5EmNHz9eXbp0UY8ePTRz5kwVFhZW2Hfv3r2Kj4+X1WrVwIEDtWfPHidHCwBwJQotAACqwTAMjR8/Xvn5+Vq1apVefvllbdmyRXPnzi3XNy8vTwkJCYqKitJ7772niIgIjRw5Unl5ec4PHADgEhRaAABUw8GDB5WRkaGZM2fqpptuUlRUlMaPH6+NGzeW67tp0yb5+PgoMTFRbdu2VXJysho2bKjNmze7IHIAgCtQaAEAUA2BgYFasmSJmjVrZjf94sWL5fpmZmYqMjJSFotFkmSxWNS5c2dlZGQ4I1QAQB3g5eoAAABwB40aNVKPHj1sz0tLS7Vy5Up169atXN+cnBy1a9fOblpAQID279/v8Lg/12q1rmwcZ433W/LrdeqO69odY/b0vBysl5eHDMP54xuGodJSxwd2x3XtjjFLlcdtVh4UWgAA1EBqaqr27t2rd999t1xbfn6+vL297aZ5e3urqKjI4XECAq6pcYw14ezx6rsmTRpW2uaO69qdYi75uchp3LjybVDb43t61PwTuzut6zLuGLNUe3FTaAEA4KDU1FStWLFCL7/8soKDg8u1+/j4lCuqioqK5Ovr6/BYp09fcMq38RbL5Q8bZo3n6elxxSLjt+LMmZ9UUlJqN83sde0M7hZz2d/f4+/sUvap8of31rZ2zf31yv0RFW7/qrjbupbcM2ap8rjLpl8tCi0AABwwbdo0vf3220pNTdUdd9xRYZ+goCDl5ubaTcvNzVXz5s0dHs8w5NQPLs4e77egsvXpjuva3WLOPnVR3xw779IYarq+3G1dS+4Zs1R7cTt0MYwr3T/k8OHDGjZsmMLDw/XHP/5Rn332md28X3zxhfr37y+r1aohQ4bo8OHDdu2vv/66evTooYiICE2aNEn5+fm2tsLCQk2aNElRUVGKjo7WsmXL7OatamwAAMyQlpamd955R3/961915513VtrParVq165dMn7ecxuGoZ07d8pqtTorVACAi1W70LrS/UMMw9CYMWPUrFkzrVu3Tvfcc4/Gjh2rY8eOSZKOHTumMWPGKC4uTu+++66aNm2q0aNH23ZAH330kdLS0vTCCy9oxYoVyszMVGpqqm3slJQU7dmzRytWrNDkyZOVlpZmu0RuVWMDAGCGAwcO6LXXXtOf//xnRUZGKicnx/aQLl8Ao6CgQJLUt29fnT9/XjNmzFB2drZmzJih/Px89evXz5UpAACcqNqF1pXuH7Jt2zYdPnxYL7zwgtq2bauRI0cqPDxc69atkyStXbtWnTp10vDhw3XTTTdp5syZOnr0qHbs2CFJeuONNzR06FDFxsYqLCxMU6dO1bp165Sfn6+8vDytXbtWycnJCgkJ0e23365HH31Uq1atkqQqxwYAwAz/+te/VFJSogULFig6OtruIUnR0dHatGmTJMnf31+LFi1Senq64uLilJmZqcWLF6tBgwauTAEA4ETVPkfrSvcPyczM1M0332y3A4mMjLTdLyQzM1NRUVG2Nj8/P4WEhCgjI0NRUVH6+uuvNXbsWFt7eHi4Ll26pKysLBmGoeLiYkVERNgte+HChSotLa1ybAAAzJCQkKCEhIRK2/ft22f3PCwsTO+//35thwUAqKOqXWhd6f4hOTk55U7wDQgI0IkTJyTpiu3nz59XYWGhXbuXl5caN26sEydOyMPDQ02aNLG7TG6zZs1UWFios2fPVjk2AAAAADhbja86+Mv7h7z++utXvF/Ile4nUnY8e2XthmFU2CZdvlSumfcqccVN1tz1Bm/VUZ9zk+p/fjXhTuuivm8/d8mvrscHAEBN1ajQ+vX9Q3x8fHT27Fm7Pr+8X0hl9xNp1KiRfHx8bM9/3e7n56eSkpIK2yTJ19e3yrEd4cqbrLnrDd6qoz7nJtX//KrLXe+XU9+3X33PDwCAusrhQqui+4cEBQUpOzvbrt8v7xdS2f1EOnbsqMaNG8vHx0e5ublq27atJKm4uFhnz55VYGCgDMPQmTNnVFxcLC+vy+Hm5OTI19dXjRo1qnJsR7jiJmvueoO36qjPuUl1J7+6clPQmtyU0ZXqyvarLe6Sn1k3hQQAoK5x6D5ald0/xGq16ptvvrEdBihJ6enptvuFWK1Wpaen29ry8/O1d+9eWa1WeXh4KDQ01K49IyNDXl5e6tChgzp27CgvLy+7i1ukp6crNDRUHh4eVY7tiLKblTn74cqxyc3986tLXL0u3HH7kZ/r/l4BAKhN1S60rnT/kC5duqhFixZKSkrS/v37tXjxYu3evVuDBg2SJA0cOFA7d+7U4sWLtX//fiUlJalVq1bq2rWrJOnBBx/U0qVL9cknn2j37t2aMmWK7r33Xvn5+cnPz08DBgzQlClTtHv3bn3yySdatmyZhgwZIklVjg0AAAAAzlbtQwd/ef+QBQsW2LXt27dPr732mpKTkxUXF6cbbrhB8+fPV8uWLSVJrVq10quvvqoXX3xR8+fPV0REhObPny/Lz2dB33nnnTp69Kief/55FRUVqU+fPpo4caJt+UlJSZoyZYqGDh0qf39/jRs3Tn369JEkeXp6XnFsAAAAAHC2ahdaVd0/5IYbbtDKlSsrbY+JiVFMTEyNlu/n56dZs2Zp1qxZNRobAAAAAJzJoXO0AAAAAABVo9ACAAAAAJNRaAEAAACAySi0AAAAAMBkFFoAAAAAYDIKLQAAAAAwGYUWAAAAAJiMQgsAAAAATEahBQAAAAAmo9ACAAAAAJNRaAEAAACAySi0AAAAAMBkFFoAAAAAYDIKLQAAAAAwGYUWAAAAAJiMQgsAAAAATEahBQAAAAAmo9ACAAAAAJNRaAEAAACAySi0AAAAAMBkFFoAAAAAYDIKLQAAAAAwGYUWAAAAAJiMQgsAAAAATEahBQAAAAAmo9ACAKAGioqK1L9/f23fvr3SPqNGjVL79u3tHlu2bHFilAAAV/FydQAAALibwsJCPfXUU9q/f/8V+x04cECpqam69dZbbdOuvfba2g4PAFAHUGgBAOCA7OxsPfXUUzIM44r9ioqKdOTIEYWGhiowMNBJ0QEA6goOHQQAwAE7duxQ165dtXr16iv2O3jwoCwWi1q3bu2kyAAAdQm/aAEA4IAHH3ywWv0OHjwof39/JSYmaseOHbruuus0btw4xcTE1HKEAIC6gEILAIBacPDgQRUUFCg6OloJCQn6+OOPNWrUKK1evVqhoaHVXo7FUotBVjCOs8b7Lfn1OnXHde2OMdcVjq4zd1zX7hizVHncZuVBoQUAQC0YPXq0Hn74YdvFLzp06KBvvvlGa9ascajQCgi4prZCrBPj1XdNmjSstM0d17U7xuxKV9r+VXHHde2OMUu1F3eNC62ioiLFxcXpueeeU9euXSVJ06dP15tvvmnX77nnntPgwYMlSRs3btTcuXOVk5Oj6OhoTZs2TU2bNpUkGYahOXPm6N1331VpaakGDRqkCRMmyMPj8mlkZ86c0fPPP6/PPvtMTZo00eOPP6577rnHNs7evXs1efJkffvtt2rXrp2mTp2qTp061TQ9AACuioeHR7krDLZp00bZ2dkOLef06Quq4robprBYLn/YMGs8T0+Pq/qQWV+cOfOTSkpK7aaZva6dwd1irit/fxVt/6q427qW3DNmqfK4y6ZfrRoVWpVd1vbAgQN66qmn9Kc//ck2zd/fX5K0e/duJScna+rUqerQoYNmzJihpKQkLVq0SJK0fPlybdy4UWlpaSouLtbEiRMVEBCgESNGSJKSkpJUUFCg1atXKzMzU88++6x+//vfKywsTHl5eUpISNBdd92ll156SW+//bZGjhypjz/+WA0aNKjRigEA4Go888wzslgsmjlzpm1aVlaWgoODHVqOYcipH1ycPd5vQWXr0x3XtTvG7Go1XV/uuK7dMWap9uJ2+KqD2dnZuvfee3Xo0KFybQcOHNDNN9+swMBA28PPz0+StHLlSvXr108DBgxQhw4dlJKSoq1bt+rw4cOSpDfeeEPjx49XVFSUunXrpgkTJmjVqlWSpEOHDmnLli2aPn26goODFR8fr7vvvltvvfWWJGnTpk3y8fFRYmKi2rZtq+TkZDVs2FCbN2+u8YoBAMBROTk5KigokCT16tVLGzZs0Pr16/XDDz8oLS1N6enptqM8AAD1m8OFVmWXtb148aJOnjypG2+8scL5MjMzFRUVZXveokULtWzZUpmZmTp58qSOHz+uW265xdYeGRmpo0eP6tSpU8rMzFSLFi3UqlUru/Zdu3bZlh0ZGSnLz2euWSwWde7cWRkZGY6mBwBAjUVHR2vTpk2SpD59+mjy5MlasGCB+vfvr3//+99asmSJ3b4MAFB/OXzoYGWXtT1w4IAsFosWLlyoTz/9VI0bN9YjjzxiO4zw1KlTat68ud08AQEBOnHihHJyciTJrr1Zs2aSZGuvaN6TJ09KuvwNYrt27cq1//rQxqq44kop7nqVluqoz7lJ9T+/mnCndVHft5+75FfX46vKvn37rvg8Pj5e8fHxzgwJAFBHmHbVwbIbM7Zp00aDBw/WV199peeee07+/v66/fbbVVBQIG9vb7t5vL29VVRUZDvM4pftZf8vKipSfn5+pfNKqrK9ulx5pRR3vUpLddTn3KT6n1911YWTjmuivm+/+p4fAAB1lWmF1oABAxQbG6vGjRtLunwZ2++//15vv/22br/9dvn4+JQrfIqKiuTn52dXVPn4+Nj+L0l+fn6Vzuvr6ytJVbZXlyuulOKuV2mpjvqcm1R38nPnKyu5Ul3ZfrXFXfIz68pOAADUNaYVWhaLxVZklWnTpo22bdsmSQoKClJubq5de25urgIDAxUUFCTp8iGAZceulx1OWNZe2bxXWvavDzesiiuvlOKuV2mpjvqcm1T/83OEO66H+r796nt+AADUVQ5fDKMyr7zyioYNG2Y3LSsrS23atJEkWa1Wpaen29qOHz+u48ePy2q1KigoSC1btrRrT09PV8uWLdW8eXOFh4fr6NGjOnHihF17eHi4bdm7du2S8fOnCcMwtHPnTlmtVrPSAwAAAIBqM63Qio2N1VdffaWlS5fq0KFDeuutt7R+/XoNHz5ckvTAAw/ogw8+0Nq1a5WVlaXExET17NlTrVu3trXPnj1b27dv1/bt2zVnzhwNGTJEktS6dWtFR0dr4sSJysrK0tq1a7Vx40Y99NBDkqS+ffvq/PnzmjFjhrKzszVjxgzl5+erX79+ZqUHAAAAANVm2qGDYWFheuWVVzRv3jy98soruv766zVnzhxFRERIkiIiIvTCCy9o3rx5OnfunLp3765p06bZ5h8xYoROnz6tsWPHytPTU4MGDbL7hSwlJUXJycm69957FRgYqBdffFFhYWGSLt8UedGiRZo8ebLWrFmj9u3ba/HixdysGAAAAIBLXFWh9evL2Pbu3Vu9e/eutH9cXJzi4uIqbPP09FRSUpKSkpIqbA8ICNDChQsrXXZYWJjef//9akQNAAAAALXLtEMHAQAAAACXUWgBAAAAgMkotAAAAADAZBRaAAAAAGAyCi0AAAAAMBmFFgAAAACYjEILAAAAAExGoQUAAAAAJqPQAgAAAACTUWgBAAAAgMkotAAAAADAZBRaAAAAAGAyCi0AAAAAMBmFFgAAAACYjEILAAAAAExGoQUAAAAAJqPQAgAAAACTUWgBAAAAgMkotAAAAADAZBRaAAAAAGAyCi0AAAAAMBmFFgAAAACYjEILAAAAAExGoQUAAAAAJqPQAgAAAACTUWgBAAAAgMkotAAAAADAZBRaAAA4qKioSP3799f27dsr7bN3717Fx8fLarVq4MCB2rNnjxMjBAC4GoUWAAAOKCws1JNPPqn9+/dX2icvL08JCQmKiorSe++9p4iICI0cOVJ5eXlOjBQA4EoUWgAAVFN2drbuvfdeHTp06Ir9Nm3aJB8fHyUmJqpt27ZKTk5Ww4YNtXnzZidFCgBwNQotAACqaceOHeratatWr159xX6ZmZmKjIyUxWKRJFksFnXu3FkZGRlOiBIAUBd4uToAAADcxYMPPlitfjk5OWrXrp3dtICAgCsebggAqF9qXGgVFRUpLi5Ozz33nLp27SpJOnz4sJ577jllZGSoZcuWmjRpkqKjo23zfPHFF3rxxRd1+PBhWa1WzZgxQ61bt7a1v/7661q6dKkuXryofv366bnnnpOfn5+ky8fET506Vf/85z/l6+ur4cOHa/jw4bZ5qxobAABnyc/Pl7e3t900b29vFRUVObysn38UqxEPD4vtV7XqjuPl5SHDqPmYZTw9OWhGqng9mL2uK2OxyLTl1yRmM8d3VF35+6tJHGb9fThz/VcUsyu3vyQZhqHS0isHUBb3r98mr+Z995dqVGgVFhbqqaeesvtmzjAMjRkzRsHBwVq3bp0++eQTjR07Vps2bVLLli117NgxjRkzRuPGjVOPHj00f/58jR49Wn//+99lsVj00UcfKS0tTampqQoICFBSUpJSU1P1/PPPS5JSUlK0Z88erVixQseOHdPTTz+tli1bqm/fvlWODQCAM/n4+JQrqoqKiuTr6+vwsgICrqlxHCWlhjw9HPvE0LhxwxqPh/8T6O+jklJDjRr5Vdqnttd1TbZ/VRyJuTbGdxfV2f5Vudq/D1es/1/G7Ort78j4V/M+eyUOF1rZ2dl66qmnZPyqRN22bZsOHz6sd955Rw0aNFDbtm315Zdfat26dRo3bpzWrl2rTp062X6Fmjlzprp372473v2NN97Q0KFDFRsbK0maOnWqRowYoYkTJ8owDK1du1Z/+9vfFBISopCQEO3fv1+rVq1S3759qxwbAABnCgoKUm5urt203NxcNW/e3OFlnT59oUbfCnt6eqhJk4Z6/J1dyj510fEFXKWe7QM18Y4OTh+3rmjk5yVPD4vL1/9vfXxXYfu7dvx2zf31yv0ROnPmJ5WUlFbaz2K5XGT9+n22bPrVcrjQKiuMnnjiCYWHh9umZ2Zm6uabb1aDBg1s0yIjI20n/mZmZioqKsrW5ufnp5CQEGVkZCgqKkpff/21xo4da2sPDw/XpUuXlJWVJcMwVFxcrIiICLtlL1y4UKWlpVWODQCAM1mtVv3tb3+TYRiyWCwyDEM7d+7UY4895vCyDOPqDr/JPnVR3xw7X/MF1FDbQH4Zk1y//n/r47uaq/P/rY7/S9V5/7za99nKOFxoVXYicE5OTrlv6gICAnTixIkq28+fP6/CwkK7di8vLzVu3FgnTpyQh4eHmjRpYne8e7NmzVRYWKizZ89WOXZ1mXU8Zk3GdMXYta0+5ybV//xqwp3WRX3ffu6SX12PzxE5OTm65ppr5Ovrq759+2rOnDmaMWOG7r//fr3zzjvKz89Xv379XB0mAMBJTLvqYFUn/l6pvaCgwPa8onbDMCpsky4f827WSce1dXxmXR+7ttXn3KT6n191NWlSN749dFR93371Pb+6JDo6WjNnzlRcXJz8/f21aNEiTZ48WWvWrFH79u21ePFiuyMvAAD1m2mFlo+Pj86ePWs37Zcn/lZ2YnCjRo3k4+Nje/7rdj8/P5WUlFTYJkm+vr5Vjl1dNT0O/mpUdmxofVCfc5PqTn5l52G4WlXHQdc1dWX71RZ3yc+s4+BdYd++fVd8HhYWpvfff9+ZIQEA6hDTCq2goCBlZ2fbTfvlib+VnRjcsWNHNW7cWD4+PsrNzVXbtm0lScXFxTp79qwCAwNlGIbOnDmj4uJieXldDjknJ0e+vr5q1KhRlWNXV20dn1nXx65t9Tk3qf7n5wh3XA/1ffvV9/wAAKirTLvJgNVq1TfffGM7DFCS0tPTZbVabe3p6em2tvz8fO3du1dWq1UeHh4KDQ21a8/IyJCXl5c6dOigjh07ysvLy+7iFunp6QoNDZWHh0eVYwMAAACAM5lWaHXp0kUtWrRQUlKS9u/fr8WLF2v37t0aNGiQJGngwIHauXOnFi9erP379yspKUmtWrWy3ez4wQcf1NKlS/XJJ59o9+7dmjJliu699175+fnJz89PAwYM0JQpU7R792598sknWrZsmYYMGVKtsQEAAADAmUwrtDw9PfXaa68pJydHcXFx+vvf/6758+fbbhjcqlUrvfrqq1q3bp0GDRqks2fPav78+bY71t95550aOXKknn/+eQ0fPlxhYWGaOHGibflJSUkKCQnR0KFDNXXqVI0bN059+vSp1tgAAAAA4ExXdY7Wr0/8veGGG7Ry5cpK+8fExCgmJqbS9oSEBCUkJFTY5ufnp1mzZmnWrFkVtlc1NgAAAAA4i2kXwwDw2+bpadoP5A4rLTVUWsoVHwAAQN1BoQXgqgT6+6ik1FCjRn4ui6G4pFTnzuZRbAEAgDqDQgvAVWnk5yVPD4sef2eXsk9ddPr47Zr765X7I+ThYaHQAgAAdQaFFgBTZJ+6qG+OnXd1GAAAAHWC606qAAAAAIB6ikILAAAAAExGoQUAAAAAJqPQAgAAAACTUWgBAAAAgMkotAAAAADAZBRaAAAAAGAyCi0AAAAAMBmFFgAAAACYjEILAAAAAExGoQUAAAAAJqPQAgAAAACTUWgBAAAAgMkotAAAAADAZBRaAAAAAGAyCi0AAAAAMBmFFgAAAACYjEILAAAAAExGoQUAAAAAJqPQAgAAAACTUWgBAAAAgMkotAAAAADAZBRaAAAAAGAyCi0AAAAAMBmFFgAAAACYjEILAAAHFBYWatKkSYqKilJ0dLSWLVtWad9Ro0apffv2do8tW7Y4MVoAgKt4uToAAADcSUpKivbs2aMVK1bo2LFjevrpp9WyZUv17du3XN8DBw4oNTVVt956q23atdde68xwAQAuYuovWh9//HG5b+7Gjx8vSdq7d6/i4+NltVo1cOBA7dmzx27ejRs3qnfv3rJarRozZox+/PFHW5thGJo9e7a6deumLl26KCUlRaWlpbb2M2fOaNy4cYqIiFCvXr30wQcfmJkWAACSpLy8PK1du1bJyckKCQnR7bffrkcffVSrVq0q17eoqEhHjhxRaGioAgMDbQ9vb28XRA4AcDZTC63s7GzFxsbqs88+sz2mT5+uvLw8JSQkKCoqSu+9954iIiI0cuRI5eXlSZJ2796t5ORkjR07VqtXr9b58+eVlJRkW+7y5cu1ceNGpaWlad68edqwYYOWL19ua09KStKFCxe0evVqjRo1Ss8++6x2795tZmoAACgrK0vFxcWKiIiwTYuMjFRmZqbdF4CSdPDgQVksFrVu3drZYQIA6gBTC60DBw4oODjY7pu7Ro0aadOmTfLx8VFiYqLatm2r5ORkNWzYUJs3b5YkrVy5Uv369dOAAQPUoUMHpaSkaOvWrTp8+LAk6Y033tD48eMVFRWlbt26acKECbZvDw8dOqQtW7Zo+vTpCg4OVnx8vO6++2699dZbZqYGAIBycnLUpEkTu1+lmjVrpsLCQp09e9au78GDB+Xv76/ExERFR0dr0KBB2rp1q8NjWiw1ewAAqvdeWVvvoaaeo3XgwAHddttt5aZnZmYqMjJSlp+jtlgs6ty5szIyMhQXF6fMzEz9+c9/tvVv0aKFWrZsqczMTHl7e+v48eO65ZZbbO2RkZE6evSoTp06pczMTLVo0UKtWrWya1+0aJGZqQEAoPz8/HKH/pU9Lyoqspt+8OBBFRQUKDo6WgkJCfr44481atQorV69WqGhodUeMyDgmqsPHAB+g5o0aVitfrX1PmtaoWUYhr777jt99tlnWrRokUpKStS3b1+NHz9eOTk5ateunV3/gIAA7d+/X5J06tQpNW/evFz7iRMnlJOTI0l27c2aNZMkW3tF8548edKs1AAAkCT5+PiUK6jKnvv6+tpNHz16tB5++GHbxS86dOigb775RmvWrHGo0Dp9+oIMw/FYPT09qv0hAwDqozNnflJJSWml7RbL5SLr1++zZdOvlmmF1rFjx2zf9M2dO1dHjhzR9OnTVVBQUOk3gGU7p4KCgkrbCwoKbM9/2SZd3rlVtWxHuOJQi1/+ZFnf1OfcpPqfnztyZFvU9+3nLvnV9fh+LSgoSGfOnFFxcbG8vC7vQnNycuTr66tGjRrZ9fXw8Ch3hcE2bdooOzvboTENQzUqtAAA1Xv/rK33WdMKreuvv17bt2/XtddeK4vFoo4dO6q0tFQTJ05Uly5dKvwGsOzbv8q+IfTz87Mrqnx8fGz/lyQ/P79K5/31N4vV4crDM+rzoSH1OTep/ufnLmr6zX193371PT9n69ixo7y8vJSRkaGoqChJUnp6ukJDQ+XhYX/a8zPPPCOLxaKZM2fapmVlZSk4ONipMQMAXMPUc7QaN25s97xt27YqLCxUYGCgcnNz7dpyc3Nth/wFBQVV2B4YGKigoCBJl78xLDsPq+xwwrL2yuZ1VE0Pz7galf1kWR/U59ykupMfhwddVtXhAb9WV7ZfbXGX/Mw6PMNZ/Pz8NGDAAE2ZMkUvvviiTp06pWXLltmKqZycHF1zzTXy9fVVr1699OSTT6pr166KiIjQhg0blJ6erhdeeMHFWQAAnMG0qw7+z//8j7p27ar8/HzbtP/93/9V48aNFRkZqV27dsn4eW9vGIZ27twpq9UqSbJarUpPT7fNd/z4cR0/flxWq1VBQUFq2bKlXXt6erpatmyp5s2bKzw8XEePHtWJEyfs2sPDwx3OoexnQ2c/XDk2ubl/fvg/7rj96vvfZ338G05KSlJISIiGDh2qqVOnaty4cerTp48kKTo6Wps2bZIk9enTR5MnT9aCBQvUv39//fvf/9aSJUvsLt4EAKi/TPtFKyIiQj4+Pnr22Wc1ZswYHT58WCkpKXr00UfVt29fzZkzRzNmzND999+vd955R/n5+erXr58k6YEHHtDDDz+s8PBwhYaGasaMGerZs6ft3iMPPPCAZs+ereuuu06SNGfOHA0fPlyS1Lp1a0VHR2vixIlKTk7W119/rY0bN2rlypVmpQYAgI2fn59mzZqlWbNmlWvbt2+f3fP4+HjFx8c7KzQAQB1iWqHl7++vpUuX6sUXX9TAgQPVsGFD3X///Xr00UdlsVi0aNEiTZ48WWvWrFH79u21ePFiNWjQQNLlIu2FF17QvHnzdO7cOXXv3l3Tpk2zLXvEiBE6ffq0xo4dK09PTw0aNEjDhg2ztaekpCg5OVn33nuvAgMD9eKLLyosLMys1AAAAADAIaaeo3XTTTdp+fLlFbaFhYXp/fffr3TeuLg4xcXFVdjm6emppKQkJSUlVdgeEBCghQsXOh4wAAAAANQC087RAgAAAABcRqEFAAAAACaj0AIAAAAAk1FoAQAAAIDJKLQAAAAAwGQUWgAAAABgMgotAAAAADAZhRYAAAAAmIxCCwAAAABMRqEFAAAAACaj0AIAAAAAk1FoAQAAAIDJKLQAAAAAwGQUWgAAAABgMgotAAAAADAZhRYAAAAAmIxCCwAAAABMRqEFAAAAACaj0AIAAAAAk1FoAQAAAIDJKLQAAAAAwGQUWgAAAABgMgotAAAAADAZhRYAAAAAmIxCCwAAAABMRqEFAAAAACaj0AIAAAAAk3m5OgCgPvDwsMjDw+KSsT09+b4EAACgrqHQAq6Sh4dFja5tIC8KHgAAAPyMQgu4ShaLRV6eHnr8nV3KPnXR6eP3bB+oiXd0cPq4AAAAqByFFmCS7FMX9c2x804ft21gQ6ePCQAAgCvjWCcAAAAAMFm9KbQKCws1adIkRUVFKTo6WsuWLXN1SACAesaRfc3evXsVHx8vq9WqgQMHas+ePU6MFADgavWm0EpJSdGePXu0YsUKTZ48WWlpadq8ebOrwwIA1CPV3dfk5eUpISFBUVFReu+99xQREaGRI0cqLy/PBVEDAFyhXhRaeXl5Wrt2rZKTkxUSEqLbb79djz76qFatWuXq0AAA9YQj+5pNmzbJx8dHiYmJatu2rZKTk9WwYUO+AASA35B6UWhlZWWpuLhYERERtmmRkZHKzMxUaWmpCyMDANQXjuxrMjMzFRkZKYvl8v31LBaLOnfurIyMDGeGDABwoXpx1cGcnBw1adJE3t7etmnNmjVTYWGhzp49q6ZNm1ZrOR4ekmHULAaLxWLboTo23+V/vbw8ajy2dDnuGgxvmorGNyu3mo5f236ZnySFtGwkP29P5wYhqW2g/296/DbNLl910dEbN5v598nrz5BRw0Fcud4c5ci+JicnR+3atbObPyAgQPv373d43KvZN0m/3fcGxmd8xv/tjl/22UC6/B5ambJ90K/fZ83aN9WLQis/P99uxyfJ9ryoqKjay2na9BpT43JE48b19xLd9Tk3SbrmGj9JUsogq0vj+K2P36iRX43mq+9/n/U9P2dyZF9TWV9H9kllrnbf5OrXJuMzPuMzvqs0aVK9fWBt1QD14tBBHx+fcjuvsue+vr6uCAkAUM84sq+prC/7JAD47agXhVZQUJDOnDmj4uJi27ScnBz5+vqqUaNGLowMAFBfOLKvCQoKUm5urt203NxcNW/e3CmxAgBcr14UWh07dpSXl5fdScbp6ekKDQ2Vx5UOzAQAoJoc2ddYrVbt2rXLdu6aYRjauXOnrFbXHkYDAHCeelGF+Pn5acCAAZoyZYp2796tTz75RMuWLdOQIUNcHRoAoJ6oal+Tk5OjgoICSVLfvn11/vx5zZgxQ9nZ2ZoxY4by8/PVr18/V6YAAHAii1HTS0XVMfn5+ZoyZYr++c9/yt/fXyNGjNCwYcNcHRYAoB650r6mffv2mjlzpuLi4iRJu3fv1uTJk3XgwAG1b99eU6dO1c033+zC6AEAzlRvCi0AAAAAqCvqxaGDAAAAAFCXUGgBAAAAgMkotAAAAADAZBRatcwwDM2ePVvdunVTly5dlJKSotLS0irn++GHHxQWFlZu+t1336327dvbPb799tvaCL1azM7viy++UP/+/WW1WjVkyBAdPny4NsKuFkdzO3z4sIYNG6bw8HD98Y9/1GeffWbXXhe2XWFhoSZNmqSoqChFR0dr2bJllfbdu3ev4uPjZbVaNXDgQO3Zs8eufePGjerdu7esVqvGjBmjH3/8sbbDr5KZ+UVFRZXbXj/99FNtp3BFjuRX5r///a/+3//7f+Wm18Xth9pl9nvaunXr1LdvX0VERCg+Pl7p6emmxOmu71NmxW0YhhYvXqxevXqpc+fOGjp0qLKzs+t0zL/0j3/8Q+3bt6+VeMuYGffmzZt1xx13KDw8XMOHD9fRo0frdMyGYejVV1/VH/7wB91yyy36y1/+Umt/1+66zzErblNeiwZq1dKlS42YmBjjq6++Mr788ksjOjraWLJkyRXnOXbsmHHHHXcYwcHBdtOLi4uN0NBQY8eOHcapU6dsj0uXLtVmCldkZn5Hjx41wsPDjaVLlxrffvut8fjjjxv9+/c3SktLazOFSjmSW2lpqXHXXXcZTz31lJGdnW0sXLjQsFqtxtGjRw3DqDvb7oUXXjDuuusuY8+ePcY///lPIyIiwvjHP/5Rrt9PP/1kdO/e3XjppZeM7OxsY9q0acZtt91m/PTTT4ZhGEZmZqYRFhZmvP/++8b//u//GoMHDzYSEhKcmktFzMrvxIkTRnBwsHHo0CG77eWqv8Uy1c2vTFZWlnHbbbcZsbGxdtPr6vZD7TLzPW3r1q1GWFiY8cEHHxjff/+98fLLLxudO3c2Tpw4cdVxuuv7lFlxv/XWW0bXrl2Nf//738bBgweNSZMmGT179jTy8vLqbMxlzp07Z3Tv3r3c/r2uxp2enm7cfPPNxttvv20cOHDAGDlypHHvvffW6Zjffvtt4w9/+IOxfft2Y9++fcYDDzxgPPbYYy6NuUxd2eeYFbcZr0UKrVoWExNjrFu3zvZ8/fr15TbkL3388cdGt27djLvuuqvcG9X3339vdOjQwSgoKKi1eB1lZn5z5841Bg8ebHuel5dnREREGNu2bTM/8GpwJLcvvvjCCA8Pt9vpDB061Jg3b55hGHVj2/30009GaGio3fqcP3++3Tovs3btWqNXr162wqK0tNS4/fbbbetj4sSJxtNPP23rf+zYMaN9+/bGoUOHajmLypmZ3+eff250797dOYFXkyP5GcblnXF4eLhx1113lfu7rYvbD7XPzPe0v/zlL8bzzz9vN0+fPn2M1atXX1WM7vo+ZWbc8fHxxqJFi2z9i4qKjPDwcOOzzz6rszGXSU5ONu6///5aLbTMjHvMmDHGM888Y+t/6NAhIzY21jh9+nSdjfmxxx4zXnrpJVv/f/3rX0Z4eLip8Toas2HUnX2OmXGb8Vrk0MFadPLkSR0/fly33HKLbVpkZKSOHj2qU6dOVTjPf/7zHz3++ONKTk4u15adna0WLVrIx8en1mJ2hNn5ZWZmKioqyvbcz89PISEhysjIMD32qjiaW2Zmpm6++WY1aNDArn9Z7HVh22VlZam4uFgRERG2aZGRkcrMzCx3+FBmZqYiIyNlsVgkSRaLRZ07d7bl8+tt1aJFC7Vs2VKZmZm1n0glzMwvOztbv//9750We3U4kp8kffrpp5o1a1aF9xOsi9sPtcvs97RHH31UjzzySLn5Lly4cFVxuuv7lJlxJyYm6u6777b1t1gsMgzjqtdtbcYsSTt27NCOHTv02GOPmRpnbca9Y8cO3X777bb+rVu31r///W81bdq0zsbcuHFj/ec//9HJkydVUFCgDz/8UB07djQ1XkdjlurOPsfMuM14LVJo1aKcnBxJUvPmzW3TmjVrJkk6ceJEhfNMnz5d999/f4VtBw4c0O9+9zuNHDlS3bt31+DBg7V7926To64+s/PLycmxW5YkBQQEVLqs2uRoblXFXhe2XU5Ojpo0aSJvb2/btGbNmqmwsFBnz54t1/dK+Zw6darObKsyZuZ34MAB5efn6+GHH1Z0dLT+/Oc/67vvvqv1HK7Ekfwk6bXXXlOfPn0qXFZd3H6oXWa/p4WEhOjGG2+0tX366af6/vvv1a1bt6uO0x3fp8yMOyoqStddd52tbe3atSouLlZkZGSdjbmoqEjPPfecnn/+efn6+poaZ23Fff78eZ07d04lJSUaMWKEunfvrlGjRunkyZN1NmZJGjNmjLy8vPSHP/xBnTt31n//+1/99a9/dWnMUt3Z55gZtxmvRQqtq1RQUKAffvihwkdeXp4k2W3ssv8XFRU5PNZ3332nc+fOKT4+XosXL1bbtm01dOhQHT9+3JxkKuDM/PLz8+2WVba8miyrOszMrarYXbHtqhujVD6nqvIpKChw6raqDjPzO3jwoM6dO6dRo0bptddek6+vr4YNG6aLFy/WYgZX5kh+VamL2w9Xz5nvab906NAhJSUl6a677lJISMhV5eCu71Nmxv1LmZmZmjVrlkaMGKHAwMA6G/P8+fMVEhKi6OhoU2OsiFlxl70mpk+frrvuuksLFixQUVGRRo4cWa2LerkiZkk6evSofH19tXDhQr355pu67rrrNGnSJFPjdTTmqtTV16Ijavpa9KrxiJB0ecUPGTKkwraJEydKurxhyw4ZK9vIfn5+Do81bdo0FRQUyN/fX5I0ZcoU7dy5Ux988EGt/VTvzPx8fHzKvQiKiorUqFEjh5dVHWbm5uPjU+6bkqKiIts3e67YdhXFWNH6lVTuG8jK+pb1q6y9JtvdLGbmt3TpUl26dEkNGzaUJM2ePVsxMTHasmWL7rrrrtpK4Yocya+my3Ll9sPVc+Z7WpnvvvtOjzzyiFq3bq3p06dfbQpu+z5lZtxldu3apT//+c/6wx/+oMcff7zOxvztt99qzZo12rBhg+kxVsSsuD09PSVJ8fHxGjBggKTL7/Xdu3dXRkaGOnfuXOdiNgxDTz/9tBITExUbGytJmjt3rmJjY5WZmSmr1eqSmGu6LFe/Fqvral6LFFpXqWvXrtq3b1+FbSdPnlRqaqpycnLUqlUrSf93+EZNvpny8vKyfVCXLh8r2qZNm1r5mbuMM/MLCgpSbm6u3bTc3NxaOfZYMje3oKCgcpf8zM3Ntf1U7optV1GMZ86cUXFxsby8Lr/0c3Jy5OvrW66YrWxblOVTWbvZ37g6wsz8vL297b4R8/HxUatWrZy6vX7Nkfyqs6y6tv1w9Zz5niZJ+/fv17Bhw9S6dWstWbLElEPG3PV9ysy4JWn79u167LHH1L17d82ZM0ceHuYfgGRWzP/85z917tw527lOJSUlkqSIiAhNnTrV7hyXuhR3kyZN9Lvf/U5t2rSxtTVp0kSNGzc2/ZA2s2L+8ccfdfz4cbvL57do0UJNmjTR0aNHTS203HWfY2bc0tW/Fjl0sBYFBQWpZcuWdvcWSU9PV8uWLcsdq1odDz/8sNLS0mzPS0tLtW/fPrs3CWcyOz+r1Wq3rPz8fO3du9fUN47qcjQ3q9Wqb775RgUFBXb9y2KvC9uuY8eO8vLysjt5OT09XaGhoeXeOKxWq3bt2iXDMCRdvpfEzp07bfn8elsdP35cx48fd8m2KmNWfoZhqHfv3nrvvfds/fPy8vTDDz+47LUmOZZfVeri9kPtMvs97dSpUxo+fLhuuOEGLV261O6LpKvhru9TZsb97bffatSoUerRo4fmzp2r3/3ud6bHa2bMgwcP1j/+8Q+tX79e69evt/2yuX79evXq1avOxu3l5aWQkBBlZWXZ+v/44486c+aMrr/++joZ87XXXitvb28dOHDALuazZ8/avkBxRcxVqauvxaqY8lqs9vUJUSOLFi0yoqOjjW3bthnbtm0zoqOjjWXLltnaT58+bVy8eLHcfNu2bSt3edRly5YZkZGRxieffGIcOHDAmDx5snHbbbcZFy5cqPU8KmNmfocPHzZCQ0ONRYsW2e6jddddd7ns3kWO5FZcXGz88Y9/NP7yl78Y3377rbFo0SIjPDzcds+ZurLtnnvuOePOO+80MjMzjY8//tjo3Lmz8dFHHxmGYRinTp0y8vPzDcMwjAsXLhjdunUzpk2bZuzfv9+YNm2a0b17d9ulnnfu3GmEhIQYa9assd0TY+TIkU7NpSJm5Tdt2jSjZ8+exrZt24xvv/3WGDNmjNG/f3+juLjYZbkZRvXz+6V169aVu2RtXd1+qF1mvqc9+eSTxm233WYcPHjQ7l5zFb3fO8pd36fMivu+++4z/vjHPxrHjh2zW7cVvb7rSsy/VNH+va7G/Y9//MMIDw83Nm3aZGRnZxsjR440/vSnP9XK5w6zYn7++eeNXr16GTt27DD27dtnDB8+3LjvvvtcGvMv1YV9jllxm/FapNCqZcXFxcaLL75oREVFGV27djVSU1PtXgyxsbG2+5L8UkVvVKWlpcaCBQuMnj17Gp06dTIeeughY9++fbWew5WYmZ9hGMZ//vMfo0+fPkZYWJgxdOhQl97Xx9Hcvv/+e+Ohhx4yOnXqZNx5553G559/bmurK9suLy/PSExMNMLDw43o6Ghj+fLltrbg4GC7e6JkZmYaAwYMMEJDQ41BgwYZ33zzjd2y1q1bZ8TExBjh4eHGmDFjjB9//NFZaVTKrPwKCgqMmTNnGt27dzesVqsxcuRI49ixY85MpUKO5Femop1H2fS6tv1Qu8x6TystLTXCwsKM4ODgco+K3u8d5a7vU2bEferUqQrXa2Wv77oQ8685o9AyM+7Vq1cbsbGxRlhYmPHoo48ax48fr9MxFxQUGC+99JLRo0cPo0uXLsZf/vIX0+/7VZOYy9SFfY4ZcZv1WrQYxs+/TQIAAAAATME5WgAAAABgMgotAAAAADAZhRYAAAAAmIxCCwAAAABMRqEFAAAAACaj0AIAAAAAk1FoAQAAAIDJKLQAAAAAwGQUWgAAAABgMgotAAAAADAZhRYAAAAAmIxCCwAAAABM9v8DmuFT0+2mcKIAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 1000x500 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAzgAAAHBCAYAAACljh56AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABGvElEQVR4nO3de1yUdd7/8fcAcRCiEBUr23qoqURII+Qhx/XQ5qFsM42yUrvLwjS1X4cbT5WYuaZYukWayrJpuUWWth1YK8u6967MosCbDFe0Nc3SwWA9cBK5fn+4zDYOKAPDwFzzej4ePPS65jtzfb7f62K+8+aaucZiGIYhAAAAADCBgJYuAAAAAAA8hYADAAAAwDQIOAAAAABMg4ADAAAAwDQIOAAAAABMg4ADAAAAwDQIOAAAAABMg4ADAAAAwDQIOAAahe8IBgAArREBB16xYcMGde/eXfv372/pUprEbrfr0Ucf1eDBg2W1WjV69Gjl5OQ4tdm7d6+6d+/u8jNy5Eiv19u9e3c999xzHr9Pbm6uUlJSmlIaALQ6zFVnnqu++OILde/eXV988cUZt9+YuQfwpKCWLgDwFVVVVbrnnnt09OhRTZ8+XR06dNB7772nBx98UFVVVRo1apQk6bvvvpMkvfjiiwoLC3PcPzQ01Os1Z2dnq2PHjh5/3PXr12v37t0ef1wAQNO0hrmqueYeoKEIOEADffzxxyosLNT69evVs2dPSVL//v114MABZWZmOk0aHTt2VL9+/Vqw2lOuvPLKli4BAOBFrWGuYu5BS+MtavC4mpoaLV++XIMGDVJCQoKmTJmif/3rXy7t/vGPf2jSpEnq1auXevXqpfvvv1/79u1z3F57Kvzzzz/X3XffrYSEBPXv31/p6ek6efKko92nn36qW265RVarVVdddZUmT57scnZh8+bNGj16tOLj49W/f389+eSTKisrc6tfERERuvXWWxUfH++0vnPnzvrhhx8cy4WFhYqNjW3w4xYWFqp79+764IMPHOu++uorde/eXcuWLXOsKykpUWxsrN555x1JUmlpqR5//HFdffXVio+P1y233KLPP//c6bFPf5vA7t27de+996pXr166+uqrtXTpUs2aNUvjx493ut+xY8c0Z84c9e7dW1arVdOnT1dxcbEkaebMmdq4caN+/PFHde/eXRs2bJAkvfPOO/r973+vnj17qm/fvnrkkUd08ODBBo8DAHgTc5V7c9WvFRUV6fbbb1d8fLyuvfZavfTSS063nz73FBYWaurUqerbt6/i4uI0YMAAPfnkk6qoqHC08cT4VFRUKC0tTb/97W91xRVXaPjw4frTn/7UqD7CtxFw4HHp6el6/vnndfPNNysjI0Pnn3++nn76aac233//vcaOHavDhw9r0aJFWrBggfbt26fbbrtNhw8fdmr7yCOPKDExUS+88IJGjhypzMxMrV+/XpK0b98+TZkyRVdccYVWrFihBQsW6Pvvv1dKSopqamokSW+//bbuv/9+de7cWc8//7ymTp2qt956S1OmTHHrg/JXX321nnjiCVksFse6EydO6JNPPlHXrl0d67777jsdP35cY8eOdTwJL1myRCdOnKjzcXv06KELLrhAn332mWNdbVD56quvHOs+/fRTBQQEaMCAAaqsrNSdd96pDz/8UA8++KAyMjLUsWNH3XPPPS4hp9Yvv/yicePG6aefftLChQv16KOPatOmTY7A9Gtr167ViRMn9Mc//lEPP/ywPvroIz3xxBOSpClTpmjgwIFq3769srOzNWjQIOXm5io1NVVDhw7V6tWrNWvWLG3dulUPP/xwg8cXALyJucq9uerXFi5cqCuvvFIrVqxwhJU1a9bU2fbQoUO64447VF5erqeeekqrV6/W9ddfr5deeklr16716Pj84Q9/0P/8z/9oxowZ+tOf/qRrrrlGixcv1htvvNHg8YNJGIAH/etf/zLi4uKM9PR0p/UTJ040unXrZuzbt88wDMN46KGHjKuvvto4evSoo01JSYmRmJhoPPXUU4ZhGMbWrVuNbt26GUuXLnV6rCFDhhiTJk0yDMMw3nnnHaNbt27Gzz//7Lg9Pz/feOaZZ4yjR48aNTU1xm9/+1tj4sSJTo/x2WefGd26dTO2bNnSpP4uWLDA6Natm/Hee+8ZhmEYhw8fNrp162ZcffXVxsaNG40vvvjCWLZsmREXF2c89NBD9T7OY489ZgwdOtSxfNtttxk33XSTccUVVxgVFRWGYRhGamqqMW7cOMMwDCM7O9vo1q2bkZeX57hPTU2NcccddxijR492rOvWrZvx7LPPGoZhGMuWLTPi4+Odxmr//v1GXFyc43Fr75OcnOxU3yOPPGJcddVVjuUZM2YYgwcPdiyvXLnSsFqtRmVlpWPdxx9/bDz33HNGTU3NmYYQALyOuapxc1VtX+fNm+e0fsqUKUa/fv2MkydPGobhPPf8/e9/N+644w6nMTQMwxg5cqRx9913G4bhufEZNmyY8eijjzq1ycjIaPL4wffwGRx4VF5enk6cOKHBgwc7rR8xYoT+/ve/O5a3bt2q3r17KzQ0VNXV1ZJOnVZPSkpyOpMhSVar1Wm5Y8eOjlPSCQkJCgkJ0c0336zhw4frt7/9rfr06eN43/Hu3bv1888/a9KkSY7tSNJVV12liIgIffrppxo0aJDb/TQMQ+np6VqzZo0mTpyooUOHSpLatGmjrKwsXXLJJerUqZMkqXfv3goODtayZcs0ZcoUdenSxeXxBg0apOzsbP30008677zztH37dj3zzDOaNm2a8vPzddVVV+l///d/dffdd0s6dYanffv2iouLc+rX4MGDtXjxYv3rX//Seeed57SNrVu3ymq1KiYmxrHuoosuchlfSUpMTHRa7tSpk44cOVLveFx11VVaunSpRo4cqWHDhmngwIGy2WwaOHDg2YYSALyOuapxc1Wt6667zmn52muv1ebNm7Vnzx6ns0SSZLPZZLPZdOLECRUVFWnv3r36xz/+oV9++UXnn3++R8enT58+evXVV/Xzzz9r4MCBGjhwoO6//363xw2+j4ADj6p9/3JUVJTT+vbt2zstl5aWKicnx+WylZLUtm1bp+XTr+gSEBDgOB3dqVMnvfzyy1q1apVef/11rV27VpGRkbr99tv1//7f/1Npaakkad68eZo3b57Ltg4dOuReB3XqCjUzZ87Uu+++q4kTJyo1NdWp1v79+7vcZ9CgQVq2bJkKCwvrnDT69eunkJAQffbZZ2rXrp3OOeccDRkyRJdeeqm2bdum8PBwFRcXOybj0tJS2e12xcXF1Vmj3W53CTi//PJLne3btWvn+HxNrTZt2jgt/3rM62K1WrVq1Sq9+OKL+vOf/6xVq1apXbt2uu+++1w+3wMALY25qnFzVa127do5LUdHR0tSnZ9hqqmp0TPPPKN169aprKxMF1xwgXr27KmQkBBHG0+Nz5w5c9SxY0e99dZbmj9/vubPny+r1aq0tDT16NHjDKMFsyHgwKNqJ4vDhw+rc+fOjvW1T061zj33XF199dW66667XB4jKMi9w7Jnz57KyMhQVVWVcnNzlZ2drRdeeEE9evRw/CUpNTVVvXv3drnv6SHgbI4ePaqUlBTl5eVp9uzZuvPOO51u/+c//6mtW7fquuuuU2RkpGN97QcpT58Qa4WFhal3796OMzO9evVSUFCQ+vTpo23btikwMFCXXHKJY0zPPfdcXXrppVqyZEmdj1f7F7lf69ixo0uQkeTyPvLGGjBggAYMGKDy8nJt3bpVa9eu1ZNPPqmEhATHX+EAoDVgrmrcXFXr9CBTO7fUBp1fq/3j17x58zR06FCde+65kqSbb77ZqZ0nxic4OFiTJ0/W5MmTdeDAAW3ZskXLly/Xww8/rHffffeMfYK5cJEBeJTValVoaKg2bdrktH7Lli1Oy71791ZRUZFiY2MVHx+v+Ph4XXHFFXrxxRedriZ2Ni+++KIGDx6sqqoqBQcHq1+/fpo/f74k6cCBA+rcubOio6O1f/9+x3bi4+MVExOjp59+Wjt27Gjwtqqrq3Xffffp//7v/7R06VKXCUM6deZk7ty5Lv3PyclRREREvWdcpFN/Ofviiy/01VdfqU+fPpKkvn37Ki8vT5s3b3Z6K0Xv3r31008/KTo62qlfn376qTIzMxUYGOjy+FdddZXy8vJkt9sd6w4dOqS8vLwGj0GtgADnp45FixZpzJgxMgxDYWFhGjx4sGbMmCHp1H4AgNaEuarxc5V06lLUv/buu+/qggsu0CWXXOLSNjc3V127dtWYMWMc4ebgwYP6xz/+4biAgCfGp6KiQsOGDVNWVpYk6cILL9Qdd9yh66+/nnnID3EGBx4VHh6uKVOmaNmyZQoLC1Pfvn31ySefuEwaU6ZM0dixYzVp0iTddtttCgkJUXZ2tjZv3qxnn322wdvr27evlixZovvvv1/jxo1TYGCgXn31VQUHB2vw4MEKDAzUgw8+qMcff1yBgYEaPHiwjhw5ouXLl+vgwYNnfRL/tXXr1umrr77Srbfeqo4dO7oEgyuvvFKJiYnq16+fnnrqKVVUVKhr1676+OOP9dJLL2nmzJlOfyk73cCBAzV//nwdOnRIc+bMkXRqcq2srFRBQYEeeeQRR9vRo0fr5Zdf1l133aX77rvPcRW21atXa9y4cTrnnHNcHn/ChAlat26dJk6c6HhP8vLly3XixAmnq+00RGRkpIqLi/XJJ58oNjZWffv21Z///GfNnDlTv//973XixAllZmbq/PPPV9++fd16bABobsxVjZ+rJOmll15SeHi4Lr/8cr377rv6+9//rsWLF9c5l/Ts2VPLly/XqlWrdOWVV2rv3r1auXKlqqqqVF5e7rHxCQ0NVVxcnDIyMnTOOeeoe/fu+v7777Vx40YNGzasweMHcyDgwOMmTZqkNm3aaM2aNVqzZo2sVqtmzJihtLQ0R5sePXpo3bp1Wrp0qVJTU2UYhrp166bnn39e11xzTYO31aNHD73wwgt6/vnn9dBDD+nkyZO64oorlJWV5XjbQXJyssLDw5WZmans7Gy1adNGvXr10pIlS3TxxRc3eFvvv/++pFPf0Jydne1y+86dOxUQEKCMjAxlZGToxRdflN1u129+8xvNnz9fycnJZ3z8iy++WF26dNFPP/2kK664QtKp9zl37dpVBw8eVFJSkqNtmzZttG7dOj399NNKT0/X0aNHddFFF+nhhx92XIjgdJGRkVq7dq0WLFig1NRUhYeH6/bbb1dYWJjLZ27OZvTo0frkk090//33a/r06UpJSdGSJUuUlZWlqVOnymKxKDExUWvXrnV8iBQAWhPmqsbNVZL05JNPKjMzU8uWLdPFF1+sZ555Rtdff32dbSdNmqSSkhKtXbtWzz//vC644ALdeOONslgsWrlypY4cOeKx8XniiSe0bNkyZWVlyW63Kzo6WjfffLMeeOCBBo8fzMFinOmTwwBMIz8/X6WlpU5XNquurtagQYN0/fXXa9asWS1YHQAAgGdwBgd+7+TJk2f9EjWLxVLn51p8yYEDB/Tggw/q/vvvV+/evVVeXq7s7GwdPXpUt9xyS0uXBwA4A3+ZqwBP4AwO/N6QIUP0448/nrFN79699dJLL3mpoubzyiuv6C9/+Yv27dunc845RwkJCXrggQcUHx/f0qUBAM7An+YqoKkIOPB7O3fuVFVV1RnbhIeHO11KFAAAb2KuAhqOgAMAAADANPgeHAAAAACmQcABAAAAYBoEHAAAAACmQcABAAAAYBqt/ntwDh8+qua8DILFIkVHn9vs2/E1jIsrxqRujIsrXx+T2vpRP1/Zt75+LDYV/af/9N88/Xdnbmr1Accw5JWd4q3t+BrGxRVjUjfGxRVjYl6+tm99rV5Po//0n/63dBXexVvUAAAAAJgGAQcAAACAaRBwAAAAAJgGAQcAAACAaRBwAAAAAJgGAQcAAACAaRBwAAAAAJgGAQcAAACAaRBwAAAAAJgGAQcAAACAaTQ64KSkpGjmzJn13v7ZZ59p5MiRSkhI0IQJE7Rv377GbgoAgLOqqqrSyJEj9cUXX9TbZseOHUpOTlZCQoLGjBmjgoICL1YIAPCGRgWcd999V5988km9tx84cED333+/Ro8erddff11t27bVlClTZBhGowsFAKA+lZWVeuihh7Rr165625SVlSklJUVJSUnasGGDrFarJk2apLKyMi9WCgBobm4HnNLSUi1evFjx8fH1tlm/fr2uuOIK3X333brsssu0cOFC/fjjj9q2bVuTigUA4HRFRUW65ZZb9MMPP5yxXU5OjkJCQpSamqouXbpozpw5Cg8P16ZNm7xUKQDAG9wOOIsWLdKNN96orl271tsmPz9fSUlJjuWwsDDFxcUpLy+vUUUCAFCfbdu2qU+fPsrOzj5ju/z8fCUmJspisUiSLBaLevXqxdwEACYT5E7jzz//XF999ZXefvttpaWl1dvObrerQ4cOTuuio6P1888/N6pIAADqc/vttzeond1ud/njXHR09Bnf1gYA8D0NDjiVlZWaO3euHn/8cYWGhp6xbXl5uYKDg53WBQcHq6qqyu0C//2HtmZT+/jNvR1fw7i4Ykzq1lrHJSDA4vhLvbe11jFpKF+t+2x8aW7yFF8/FpuK/jv/K7Xsc6MkGYahmhrvfCab/e/8r69zpx8NDjgZGRm64oorNGDAgLO2DQkJcZkwqqqqFBkZ2fDK/i06+ly379MY3tqOr2FcXDEmdWtt43KyxlBgQMs9q5+sMVrdmPi7+uams/3Rri6+tm99rV5Po///6X9reG709vbZ//7X/wYHnHfffVfFxcWyWq2S5Jgk3nvvPX3zzTdObWNiYlRcXOy0rri4WLGxsW4XePjwUTXnxdcsllM7vrm342sYF1eMSd1a47gEBgYoKipcD7z6jYoOHfP69rt2iNAfx1pVWnpc1dU1Xt9+U9XuU7Opb246/S3VDdGajvczaY2/n95E/53731qeG0tKjuvkyeZ/bmT/m6v/7sxNDQ44L730kqqrqx3LS5YskSQ98sgjLm0TEhKUm5vrWC4vL9eOHTs0derUhm7OwTDklZ3ire34GsbFFWNSt9Y4LkWHjunbA0dabPutcUz8WUJCglavXi3DMGSxWGQYhr7++mvdd999bj+Wr+1bX6vX0+i/c/9b+rlR8u7+YP/7X/8bfBW1iy66SJdcconjJzw8XOHh4brkkkt08uRJ2e12x1mdMWPG6Ouvv9aqVau0a9cuzZo1S506dVKfPn2arSMAAJzObreroqJCkjR8+HAdOXJECxYsUFFRkRYsWKDy8nKNGDGihasEAHhSo77o83Q//fSTbDab461qnTp10nPPPac33nhDN998s0pLS/X888+36IfaAAD+x2azKScnR5IUERGhlStXKjc3V6NHj1Z+fr5WrVqlNm3atHCVAABPcusy0b/21FNPOf7fqVMn7dy50+n2gQMHauDAgY2vDAAAN50+F52+3LNnT23cuNGbJQEAvMwjZ3AAAAAAoDUg4AAAAAAwDQIOAAAAANMg4AAAAAAwDQIOAAAAANMg4AAAAAAwDQIOAAAAANMg4AAAAAAwDQIOAAAAANMg4AAAAAAwDQIOAAAAANMg4AAAAAAwDQIOAAAAANMg4AAAAAAwDQIOAAAAANMg4AAAAAAwDQIOAAAAANMg4AAAAAAwDQIOAAAAANMg4AAAAAAwDQIOAAAAANMg4AAAAAAwDQIOAAAAANMg4AAAAAAwDQIOAAAAANMg4AAAAAAwDQIOAAAAANMg4AAAAAAwDQIOAAAAANMg4AAAAAAwDQIOAAAAANMg4AAAAAAwDQIOAAAAANMg4AAAAAAwDbcDzt69ezVx4kRZrVYNGjRImZmZ9badPHmyunfv7vSzZcuWJhUMAAAAAPUJcqdxTU2NUlJSFB8fr40bN2rv3r166KGHFBMToxtuuMGl/e7du5Wenq5+/fo51p133nlNrxoAAAAA6uBWwCkuLlZsbKzS0tIUERGhSy+9VP369VNubq5LwKmqqtL+/fsVHx+v9u3be7RoAAAAAKiLW29R69Chg5YtW6aIiAgZhqHc3Fx9+eWX6t27t0vbPXv2yGKx6OKLL/ZYsQAAAABwJm6dwfm1IUOG6MCBAxo8eLCGDRvmcvuePXsUERGh1NRUbdu2TR07dtS0adM0cOBAt7ZjsTS2Qvcev7m342sYF1eMSd0Yl/pZLL45Lr5YMwAAtRodcJ599lkVFxcrLS1NCxcu1KOPPup0+549e1RRUSGbzaaUlBR98MEHmjx5srKzsxUfH9/g7URHn9vYEt3ire34GsbFFWNSN8bF1fnnh7d0CQAA+J1GB5zakFJZWalHHnlEqampCg4Odtw+ZcoUjR8/3nFRgR49eujbb7/Va6+95lbAOXz4qAyjsVWencVy6oVZc2/H1zAurhiTurXGcQkMDFBUVMuHi9LS46qurmnpMtxWu08BAPBFbl9kIC8vT7/73e8c67p27aoTJ07o2LFjatu2rWN9QECAyxXTOnfurKKiIrcKNAx55UWTt7bjaxgXV4xJ3RgXV4wJAADe59ZFBvbv36+pU6fq4MGDjnUFBQVq27atU7iRpJkzZ2rWrFlO6woLC9W5c+cmlAsAAAAA9XMr4MTHxysuLk6zZ89WUVGRPvnkE6Wnp+u+++6TJNntdlVUVEg6dRGCt99+W2+++ab27t2rjIwM5ebmaty4cZ7vBQAAAADIzYATGBio5cuXKywsTLfeeqvmzJmj8ePHa8KECZIkm82mnJwcSdLQoUM1d+5crVixQiNHjtRHH32kzMxMderUyfO9AAAAAAA14iIDMTExysjIqPO2nTt3Oi0nJycrOTm5cZUBAAAAgJvcOoMDAAAAAK0ZAQcAAACAaRBwAAAAAJgGAQcAAACAaRBwAAAAAJgGAQcAAACAaRBwAAAAAJgGAQcAAACAaRBwAAAAAJgGAQcAAACAaRBwAAAAAJgGAQcAAACAaRBwAAAAAJgGAQcAAACAaRBwAAAAAJgGAQcAAACAaRBwAAA+rbKyUrNnz1ZSUpJsNpuysrLqbfvBBx9oxIgRslqtuu222/Ttt996sVIAgDcQcAAAPm3x4sUqKCjQmjVrNHfuXGVkZGjTpk0u7Xbt2qWHH35YkyZN0l//+lfFxsZq0qRJKi8vb4GqAQDNhYADAPBZZWVlWr9+vebMmaO4uDhde+21uueee7Ru3TqXtp9++qm6du2qUaNG6Te/+Y0eeugh2e12FRUVtUDlAIDmQsABAPiswsJCVVdXy2q1OtYlJiYqPz9fNTU1Tm3PP/98FRUVKTc3VzU1NdqwYYMiIiL0m9/8xttlAwCaUVBLFwAAQGPZ7XZFRUUpODjYsa5du3aqrKxUaWmp2rZt61h/3XXX6aOPPtLtt9+uwMBABQQEaOXKlTrvvPPc3q7F4pHym11tnb5Sr6fRf+d/WxNv1NSa++8NZuu/O/0g4AAAfFZ5eblTuJHkWK6qqnJaX1JSIrvdrscff1wJCQl65ZVXNGvWLG3cuFHR0dFubTc6+tymFe5lvlavp9H/1tX/qKhwr26vtfXf2/yx/wQcAIDPCgkJcQkytcuhoaFO65csWaJu3brpjjvukCTNnz9fI0aM0BtvvKGUlBS3tnv48FEZRhMK9xKL5dSLG1+p19Pov3P/AwMDvB4u6lJSclwnT9acvWETsf/N1f/a/jQEAQcA4LNiYmJUUlKi6upqBQWdmtLsdrtCQ0MVGRnp1Pbbb7/V+PHjHcsBAQHq0aOHDhw44PZ2DUM+9YLB1+r1NPrf+vrvzXpaY/+9yR/7z0UGAAA+KzY2VkFBQcrLy3Osy83NVXx8vAICnKe4Dh06aPfu3U7rvv/+e3Xq1MkbpQIAvISAAwDwWWFhYRo1apTS0tK0fft2bd68WVlZWZowYYKkU2dzKioqJEm33HKLXnvtNb355pvau3evlixZogMHDuimm25qyS4AADyMt6gBAHzarFmzlJaWpjvvvFMRERGaNm2ahg4dKkmy2WxauHChRo8ereuuu07Hjx/XypUr9fPPPys2NlZr1qxx+wIDAIDWjYADAPBpYWFhWrRokRYtWuRy286dO52Wk5OTlZyc7K3SAAAtgLeoAQAAADANAg4AAAAA0yDgAAAAADANAg4AAAAA0yDgAAAAADANAg4AAAAA03A74Ozdu1cTJ06U1WrVoEGDlJmZWW/bHTt2KDk5WQkJCRozZowKCgqaVCwAAAAAnIlbAaempkYpKSmKiorSxo0bNW/ePK1YsUJvv/22S9uysjKlpKQoKSlJGzZskNVq1aRJk1RWVuax4gEAAADg19wKOMXFxYqNjVVaWpouvfRSDRw4UP369VNubq5L25ycHIWEhCg1NVVdunTRnDlzFB4erk2bNnmseAAAAAD4NbcCTocOHbRs2TJFRETIMAzl5ubqyy+/VO/evV3a5ufnKzExURaLRZJksVjUq1cv5eXleaRwAAAAADhdUGPvOGTIEB04cECDBw/WsGHDXG632+3q2rWr07ro6Gjt2rXLre38Ox81SkCAxRGwzvb4QUEBMozGb6suhmGopsbDD+qGhvS/Pp4Yl5buv6fVjklTjkkzYlzqZ7H45rj4Ys0AANRqdMB59tlnVVxcrLS0NC1cuFCPPvqo0+3l5eUKDg52WhccHKyqqiq3thMdfW5jS9TJGkOBAQ2bqc8/P7zR2/HE9puDJ7bflHFp6f43l6Yck2bGuLhqjucVAABwZo0OOPHx8ZKkyspKPfLII0pNTXUKNCEhIS5hpqqqSqGhoW5t5/Dho406gxAYGKCoqHA98Oo3Kjp0zP0HaKKuHSL0x7FWlZQc18mTNV7fvr/3vzlYLKdexDf2mDSr1jgutcd/SystPa7qat87/mv3KQAAvsitgFNcXKy8vDz97ne/c6zr2rWrTpw4oWPHjqlt27aO9TExMSouLna5f4cOHdwq0DDUpBdNRYeO6dsDRxr/AB7Qki/6/L3/zaGpx6RZMS6uGBMAALzPrYsM7N+/X1OnTtXBgwcd6woKCtS2bVuncCNJCQkJ+uabb2T8e3Y3DENff/21EhISPFA2AAAAALhyK+DEx8crLi5Os2fPVlFRkT755BOlp6frvvvuk3TqwgIVFRWSpOHDh+vIkSNasGCBioqKtGDBApWXl2vEiBGe7wUAAAAAyM2AExgYqOXLlyssLEy33nqr5syZo/Hjx2vChAmSJJvNppycHElSRESEVq5cqdzcXI0ePVr5+flatWqV2rRp4/leAAAAAIAacZGBmJgYZWRk1Hnbzp07nZZ79uypjRs3Nq4yAAAAAHCTW2dwAAAAAKA1I+AAAAAAMA0CDgAAAADTIOAAAAAAMA0CDgAAAADTIOAAAAAAMA0CDgAAAADTIOAAAAAAMA0CDgAAAADTIOAAAAAAMA0CDgAAAADTIOAAAAAAMA0CDgAAAADTIOAAAAAAMA0CDgAAAADTIOAAAAAAMA0CDgAAAADTIOAAAAAAMA0CDgAAAADTIOAAAAAAMA0CDgAAAADTIOAAAAAAMA0CDgAAAADTIOAAAAAAMA0CDgAAAADTIOAAAAAAMA0CDgAAAADTIOAAAAAAMA0CDgAAAADTIOAAAAAAMA0CDgAAAADTIOAAAAAAMA0CDgAAAADTIOAAAAAAMA23A87Bgwc1ffp09e7dWwMGDNDChQtVWVlZZ9vJkyere/fuTj9btmxpctEAAAAAUJcgdxobhqHp06crMjJS69at07/+9S/Nnj1bAQEBmjFjhkv73bt3Kz09Xf369XOsO++885peNQAAAADUwa2As2fPHuXl5enTTz9Vu3btJEnTp0/XokWLXAJOVVWV9u/fr/j4eLVv395zFQMAAABAPdx6i1r79u2VmZnpCDe1jh075tJ2z549slgsuvjii5tWIQAAAAA0kFtncCIjIzVgwADHck1NjV5++WX17dvXpe2ePXsUERGh1NRUbdu2TR07dtS0adM0cOBAtwq0WNxq3iqZoQ9NYZb+1/bDLP3xFMalfhaLb46LL9YMAEAttwLO6dLT07Vjxw69/vrrLrft2bNHFRUVstlsSklJ0QcffKDJkycrOztb8fHxDd5GdPS5TSmxxUVFhbd0CS3KjP339WOyuTAurs4/33zHPwAArV2jA056errWrFmjpUuXqlu3bi63T5kyRePHj3dcVKBHjx769ttv9dprr7kVcA4fPirDcL++wMCAVvHiuqTkuE6erPH6dv29/83BYjn1Ir6xx6RZtcZxaS3Hf2npcVVX+97xX7tPAQDwRY0KOPPnz9crr7yi9PR0DRs2rM42AQEBLldM69y5s4qKitzalmGo1bxoaixfr7+pzNZ/MxyTzYFxccWYAADgfW5/D05GRoZeffVVPfPMM7r++uvrbTdz5kzNmjXLaV1hYaE6d+7sfpUAAAAA0ABuBZzdu3dr+fLluvfee5WYmCi73e74kSS73a6KigpJ0pAhQ/T222/rzTff1N69e5WRkaHc3FyNGzfO870AAPityspKzZ49W0lJSbLZbMrKyqq37c6dO3XbbbepZ8+euuGGG7R161YvVgoA8Aa3As6HH36okydPasWKFbLZbE4/kmSz2ZSTkyNJGjp0qObOnasVK1Zo5MiR+uijj5SZmalOnTp5vhcAAL+1ePFiFRQUaM2aNZo7d64yMjK0adMml3ZHjx7V3Xffra5du+rtt9/Wtddeq6lTp+rw4cMtUDUAoLm49RmclJQUpaSk1Hv7zp07nZaTk5OVnJzcuMoAADiLsrIyrV+/XqtXr1ZcXJzi4uK0a9curVu3TsOHD3dqu3HjRrVp00ZpaWkKDAzU9OnT9cknn6igoMDtrzAAALReTbpMNAAALamwsFDV1dWyWq2OdYmJiXrhhRdUU1OjgID/vFFh27ZtuuaaaxQYGOhY98Ybb3i1XgBA8yPgAAB8lt1uV1RUlIKDgx3r2rVrp8rKSpWWlqpt27aO9fv27VPPnj312GOP6aOPPtJFF12kGTNmKDEx0e3t+sqXofr7F/HSf+d/WxNv1NSa++8NZuu/O/0g4AAAfFZ5eblTuJHkWK6qqnJaX1ZWplWrVmnChAlavXq13n33XU2cOFF/+9vfdMEFF7i1XV/7niBfq9fT6H/r6r+3v6estfXf2/yx/wQcAIDPCgkJcQkytcuhoaFO6wMDAxUbG6vp06dLki6//HJ9+umn+utf/6r77rvPre22pi+2PZPW+EW83kT/nfvfWr4E2VtfAs7+N1f/3fkSagIOAMBnxcTEqKSkRNXV1QoKOjWl2e12hYaGKjIy0qlt+/btXb6L7dJLL9VPP/3k9nZ97Utcfa1eT6P/ra//3qynNfbfm/yx/25/0ScAAK1FbGysgoKClJeX51iXm5ur+Ph4pwsMSNKVV17pcrXPPXv26KKLLvJGqQAALyHgAAB8VlhYmEaNGqW0tDRt375dmzdvVlZWliZMmCDJ+Quox44dq507d+q5557T3r179cc//lH79u3TjTfe2JJdAAB4GAEHAODTZs2apbi4ON15552aN2+epk2bpqFDh0py/gLqiy66SJmZmdqyZYtGjhypLVu2aNWqVYqJiWnJ8gEAHsZncAAAPi0sLEyLFi3SokWLXG47/S1piYmJ2rBhg7dKAwC0AM7gAAAAADANAg4AAAAA0yDgAAAAADANAg4AAAAA0yDgAAAAADANAg4AAAAA0yDgAAAAADANAg4AAAAA0yDgAAAAADANAg4AAAAA0yDgAAAAADANAg4AAAAA0yDgAAAAADANAg4AAAAA0yDgAAAAADANAg4AAAAA0yDgAAAAADANAg4AAAAA0yDgAAAAADANAg4AAAAA0yDgAAAAADANAg4AAAAA0yDgAAAAADANAg4AAAAA0yDgAAAAADANtwLOwYMHNX36dPXu3VsDBgzQwoULVVlZWWfbHTt2KDk5WQkJCRozZowKCgo8UjAAAAAA1KfBAccwDE2fPl3l5eVat26dli5dqi1btmjZsmUubcvKypSSkqKkpCRt2LBBVqtVkyZNUllZmSdrBwAAAAAnDQ44e/bsUV5enhYuXKjLLrtMSUlJmj59ut555x2Xtjk5OQoJCVFqaqq6dOmiOXPmKDw8XJs2bfJo8QAAAADwaw0OOO3bt1dmZqbatWvntP7YsWMubfPz85WYmCiLxSJJslgs6tWrl/Ly8ppWLQAAAACcQVBDG0ZGRmrAgAGO5ZqaGr388svq27evS1u73a6uXbs6rYuOjtauXbvcLvDfGclnBQa2zHUcWmq7dfH1fVirth9m6Y+n1DcuAQEWxx85vK21HP9BQS1Xh2EYqqkxGnVfjnEAgC9rcMA5XXp6unbs2KHXX3/d5bby8nIFBwc7rQsODlZVVZXb24mOPrexJbao9hEhOlljKDIyrKVLaVFRUeEtXYLH+eox2dxOH5eTNYYCA/zzlXLt7/+557bc778/jz8AwL81KuCkp6drzZo1Wrp0qbp16+Zye0hIiEuYqaqqUmhoqNvbOnz4qIxG/BEyMDCgRV9cR4YFKTDAogde/UZFh1zfxtfcBnVvr/8e1sPr2z1dSclxnTxZ09JleITFcupFfGOPSbOqa1xqf//89fhv6d//rh0i9Mex1kb//tXuUwAAfJHbAWf+/Pl65ZVXlJ6ermHDhtXZJiYmRsXFxU7riouL1aFDB7cLNAz59IvJokPH9O2BI17fbpf2refMiS/vv7r4+jHZXOoaF38//luq/7/GsQoA8DduvUE8IyNDr776qp555hldf/319bZLSEjQN998I+PfM6thGPr666+VkJDQtGoBAAAA4AwaHHB2796t5cuX695771ViYqLsdrvjRzp1YYGKigpJ0vDhw3XkyBEtWLBARUVFWrBggcrLyzVixIjm6QUAAAAAyI2A8+GHH+rkyZNasWKFbDab048k2Ww25eTkSJIiIiK0cuVK5ebmavTo0crPz9eqVavUpk2b5ukFAAAAAMiNz+CkpKQoJSWl3tt37tzptNyzZ09t3Lix8ZUBAAAAgJtax5dFAAAAAIAHEHAAAAAAmAYBBwAAAIBpEHAAAAAAmAYBBwAAAIBpEHAAAAAAmAYBBwAAAIBpEHAAAAAAmAYBBwAAAIBpEHAAAAAAmAYBBwAAAIBpEHAAAAAAmAYBBwAAAIBpEHAAAAAAmAYBBwAAAIBpEHAAAAAAmAYBBwAAAIBpEHAAAAAAmAYBBwAAAIBpEHAAAAAAmAYBBwAAAIBpEHAAAAAAmAYBBwAAAIBpEHAAAAAAmAYBBwDg0yorKzV79mwlJSXJZrMpKyvrrPfZv3+/rFarvvjiCy9UCADwpqCWLgAAgKZYvHixCgoKtGbNGh04cEAzZszQhRdeqOHDh9d7n7S0NJWVlXmxSgCAtxBwAAA+q6ysTOvXr9fq1asVFxenuLg47dq1S+vWras34Lz11ls6fvy4lysFAHgLb1EDAPiswsJCVVdXy2q1OtYlJiYqPz9fNTU1Lu1LSkqUnp6uJ554wptlAgC8iIADAPBZdrtdUVFRCg4Odqxr166dKisrVVpa6tL+qaee0k033aTLLrvMi1UCALyJt6gBAHxWeXm5U7iR5FiuqqpyWv/ZZ58pNzdX77zzTpO3a7E0+SG8orZOX6nX0+i/87+tiTdqas399waz9d+dfhBwAAA+KyQkxCXI1C6HhoY61lVUVOjxxx/X3LlzndY3VnT0uU1+DG/ytXo9jf63rv5HRYV7dXutrf/e5o/9J+AAAHxWTEyMSkpKVF1draCgU1Oa3W5XaGioIiMjHe22b9+uffv2afr06U73v/feezVq1Ci3P5Nz+PBRGUbT629uFsupFze+Uq+n0X/n/gcGBng9XNSlpOS4Tp50/Yycp7H/zdX/2v40BAEHAOCzYmNjFRQUpLy8PCUlJUmScnNzFR8fr4CA/3zMtGfPnnr//fed7jt06FA9+eST6t+/v9vbNQz51AsGX6vX0+h/6+u/N+tpjf33Jn/sf6MvMlBVVaWRI0ee8UvSJk+erO7duzv9bNmypbGbBADASVhYmEaNGqW0tDRt375dmzdvVlZWliZMmCDp1NmciooKhYaG6pJLLnH6kU6dAYqOjm7JLgAAPKxRZ3AqKyv18MMPa9euXWdst3v3bqWnp6tfv36Odeedd15jNgkAQJ1mzZqltLQ03XnnnYqIiNC0adM0dOhQSZLNZtPChQs1evToFq4SAOAtbgecoqIiPfzwwzLOcq6rqqpK+/fvV3x8vNq3b9/oAgEAOJOwsDAtWrRIixYtcrlt586d9d7vTLcBAHyX229R27Ztm/r06aPs7OwzttuzZ48sFosuvvjiRhcHAAAAAO5w+wzO7bff3qB2e/bsUUREhFJTU7Vt2zZ17NhR06ZN08CBA90uEgAAAAAaotmuorZnzx5VVFTIZrMpJSVFH3zwgSZPnqzs7GzFx8c3+HHM8uVE/sws+9BsX5jlKYxL69aY/cK+BAD4smYLOFOmTNH48eMdFxXo0aOHvv32W7322mtuBRx//HIiM2kN19v3NI7JujEurY8Zf/8AADibZgs4AQEBLldM69y5s4qKitx6nMZ+OVFr+TIrf+etL/PyBrN9YZan1DUu/P61Do39/XPny9QAAGhtmi3gzJw5UxaLRQsXLnSsKywsVLdu3dx6HH/8ciKzMdv+45isG+PSOrFPAAD+ptFf9FmX2i9Uk6QhQ4bo7bff1ptvvqm9e/cqIyNDubm5GjdunCc3CQAAAAAOHg04NptNOTk5kqShQ4dq7ty5WrFihUaOHKmPPvpImZmZ6tSpkyc3CQAAAAAOTXqL2ulfknb6cnJyspKTk5uyCQAAAABoMI+ewQEAAACAlkTAAQAAAGAaBBwAAAAApkHAAQAAAGAaBBwAAAAApkHAAQAAAGAaBBwAAAAApkHAAQAAAGAaBBwAAAAApkHAAQAAAGAaBBwAAAAApkHAAQAAAGAaBBwAAAAApkHAAQAAAGAaBBwAAAAApkHAAQAAAGAaBBwAAAAApkHAAQAAAGAaBBwAAAAApkHAAQAAAGAaBBwAAAAApkHAAQAAAGAaBBwAAAAApkHAAQAAAGAaBBwAAAAApkHAAQAAAGAaBBwAAAAApkHAAQAAAGAaBBwAAAAApkHAAQAAAGAaBBwAAAAApkHAAQAAAGAaBBwAAAAApkHAAQAAAGAajQ44VVVVGjlypL744ot62+zYsUPJyclKSEjQmDFjVFBQ0NjNAQAAAMBZNSrgVFZW6qGHHtKuXbvqbVNWVqaUlBQlJSVpw4YNslqtmjRpksrKyhpdLAAAAACcidsBp6ioSLfccot++OGHM7bLyclRSEiIUlNT1aVLF82ZM0fh4eHatGlTo4sFAAAAgDNxO+Bs27ZNffr0UXZ29hnb5efnKzExURaLRZJksVjUq1cv5eXlNapQAAAAADibIHfvcPvttzeond1uV9euXZ3WRUdHn/FtbQAAAADQFG4HnIYqLy9XcHCw07rg4GBVVVW59Tj/PgEEH2aWfVjbD7P0x1MYl9atMfuFfQkA8GXNFnBCQkJcwkxVVZVCQ0Pdepzo6HM9WRa8LCoqvKVL8DiOyboxLq2PGX//AAA4m2YLODExMSouLnZaV1xcrA4dOrj1OIcPH5VhuL/9wMAAJvdWoKTkuE6erGnpMjzCYjn1Ir6xx6RZ1TUu/P61Do39/avdpwAA+KJm+6LPhIQEffPNNzL+/YrHMAx9/fXXSkhIcOtxDKNxP2g9GrsPW+OP2frTXOOC1qMp+xQAAF/k0YBjt9tVUVEhSRo+fLiOHDmiBQsWqKioSAsWLFB5eblGjBjhyU0CAAAAgINHA47NZlNOTo4kKSIiQitXrlRubq5Gjx6t/Px8rVq1Sm3atPHkJgEAAADAoUmfwdm5c+cZl3v27KmNGzc2ZRMAAAAA0GDN9hkcAAAAAPA2Ag4AAAAA0yDgAAAAADANAg4AAAAA0yDgAAAAADANAg4AAAAA0yDgAAAAADANAg4AwKdVVlZq9uzZSkpKks1mU1ZWVr1tP/74Y914442yWq264YYb9OGHH3qxUgCANxBwAAA+bfHixSooKNCaNWs0d+5cZWRkaNOmTS7tCgsLNXXqVI0ZM0Zvvvmmxo4dqwceeECFhYUtUDUAoLkEtXQBAAA0VllZmdavX6/Vq1crLi5OcXFx2rVrl9atW6fhw4c7tX3nnXfUt29fTZgwQZJ0ySWX6KOPPtLf/vY39ejRoyXKBwA0AwIOAMBnFRYWqrq6Wlar1bEuMTFRL7zwgmpqahQQ8J83Ktx00006ceKEy2McPXrUK7UCALyDgAMA8Fl2u11RUVEKDg52rGvXrp0qKytVWlqqtm3bOtZ36dLF6b67du3S559/rrFjx7q9XYul8TV7U22dvlKvp9F/539bE2/U1Jr77w1m6787/SDgAAB8Vnl5uVO4keRYrqqqqvd+v/zyi6ZNm6ZevXrpmmuucXu70dHnun2fluRr9Xoa/W9d/Y+KCvfq9lpb/73NH/tPwAEA+KyQkBCXIFO7HBoaWud9iouLddddd8kwDD377LNOb2NrqMOHj8ow3K/X2yyWUy9ufKVeT6P/zv0PDAzwerioS0nJcZ08WdPs22H/m6v/tf1pCAIOAMBnxcTEqKSkRNXV1QoKOjWl2e12hYaGKjIy0qX9wYMHHRcZWLt2rdNb2NxhGPKpFwy+Vq+n0f/W139v1tMa++9N/th/LhMNAPBZsbGxCgoKUl5enmNdbm6u4uPjXc7MlJWV6Z577lFAQIBefvllxcTEeLlaAIA3EHAAAD4rLCxMo0aNUlpamrZv367NmzcrKyvLcZbGbreroqJCkrRy5Ur98MMPWrRokeM2u93OVdQAwGR4ixoAwKfNmjVLaWlpuvPOOxUREaFp06Zp6NChkiSbzaaFCxdq9OjReu+991RRUaHk5GSn+99000166qmnWqJ0AEAzIOAAAHxaWFiYFi1a5Dgz82s7d+50/H/Tpk3eLAsA0EJ4ixoAAAAA0yDgAAAAADANAg4AAAAA0yDgAAAAADANAg4AAAAA0yDgAAAAADANAg4AAAAA0yDgAAAAADANAg4AAAAA0yDgAAAAADANAg4AAAAA0yDgAAAAADANAg4AAAAA0yDgAAAAADANAg4AAAAA03A74FRWVmr27NlKSkqSzWZTVlZWvW0nT56s7t27O/1s2bKlSQUDAAAAQH2C3L3D4sWLVVBQoDVr1ujAgQOaMWOGLrzwQg0fPtyl7e7du5Wenq5+/fo51p133nlNqxgAAAAA6uFWwCkrK9P69eu1evVqxcXFKS4uTrt27dK6detcAk5VVZX279+v+Ph4tW/f3qNFAwAAAEBd3HqLWmFhoaqrq2W1Wh3rEhMTlZ+fr5qaGqe2e/bskcVi0cUXX+yZSgEAAADgLNw6g2O32xUVFaXg4GDHunbt2qmyslKlpaVq27atY/2ePXsUERGh1NRUbdu2TR07dtS0adM0cOBAtwq0WNxqjlbILPuwth9m6Y+nMC6tW2P2C/sSAODL3Ao45eXlTuFGkmO5qqrKaf2ePXtUUVEhm82mlJQUffDBB5o8ebKys7MVHx/f4G1GR5/rToloZaKiwlu6BI/jmKwb49L6mPH3DwCAs3Er4ISEhLgEmdrl0NBQp/VTpkzR+PHjHRcV6NGjh7799lu99tprbgWcw4ePyjDcqfKUwMAAJvdWoKTkuE6erDl7Qx9gsZx6Ed/YY9Ks6hoXfv9ah8b+/tXuUwAAfJFbAScmJkYlJSWqrq5WUNCpu9rtdoWGhioyMtKpbUBAgMsV0zp37qyioiK3CjQM8WLSx5lt/3FM1o1xaZ3YJwAAf+PWRQZiY2MVFBSkvLw8x7rc3FzFx8crIMD5oWbOnKlZs2Y5rSssLFTnzp0bXy0AAAAAnIFbAScsLEyjRo1SWlqatm/frs2bNysrK0sTJkyQdOpsTkVFhSRpyJAhevvtt/Xmm29q7969ysjIUG5ursaNG+f5XgAAAACA3Aw4kjRr1izFxcXpzjvv1Lx58zRt2jQNHTpUkmSz2ZSTkyNJGjp0qObOnasVK1Zo5MiR+uijj5SZmalOnTp5tgcAAAAA8G9ufQZHOnUWZ9GiRVq0aJHLbTt37nRaTk5OVnJycuOrAwAAAAA3uH0GBwAAAABaKwIOAAAAANMg4AAAAAAwDQIOAAAAANMg4AAAAAAwDQIOAAAAANMg4AAAAAAwDQIOAAAAANMg4AAAAAAwDQIOAAAAANMg4AAAAAAwDQIOAAAAANMg4AAAAAAwDQIOAAAAANMg4AAAAAAwDQIOAAAAANMg4AAAAAAwDQIOAAAAANMg4AAAAAAwDQIOAAAAANMg4AAAAAAwDQIOAAAAANMg4AAAAAAwDQIOAAAAANMg4AAAAAAwDQIOAAAAANMg4AAAAAAwDQIOAAAAANMg4AAAAAAwDQIOAAAAANMg4AAAAAAwDQIOAAAAANMg4AAAAAAwDQIOAAAAANNwO+BUVlZq9uzZSkpKks1mU1ZWVr1td+zYoeTkZCUkJGjMmDEqKChoUrEAAJyOeQkA8GtuB5zFixeroKBAa9as0dy5c5WRkaFNmza5tCsrK1NKSoqSkpK0YcMGWa1WTZo0SWVlZR4pHAAAiXkJAODMrYBTVlam9evXa86cOYqLi9O1116re+65R+vWrXNpm5OTo5CQEKWmpqpLly6aM2eOwsPD65x0AABoDOYlAMDp3Ao4hYWFqq6ultVqdaxLTExUfn6+ampqnNrm5+crMTFRFotFkmSxWNSrVy/l5eU1vWoAAMS8BABwFeROY7vdrqioKAUHBzvWtWvXTpWVlSotLVXbtm2d2nbt2tXp/tHR0dq1a5dbBQYESIbh1l2cxF0YqbDgwMY/QCN1aR/h19vv3C5ckhQY2HLXsTAM6d+vYzyi9rGCggIadEx6evvu8tb26xqX2v3ur8d/S2+/9vdPOvUc6q6WPG7d1RLzktS0uclisThCVnOr6/fTX56bJPp/ev9b+rnZ268N2P+n/m1d/TdkNPLJ05263Qo45eXlTpOIJMdyVVVVg9qe3u5s2rY91632p1t8c0KT7t9U/r79yMiwFt1+czj//PCzN/JDdY1LSx9//r79qCjzH6stMS9JTZ+bvM3fn7fov3P/W/q5yduvDdj//td/tyJ0SEiIy0RQuxwaGtqgtqe3AwCgsZiXAACncyvgxMTEqKSkRNXV1Y51drtdoaGhioyMdGlbXFzstK64uFgdOnRoQrkAAPwH8xIA4HRuBZzY2FgFBQU5fSAzNzdX8fHxCjjtjd4JCQn65ptvHO+zMwxDX3/9tRISWva0KADAPJiXAACncyvghIWFadSoUUpLS9P27du1efNmZWVlacKECZJO/dWsoqJCkjR8+HAdOXJECxYsUFFRkRYsWKDy8nKNGDHC870AAPgl5iUAwOkshpuXMigvL1daWpref/99RUREaOLEifqv//ovSVL37t21cOFCjR49WpK0fft2zZ07V7t371b37t01b948XX755R7vBADAfzEvAQB+ze2AAwAAAACtVct9SQkAAAAAeBgBBwAAAIBpEHAAAAAAmIbfBRzDMLRkyRL17dtXvXv31uLFi1VTU3PW+x09elQDBgzQhg0bvFCl97k7Lnl5eRo7dqysVquGDRum9evXe7Ha5lNZWanZs2crKSlJNptNWVlZ9bbdsWOHkpOTlZCQoDFjxqigoMCLlXqXO+Py8ccf68Ybb5TVatUNN9ygDz/80IuVeo87Y1Jr//79slqt+uKLL7xQIfyRv89x/jiX+fu85e/zE3NRPQw/86c//ckYOHCg8eWXXxqff/65YbPZjMzMzLPe77HHHjO6detmvPHGG16o0vvcGZdDhw4ZSUlJxtNPP218//33xjvvvGPEx8cbW7Zs8W7RzeCJJ54wbrjhBqOgoMB4//33DavVavztb39zaXf8+HGjf//+xlNPPWUUFRUZ8+fPN66++mrj+PHjLVB182vouHz33XdGXFycsWbNGuOf//yn8fLLLxtxcXHGd9991wJVN6+GjsmvTZw40ejWrZuxdetWL1UJf+Pvc5w/zmX+Pm/5+/zEXFQ3vws4AwcOdHoCf/PNN43Bgwef8T5ffvmlce211xr9+/f3+Sf/+rgzLn/5y1+M4cOHO6177LHHjIceeqhZa2xux48fN+Lj451+4Z9//nlj3LhxLm3Xr19vDBkyxKipqTEMwzBqamqMa6+91pTHhzvjkp6ebkycONFp3d13320888wzzV6nN7kzJrX++te/GmPHjjX9pIKW5e9znL/NZf4+b/n7/MRcVD+/eovawYMH9dNPP+mqq65yrEtMTNSPP/6oQ4cO1XmfqqoqPfbYY3r88ccVHBzsrVK9yt1xGTBggBYuXOiy/tixY81aZ3MrLCxUdXW1rFarY11iYqLy8/Nd3uKQn5+vxMREWSwWSZLFYlGvXr2cvk3dLNwZl5tuukmPPPKIy2McPXq02ev0JnfGRJJKSkqUnp6uJ554wptlws/4+xznj3OZv89b/j4/MRfVz68Cjt1ulyR16NDBsa5du3aSpJ9//rnO+7zwwgu6/PLLZbPZmr/AFuLuuHTq1ElXXnmlY/nw4cN699131a9fv+YttJnZ7XZFRUU5TfLt2rVTZWWlSktLXdr+erwkKTo6ut7jyJe5My5dunRRjx49HMu7du3S559/7vPHxuncGRNJeuqpp3TTTTfpsssu82KV8Df+Psf541zm7/OWv89PzEX1C2rpAjytoqJCBw8erPO2srIySXI6EGr/X1VV5dK+qKhIr776qt56661mqNS7PDkupz/utGnT1K5dO916660eqrZllJeXu/wFs75xqK/t2cbLF7kzLr/2yy+/aNq0aerVq5euueaaZq3R29wZk88++0y5ubl65513vFYfzMvf5zjmMmf+Pm/5+/zEXFQ/0wWc/Px8TZgwoc7b/vu//1vSqZ0eEhLi+L8khYWFObU1DEOPPvqopk+f7vgLkC/z1Lj82vHjxzVlyhT985//1F/+8pcztvUFISEhLk8ItcuhoaENant6OzNwZ1xqFRcX66677pJhGHr22WcVEGCuk8UNHZOKigo9/vjjmjt3rimPDXifv89xzGXO/H3e8vf5ibmofqYLOH369NHOnTvrvO3gwYNKT0+X3W5Xp06dJP3nlHb79u2d2h44cEDffPONdu7cqUWLFkk6lZTnzp2rnJwcZWZmNmMvPM9T41Lr2LFjuueee/TDDz9ozZo1uvTSS5ulbm+KiYlRSUmJqqurFRR06lfDbrcrNDRUkZGRLm2Li4ud1hUXF7uc/jcDd8ZFOnU81b4AWbt2rdq2bevVer2hoWOyfft27du3T9OnT3e6/7333qtRo0b5xfug4Vn+Pscxlznz93nL3+cn5qL6mS7gnElMTIwuvPBC5ebmOp78cnNzdeGFF7r8gsfExOj99993Wjd+/HiNHz9ev//9771Wsze4My6SVFNTo6lTp2r//v166aWX1KVLF2+X3CxiY2MVFBSkvLw8JSUlSTo1DvHx8S5/4UlISNDq1atlGIYsFosMw9DXX3+t++67ryVKb1bujEtZWZnuueceBQQEaO3atfW+qPB1DR2Tnj17ujyPDB06VE8++aT69+/v1Zphfv4+x/njXObv85a/z0/MRWfQchdwaxkrV640bDabsXXrVmPr1q2GzWYzsrKyHLcfPnzYOHbsWJ33HTx4sE9fTvFM3BmX7Oxso0ePHsaWLVuMQ4cOOX5KSkpaqHrPeeyxx4zrr7/eyM/PNz744AOjV69exnvvvWcYxqnvTCgvLzcMwzCOHj1q9O3b15g/f76xa9cuY/78+Ub//v19/vsE6tPQcXnmmWeMnj17Gvn5+U7HxpEjR1qy/GbR0DE5ndkvzYmW5e9znD/OZf4+b/n7/MRcVDe/CzjV1dXGH/7wByMpKcno06ePkZ6e7rgmvGGceoJ/9tln67yvGZ786+POuNx9991Gt27dXH7OdN11X1FWVmakpqYaV155pWGz2Yw///nPjttO/xK8/Px8Y9SoUUZ8fLxx8803G99++20LVOwdDR2XYcOG1XlszJgxo4Uqbz7uHCu/ZvZJBS3L3+c4f5zL/H3e8vf5ibmobhbDMIyWPosEAAAAAJ7gu5eOAAAAAIDTEHAAAAAAmAYBBwAAAIBpEHAAAAAAmAYBBwAAAIBpEHAAAAAAmAYBBwAAAIBpEHAAAAAAmAYBBwAAAIBpEHAAAAAAmAYBBwAAAIBpEHAAAAAAmMb/Bx5Qc61L/gwaAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 1000x500 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Visualize Weights and Biases\n",
"for layer in model.layers:\n",
" if 'dense' in layer.name:\n",
" weights, biases = layer.get_weights()\n",
" plt.figure(figsize=(10, 5))\n",
" plt.subplot(1, 2, 1)\n",
" plt.hist(weights.flatten())\n",
" plt.title(f'{layer.name} weights')\n",
" plt.subplot(1, 2, 2)\n",
" plt.hist(biases.flatten())\n",
" plt.title(f'{layer.name} biases')\n",
" plt.show()\n"
]
},
{
"cell_type": "markdown",
"id": "7f3da1aa73d186e1",
"metadata": {
"collapsed": false
},
"source": [
"\n",
"# Confusion Matrix\n",
"\n",
"This code block plots the confusion matrix for the model's predictions on the testing set. The confusion matrix is a table that is often used to describe the performance of a classification model on a set of test data for which the true values are known. The confusion matrix shows the number of true positive, true negative, false positive, and false negative predictions made by the model."
]
},
{
"cell_type": "code",
"execution_count": 58,
"id": "92964bc26d5c26cc",
"metadata": {
"ExecuteTime": {
"end_time": "2024-03-21T13:52:30.791950Z",
"start_time": "2024-03-21T13:52:30.700421Z"
},
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAcQAAAHUCAYAAACkiViEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABLL0lEQVR4nO3de3zP9f//8dvbZjOGMTPmGMlxZm1OH2ROOVYTCeVcyEaEGCUM+2TkNIf5OER8JUaF+igppZyaDDHNRGwOm8Octr3Z9vvDz/vT2xtt9Wbsdb92eV0+e7+er9fr/Xy967P7Ho/36/V+m7KysrIQERExuHy5PQEREZFHgQJRREQEBaKIiAigQBQREQEUiCIiIoACUUREBFAgioiIAApEERERQIEoYhj6DA6R+1Mgit0dOHCAkSNHEhAQQO3atWnZsiXvvvsuJ0+efGDP+eGHH9KoUSNq167NvHnz7HLMXbt2UbVqVXbt2mWX4+WmefPmsXjx4r/crnnz5owePfohzEjk0WPSR7eJPa1cuZIpU6ZQv359OnbsSMmSJTlx4gSLFy/m0qVLLFu2jGrVqtn1Oa9evUrdunUJCAigb9++lC1bltKlS9vluEePHuXJJ5/E1dXVDjPNPVWrViU4OJjBgwffd7tDhw7h6upK+fLlH9LMRB4djrk9Ack7oqOjmTx5Mq+88gpjx461rK9fvz4tW7YkMDCQMWPGsG7dOrs+b0pKCpmZmbRs2ZK6deva7biurq7UqVPHbsd7HNSoUSO3pyCSa9QyFbtZvHgxhQsX5q233rIZK168OKNHj6ZFixZcv34dgIyMDFauXMlzzz1H7dq1CQgIYNq0aaSnp1v2Gz16NL179yYqKorWrVtTq1YtXnjhBb7//nsA1q1bR/PmzQEYM2YMVatWBe7e+lu3bh1Vq1bl1KlTAKSlpTF+/HieeeYZatWqRZs2bazaindrmR44cIB+/fpRv359nn76aQYOHEhcXJzNPjt27KBv3774+PjQqFEjwsPDycjIuOdrt27dOry9vfn555/p1KkT3t7etG7dmq1bt3Ls2DF69eqFj48PrVq1YtOmTVb77tmzh379+lG3bl1q1apF8+bNmTNnDpmZmQCW1yQiIsLy85w5c2jVqhURERHUq1ePxo0bk5KSYvW6hYWFUbVqVXbu3GnzGn766af3PBeRx5UCUewiKyuL7du307BhQ1xcXO66Tbt27QgKCqJgwYIAjBs3jrCwMFq2bMn8+fN55ZVXWLFiBYMGDbK6AOTgwYMsXryYIUOGMHfuXBwcHBg8eDApKSkEBAQQEREBwBtvvMHq1auzPecpU6bw/fffM2rUKBYvXkyLFi2YOnUqUVFRd91+586ddOvWzbLvpEmTOH36NF27diU+Pt5q2xEjRuDn58eCBQvo0KEDixYtYs2aNfedz82bNxk+fDhdu3Zl/vz5uLi4MGLECAYOHEhAQAALFiygZMmSjBo1ijNnzgAQGxtL7969cXNzY8aMGcyfPx9/f38iIiL48ssvASyvSefOna1en8TERLZt28aMGTMICQmhaNGiVvMZNmwYFStW5L333sNsNpOYmMjkyZNp27YtgYGB2X6dRR4XapmKXVy8eJH09HTKli2bre2PHj3K2rVrGT58OP379wegUaNGlCxZkrfffpvvv/+epk2bAnDlyhXWrVtneV+rYMGCvPrqq+zcuZPWrVtTvXp1AMqXL5+jFufu3btp1KgR7du3B261dgsWLIi7u/tdt58+fToVKlRg4cKFODg4ANC4cWNatWrF7NmzmTVrlmXbl156iaCgIAAaNmzIli1b+O677+jates955OZmcnAgQN56aWXALh8+TLDhg2jV69e9OnTB4DChQvTqVMnDh48SKlSpYiNjeVf//oX4eHh5MuXz/I6bt26lV27dtG+fXvLa1KqVCmr1+fmzZuMGjUKf3//u86nQIEC/Pvf/6Z79+4sXLiQvXv34urqyoQJE/7qpRV5LCkQxS5uB8T92oJ/tnv3bgBLGN3Wvn17QkJC2LVrlyUQixcvbnWRR6lSpQBITU39R3OuX78+H3/8MWfOnKFp06Y0bdrUEmJ3un79OgcOHCA4ONhyrgBFihShWbNmbNu2zWp7X19fq8elSpWytIrv58/73Q5mHx8fyzo3NzfgVlgCBAYGEhgYSHp6Or///jsnTpzg8OHDZGRkcOPGjb98vtt/TNxvPr1792bu3LlkZWWxdOlSm0pSJK9Qy1TsomjRohQqVIjExMR7bnP9+nVSUlIALP/r4eFhtY2joyPFihXjypUrlnV3tmBNJhOA5T2yv2vs2LEMHTqUU6dOERoaSsuWLenatSuxsbE22165coWsrCxKlChhM1aiRAmr+cKt6urP8uXLl637AO92Neu9WtBw633QsWPH4ufnR2BgIOHh4SQkJODo6Jit5ytUqNBfbtOxY0cyMzMpUaKEVTiL5DUKRLGbxo0bs2vXLquLYv7sk08+oUGDBvz666+WKiMpKclqmxs3bnDx4kWKFSv2j+dzZ7V6Z4Xm5OTEG2+8wZdffsm3337LuHHjOHnyJMOHD7c5VuHChTGZTCQnJ9uMJSUlWSq3h23y5Mls3ryZmTNnsnfvXrZs2UJ4eDiOjvZp/mRmZjJ+/HjKly/PtWvXCA8Pt8txRR5FCkSxm759+3Lp0iVmzpxpM5aUlMSSJUt48sknqVmzJvXq1QOwuWJy06ZNZGRk4Ofn94/m4urqarnw5Lbo6GjLz2lpabRu3ZolS5YA4OXlxSuvvEL79u3vWuUWLFiQWrVq8eWXX1oF7ZUrV/juu+/+8Xz/rujoaMttLbcvVjp48CAXLlywqqBvv7+YU8uWLWPv3r1MmTKFN998k1WrVrFjxw67zF3kUaP3EMVu6tSpw5tvvsnMmTOJj48nMDCQYsWKERcXx+LFi0lPT7eE5ZNPPknHjh2ZPXs2qamp1K1bl8OHDxMREUH9+vVp0qTJP5pLs2bNiIyMJDIyEh8fH7Zu3Wp1+0CBAgWoWbMmERER5M+fn6pVq/L777+zfv16WrdufddjDh8+nH79+tG/f3+6d+/OjRs3WLhwIWaz+Z7vPT5otWvX5ssvv2TVqlVUrlyZ2NhY5s+fj8lksnqPtUiRIuzdu5c9e/bc8yKaO/3+++/MnDmTLl26ULduXZ5++mk2bNjA2LFj2bBhQ7barSKPEwWi2NUbb7xBjRo1LJ9Yk5KSQunSpQkICGDgwIFWnyAzefJkKlSoQFRUFP/5z38oWbIkPXv2ZNCgQX+7orltwIABXLhwgcWLF3Pjxg0CAgKYPHkyb7zxhmWbiRMnMnPmTJYsWUJSUhLu7u507tyZN998867HbNiwIUuXLmX27Nm89dZbODk54e/vz/vvv0+VKlX+0Xz/rtGjR3Pjxg1mzpyJ2WymbNmyvPHGGxw9epStW7eSkZGBg4MDAwcOZN68ebz++ut88cUXf3nczMxMQkJCKFy4MCNHjgRuXTgVGhpK586def/995k4ceKDPj2Rh0of3SYiIoLeQxQREQEUiCIiIoACUUREBFAgioiIAApEERERQIEoIiICKBBFRESAPHpjvotvcG5PQQzi4p6I3J6CGEQBO/+2tufvydRf8sb/D/JkIIqIyF8wqUF4J70iIiIiqEIUETGm//+9ovI/CkQRESNSy9SGXhERERFUIYqIGJNapjYUiCIiRqSWqQ29IiIiIqhCFBExJrVMbSgQRUSMSC1TG3pFREREUIUoImJMapnaUCCKiBiRWqY29IqIiIigClFExJjUMrWhQBQRMSK1TG3oFREREUEVooiIMallakOBKCJiRGqZ2tArIiIigipEERFjUoVoQ4EoImJE+fQe4p30J4KIiAiqEEVEjEktUxsKRBERI9JtFzb0J4KIiAiqEEVEjEktUxsKRBERI1LL1Ib+RBAREUEVooiIMallakOBKCJiRGqZ2tCfCCIiIqhCFBExJrVMbegVERExIpPJfksOnDhxgn79+uHr60tAQACLFi2yjE2aNImqVataLStWrLCMb9y4kZYtW+Lj40NQUBAXLlywjGVlZTFt2jQaNGhAvXr1mDp1KpmZmTmamypEERF5KDIzM+nfvz/e3t6sX7+eEydO8NZbb+Hp6clzzz1HfHw8w4cPp2PHjpZ9XF1dAdi/fz9jx45lwoQJVKtWjcmTJxMSEkJkZCQAS5cuZePGjURERHDz5k1GjhyJu7s7/fr1y/b8VCGKiBiRKZ/9lmxKTk6mevXqjB8/nooVK9K0aVMaNmxIdHQ0APHx8dSoUQMPDw/L4uLiAsCKFSto27YtgYGBVKtWjalTp7Jt2zZOnjwJwPLlyxkyZAj+/v40aNCAESNGsHLlyhy9JApEEREjyoWWacmSJZk5cyaurq5kZWURHR3Nnj17qFevHlevXuXs2bNUrFjxrvvGxMTg7+9veVy6dGm8vLyIiYnh7NmznD59mrp161rG/fz8SEhI4Ny5c9men1qmIiLyj5jNZsxms9U6JycnnJyc7rlP8+bNSUxMpFmzZrRu3ZqDBw9iMplYsGAB33//PW5ubvTp08fSPj137hwlS5a0Ooa7uztnzpwhKSkJwGq8RIkSAJw5c8Zmv3tRIIqIGJEdrzKNjIwkIiLCal1wcDCDBw++5z6zZ88mOTmZ8ePHExYWRs2aNTGZTFSqVIlXX32VPXv28O677+Lq6kqrVq1IS0uzCVgnJyfMZjNpaWmWx38eA2yC+n4UiCIiRmTHQBww4DX69Oljte5+1SGAt7c3AOnp6YwYMYK9e/fSrFkz3NzcAKhWrRrHjx9n1apVtGrVCmdnZ5twM5vNuLi4WIWfs7Oz5WfA8h5kdug9RBER+UecnJxwdXW1Wu4WiMnJyWzZssVq3ZNPPsmNGze4evWqJQxvq1SpEmfPngXA09OT5ORkm+N5eHjg6ekJYGmd/vlnDw+PbJ+HAlFExIhy4aKaU6dOERwcbAk5gIMHD1K8eHE++ugjevfubbV9bGwslSpVAsDHx8dyNSrA6dOnOX36ND4+Pnh6euLl5WU1Hh0djZeXV7bfPwS1TEVEjCkXPqnG29ubmjVrMmbMGEJCQkhISCA8PJyBAwfi6+vLwoULWbx4Ma1atWL79u18+umnLF++HIBu3brRo0cP6tSpg7e3N5MnTyYgIIBy5cpZxqdNm0apUqUAmD59On379s3R/ExZWVlZ9j3l3OfiG5zbUxCDuLgn4q83ErGDAnYuX1xeiLTbsVI/G5Dtbc+ePUtoaCg7duzAxcWFV199lQEDBmAymdiyZQuzZ8/m+PHjlClThmHDhvHss89a9l23bh2zZ88mJSWFRo0aERoaSrFixQDIyMhg6tSprFu3DgcHBzp37szw4cMx5aCCVSCK/AMKRHlY7B6IgQvtdqzUT/vb7Vi5SS1TEREj0od729ArIiIigipEERFj0hcE21AgiogYUE4uNjEKtUxFRERQhSgiYkiqEG0pEEVEjEh5aEMtUxEREVQhiogYklqmthSIIiIGpEC0pZapiIgIqhBFRAxJFaItBaKIiAEpEG2pZSoiIoIqRBERY1KBaEOBKCJiQGqZ2lLLVEREBFWIIiKGpArRlgJRRMSAFIi21DIVERFBFaKIiCGpQrSlQBQRMSLloQ21TEVERFCFKCJiSGqZ2lIgiogYkALRllqmIiIiqEIUETEkVYi2FIgiIkakPLShlqmIiAiqEEVEDEktU1sKRBERA1Ig2lLLVEREBFWIIiKGpArRlgJRRMSAFIi21DIVERFBFaKIiDGpQLShQBQRMSC1TG2pZSoiIoIqRBERQ1KFaEuBKCJiQApEW2qZioiIoApRRMSYVCDaUCCKiBiQWqa21DIVEZGH5sSJE/Tr1w9fX18CAgJYtGiRZezkyZP07t2bOnXq0K5dO7Zv3261708//USHDh3w8fGhZ8+enDx50mr8ww8/pEmTJvj6+jJmzBhSU1NzNDcFYh5UqVwJPp8bRNKP0/nti4kM69nCMtbItzI/rnyb5J+ms/Pj0TSrX9Vq344t67D/03Ek/zSdDfOCKF+62F2fY93sgSyc8OoDPQ95/Pxx4gQDX+9HA39fWrcI4MMl//tltz9mHz1f6UoDf1+eb9+adWvXWO37yepVtGvdgn/Ve5o3+vfj1B2/7MS+TCaT3ZbsyszMpH///hQrVoz169czYcIE5s+fz4YNG8jKyiIoKIgSJUoQFRXFCy+8QHBwMImJiQAkJiYSFBTEiy++yNq1aylevDiDBg0iKysLgM2bNxMREcHEiRNZtmwZMTExhIeH5+g1USDmMSaTifWz3yD54hUadPs3g6d8zKjX2vByG388irmydtYA1m6Oxv+lKUR9tZc1M/pTpqQbAA18nmDZlD7M+ugbGnZ7n3TzTZb/u6/Nc7zU2o+2TWo95DOTR11mZibBg/pTrHgxVket5533JvCfyPl8sXEDyUlJDBr4Ov5167E6aj1vBA3h31NC+X7bdwD8uP0HZk4PZ1TIO/zfJ1G4uBRk2JCg3D2hPC43AjE5OZnq1aszfvx4KlasSNOmTWnYsCHR0dHs3LmTkydPMnHiRCpXrsyAAQOoU6cOUVFRAKxZs4ZatWrRt29fqlSpQlhYGAkJCezevRuA5cuX06tXL5o1a0bt2rWZMGECUVFROaoSFYh5jKd7YfYfOcWQKauJ/yOJzdsP8d3uIzT0rUTDOpW4eTOTGcu/4XjCecKXfEVa+k3q1a4IwNAeLVj1xR4WR/1I3IlzDJ+6llIliuDuVshy/GJFCjJlaCA/HzyeOycoj6zz55OpWq0674wbT4UKFWnyTFPqNWjIL3uj2bp1CyVKlGDI0LeoUKEibdu1p8PzgXy5aQMA23/YRsN/NaZpQDMqVnyCN4KC+e23I1y8eCGXz0rsqWTJksycORNXV1eysrKIjo5mz5491KtXj5iYGGrUqEHBggUt2/v5+bFv3z4AYmJi8Pf3t4y5uLhQs2ZN9u3bR0ZGBgcOHLAar1OnDjdu3CA2Njbb83skAvHixYucPXuWy5cv5/ZUHntnki/TY/RSrl5PB6ChTyUaPf0kP/wcx/mUa5Qo5soLzX0AeC6gNoULOXMw7lZLool/FT7bus9yrBOJ56nW/j3OX7pmWRc2rCP/t2k3h4+deXgnJY8FD4+ShE+fSaFCt37Z/bI3mr0/78G/Xj0aNW7CxElhNvtcuXoVgKJF3YiO3sPvx+K5efMmGz7/FK8yZShSpOjDPg3DsGeFaDabuXr1qtViNpvv+/zNmzene/fu+Pr60rp1a5KSkihZsqTVNu7u7pw5c+t3zf3GL1++THp6utW4o6Mjbm5ulv2zI9euMv3qq69YsWIF+/fvJz093bK+QIEC1KpVi169etGyZcvcml6ecOSLiZQvXZxN2w6w/pt9ZGZmseDjbfxfeD8yM7NwdHTg9XEfEXfiHEVdXShetBCODvn4fG4Q3k+VYc/B4wydsprEpBQAmtZ9isZPP4l/lynMHvNyLp+dPMratmrO6dOJPNO0GS1btcbBwYEyZcpaxs+fP8/mLzcxcNBgALq/0oNdO3cQ+Fw7HBwccHFxYenylTg4OOTWKeR9drzINDIykoiICKt1wcHBDB48+J77zJ49m+TkZMaPH09YWBipqak4OTlZbePk5GQJ1vuNp6WlWR7fa//syJUKcenSpYSEhNCwYUMWLlzIxo0b+eqrr9i4cSMLFiygQYMGjB49mo8++ig3ppdndBuxiBeHLMCnalnCR3TCtaAzFcuWYFLkFzTpEc6///Nfpr/dmacqeuJa0BmA6W+/xKovdtP5zQU453ckavZATCYTzk6ORLzTlaH//oS09Bu5fGbyqJs+czaz5y7gyJHDhL9vXRmmpaUxfOhg3EuUoHOXW39YnUs6R3p6OmHvT2PZio/x86/LmNEjrf5YlkfXgAEDiI6OtloGDBhw3328vb1p1qwZISEhfPzxx+TPn98mvMxmMwUKFADA2dn5ruMuLi44OztbHt9tPLtypUJcsmQJ77///l0rwMqVK1O/fn2qVq1KaGgoPXr0yIUZ5g17D/0BwNvTHVk6uRfXUs2YTBC28L8A7Is9RV3vigR1D2BK5BcALF3/E6s27QGgz9hlnNgyhfq1K9LuGW/2HvqDLTsO587JyGOlZi1vAMzp6YSMGsHwEW+T38mJ69eu8ebgQZw4cZwPP/o/yy+rSRPeo2WrZ2nX4TkA/j11Os+2DODbrd/Qpm27XDuPvMye9yE6OTnZVGd3k5yczL59+6x+9z/55JPcuHEDDw8Pjh07ZrP97Taop6cnycnJNuPVq1fHzc0NZ2dnkpOTqVy5MgA3b97k0qVLeHh4ZPs8cqVCTEtLo2zZsvfdxtPTkytXrjykGeUdJYsX5rmA2lbrDh87g7NTfryfKsOB3xKsxmJiT1K+dHGSL13DfOMmvx0/axm7kHKN8ynXKOtZjJdaP81zAbVJ+nE6ST9Op2vbunRtW5ekH6c/lPOSR9/55GS2frPFal2lyrd+2V29dut9pTf69+Po0Tj+s2QZFSpUtGx3+NCvVK1azfK4YKFClC9fgdOJ1v+9iv3kxlWmp06dIjg4mLNn//d75uDBgxQvXhw/Pz9+/fVXS/sTIDo6Gh+fW9c8+Pj4EB0dbRlLTU3l0KFD+Pj4kC9fPry9va3G9+3bh6OjI9Wq/e+/q7+SK4HYqlUrRo8ezc8//8zNmzetxjIzM9m7dy9jxoyhdevWuTG9x1rFMu58PP01vDz+dzGCb/VynLtwhdNJKVSrVNpq+6eeKMXxhPNkZGTyy+GTeD9VxjLm7laIEm6unEg8T+vXZ+HfZQr1u4ZRv2sYm74/wKbvD1C/q+2FEmJMCQmneOtN6192hw4dpFjx4hQt6sZbbwZz6tQplnz4EU8+WcVqXw+PksTHx1sem81mEhNOUeYv/nCWx4u3tzc1a9ZkzJgxHD16lG3bthEeHs7AgQOpV68epUuXJiQkhLi4OBYuXMj+/fvp3LkzAJ06dWLv3r0sXLiQuLg4QkJCKFu2LPXr1wege/fuLF68mC1btrB//37Gjx9Ply5dHv2W6fjx43n//ffp168fGRkZuLm5Wd78vHTpEo6OjrzwwguEhITkxvQeaz//eoJfDp9kwfhXeXt6FBW8ijNlaEemLtrMnoPH+WbJMAa/0owN3+2nQ1Nvnv1XdRp0/TcAsz76hoUTehATe4pf4xOZ/GYgMUdOsefgCZvnuXLt1l9xx04m24yJMdWs5U2NGjV5750xjBwVQmJiAjOmhfN6/4Gsj1rLnt27mBUxn8KFi5CclARA/vz5KermxoudX2LRwgVUqFiRChUqsGhhJAULFaJpQPNcPqu8Kzc+uc3BwYF58+YRGhrKyy+/jIuLCz169KBnz56YTCbmzZvH2LFjefHFF6lQoQJz587Fy8sLgLJlyzJnzhymTJnC3Llz8fX1Ze7cuZYKtX379iQkJDBu3DjMZjPPPvssI0eOzNH8TFm3b/PPBampqcTGxpKUlERqairOzs54enpSvXp1yxupf4eLb7AdZ/n4Ke1RlBmjXiKgXlWup5mZ//E2wpd8BUD7pt68+0Z7Kpfz4LfjZ3ln9md8u+uIZd8+Hf/FqNda41GsMN9HxxEcuoqEc5dsnuP2p9T0f2/FQzmnR9XFPRF/vZGBnDt3lrDJoezeuQMXFxe6dn+Vfq8PYNCA1/jpx+022/vXrcfiDz8iIyODD5csJmrtalIuXcKnji9j3nmPsuXK5cJZPJoK2Ll8qTLyv3Y7Vlx4G7sdKzflaiA+KEYPRHl4FIjysCgQHzx924WIiAHpyy5sKRBFRAxIX/9k65H46DYREZHcpgpRRMSAVCDaUiCKiBhQvnxKxDupZSoiIoIqRBERQ1LL1JYqRBEREVQhiogYkm67sKVAFBExIOWhLbVMRUREUIUoImJIapnaUiCKiBiQAtGWWqYiIiKoQhQRMSQViLYUiCIiBqSWqS21TEVERFCFKCJiSCoQbSkQRUQMSC1TW2qZioiIoApRRMSQVCDaUiCKiBiQWqa21DIVERFBFaKIiCGpQLSlQBQRMSC1TG2pZSoiIoIqRBERQ1KBaEuBKCJiQGqZ2lLLVEREBFWIIiKGpALRlgJRRMSA1DK1pZapiIgIqhBFRAxJBaItBaKIiAGpZWpLLVMRERFUIYqIGJIqRFsKRBERA1Ie2lLLVEREBFWIIiKGpJapLQWiiIgBKQ9tqWUqIiKCAlFExJBMJpPdlpw4e/YsQ4YMoV69ejRp0oSwsDDS09MBmDRpElWrVrVaVqxYYdl348aNtGzZEh8fH4KCgrhw4YJlLCsri2nTptGgQQPq1avH1KlTyczMzNHc1DIVETGg3GiZZmVlMWTIEIoUKcLKlStJSUlhzJgx5MuXj1GjRhEfH8/w4cPp2LGjZR9XV1cA9u/fz9ixY5kwYQLVqlVj8uTJhISEEBkZCcDSpUvZuHEjERER3Lx5k5EjR+Lu7k6/fv2yPT9ViCIi8lAcO3aMffv2ERYWRpUqVfD392fIkCFs3LgRgPj4eGrUqIGHh4dlcXFxAWDFihW0bduWwMBAqlWrxtSpU9m2bRsnT54EYPny5QwZMgR/f38aNGjAiBEjWLlyZY7mp0AUETGgfCaT3Zbs8vDwYNGiRZQoUcJq/dWrV7l69Spnz56lYsWKd903JiYGf39/y+PSpUvj5eVFTEwMZ8+e5fTp09StW9cy7ufnR0JCAufOncv+a5LtLUVEJM8wmey3mM1mS6jdXsxms81zFilShCZNmlgeZ2ZmsmLFCho0aEB8fDwmk4kFCxbwzDPP8Pzzz7N+/XrLtufOnaNkyZJWx3N3d+fMmTMkJSUBWI3fDt0zZ85k+zXRe4giIvKPREZGEhERYbUuODiYwYMH33e/8PBwDh06xNq1a/n1118xmUxUqlSJV199lT179vDuu+/i6upKq1atSEtLw8nJyWp/JycnzGYzaWlplsd/HgPuGsz3okAUETEge96YP2DAAPr06WO17s7wulN4eDjLli1jxowZPPXUU1SpUoVmzZrh5uYGQLVq1Th+/DirVq2iVatWODs724Sb2WzGxcXFKvycnZ0tPwOW9yCzQ4EoImJA+ex4lamTk9NfBuCfhYaGsmrVKsLDw2ndujVwK6Bvh+FtlSpVYufOnQB4enqSnJxsNZ6cnIyHhweenp4AJCUlUbZsWcvPcOt9y+zSe4giIvLQRERE8PHHH/PBBx/Qvn17y/pZs2bRu3dvq21jY2OpVKkSAD4+PkRHR1vGTp8+zenTp/Hx8cHT0xMvLy+r8ejoaLy8vGzed7wfVYgiIgaUG59lGh8fz7x58+jfvz9+fn6WKg6gWbNmLFy4kMWLF9OqVSu2b9/Op59+yvLlywHo1q0bPXr0oE6dOnh7ezN58mQCAgIoV66cZXzatGmUKlUKgOnTp9O3b98czU+BKCJiQLlxY/4333xDRkYG8+fPZ/78+VZjR44cYdasWcyePZtZs2ZRpkwZpk+fjq+vLwC+vr5MnDiR2bNnk5KSQqNGjQgNDbXs369fP86fP09wcDAODg507tzZpuL8K6asrKysf3yWjxgX3+DcnoIYxMU9EX+9kYgdFLBz+dI+crfdjrVpQD27HSs3qUIUETEgE/q6izspEEVEDMieV5nmFbrKVEREBFWIIiKGlBtXmT7qFIgiIgakPLSllqmIiAiqEEVEDCknX9tkFApEEREDUh7aynHL9OrVq0ybNo1jx46RmZnJ22+/TZ06dejevTsJCQkPYo4iIiIPXI4DccKECWzbtg2TycSGDRv46quvmDJlCiVKlGDChAkPYo4iImJnJpPJbktekeOW6bZt21i+fDlPPPEE4eHhNGvWjHbt2lGjRg06duz4IOYoIiJ2lodyzG5yXCFmZWWRP39+0tLS2LFjB02bNgUgJSWFggUL2n2CIiIiD0OOK8QGDRrw7rvvUrBgQfLly0fLli3ZsWMHoaGhNG/e/EHMUURE7ExXmdrKcYU4ZcoUatSogZOTE3PnzsXV1ZUjR47QtGlTxo4d+yDmKCIidmay45JX5LhCLFy4MO+8847Vuueff55ixYrlqTdXRUTEWHJcIZ49e5Zhw4Zx+PBh0tPTefXVV2nUqBEtWrQgNjb2QcxRRETsTFeZ2spxII4fP54LFy7g5ubGunXr+O233/j4449p1qyZ1bcXi4jIoyufyX5LXpHjlunOnTtZt24dpUuXZsuWLbRo0QIfHx+KFy9Ohw4dHsQcRUREHrgcV4jOzs6kp6eTkpLCrl27CAgIAODUqVMULVrU3vMTEZEHQC1TWzmuEFu2bMnQoUMpUKAARYsWJSAggC+++IIpU6boxnwRkcdEHsoxu8lxII4fP54VK1aQkJDAyy+/jLOzM2azmYEDB/LKK688iDmKiIg8cDkOREdHR3r37m21LjAwEIAbN26QP39+e8xLREQeoLzU6rSXHAdicnIykZGRHD16lIyMDODWx7nduHGD+Ph49uzZY/dJioiIfeWlq0PtJccX1YwZM4YffvgBb29v9u7da7nCdP/+/QwePPhBzFFEROSBy3GFuGfPHpYsWYKvry8//vgjAQEB+Pn5sXDhQr7//nt69uz5IOYpIiJ2pJaprb/1bReenp4APPnkkxw6dAiAtm3bcuDAAfvOTkREHgh9lqmtHAdijRo1+OyzzwCoXr06P/74I3DrPkQREZHHVY5bpsOHD2fgwIG4uLjwwgsvsGjRIp577jkSExN5/vnnH8QcRUTEzvT1T7ZyHIh+fn58++23pKWlUaxYMaKiotiyZQtubm60bdv2QcxRRETsTHloK8eBCODq6oqrqysAnp6euiFfREQee9kKxGrVqmX7iqTDhw//owmJiMiDp6tMbWUrEJcvX/6g5yEiIg+R8tBWtgKxXr16Vo+3bdtGvnz5aNKkCQCTJ0+mSZMmPPPMM/afoYiIyEOQ49suPvroI4YNG0ZycrJlnaOjI0OHDuWTTz6x6+REROTByGcy2W3JK3IciEuXLmX69OlWX/U0atQowsPDWbhwoV0nJyIiD4bJZL8lr8hxIF68eJHy5cvbrH/iiSesqkYREZHHSY4D0c/Pjzlz5pCammpZl56ezoIFC/D19bXr5ERE5MG481vv/8mSV+T4PsRx48bRt29fGjduTMWKFQH4448/KFGiBPPmzbP3/P6W37fNyO0piEEUa/t+bk9BDCL161F2PV6OqyEDyHEgli9fni+++IIffviB48eP4+joSMWKFWncuDEODg4PYo4iIiIP3N/6pBonJydatGhh77mIiMhDkpdanfbytwJRREQeb/mUhzbURhYREUEVooiIIalCtPW3KsSMjAy+++47PvzwQy5fvkxMTAxXrlyx99xEROQBya3bLs6ePcuQIUOoV68eTZo0ISwsjPT0dABOnjxJ7969qVOnDu3atWP79u1W+/7000906NABHx8fevbsycmTJ63GP/zwQ5o0aYKvry9jxoyxuj0wO3IciKdPn+a5555jzJgxhIeHk5KSwqJFi2jbti1HjhzJ6eFERMQgsrKyGDJkCKmpqaxcuZIZM2bw7bffMnPmTLKysggKCqJEiRJERUXxwgsvEBwcTGJiIgCJiYkEBQXx4osvsnbtWooXL86gQYPIysoCYPPmzURERDBx4kSWLVtGTEwM4eHhOZpfjgNx4sSJ+Pn58cMPP+Dk5ATABx98wL/+9S8mTZqU08OJiEguyGey35Jdx44dY9++fYSFhVGlShX8/f0ZMmQIGzduZOfOnZw8eZKJEydSuXJlBgwYQJ06dYiKigJgzZo11KpVi759+1KlShXCwsJISEhg9+7dwK1vZerVqxfNmjWjdu3aTJgwgaioqBxViTkOxJ9//pm+ffta3XOYP39+Bg0axMGDB3N6OBERyQW58VmmHh4eLFq0iBIlSlitv3r1KjExMdSoUYOCBQta1vv5+bFv3z4AYmJi8Pf3t4y5uLhQs2ZN9u3bR0ZGBgcOHLAar1OnDjdu3CA2Njbb88vxRTUFChTg/PnzPPHEE1brf//9d1xdXXN6OBERecyZzWbMZrPVOicnJ0sX8bYiRYpYvjYQIDMzkxUrVtCgQQOSkpIoWbKk1fbu7u6cOXMG4L7jly9fJj093Wrc0dERNzc3y/7ZkeMKsWvXrowbN47vvvsOuBWEUVFRvPvuu3Tu3DmnhxMRkVxgz69/ioyMxM/Pz2qJjIz8yzmEh4dz6NAhhg0bRmpqqk2AOjk5WYL2fuNpaWmWx/faPztyXCEGBQVRpEgRxo8fT2pqKv3798fd3Z3evXvTr1+/nB5ORERygT1vQh8wYAB9+vSxWndnON0pPDycZcuWMWPGDJ566imcnZ25dOmS1TZms5kCBQoA4OzsbBNuZrOZIkWK4OzsbHl857iLi0u2z+Nv3YfYo0cPevTowfXr18nIyKBw4cJ/5zAiIpIH3K09ej+hoaGsWrWK8PBwWrduDYCnpydHjx612i45OdnSBvX09LT5isHk5GSqV6+Om5sbzs7OJCcnU7lyZQBu3rzJpUuX8PDwyPa8chyIn3766X3HAwMDc3pIERF5yHLro0wjIiL4+OOP+eCDD2jTpo1lvY+PDwsXLiQtLc1SFUZHR+Pn52cZj46OtmyfmprKoUOHCA4OJl++fHh7exMdHU39+vUB2LdvH46OjlSrVi3bc8txIM6ePdvqcUZGBufPn8fR0ZHatWsrEEVEHgP5ciER4+PjmTdvHv3798fPz4+kpCTLWL169ShdujQhISEMGjSIb7/9lv379xMWFgZAp06dWLx4MQsXLqRZs2bMnTuXsmXLWgKwe/fujBs3jqeeeoqSJUsyfvx4unTp8mBbplu3brVZd+3aNcaNG0fVqlVzejgRETGIb775hoyMDObPn8/8+fOtxo4cOcK8efMYO3YsL774IhUqVGDu3Ll4eXkBULZsWebMmcOUKVOYO3cuvr6+zJ071/JJOe3btychIYFx48ZhNpt59tlnGTlyZI7mZ8q6fZv/P3T8+HG6devGjh077HG4f+TM5Ru5PQUxiCc6fZDbUxCDsPcXBI/bHGe3Y01sXcVux8pNdvtw79jYWDIzM+11OBEReYD04d62chyIPXr0sPkw12vXrnHkyBF69+5tr3mJiIg8VDkOxNtvYP6Zk5MTI0aMoGHDhnaZlIiIPFi5cVHNoy7HgXjp0iV69uxJ+fLlH8R8RETkIVAe2srxhxV8/vnn5Mtnz884EBERyX05rhB79+7NhAkT6N27N15eXpaPzLnt9iWyIiLy6NJFNbb+9o35P/zwA4DlApusrCxMJhOHDx+24/RERORBMKFEvFO2AnHPnj34+vri6OjIN99886DnJCIi8tBlKxB79uzJ9u3bcXd3p0yZMg96TiIi8oCpZWorW4Fopw+zERGRR4QC0Va2Lxe982Z8ERGRvCTbF9V06tQpW7db6D1GEZFHn4ocW9kOxD59+uiLgEVE8gi1TG1lKxBNJhPt27fH3d39Qc9HREQkV+iiGhERA1LH1Fa2ArFjx442n0gjIiKPL324t61sBWJYWNiDnoeIiEiustsXBIuIyONDF9XYUiCKiBiQOqa29D1OIiIiqEIUETGkfPq2CxsKRBERA1LL1JZapiIiIqhCFBExJF1lakuBKCJiQLox35ZapiIiIqhCFBExJBWIthSIIiIGpJapLbVMRUREUIUoImJIKhBtKRBFRAxI7UFbek1ERERQhSgiYkgm9UxtKBBFRAxIcWhLLVMRERFUIYqIGJLuQ7SlQBQRMSDFoS21TEVERFCFKCJiSOqY2lIgiogYkG67sKWWqYiICKoQRUQMSdWQLb0mIiIGZDKZ7Lb8HWazmQ4dOrBr1y7LukmTJlG1alWrZcWKFZbxjRs30rJlS3x8fAgKCuLChQuWsaysLKZNm0aDBg2oV68eU6dOJTMzM0dzUoUoIiIPVXp6OsOHDycuLs5qfXx8PMOHD6djx46Wda6urgDs37+fsWPHMmHCBKpVq8bkyZMJCQkhMjISgKVLl7Jx40YiIiK4efMmI0eOxN3dnX79+mV7XqoQRUQMyGTHJSeOHj1Kly5d+OOPP2zG4uPjqVGjBh4eHpbFxcUFgBUrVtC2bVsCAwOpVq0aU6dOZdu2bZw8eRKA5cuXM2TIEPz9/WnQoAEjRoxg5cqVOZqbAlFExIByq2W6e/du6tevz+rVq63WX716lbNnz1KxYsW77hcTE4O/v7/lcenSpfHy8iImJoazZ89y+vRp6tataxn38/MjISGBc+fOZXtuapmKiMg/YjabMZvNVuucnJxwcnKy2bZ79+53PUZ8fDwmk4kFCxbw/fff4+bmRp8+fSzt03PnzlGyZEmrfdzd3Tlz5gxJSUkAVuMlSpQA4MyZMzb73YsCUUTEgOzZHoyMjCQiIsJqXXBwMIMHD872MY4dO4bJZKJSpUq8+uqr7Nmzh3fffRdXV1datWpFWlqaTcA6OTlhNptJS0uzPP7zGGAT1PejQBQRMSB73pg/YMAA+vTpY7XubtXh/QQGBtKsWTPc3NwAqFatGsePH2fVqlW0atUKZ2dnm3Azm824uLhYhZ+zs7PlZ8DyHmR26D1EERH5R5ycnHB1dbVachqIJpPJEoa3VapUibNnzwLg6elJcnKy1XhycjIeHh54enoCWFqnf/7Zw8Mj23NQIIqIGFBuXWV6L7NmzaJ3795W62JjY6lUqRIAPj4+REdHW8ZOnz7N6dOn8fHxwdPTEy8vL6vx6OhovLy8sv3+IahlKiJiSI/aR5k2a9aMhQsXsnjxYlq1asX27dv59NNPWb58OQDdunWjR48e1KlTB29vbyZPnkxAQADlypWzjE+bNo1SpUoBMH36dPr27ZujOSgQRUQk19WuXZtZs2Yxe/ZsZs2aRZkyZZg+fTq+vr4A+Pr6MnHiRGbPnk1KSgqNGjUiNDTUsn+/fv04f/48wcHBODg40LlzZ5uK86+YsrKysux5Uo+CM5dv5PYUxCCe6PRBbk9BDCL161F2Pd6GA2ftdqznvD3tdqzcpApRRMSAHrWW6aNAF9WIiIigClFExJBMdrs+NO9QIIqIGJBaprbUMhUREUEVooiIIeVTy9SGAlFExIDUMrWllqmIiAiqEEVEDEkVoi0FooiIAem2C1tqmYqIiKAKUUTEkPKpQLShQBQRMSC1TG2pZSoiIoIqRBERQ9JVprYUiCIiBqSWqS21TEVERFCFKCJiSLrK1JYqRAMwm83MeH8S7Zv/i8DWz7Bw7kyysrKsttm/by9dX2hzz2N8u2UzTevWetBTlcdMJS83Pg/rQtLnw/ht5RsMe6meZWzaoBakfj3Kahn4wtOW8aGd63F4+QBOr3+TyBHtKFQg/12fY8bgVmye1u2Bn4vRmOz4T16hCtEA5kwPY+/Pu5k2J5Lr164xYexISpX24vkXuwAQf/Q33hs1DCdn57vuf+XKZWZPC3uYU5bHgMkE6yd1JvrIGRq88SFPlinGsjHPk5h8hdXfHqZa+RK8u+g7PvrqoGWfy9fTAejX3oexPRsRNOO/HDiWxNQ3mvPhmOd4adw6q+doUKMM/Tv4sv3AyYd6bmJMqhDzuMspKWz6bD0jx4ynek1v/Oo14OVXenHo4H4APl/3CUH9XqWYu/s9jzF/1nTKlC33sKYsjwnPYoXYH3+OIbO/Ij7hIpt3H+O7X47TsFZZAKqVd+eXo2c5e/GaZUlNvwnAGy/4MWvtHj759jCHTyTz+tRNtKv/JFXKFrccP79jPiKGtmbX4YRcOb+8zmSy35JXKBDzuAP79uLq6kodv7qWda/0fo3R4yYBsOun7Yx5bzIvdet51/33Re9h3949vNqn/0OZrzw+zly4Ro/Jn3M11QxAw5plaORdjh9iTlK4oBNlPAoTd+rCXfd9orQbe2ITrY6VlHKd+jW8LOtGdG3Awd+T+Cb6+AM9D6My2XHJKxSIeVxiwilKeXnx302f0aPzc3R9oQ3LFi0gMzMTgMnTZvNM81Z33ddsNjNtygSGvT0W5wJ3b6eKABxZMZCtM19l16FE1m8/QrXy7mRmZjGq+784+n+D2LWgD6+0+t970OcuXsPLvbDlccEC+SleuAAlihQE4Klyxen/nC9vz//moZ+LGJfeQ8zjUlOvc+qPP9iwbg2jxoVyITmJaWETKVCgAC+/2vu++y5fvIAq1apTt0Ejfone/XAmLI+lbhM/xbNYIWYPeZbwgc3ZG3eWrKwsfjt5nvmfRtOkdjnmDm3NlevpfP5jHGu3xTKyWwN++vUUx09f4v0BzQHIn//W3+hzh7Zh0vLtnLt0PTdPK0/Ll5d6nXaiQMzjHBwcuHbtKu9Omkqp0rfaUWfPnOHTqI/vG4jHjsaxYf1alq5ad89tRG7b+9sZAN5esJWlozsQEjiTL3Ye5eKVNAAO/p5ElbLFef05Xz7/MY6wlT/xRGk39v6nHzduZrB40z72x5/jynUz/dr74OBgYvGmmNw8pTxPcWgr1wJxz5492d62bt26f72R3JV7CQ+cnJ0tYQhQrkJFzp09c9/9vv/2a65cTqF7x7YAZPz/FmubZ+oyPOQ9WrXt8OAmLY+Fkm4FqV+jDBt+irOsO3wiGWcnRwq7OHH+cqrV9rF/nKdpnQoAXE+7wauTPqNIQSeygCvXzZz4JJgTZ1J4s3Ndnq5SiqTPhwHg5OiAQz4TSZ8P4+l+iziZdOWhnaMYS64F4sSJEzl69CiAzT1xf2YymTh8+PDDmlaeU6NWbczp6Zw8cZxyFSoCcOL4MauAvJsXu7xCyzb/C73DB/czadxoFq2Monjxe1+RKsZRsbQbH7/XkSrd55F4/ioAvk+V4tzFawzq6EeDGmVoP2q1ZfvalUvy28nzAEx+LYBDJ5JZ+fWtWzL8nipF0ULO7DyUQMy/z1LA+X+/moIC/ahbzYve/95geR6xA5WINnItEKOionjrrbc4deoUq1evxvke98DJP1O+4hM0bPwMYRPG8tbod7lw/jz/t2wxPfre/6rRIkWLUqRoUcvjpHO3Ksqy5co/0PnK4+PnI6f5Je4MC0a04+3531ChVFGmvB7A1FU72PlrAiO7NmBo53p89uNvtPSryCutatFmxCoATp+/ytgejYg9kUxmVhZLRnfgPxv3cfFKGhfveJ4LV9JINd/kWOKlh36OeVleuqHeXnLtKlMnJyc++OADAGbOnJlb0zCEd0Lfp0y58gS/3pMp40Po+FI3Or38Sm5PSx5zmZlZvPTeOq6nmfludg/mv9WGeZ9GM3d9NNG/naH7xE/p1rIm0f/py6CO/vQO28Cuw7dutZj3WTSbdhzl0ykv8enkl/hyVzyjI7fm8hmJ0Zmy7tevfAji4+PZvXs33brZ76OZzly+YbdjidzPE50+yO0piEGkfj3KrsfbfSzFbseqV6noX2/0GMj1q0wrV65M5cqVc3saIiKGooapLd2YLyIiwiNQIYqISC5QiWhDgSgiYkC6ytSWWqYiIiKoQhQRMSR9lKktVYgiIiKoQhQRMSQViLYUiCIiRqREtKGWqYiICKoQRUQMSbdd2FIgiogYkK4ytaWWqYiICApEERFDMtlx+TvMZjMdOnRg165dlnUnT56kd+/e1KlTh3bt2rF9+3arfX766Sc6dOiAj48PPXv25OTJk1bjH374IU2aNMHX15cxY8aQmpqaozkpEEVEjCgXEzE9PZ233nqLuLg4y7qsrCyCgoIoUaIEUVFRvPDCCwQHB5OYeOs7NBMTEwkKCuLFF19k7dq1FC9enEGDBnH7Gww3b95MREQEEydOZNmyZcTExBAeHp6jeSkQRUTkoTl69ChdunThjz/+sFq/c+dOTp48ycSJE6lcuTIDBgygTp06REVFAbBmzRpq1apF3759qVKlCmFhYSQkJLB7924Ali9fTq9evWjWrBm1a9dmwoQJREVF5ahKVCCKiBiQyY7/5MTu3bupX78+q1evtlofExNDjRo1KFiwoGWdn58f+/bts4z7+/tbxlxcXKhZsyb79u0jIyODAwcOWI3XqVOHGzduEBsbm+256SpTEREDsudVpmazGbPZbLXOyckJJycnm227d+9+12MkJSVRsmRJq3Xu7u6cOXPmL8cvX75Menq61bijoyNubm6W/bNDFaKIiPwjkZGR+Pn5WS2RkZE5OkZqaqpNgDo5OVmC9n7jaWlplsf32j87VCGKiBiQPW9DHDBgAH369LFad7fq8H6cnZ25dOmS1Tqz2UyBAgUs43eGm9lspkiRIjg7O1se3znu4uKS7TmoQhQRMSI7XmXq5OSEq6ur1ZLTQPT09CQ5OdlqXXJysqUNeq9xDw8P3NzccHZ2thq/efMmly5dwsPDI9tzUCCKiEiu8/Hx4ddff7W0PwGio6Px8fGxjEdHR1vGUlNTOXToED4+PuTLlw9vb2+r8X379uHo6Ei1atWyPQcFooiIAeXWVab3Uq9ePUqXLk1ISAhxcXEsXLiQ/fv307lzZwA6derE3r17WbhwIXFxcYSEhFC2bFnq168P3LpYZ/HixWzZsoX9+/czfvx4unTpkqOWqd5DFBExoEfts0wdHByYN28eY8eO5cUXX6RChQrMnTsXLy8vAMqWLcucOXOYMmUKc+fOxdfXl7lz52L6/yfSvn17EhISGDduHGazmWeffZaRI0fmaA6mrNu3+echZy7fyO0piEE80emD3J6CGETq16PserxDidfsdqwaXoXsdqzcpApRRMSAHrEC8ZGgQBQRMSIlog1dVCMiIoIqRBERQ7LX1aF5iQJRRMSAHrWrTB8FapmKiIigClFExJBUINpSIIqIGJES0YZapiIiIqhCFBExJF1lakuBKCJiQLrK1JZapiIiIqhCFBExJBWIthSIIiJGpES0oZapiIgIqhBFRAxJV5naUiCKiBiQrjK1pZapiIgIqhBFRAxJBaItBaKIiBEpEW2oZSoiIoIqRBERQ9JVprYUiCIiBqSrTG2pZSoiIoIqRBERQ1KBaEuBKCJiQGqZ2lLLVEREBFWIIiIGpRLxTgpEEREDUsvUllqmIiIiqEIUETEkFYi2FIgiIgaklqkttUxFRERQhSgiYkj6LFNbCkQRESNSHtpQy1RERARViCIihqQC0ZYCUUTEgHSVqS21TEVERFCFKCJiSLrK1JYCUUTEiJSHNtQyFRERQYEoImJIJjsuOfH1119TtWpVq2XIkCEAHDp0iJdeegkfHx86derEwYMHrfbduHEjLVu2xMfHh6CgIC5cuPC3zv1eFIgiIgZkMtlvyYmjR4/SrFkztm/fblkmTZrE9evX6d+/P/7+/qxbtw5fX18GDBjA9evXAdi/fz9jx44lODiY1atXc/nyZUJCQuz6migQRUTkoYmPj+epp57Cw8PDshQpUoQvvvgCZ2dn3n77bSpXrszYsWMpVKgQ//3vfwFYsWIFbdu2JTAwkGrVqjF16lS2bdvGyZMn7TY3BaKIiAGZ7PhPTsTHx1OxYkWb9TExMfj5+WH6/yWnyWTi6aefZt++fZZxf39/y/alS5fGy8uLmJiYv/0a3EmBKCJiQPZsmZrNZq5evWq1mM1mm+fMysri999/Z/v27bRu3ZqWLVsybdo0zGYzSUlJlCxZ0mp7d3d3zpw5A8C5c+fuO24Puu1CRET+kcjISCIiIqzWBQcHM3jwYKt1iYmJpKam4uTkxMyZMzl16hSTJk0iLS3Nsv7PnJycLMGalpZ233F7UCCKiMg/MmDAAPr06WO17s7wAihTpgy7du2iaNGimEwmqlevTmZmJiNHjqRevXo24WY2mylQoAAAzs7Odx13cXGx23koEEVEDMien2Xq5OR01wC8Gzc3N6vHlStXJj09HQ8PD5KTk63GkpOTLW1ST0/Pu457eHj8/YnfQe8hiojIQ/HDDz9Qv359UlNTLesOHz6Mm5sbfn5+/PLLL2RlZQG33m/cu3cvPj4+APj4+BAdHW3Z7/Tp05w+fdoybg8KRBERA8qNq0x9fX1xdnbmnXfe4dixY2zbto2pU6fy2muv0aZNGy5fvszkyZM5evQokydPJjU1lbZt2wLQrVs3PvvsM9asWUNsbCxvv/02AQEBlCtXzn6vSdbtOM5Dzly+kdtTEIN4otMHuT0FMYjUr0fZ9XiX0zLtdqwiBbJfW8XFxTFlyhT27dtHoUKF6Nq1K0FBQZhMJvbv3897771HfHw8VatWZcKECdSoUcOy77p165g9ezYpKSk0atSI0NBQihUrZrfzUCCK/AMKRHlY8kogPsp0UY2IiAHpyy5sKRBFRIxIiWgjb9S5IiIi/5AqRBERA8rpZ5AagQJRRMSA7Hljfl6hlqmIiAiqEEVEDEkFoi0FooiIESkRbahlKiIigipEERFD0lWmthSIIiIGpKtMballKiIiQh79cG8REZGcUoUoIiKCAlFERARQIIqIiAAKRBEREUCBKCIiAigQRUREAAWiiIgIoEAUEREBFIgiIiKAAlGA9PR0xowZg7+/P40bN2bJkiW5PSXJw8xmMx06dGDXrl25PRURK/pwb2Hq1KkcPHiQZcuWkZiYyKhRo/Dy8qJNmza5PTXJY9LT0xk+fDhxcXG5PRURGwpEg7t+/Tpr1qzhP//5DzVr1qRmzZrExcWxcuVKBaLY1dGjRxk+fDj6+GR5VKllanCxsbHcvHkTX19fyzo/Pz9iYmLIzMzMxZlJXrN7927q16/P6tWrc3sqInelCtHgkpKSKFasGE5OTpZ1JUqUID09nUuXLlG8ePFcnJ3kJd27d8/tKYjclypEg0tNTbUKQ8Dy2Gw258aURERyhQLR4JydnW2C7/bjAgUK5MaURERyhQLR4Dw9Pbl48SI3b960rEtKSqJAgQIUKVIkF2cmIvJwKRANrnr16jg6OrJv3z7LuujoaLy9vcmXT/95iIhx6Deewbm4uBAYGMj48ePZv38/W7ZsYcmSJfTs2TO3pyYi8lDpKlMhJCSE8ePH06tXL1xdXRk8eDDPPvtsbk9LROShMmXpLlkRERG1TEVERECBKCIiAigQRUREAAWiiIgIoEAUEREBFIgiIiKAAlFERARQIIqIiAAKRHlENG/enKpVq1qWmjVr0qZNGz788EO7Pk+PHj2YM2cOAKNHj2b06NF/uY/ZbOaTTz7528+5bt06mjdvnuP95syZQ48ePf7284pIzuij2+SRMWbMGNq1awfAzZs32blzJ2PHjsXNzY3AwEC7P9/YsWOztd2mTZtYsGABXbp0sfscROTRoQpRHhmFCxfGw8MDDw8PSpcuTceOHWnYsCFfffXVA3u+woUL/+V2+nRDEWNQIMojzdHRkfz58wO32p2hoaG0aNGCgIAArl69yunTpxk4cCA+Pj40b96ciIgIMjIyLPt//fXXtG7dmjp16jBx4kSrsTtbpp999hlt2rTBx8eHrl27cujQIXbt2kVISAgJCQlUrVqVU6dOkZWVxdy5c2ncuDH+/v4MHDiQxMREy3HOnj3La6+9Rp06dejYsSN//PHHfc/x+++/p2PHjvj4+PD888+zY8eOu263Zs0a2rRpQ61atahfvz4TJkywnE9iYiJ9+/bF19eXhg0bEhoayo0bNwCIjY2la9eu+Pj40KRJEyIiInL4b0HEGBSI8ki6ceMGX331FT/++CMtWrSwrF+3bh3h4eFERERQqFAhgoODcXd3Z/369YSFhbFhwwYWLFgAwNGjRxk6dCjdunUjKiqKmzdvEh0dfdfn++GHHxg7diy9evXi888/p1atWgwYMABfX1/GjBlDqVKl2L59O6VLl2bFihVs2LCB6dOns3r1atzd3enbt68lgN58800yMzNZs2YNr7/+OsuWLbvnecbFxfHGG2/QqlUrPvvsMzp06MCgQYNISkqy2m737t1MmjSJt956i//+979MmDCBtWvX8s033wAQGhpKwYIF+fTTT5k7dy6bN2+2vO/59ttvU716dTZu3MjkyZNZtGgR27Zt+/v/ckTyKL2HKI+M9957j9DQUADS0tIoUKAAvXr14vnnn7dsExAQwNNPPw3Ajh07SExMZM2aNeTLl49KlSoxatQoQkJCCAoKIioqCn9/f3r37g3Au+++y7fffnvX5169ejUdOnSgW7duwK0QyZ8/PykpKRQuXBgHBwc8PDwAWLRoEe+99x7169cHYOLEiTRu3JgffviBcuXK8csvv/Dtt9/i5eVFlSpVOHjwIP/973/v+rxr167l6aefZtCgQQD079+f69evc/nyZavtChYsyOTJky1fy1W2bFmWLl1KXFwczz77LAkJCdSsWRMvLy8qVKjAwoULKVKkCAAJCQm0aNGCMmXKUK5cOZYuXUrZsmVz9i9HxAAUiPLIGDJkiOUXvrOzMx4eHjg4OFhtU6ZMGcvP8fHxXLp0CT8/P8u6zMxM0tLSuHjxIvHx8VSvXt0ylj9/fqvHf/b777/TtWtXy2MnJydGjRpls921a9c4c+YMw4YNI1++/zVY0tLSOH78OOnp6bi5ueHl5WUZ8/b2vmcg/v7779SsWdNq3dChQ222q1WrFgUKFGD27NkcPXqUI0eOcOLECRo3bgzAa6+9xpgxY/j666955plnaNeuHTVq1ABgwIABfPDBB6xevZqAgABeeOEFS7iLyP8oEOWR4e7uToUKFe67jbOzs+XnmzdvUqlSJebNm2ez3e2LZe68IOb2+5F3cnTM3v8Vbr9nN2vWLJ544gmrsaJFi7Jjx45sP2dOnveHH34gKCiIwMBAmjRpQlBQEBMmTLCMP//88zRs2JAtW7bw3XffMWTIEF5//XWGDRtG//79adu2LVu2bGHr1q306tWL0NBQXnrppWw9t4hR6D1EeWw98cQTJCYmUrx4cSpUqECFChU4deoUs2fPxmQyUaVKFQ4cOGDZPjMzk9jY2Lseq0KFClZjGRkZNG/enOjoaEwmk2V9kSJFcHd3JykpyfKcpUuXJjw8nN9//52nnnqKlJQUTpw4Ydnn8OHD9zyHO58XoGvXrmzatMlq3Zo1a+jUqRMTJ07kpZdeonLlyvzxxx+W8J0xYwbnz5+nW7duREZGMnToUL766ivS09OZNGkSTk5O9OnTh48++oguXbqwefPmbLzCIsaiQJTHVuPGjSlTpgwjR47kyJEj/Pzzz7z77ru4uLjg4OBAly5dOHjwIPPnz+fYsWO8//77VleD/lmPHj34/PPPWb9+PSdOnCAsLIysrCxq1qyJi4sLKSkpHD9+nJs3b9K7d29mzpzJ1q1bOX78OO+88w579+6lUqVKVK5cmYYNGzJmzBhiY2PZsmULK1asuOc5dOvWjZ9//pmlS5dy4sQJIiMjiYuLw9/f32o7Nzc3fvnlF44cOUJcXByjR48mKSkJs9kMwLFjx5g4cSKxsbHExcWxbds2atSogbOzM3v37iU0NJRjx45x4MABfv75Z0s7VUT+R4Eojy0HBwfmz59PZmYmXbp0YfDgwTRt2pR33nkHuFV9zZ8/n02bNhEYGEhSUhJNmza967Hq1q3Le++9x9y5c3n++ec5fPgwCxYsoECBAjRo0IAKFSrw3HPPcfjwYfr160fnzp0ZN24cgYGBJCYmsnjxYooWLQrcqtaKFStG165d+eCDD+77aTPly5dnzpw5REVF0aFDBzZv3syCBQvw9PS02u721bQvv/wyffr0wdnZmW7dulmqz/Hjx1OiRAl69OhBly5dKFmypOWDB2bMmEFqaiqdO3emX79++Pv7Wy7iEZH/MWXprmMRERFViCIiIqBAFBERARSIIiIigAJRREQEUCCKiIgACkQRERFAgSgiIgIoEEVERAAFooiICKBAFBERARSIIiIiAPw/KsmWfDpgADIAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 500x500 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Confusion Matrix\n",
"cm = confusion_matrix(y_test, y_pred_classes)\n",
"plt.figure(figsize=(5, 5))\n",
"sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')\n",
"plt.title('Confusion matrix')\n",
"plt.xlabel('Predicted class')\n",
"plt.ylabel('True class')\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "2d90420f6a5cc744",
"metadata": {
"collapsed": false
},
"source": [
"\n",
"# ROC Curve\n",
"\n",
"This code block plots the Receiver Operating Characteristic (ROC) curve for the model's predictions on the testing set. The ROC curve is a graphical plot that illustrates the diagnostic ability of a binary classifier system as its discrimination threshold is varied. The curve is created by plotting the true positive rate (TPR) against the false positive rate (FPR) at various threshold settings. The area under the ROC curve (AUC) is also calculated and printed."
]
},
{
"cell_type": "code",
"execution_count": 59,
"id": "dd49203934ca9cf6",
"metadata": {
"ExecuteTime": {
"end_time": "2024-03-21T13:52:30.879758Z",
"start_time": "2024-03-21T13:52:30.792953Z"
},
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHFCAYAAADyj/PrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACG3ElEQVR4nO3dd1gUVxsF8LOF3qRJVKwoiAqKvUbFBlbUaKxYY2/RfPaCFaPGLrZYo8bEbhIL9ha7sYtdLCgCAtJhd+f7Ax1dQWUVmAXO73l4ZO7M7J7dK+zLnTszMkEQBBARERHlAXKpAxARERFlFxY+RERElGew8CEiIqI8g4UPERER5RksfIiIiCjPYOFDREREeQYLHyIiIsozWPgQERFRnsHCh4hyFF5zNfNJ+Z6yPym7sfChXKtr165wcXHR+ipdujQqVqyINm3aYNeuXZLkOnv2LFxcXHD27FlJnv+tp0+fYtKkSWjQoAHc3NxQu3Zt9OvXDydPnpQ018e8fv0aI0eOxIULF8S2rl27omvXrtma49q1a/jf//6HevXqwd3dHQ0bNsSECRPw5MkTre08PT0xevTobM2mq+TkZMyYMQN//fVXpjyerv1x8eJF9OnTR1x++vQpXFxcsH379kzJQ5QepdQBiLJSmTJlMGnSJHFZrVbjxYsXWLt2LUaOHIl8+fKhbt262ZqpbNmy+OOPP1CyZMlsfd73nT59GgMHDsQ333yD3r17w8nJCa9evcLff/+NXr16oVu3bhg7dqxk+dJz69Yt7Nq1C23bthXb3u/b7LBx40bMmDED1apVw4gRI5A/f34EBwdj1apVCAwMxLp161C6dOlszfQ1Xr58iXXr1sHf3z9THk/X/tiyZQvu378vLufPnx9//PEHihQpkil5iNLDwodyNXNzc1SoUCFN+7fffosaNWpg+/bt2V74fCxTdgkNDcWQIUNQsWJFLFmyBEZGRuI6Ly8vrF27Fv7+/ihVqhTatWsnWc6MyM7i8eLFi5g+fTo6d+6McePGie3VqlVDw4YN4ePjg7Fjx+bp0Yqv7Q9DQ0NJfzYob+ChLsqTjIyMYGhoCJlMJrZpNBqsWLECjRo1Qrly5dCkSRP89ttvafbduXMnWrdujfLly6NevXr45ZdfkJycLK6/c+cO+vbti4oVK6JixYoYOHCg1mGQ9w91Xbp0CS4uLjhy5IjWc9y6dQsuLi44cOAAACApKQmzZs1C3bp1Ua5cObRo0QJ79uzR2sfT0xMzZsxAt27d4O7urvXh/L61a9ciPj4e06ZN0yp63urevTsqVKiApUuXivMvunbtitGjR2PZsmWoWbMmKlWqhAEDBuDZs2da+2b0tW/evBn169dHxYoVcerUKQCpf/23adMGFSpUgLu7O1q1aoW9e/eK+/n6+gIAfH19xcMpHx5acXFxwcaNGzFu3DhUrVoVHh4eGDp0KMLDw7Vyrlq1Cg0aNIC7uzs6dOiAw4cPf/bw46pVq2BhYYHhw4enWWdjY4PRo0ejQYMGiI+PF9tTUlIwa9Ys1KpVCxUqVEDPnj0RHByste+nXjcAbN++HWXKlMGWLVtQq1YtVK1aFffu3YNarcaKFSvQvHlzuLu7o0KFCujQoQPOnDmj9fiXL19Gz549UbFiRVSvXh3Dhw9HaGgonj59igYNGgAAxowZA09PT3GfCxcuoEuXLihfvjyqVq2KUaNG4dWrV5/N9GF/nDp1Cu3bt4eHhweqVKmC/v37iyM8o0ePxo4dO/Ds2TPx8FZ6h7oePHiAQYMGoWrVqqhSpQr69u2rNUpEpDOBKJfq0qWL0LlzZyElJUX8SkxMFO7fvy8MHz5ccHZ2Fg4fPixuP2HCBKFs2bLCwoULhRMnTghz584VSpcuLSxevFjcZsOGDYKzs7Mwbtw44fjx48LGjRuF8uXLCxMmTBAEQRAePHggeHh4CG3bthUCAwOFPXv2CC1atBBq1aolhIeHC4IgCGfOnBGcnZ2FM2fOCIIgCA0bNhRGjBihlX3WrFlC1apVhaSkJEGj0Qi9evUSPDw8hDVr1gjHjx8XJkyYIDg7Ows7duwQ96lfv75QpkwZYfbs2cKJEyeES5cupfu+NG/eXGjbtu0n37s1a9YIzs7Owo0bN8T3snLlykKjRo2Ef/75R/jrr7+EevXqCfXr1xfi4+N1fu21atUS9u7dK+zYsUOIi4sTNmzYIJQuXVpYsmSJcObMGWH//v3Cd999J5QpU0Z4/vy5EBMTI773GzZsEO7evSvm6tKli5jb2dlZqFSpkjB69GjhxIkTwqZNmwQ3Nzfhxx9/FLdZtGiRULp0afF9mjFjhuDm5qbVJx/SaDSCm5ubMHTo0E++b++rX7++ULp0aaF3797C8ePHhe3btwtVqlQRWrduLW7zudctCIKwbds2wdnZWfDy8hKOHDkibN++XdBoNMLMmTOF8uXLC+vXrxfOnj0r7N69W2jSpIlQtWpVsU9u3LghlC1bVujUqZNw4MABYd++fUKjRo2EZs2aCUlJSUJgYKDg7OwszJs3T+zrc+fOCWXLlhV69eolHD58WNixY4dQr149oVmzZkJCQsInM73fH48fPxbc3d2FyZMnC6dPnxb2798vNGnSRPD09BTUarUQHBws/PDDD0KtWrWE//77T4iIiBCePHkiODs7C9u2bRMEQRBevHghVK5cWWjWrJnwzz//CEeOHBHatGkj1KpVS4iMjMxwXxC9j4e6KFc7f/48ypYtq9Umk8ng7OyMBQsWoH79+gCAhw8f4s8//8Tw4cPFyZa1a9eGTCbD8uXL0alTJ1hZWWHJkiVo2LAhpk2bJj5eQkIC/vnnH6SkpGDx4sUwMTHB2rVrYW5uDgCoUaMGGjZsiF9//RWjRo1Kk7Fly5ZYvXo1EhMTYWxsDEEQsGfPHnh5ecHQ0BCnTp3CiRMnMG/ePDRt2hQAUKdOHSQkJGDOnDlo3rw5lMrUH+WCBQvip59++uR78vTpU3z77bef3KZo0aIAgGfPnqFMmTLi69y+fTsKFy4MAChRogRat26NnTt3omPHjjq99k6dOsHLy0tcfvLkCXr16oUBAwaIbYUKFUKbNm1w8eJFNGvWTDyMUrJkyU8eUnF2dtaas3L16lXs27cPABAfH4+VK1eic+fO4vtUu3ZtJCQk4I8//vjoY0ZGRiIpKQmOjo6ffN8+5ODggICAABgYGAAAgoODsXTpUsTGxsLc3DxDr/utfv36oV69euLyy5cv8eOPP2qNsBgZGWHw4MG4ffs2KlSogGXLliFfvnxYvXq1OLqXP39+jBgxAvfv34erqysAoEiRImI///LLLyhevDiWL18OhUIBAChfvjyaNWuGbdu2oXPnzh/N9L6rV68iMTERffv2hYODAwDgm2++waFDhxAfH48iRYrAxsZG6/DW+6NlQOroZHJyMtasWQN7e3sAQOnSpdGxY0dcuXIl2w9TU+7AwodytbJly2Ly5MkAUj8o5s+fj5SUFMyfPx8lSpQQtztz5gwEQYCnpydUKpXY7unpiaVLl+LixYsoXrw4IiIi0KhRI63n6NWrF3r16iU+TtWqVWFsbCw+jrm5OSpXrox///033YwtW7bE4sWLceTIEXh7e+PSpUsICQlBq1atAKRORJbJZKhbt26abLt378bdu3fFD7C3/36KIAhiofQxbz/whPdONa5YsaJY9ACpE8cLFy6M8+fPo2PHjjq99g9zvj376fXr13jw4AGCg4PFw07vH0bMiA/niHzzzTdISEgAkHrYJzExUavoAoDmzZt/svB5+36o1Wqdsri7u4tFDwCxcHr9+jXMzc11et0fvme//PILAODVq1fivm8Pmb7d9+LFi6hbt67WIU0PDw8cPnwYQGoR/L6EhARcuXIFvXr1giAIYj8WLlwYTk5OOHXqlFbh86n/b+XLl4eRkRG+++47eHl54dtvv0W1atXg7u7+yffsfRcvXkSFChXEogdI7c8PDw0T6YKFD+VqZmZmcHNzE5fLly+Pli1bomfPnti+fTtsbGwAAFFRUQCg9Rf2+0JDQ2FtbQ0AsLW1/ejzRUVFYc+ePWnm3wAQn+tDRYsWhYeHB/755x94e3vjn3/+QZEiRVCxYkXxMQVBEJc/9PLlS/EDyNTU9KPZ3ipUqFCauTkfejsvp2DBgmLb27/a32dra4vo6GgxZ0Zf+4c5Hz9+jIkTJ+L06dMwMDBAiRIlxLOjBB2v82JiYqK1LJfLxcd4O0/lwzyf6lMAsLKygpmZGUJCQj66TXx8PFJSUmBlZSW2ffg65fLUaZUajQaAbq/7w8e6du0aJk+ejGvXrsHExAQlS5YU++vtvlFRUZ99be97/fo1NBoNVq5ciZUrV6ZZ/+GcsE/9f3N0dMSGDRuwYsUKbN26FevXr4elpSU6deqEYcOGac2v+5ioqCidR9mIPoeFD+UpdnZ2mDhxIoYOHYrp06eLfzVbWloCANatWwczM7M0+xUsWFD80Hx/kieQehjk5s2b8PDwgIWFBWrWrIkePXqkeYxPjbK0bNkS/v7+iImJwb59+9CxY0dxnYWFBUxNTbF+/fp09317WCqjPD09sXr1ajx79gyFChVKd5t9+/ahQIEC4uEPIPV1fig8PFw89fhLX7tGo0GfPn1gYGCArVu3wtXVFUqlEvfu3cv0ay198803AICIiAitEb8P+zQ9tWvXxtmzZ5GUlJTupPA///wTP//8M7Zu3Zrm8Gp6vuZ1x8bGonfv3nBxccE///yDEiVKQC6X49ixY9i/f7+4nYWFRbqv7dixY+mO1piZmUEmk6F79+7p/hHwYVH5Oe7u7li8eDGSk5Nx8eJF/PHHH1i2bBlKly4Nb2/vz+7/sfynT5+Go6Oj1ggkUUbxrC7Kc7y8vFCnTh38/fffOHfuHACgcuXKAFI/3N3c3MSvV69eYcGCBYiKikKJEiVgbW2dZph9165d6NOnD1JSUsSzW1xdXcXHKFeuHNauXSueoZWepk2bQhAELFiwABEREWjZsqW4rmrVqoiPj4cgCFrZ7ty5gyVLlmgd/sqIrl27wtzcHGPGjEFiYmKa9Zs2bcK5c+fQt29fcYQCSD3s8H7xc/36dTx9+hQ1atQQc37Ja4+MjMTDhw/x3Xffwc3NTSySjh8/DuDd6Mjbw01fo3Tp0rCwsEiTJzAw8LP79uzZE1FRUZg/f36adWFhYVi9ejVKliyZoaIHyPjrTs+DBw8QFRUFX19flCxZUuynD/etXLkyTp06pXXY7ObNm+jTpw9u3LiR5j01NzdHmTJl8ODBA63/a6VKlcKiRYt0uujm2rVrUb9+fSQnJ8PQ0BA1atTA1KlTAUAcOXv//1d6KleujCtXrmgVPxEREejduzeOHTuW4SxE7+OID+VJY8eORcuWLTFt2jTs2LEDLi4uaNmyJSZMmIBnz56hXLlyePjwIebNmwdHR0cUK1YMCoUCgwcPxpQpU2BrawtPT088fPgQCxcuROfOnWFlZYUBAwagQ4cO6Nu3Lzp27AgjIyP88ccfOHjwIBYuXPjRPG8vpLhp0yZ4eHhojeLUrVsXVapUwYABAzBgwAA4OTnh6tWrWLhwIerUqfPRQ2gfkz9/fixYsABDhgxBmzZt4OvrCycnJ0RHR2Pv3r34559/0LlzZ61RJyB1/kfv3r3Rv39/xMXFYd68eXB2dkbz5s0B4Itfu62tLQoVKoSNGzfim2++gaWlJU6cOCGOcL2dn2NhYQEAOHr0KKysrL7oQoHm5ubo3bs3Fi5cCBMTE1StWhXnzp3D77//DuDTH8QVKlTA0KFDMX/+fNy/fx8+Pj6wtrbG3bt3sWrVKiQlJaVbFH3t605P8eLFYW5ujmXLlkGpVEKpVGL//v3YunWr1r4DBgzA999/j759+8LX1xeJiYmYP38+3N3dUatWLbEgOn36NJycnFC+fHlxgv+IESPQsmVLqNVqrF69GleuXNGahP051atXx5w5czBw4EB06dIFCoUCmzdvhqGhoXhSgaWlJcLDwz86AtW9e3fs3LkTvXv3Rt++fWFgYIClS5fim2++QYsWLTKcheh9HPGhPKlEiRLo2rUrbt++LX7o+fv7o0ePHti8eTN69+6NZcuWoWnTpli9erX4l3Hnzp0xc+ZMnD17Fn379sXatWvxww8/YOTIkQBSRxQ2btwImUyGkSNHYsiQIQgLC8OSJUvQuHHjT2Zq1aoV1Gp1ml/ocrkcK1asQLNmzbB8+XL06tULmzdvRo8ePTBv3rwvev3Vq1fHzp07Ubt2baxZswa9evWCn5+feNbTxIkT0+xTuXJl1K9fH+PGjcOMGTNQo0YNrF+/HoaGhl/92gMCAuDg4IDRo0dj2LBhuHLlCpYuXYoSJUqIt6goVaoUmjdvjo0bN372zLVP6du3LwYPHoxdu3ahb9++uHDhgvh4n5sj1b9/f6xYsQIAMGPGDPTp0wcbNmxAvXr1sHPnTjg5OemUJSOvOz0WFhYICAiAIAgYOnQoRo4ciZCQEGzYsAFmZmbivmXKlMFvv/0GlUqFYcOGYdq0aahUqRKWL18OQ0NDmJubo0ePHjh48CB++OEHpKSkoHbt2li1ahVevHiBIUOGYOTIkVAoFFizZo1OFxcsXbo0li1bhtjYWAwfPhyDBg1CVFQUVq9eLR5mbNOmDQoVKoSBAwdi586daR6jQIEC2LRpE/Lnz4/Ro0djzJgxKFCgANatW6c1l4pIFzJB15mDRJTnvD1lOr0LOuYkKpUKf//9N6pVq4YCBQqI7Rs3bsS0adNw9uxZcb4XEeVOPNRFRHmGUqnEypUrsW7dOvTv3x/W1ta4c+cO5s+fDx8fHxY9RHkACx8iylOWLVuGuXPnws/PD69fv0bBggXRrVs39O3bV+poRJQNeKiLiIiI8gxObiYiIqI8g4UPERER5RksfIiIiCjPYOFDREREeQYLHyIiIsoz8tzp7K9exeATt8ChbCCTAba2FoiIiAHPKZQW+0J/sC/0B/tCv8jlgI2NRaY9Xp4rfAQB/I+sJ9gX+oN9oT/YF/qDfaEfMrsPeKiLiIiI8gwWPkRERJRnsPAhIiKiPIOFDxEREeUZLHyIiIgoz2DhQ0RERHkGCx8iIiLKM1j4EBERUZ7BwoeIiIjyDBY+RERElGfoReGTnJyM5s2b4+zZsx/d5ubNm2jXrh3Kly+Ptm3b4vr169mYkIiIiHIDyQufpKQkDB8+HHfv3v3oNvHx8ejTpw8qV66M7du3w8PDA3379kV8fHw2JiUiIqKcTtLC5969e2jfvj0eP378ye327NkDIyMjjBw5Ek5OThg3bhzMzMywb9++bEpKREREuYGkd2c/d+4cqlWrhh9//BEVKlT46HZXrlxBpUqVIJPJAAAymQwVK1bE5cuX0aZNm2xKS0RE9IUEAcDb271rAEHzZjn1e9nb78U2AfLkSECdlLpeUL9ZrwEENSAIkAkayOMeAzKDN+3vPfab55MJGnE/mToRisgb0JgWTH2e93O9IRNvhZ7e+o+0fbhPOm2y9/aRqeKgfHkWahu3z75tN58Yo1QxQ6D1us9um1GSFj6dOnXK0HZhYWEoWbKkVputre0nD499jEyW+kXSefv+sx+kx77QH+yLdAjCmw95jfivTFAD0AAaNeQJL5H6IfuuKJAJ7woDCBrIE14AghoyTQqgToJB+CVoTB0AjVpr37eFhTL8AgRDK8DUChZJye99yL8pIrSKl/eLmdR/DV8cg8bYDhrDfJBpVICggiLuqVTvoF5Txtz/6DqNRoZfjtXAuH0NMKXFBYxunYnPm3kPlXUSEhJgaGio1WZoaIjk5GSdH8vGxiKzYtFXsrVlX+gL9oX+yPS+EDRA/EsgIQLQqN580KtTv48PA1QJqdWWIODdiMK7kYj3RyWgSQFe/geYFQDUyUD8CyDsGpCvxHv7vxux0Hqs99tfBQFxzwHrUu+KFo36XbbYkMx9D76Q0RfuJ08MhzwxPFOz5CVPoyzRbbMPDt8rAQD4+UhtjM7Ex88RhY+RkVGaIic5ORnGxsY6P9arVzHQaDIrGX0JmSz1l3tERMy70VCSBPtCDwgaQJUARUIIrNXBiHkdA0GtejMCoYZMnQTFqysQjO0BjQrKV5cBQYBgaAlo1JAJqcWMLDEcBhH/QWXlnDrSoFFBEffp+ZOZ5uWlL9vvVVDm5tAzGmM7CDIDQK6EPOEFZJoUpOSvDkAGyOQQZHLx+9R/334vT/1enQR53DOkfFPnzVCgPHW9TKG1vzw+BCq7Sm/WvdtfEL9/7/EFAZDLoTF2eG94Uab9PbSHH4V02tLug7Tr09lHeG9IUzCwAhRpy8vBA//F4XtPxF1/6Oma0bc8Q3JE4ePg4IDwcO3qOTw8HPnz59f5sYT3Dz2SpNgX+iNP94UgQB7zIPVQyAeHPfDmsIoi9gkEuRKy90cl3myniLoJwcAcAN6sV0EZfjH1F7o6CYahJ6GyKi3u9/ZQjCLuSbpxvna8Rxl95ysfIXtpDPOJH+bCmw90yBSQJ0VApopHin11CHIFUj/AFW+KAwUEmRyK2MfQmBaA2ryY+KEvaH34pz6ePO4pVHYVISjNIMgNIBM0UJsVBt487rvnTX1syBWwLlgCryLjIAhvP6zfrBc/8N/++6bIePtBL5MDciUgN5DqLc3xps70xvHT62FsrMSSJd6oU6dwpj5+jih8ypcvj5UrV0IQBMhkMgiCgEuXLqFfv35SRyOi7KRRQ5b0CvKUKMjjQwFBBZkmGYroOxAUxoBGBZmggiwlFgZhZ6GIvAG1ZSnINMkwCDsLQWkKQWkqHvKRaVSQqROyPLYyOntHNlJfp3nqh3xKLGTqRAiGlkgq3Dy1OJAr3xQFSsjjnkJtXQaC0ix13dsP7/dHI958L45QQIDGvCgEuQEgk6WOHigMtbd5f5ThvWVxvVwBKHQftc8OMhkACwtokjgSmh0SElJgYvKuUHRwMMfGja3h5GSNfPky//+I3hY+YWFhsLCwgLGxMby8vPDLL79g+vTp6NChAzZv3oyEhAR4e3tLHZOIMoMgQJYSnVq4aFJS/02JhkH4RRjf2wiDsDNf/NCKhBfi9zJVPGQqaa7/JciUEAwsAPnbkY3UL0XcEyQ71AZkMhjKkpFkVAgp9lXfbPO2QEktFtQWxd4UGwpoTAu+V8C8N2KiNOMMacoRVCoNFiw4h99/v4GDBztrFTmVKhXIsufV28Kndu3a8Pf3R5s2bWBubo7ly5dj0qRJ+PPPP+Hi4oIVK1bA1NRU6phE9BGy5GjIYx9DnhwFRfRtyFJioXx1BYKRDeSxwTB8fgRqy5KQqRKgiH2U5XkEmeLNGUGAyrKkOOIhyBRQxD6C2rosVJbObw5/vDucApkCgAB5QuibeRTvtb/5kqliobIsBcgNAblB6qEZmQHUZo6AwgiCgeVnixGZDLCzs0BMOEcZKPcLDo7GwIF7ce5c6kT2n346iJUrm4mXrclKelP43L59+5PL7u7u2LFjR3ZGIqL3yOOfQxHzENCkQJYcCYPwizAI/Rdq8yKQaVJg+ORvqC2cAJksw/NMlFG3vihLUpEWqYWItRs0JvkBuQFkiRFQ2ZYHZAapoyJyJTRGNlBbuaQWHnLFFz0XEWUeQRCwdestjBp1GLGxqSctyeUyODvbQBCyZ7BSbwofIpKIOgXy1/cgSwiHPDFMvOaJ4bODUIadhTLmwSd3Nwg/L36vfK37tbU0BhYQlKZQJIRCZV0OaoviEGTK1DNh4kOgtnBCcpEWSC7oyQmjRDlYdHQiRo06hO3b3w1sFClihYAAb1StWjDbcrDwIcorNCooYh7A4OVpKKKCYHprSerIiCYFNpn9VMZ2kCVFQmNaCBpjWyQ7ekGWEguVrQc0xvbQGNsBCiOozYtzJIYoDzh9+ikGDtyLp09jxLb27cvA378+LCy+9IpJX4aFD1FuIgiAoII89jGMH2yGyZ01kCe+/OjmMk2Kzk8RX25EasEEQG1eBGprN2hM7CHIjSAYmOntmTpEJI25c8/g55//FeeuWVoaYc6chvDxcZEkDwsfohxIEX0HpldmwPDZAWhMC0EZHQRBbpg6/wa6z4xVWxRPnfArN4IqnysEYzsIcgMISlMkO3pBMMrsMSEiyivs7U3FoqdmTUcsXuwFR0dLyfKw8CHSJ4IGspQYyBNfQpYYAeOHf0IZdh4Gr65AbVYYMlUc5EmvtHaRv7lGjEyTsVu4pNhXRUr+WlDZuCGlYH3YOhZDJM8kIqIs0qWLG44dewx39/wYOLAyFAq5pHlY+BBlA3lsMAxCTwICxFsRvL2IniL+OYzvroE8OeqTj/GxK/0CgMbACvKUaKhNC0JjXhTQJAPqFKjsKyO+3AhozBzTPV2Cl3shosz06lUC9u27j06dyoltMpks205VzwgWPkRfKyUW8sSXUMSFQKaKAzTJUEbfhvz1A5jc35DpT6eyLAXl67vQGFgi3u0nJLj247waIpLc0aPBGDx4H0JD42Bvb4pGjUqI6/Sl6AFY+BBlmOLVVSijbkGmToI84QWM76yGIj5r7iKd5NgUithHSCrSHFAYI6FkNwjGdhyiISK9k5iowvTpJ7F8+bub1U6ZcgINGhSHXK5/v7NY+BB9iioBptfnwezqzK9+KEGmQGKp7lDZlE+9+q/83ZV/oU6CysYNams3FjdElGMEBYWjX789uHnz3Y3E69UrikWLmuhl0QOw8KG8TqNOva5N5HXI1IlQvroq3qHZ+MFmnR4qoWQ3KGKDkVygbuqduQGk2FZKvZqwkrdXIaLcQxAErFp1GVOmHEdiYuqtYAwNFZg4sQ569/bQ26IHYOFDeZRB6L+wON4DioTnOu8bW9kfGiNrQKaEKp8r1DZuWZCQiEg/hYbGYdiw/Th06JHY5upqi4CApihb1l66YBnEwodyJ0EDRfQdyFJeQxF9FzJNCgxe/qvzKM5bCS69Eec+GoJJ/kwOSkSUs4wadUir6OnTxwPjx9eBsXHOKClyRkqizxEEKKLvwPjB7zC+uzbNtW4+R23igETnnlDlKwNBaQqNRTEICpM3t1bgGVNERG9NnVoPJ048hrGxEosWNYGnZ3GpI+mEhQ/laAYhh2B5vMdnr4GTHo2BFaI9/4TKoUbmByMiyiWSk9UwNHx3T73ChS2xfn0ruLjYws4u581fZOFDOYtGBZMbC2H+n1+GNk+xr4YU+2qQqRORYlcRgoEFUr6pA8EwX5bGJCLK6TQaAUuWXMAff9zAvn2dYG5uKK6rVauwhMm+Dgsf0m+aFBi8OAnTG/Nh+PzIZzdXmxRAoktPJJb0hca0QDYEJCLKfUJCYjBo0D6cPJl6xfixY49g4cImEqfKHCx8SC/I455BlhQBizM/pp5Ork6GwavLGd4/ssl+qPJX5zVwiIi+0u7dd/DTTwcQFZUEIPXXqr29KTQaQa9PU88oFj6U/TRq4PYWmAfthjzuWYZGcj6UYuuB13U3QGOec4dbiYj0SWxsMsaOPYLNm2+IbQULmmPJEu8cfWjrQyx8KOu9OePK8Nl+mNz+FYrYRwCAz50rJcgNIdMkI+XNlY7jKk1DSv5qgNwgyyMTEeUlFy6EoH//vQgOjhbbWrZ0xpw5DZEvX+46s5WFD2UddRKsDrWF4YvjGd4l3rU/BANLxLuN4GnkRETZYOHCc/D3PwW1WgAAmJkZwN/fE99/X0avbi6aWVj40NcTBCiibsLwxXEow85CpkqA0dO9n91NZeWCePeRSLGrDI15Mc7PISKSgJGRUix6KlUqgIAAbxQvnk/aUFmIhQ/pRp0I4/u/Q/nqChQxD6GIvgNF/LMM757g8gMSXPvBxqkiosJjIAhZmJWIiD7rhx88cOxYMCpUcMDw4dWhVMqljpSlWPjQp6mTYHxvAyzO/vjFD5FUuDle19sAyFJ/mDiwQ0QkjejoRBw+/AitW5cW2+RyGTZs8MkVZ2xlBAsfSkOWHAVl2AVYnP0RitjgDO8nKE0RV34sVPnKQGNeFGpLJ7HYISIiaZ0+/RQDB+7Fs2cxsLMzRZ06RcR1eaXoAVj40BuKqCCYXpkJ4+DtGdo+0akzEou1gcaiGNTmxQE5/ysREemjlBQ1Zs8+jQULzonTC8aPP4IjR3zzVMHzFj+t8jJVAszPjYTJvXWf3TS5YEPEVv0ZastS2RCMiIgyw/37kejffw8uXw4V22rWdMSSJd55sugBWPjkSQbPDiDfobaf3S6xWBskFW2D5CLNeciKiCgHEQQBGzZcw4QJRxEfrwIAKJVyjB5dEwMHVoZCkXd/p7PwySsEDUyuz4P5f5M/uVlM1TlIKtoKgolDNgUjIqLMFBGRgOHDA7F3732xzcnJGsuWNUX58vzdzsInlzN6tB2Wx7t/cpukQo0RU2cVBEOr7AlFRERZ5scfA7Fv37uix9fXHZMn14WZGa96D7DwybUMg3fC6pjvJ7d51eI01NZlsykRERFlh0mTvsXx48EwMTHA3LmN4O1dUupIeoWFTy4jj3sK221lPrpeozRHpM9FaEwLZGMqIiLKKmq1RmvOjpOTNVataoFy5ezh4GAuYTL9xMInlzC94g+zK/4fXf+q1UWorXhGFhFRbiEIAlatuozNm29g9+7vYWr67lBWgwbFJUym31j45GDy+Oew3eryyW1e+VzkKehERLlMaGgchg3bj0OHHgEApkw5jpkzG0gbKodg4ZNDKV+ehfW+RumuExQmiKswDgllh2RzKiIiymqBgQ8wbNh+hIcniG0KhRyCIOTKu6lnNhY+OYwy/AKs93imuy4lfw1ENdgGGPCYLhFRbhMfnwI/v+NYu/aK2GZvb4pFi5rA05OHtjKKhU8OYr/eMt32xGLfIebb1dmchoiIssu1ay/Rr98e3L37Smxr0qQE5s1rDDs7UwmT5TwsfHICdTLsN9qlu+pV85NQ27hncyAiIsouy5ZdxNSpJ5CSogEAmJgoMWVKPfj6uvHQ1hdg4aPPNCrYbHOFIiE0zarob9chuVhrCUIREVF2SkxUiUWPu3t+LF3aFKVK2UicKudi4aOP1Imw3VYG8sTwdFeHdQ4HFIbZHIqIiKQweHAVHDsWjIoVC2DUqJowNFRIHSlHY+GjZwyf7ofV4Xbprkss1hax1Rew6CEiyqViY5Nx8uQTeHk5iW0KhRxbtnwHpTLv3lg0M7Hw0SPGQSthcW5EmvYUu0qI8joAyNldRES51YULIejffy+ePn2N3bu/R5UqBcV1LHoyDz9J9YGggc1WVygSnms1p9hVQZT3QYCT14iIci2VSoP588/il1/OQK0WAAAjRx7C4cNdOHk5C7DwkZhB6L/It98rTXt03Q1ILtpSgkRERJRdgoOjMWDAXpw/HyK2VapUAAEB3ix6sggLHwmZXF8A80sT0rSz6CEiyt0EQcDWrbcwatRhxMYmAwDkchmGD6+G4cOr89BWFmLhIxHLQ+1g9Gy/VpvKyhmRLc/z0BYRUS4WHZ2IUaMOYfv222JbkSJWCAjwRtWqBT+xJ2UGFj4SSO8KzK+/XYukYm0kSENERNlpwIC9OHDgobjcvn0Z+PvXh4WFkYSp8g4WPtlMGX4pTVtk0yNQ2VWSIA0REWW3ceNq4/jxxzAyUmLOnIbw8XGROlKewsInOwkCrPfU02oK6xoFyHgsl4got/rwrullythj6dKmqFDBAY6O6d+DkbIOP3GziSwhDPa/WWm1Rdf/g0UPEVEuJQgCfvvtKlq2/BNJSSqtdc2bl2LRIxF+6mYTuy1OadqSC3tLkISIiLJaREQCunffjREjDuLs2WeYOfNfqSPRGzzUlQ3M/x2Ypi2sa7QESYiIKKsdPRqMwYP3ITQ0TmyLi0tJc8iLpMHCJ6tpVDC595tWU5jva4nCEBFRVklMVGH69JNYvvzdSSy2tiaYO7cRvL1LSpiM3sfCJ4vZb7DRWg7rHCZREiIiyipBQeHo128Pbt4MF9vq1SuKRYuawMHBXMJk9CEWPllEHv8ctlu1T1EUZApAwes0EBHlJqtWXYaf3zEkJakBAEZGCkyYUAe9e3tALuehLX3DwicLKF7fg83Oimnaw7u8kiANERFlpZcv48Six9XVFkuXNkWZMvYSp6KPYeGTyYzubYDlvwPStIe3f8hbURAR5UI//VQdx44Fo3LlAhg/vg6MjfnRqs/YO5lIHvMoTdEjyJQI78qRHiKi3CA+PgXnzoWgXr2iYpuBgQK7drWHkRE/UnMCXscns6iTYbvDXasppto8Fj1ERLnE1auhaNRoIzp33oFr115qrWPRk3NIWvgkJSVh7NixqFy5MmrXro3Vq1d/dNsDBw7A29sbHh4e6NixI27cuJGNST/PfqOd1nJsxalIdOklURoiIsosGo2ARYvOw9v7d9y9+wopKRr8+GMgBEGQOhp9AUkLn1mzZuH69etYt24dJk2ahMWLF2Pfvn1ptrt79y5GjBiBvn37YteuXXB1dUXfvn2RkJAgQeq0jB78maYtodxQCZIQEVFmCgmJwXffbcXUqSeQkqIBALi758fSpU15McIcSrLCJz4+Hlu2bMG4ceNQtmxZNGrUCL1798bGjRvTbHvq1CmULFkSPj4+KFKkCIYPH46wsDDcu3dPguRpWZ7srbUc1jVKmiBERJRpdu26g3r11uPkyScAUs9PGTy4Cvbs6YhSpWw+szfpK8kKn6CgIKhUKnh4eIhtlSpVwpUrV6DRaLS2zZcvH+7du4eLFy9Co9Fg+/btMDc3R5EiRbI7dhqGwbu1lqMa7uCNR4mIcrDY2GT07LkLvXv/jaioJABAwYLm2L69HSZMqANDQ4XECelrSDYbKywsDNbW1jA0NBTb7OzskJSUhKioKNjYvKummzZtisOHD6NTp05QKBSQy+VYvnw5rKys0nvoT5LJMvescqtjXbSWVYUagIOfn/b2/ecosfTYF/qDfaE/fvjhbxw8+EhcbtXKGXPmNES+fMbShcrDMvtnQrLCJyEhQavoASAuJycna7VHRkYiLCwMEydORPny5fH7779jzJgx2LFjB2xtbXV6Xhsbi68L/pY6BZivnR8+f8HOLpMePw+wteV7pS/YF/qDfSE9f/9GOHp0FYyNlViypCm6dnXnfJ5cRLLCx8jIKE2B83bZ2Fi7qp4zZw6cnZ3RuXNnAMDUqVPh7e2Nbdu2oU+fPjo976tXMfjgSNoXsVtnmaYt3KouEB7z9Q+ey8lkqb/cIyJiwJMipMW+0B/sC+l8eNf04sUtsGZNK5QubY1ixfIhIiJWwnQkl2fioAUkLHwcHBwQGRkJlUoFpTI1RlhYGIyNjWFpqV1U3LhxA127dhWX5XI5SpcujZCQEJ2fVxDw9b9U1IlpmsK6RgP8ZaWTTOkLyhTsC/3Bvsg+giBg69Zb2Lr1FjZubA2l8t38zC5d3BEeziJUH2R2H0g2C9fV1RVKpRKXL18W2y5evAg3NzfI5dqx8ufPj/v372u1PXz4EI6OjtkRNQ2T26u0lsO6vOKBeSKiHCQ6OhH9+u3BwIH7cORIMObNOyt1JMomkhU+JiYm8PHxgZ+fH65evYqDBw9i9erV8PX1BZA6+pOYmDqy0r59e/z555/YuXMngoODMWfOHISEhKB169aSZDe/MEb8PsW+OiDnFTuJiHKK06efon7937Bjx22x7dmz17wgYR4h6Sf2mDFj4Ofnh27dusHc3ByDBw9G48aNAQC1a9eGv78/2rRpg6ZNmyIuLg7Lly/Hixcv4OrqinXr1uk8sTkrxFaZIXUEIiLKgORkNWbPPo2FC8+Jh08sLY0wZ05D+Pi4SBuOso1MyGMlbkTE101uNrm5GOYXxorLYb6vMyFV3iKTAXZ2Fjx+rgfYF/qDfZG17t17hf799+LKlVCxrWZNRyxe7AVHR+15pewL/SKXZ+7ZjjxGowtBo1X0EBGR/tuw4RrGjz+C+HgVAECplGP06JoYOLAyFApecDavYeGjA0Xkda3lqAbbJEpCREQZdft2hFj0ODlZY9mypihf3kHiVCQVFj46sPm7ttZySqFGEiUhIqKMGjeuNo4ff4wqVQpi8uS6MDMzkDoSSYiFT0Zp1FqLMVXnSBSEiIg+JjFRhStXQlGtWiGxzdhYiT17OrLgIQASns6e0xgFb9daTnT5QaIkRESUnqCgcHh5bUK7dltx506E1joWPfQWC58MsjzRS/xebV6MFywkItITgiDg11//Q6NGG3HzZjgSE9UYOjSQ1+WhdPFQV0ao4rUWY6v8LFEQIiJ6X2hoHIYN249Dhx6Jba6utpgzpyFvLErpYuGTARan+mstJxf2ligJERG9FRj4AMOG7Ud4eILY1qePB8aPrwNjY368Ufr4PyMDjIN3iN+rLJwkTEJERPHxKfDzO461a6+Ibfb2pli0qAk8PYtLmIxyAhY+Onpdd53UEYiI8rRevf7SOrTVpEkJzJvXGHZ2ptKFohyDk5s/54PT2NXWbhIFISIiABg6tCrkchlMTJSYPbsh1q9vxaKHMowjPp/x4WnsPJuLiEha1as7YtasBqhRwxGlStlIHYdyGI74fMb7p7FrjKS/GzwRUV7y11930LPnX9BotE9N9/V1Z9FDX4SFjw7i3UZIHYGIKE+IjU3G0KH70avX3/j777sICLggdSTKJXio61NSYrUWE1wHSBSEiCjvuHAhBAMG7MWjR9Fi282b4RAEgdfmoa/GwucTlNFB2g0yDpAREWUVlUqD+fPP4pdfzkCtTj20ZWZmAH9/T3z/fRkWPZQpWPh8gunV2eL3gtxIwiRERLlbcHA0BgzYi/PnQ8S2SpUKICDAG8WL55MuGOU6LHw+Rp0Mo6d7xcWkYq0lDENElHtt2XITo0YdRmxsMgBALpdh+PBqGD68OpRKjrRT5mLh8xGmV2dqLcdWmfmRLYmI6GucOfNMLHqKFLFCQIA3qlYtKHEqyq1Y+HyE2bU5WsuCEU+bJCLKClOm1MO//z5FpUoF4O9fHxYWnFpAWYeFTwa88rkkdQQiolwhOVmNW7fCUb68g9hmZmaAffs6wsrKWMJklFfw4Gl6BO0LZaktS0oUhIgo97h37xWaNdsMH58/8fBhlNY6Fj2UXVj4pMMg5KDUEYiIcg1BEPDbb1fRsOEGXLkSiri4FAwduh/CB39kEmUHHupKR75DbaWOQESUK0REJGD48EDs3XtfbHNyssbUqfV4XR6SBAufD8jjQ7SWoxr/LVESIqKc7ciRRxgyZD9CQ+PENl9fd0yeXBdmZgYSJqO8jIXPB2y3ltZaTvnmW4mSEBHlTImJKkyffhLLl787McTGxhjz5jWGtzfnTJK0WPh8Qpzb/6SOQESU43TvvhuHDz8Sl+vVK4pFi5rAwcFculBEb3By8yfEu4+UOgIRUY7Tt29FAICRkQLTptXD5s1tWPSQ3uCIz3tkydHaDQpeRIuISFf16xfDlCl18e23RVCmjL3UcYi0cMTnPSY3FkgdgYgoRwkMfIAhQ9Kemt6vXyUWPaSXOOLzng9vU0FEROmLj0+Bn99xrF17BQBQoYIDevasIG0oogzgiM9bGpXW4qtWFyUKQkSk365de4lGjTaKRQ+QeqNRXpCQcgKO+LyhDNcudNRWpSRKQkSknzQaAQEBF+DvfwopKRoAgImJElOm1IOvrxsvSEg5AgufN0yClonfp9hXkzAJEZH+CQmJweDB+3DixBOxzd09P5YubYpSpWwkTEakmy8qfGJiYrB79248fPgQAwYMwJUrV+Dk5IQiRYpkdr5sY/xom/i9yspFwiRERPpl9+47+OmnA4iKSgIAyGTAoEFVMGpUTRgaKiROR6Qbnef43LlzB40bN8a2bduwefNmxMXFITAwEK1atcK5c+eyImO2i6s4WeoIRER6Y+/ee2LRU7CgObZvb4cJE+qw6KEcSefCZ9q0aejYsSO2b98OA4PUe634+/ujU6dOmDVrVqYHlIJgbCt1BCIivfHzzw1QuLAlWrVyxtGjvqhVq7DUkYi+mM6Fz7Vr1+Dj45OmvUOHDrh3715mZMp2ppdnSB2BiEgvqFQaBAWFa7VZWhph375OWLGiGfLlM5YoGVHm0LnwsbGxwcOHD9O0X7p0Cba2OXOkxOzqTKkjEBFJLjg4Gj4+f6JFiz/w7FmM1jp7e1OetUW5gs6Fzw8//IDx48dj48aNEAQBZ86cwcKFCzF58mT06NEjKzJmuRRrd/H7iO+CJExCRJT9BEHAli03Ub/+bzh3LgTR0UkYOjTt1ZiJcgOdz+rq0KED8ufPj1WrVsHY2BizZs1C8eLFMW3aNDRt2jQrMmY5g8ir4vca04ISJiEiyl7R0YkYOfIQduy4LbYVKWKJkSNrcoSHciWdC5/z58/j22+/haenp1Z7cnIyDh48iIYNG2ZauGzxwRWbiYjyitOnn2LgwL14+vTdYa327cvA378+LCx4k2bKnXQ+1OXr64vXr1+nab979y6GDx+eKaGykzKCt6YgorwlJUWNGTNOwsfnT7HosbQ0wooVzbB4sReLHsrVMjTis2nTJkyZMgUymQyCIKBWrVrpblezZs1MDZcdLE/0Fr8XZLwmBRHlfr6+u3Do0CNxuWZNRyxe7AVHR0vpQhFlkwwVPp06dUKpUqWg0WjQrVs3LFy4EFZWVuJ6mUwGExMTODs7Z1nQrKLKVwaK2GAAQFyFCRKnISLKel27uuPQoUdQKuUYPbomBg6sDIWC96ymvCHDc3yqVKkCADh06BAKFiyYaya9yeOeid8nF20pYRIiouzRtGlJjBpVEw0aFEOFCt9IHYcoW+k8udnGxgbr1q3DvXv3oFarxfbk5GTcvHkTe/fuzdSAWe39M7oEGe/ZSkS5y9Gjwdi//z5mzKiv9QfriBHVJUxFJB2dxzbHjx+PFStWICEhAbt370ZKSgru3buHf/75B82aNcuKjNlGY15U6ghERJkiMVGFCROOon37bVi16jL++OOm1JGI9ILOQxzHjx/HggULULNmTdy9exfdu3dHuXLlMHPmTNy9ezcrMmafXHL4jojytqCgcPTrtwc3b7679URg4AN06FBWwlRE+kHnEZ+kpCQUK1YMAFCqVClcv34dAPD999/jwoULmRouqynD3+VVWbtJmISI6OsJgoBff/0PjRptFIseIyMFpk2rh19/bS5xOiL9oHPh4+TkhH///RdAauFz8WLqdXBiYmKQlJSUuemymMV7p7IrI69JmISI6OuEhsahU6cdGDv2CJKSUudfurraYv/+TujTpyLkco5oEwFfcKhr0KBBGDp0KDQaDVq1aoVmzZqhX79+uH37NmrXrp0VGbOMMuaB+H1chXESJiEi+nKBgQ8wbNh+hIcniG19+nhg/Pg6MDbmSRtE79P5J6JBgwbYu3cvNBoNChQogE2bNmHXrl2oWLEifH19syJjtoh3HSR1BCKiL7Jp03Wx6Mmf3wwLFzaBp2cxaUMR6akv+lOgcOHC4velS5dG6dKlIQgCtm3bhu+++y7TwmUpdaL2soGZNDmIiL7SL780wsWLz+Hh8Q3mzm0EOztTqSMR6a0MFT4qlQorVqzAwYMHoVAo4OXlhZ49e4rXhLh69SqmTp2K69ev55jCxyh4l9QRiIh0ptEIePQoCiVKWItttrYm2L+/EwoUMM81F5clyioZmtw8c+ZMLFu2DGXLloW7uzuWL1+OgIAAqNVqTJ8+Hd9//z0SEhKwevXqrM6baSxP/iB1BCIinYSExKBdu61o3nwzXr6M01pXsKAFix6iDMjQiM/+/fsxZcoU+Pj4AAAaN26MkSNH4sGDBzh8+DBGjhwJX19fKBQ55yafKms38UyuaM8/JE5DRPRpu3ffwU8/HUBUVOrZs8OHH8CGDT7ShiLKgTJU+ERGRqJq1aricrVq1RAREYGgoCDs3r1ba85PTvH+6evJBRtLmISI6ONiY5MxduwRbN58Q2wrWNAc/ftXkjAVUc6VoUNdKpUKRkZGWm0GBgaYOHHiVxU9SUlJGDt2LCpXrozatWt/8lDZ7du30bFjR7i7u6NFixY4c+bMFz8vBEF7Wca7EhOR/rlwIQT16/+mVfS0auWMo0d9UatWzvuDk0gffNUnfsGCBb/qyWfNmoXr169j3bp1mDRpEhYvXox9+/al2S4mJgY9e/ZEyZIl8ddff6FRo0YYNGgQIiIivur5RTwuTkR6RKXSYM6c02jR4g8EB0cDAMzMDLBokRdWrGiGfPmMJU5IlHNl+HT2Fy9epLkyc2hoaJp5PRkthuLj47FlyxasXLkSZcuWRdmyZXH37l1s3LgRXl5eWtvu2LEDpqam8PPzg0KhwJAhQ3Ds2DFcv34ddevWzehLSFeKfdXPb0RElI26dduFAwceisuVKhVAQIA3ihfPJ10oolwiw4XPh6epC4KALl26iGcRCIIAmUyGW7duZejxgoKCoFKp4OHhIbZVqlQJy5Ytg0ajgVz+bjDq3LlzaNCggVaRtW3btoxGJyLKUdq2dcWBAw8hl8swfHg1DB9eHUolD8kTZYYMFT6HDh3K9CcOCwuDtbU1DA0NxTY7OzskJSUhKioKNjY2YvuTJ0/g7u6OCRMm4PDhwyhUqBBGjRqFSpW+bHKfLPHdHYtlSa++/EUQEWWBNm1K48aNMDRp4oSqVb9uSgERactQ4VOoUKFMf+KEhAStogeAuJycnKzVHh8fjxUrVsDX1xcrV67EP//8g169emHv3r0oUKCATs8rkwGGT/8RlxUxDzjFJ5u9fb/5vkuPfSG9f/99isOHH2HChNR7Hb7ti4kT60iYKm/jz4V+yex+kOzudUZGRmkKnLfLxsbaE/cUCgVcXV0xZMgQAECZMmVw6tQp7Nq1C/369dPpeW1sLAD1c3FZZl8BdnYWX/IS6CvZ2vJ91xfsi+yXkqKGn99R+PufhCAAtWoVQbt2ZdkXeoR9kTtJVvg4ODggMjISKpUKSmVqjLCwMBgbG8PS0lJrW3t7e5QoUUKrrVixYnj+/Dl09epVDPL9t1g8nS2uoBcSwmO+6DXQl5HJUn+hRETEpLmyAGUv9oU07t+PRL9+e3D5cqjYtnbtf2jXriz7Qg/w50K/yOVvBi0yiWSFj6urK5RKJS5fvozKlSsDAC5evAg3Nzetic0AUKFCBZw/f16r7cGDB2jevLnOzysIgMasCORRqdfFSLGrxv/YEhGEtJdUImmwL7KHIAjYsOEaJkw4ivh4FQBAqZRj9OiaGDSo8ptt2Bf6gn2hHzK7D774NIHY2FjcvHkTycnJiI2N1Xl/ExMT+Pj4wM/PD1evXsXBgwexevVq+Pr6Akgd/UlMTL2DeocOHXD79m0sWrQIwcHBWLBgAZ48eYJWrVp9Wfj37syusi3/ZY9BRKSDiIgEdO++GyNGHBSLHicna+zd2xFDhlSFQsGztoiyg84/aUlJSRg/fjyqVq2K7777DqGhoRg9ejR69eqF6OhonR5rzJgxKFu2LLp164bJkydj8ODBaNw49fYRtWvXxp49ewCkTq7+9ddfceTIETRv3hxHjhzBihUr4ODgoGt8AIAy5v67BVnOub8YEeVMR48Go1699di7993vHl9fdxw82AXly3/Z7zEi+jIyQdBtEGnatGm4fv06Jk+ejA4dOmD37t2Ij4/HmDFj4OTkhNmzZ2dV1kwRERED27Xv5hCF+b6WME3eJJMBdnYWCA/n8XOpsS+yniAI6NRpBw4degQAsLExxrx5jeHtXVJrO/aF/mBf6Be5PHMnmus84hMYGIhx48bBxcVFbHNxccHUqVNx/PjxTAtGRJQbyGQyzJ/fGLa2JqhXryiOHfNNU/QQUfbReXJzXFwcTExM0rRrNBqo1epMCZXVNEpzyFW6z0siIvocQRAQEhKLQoXe/YXq4GCOPXs6omhRK8jlvDgMkZR0HvHx9PTEvHnztCY0P3nyBNOmTfvq+2ZlN1U+V6kjEFEuEhoah06ddqBp098RGZmgta548Xwseoj0gM6Fz8SJEyGXy1G1alUkJCSgbdu2aNy4MSwtLTFhwoSsyJjpONpDRJktMPAB6tdfj0OHHuH581j873+Zf6sfIvp6Oh/qsrCwwKJFi/D48WM8ePAAKpUKxYsXh5OTU1bky3zq964WrU76+HZERBkQH58CP7/jWLv2itiWP78ZOnUqJ2EqIvoYnQufnj17olmzZmjUqBHq1auXBZGylkwVL36vjHkgYRIiyumuXXuJfv324O7ddzc79vJywty5jWBnZyphMiL6GJ0PdZUrVw4rV65ErVq10K9fP+zevRtxcXFZkS1rvFf4JBdsKGEQIsqpNBoBS5ZcgJfXJrHoMTFRYvbshli3riWLHiI9pvN1fN66ffs2AgMDERgYiMePH6Nu3bpo2rQpvLy8Mjtjpoq8dwbWu2oAADSG1ojoECxxoryH18jQH+wL3QmCgG7ddmPfvncXI3R3z4+lS5uiVCmbL35c9oX+YF/oF8mv4/OWi4sLBg8ejE2bNmHgwIE4efIkfvzxx0wLlh2Sin7hLS+IKM+SyWRo0qTEm++BwYOrYM+ejl9V9BBR9vmim5S+evUKhw4dQmBgIM6cOYOSJUuiX79+aNasWWbny1q8XQURfYFOncrh+vUwNG9eCrVqFZY6DhHpQOfCp2vXrrh06RKKFi2Kpk2bYsyYMShRokRWZMsSsvfP6iIi+owLF0Jw4sQT/PhjNbFNJpPB399TwlRE9KV0LnwqVKiAcePGoXTp0lmRJ8vJ4569+z7hhYRJiEifqVQazJ9/Fr/8cgZqtYCyZe3RuHHO+SOPiNKXocInJCQEBQoUgEwmQ8eOHcW29BQsWDDz0mUBeXKk+L3G5BsJkxCRvgoOjsaAAXtx/vy733MbNlxj4UOUC2So8PH09MSpU6dga2sLT09PyGQyCIIAmezd5dffLt+6dSvLwmYGWcq7qzYLCiMJkxCRvhEEAVu33sKoUYcRG5t6WFwul2H48GoYPry6xOmIKDNkqPA5dOgQrK2txe9zMkFhLH6vtnL5xJZElJdERydi1KhD2L79tthWpIgVAgK8UbWqfo9kE1HGZeh09kKFCkEuT910zJgxsLCwQKFChbS+TExMMHjw4CwNm9kEJS8yRkTA6dNPUb/+b1pFT/v2ZXDkSBcWPUS5TIZGfI4fP46rV68CAM6fP49ly5bB1FS7aAgODsazZ8/S252ISG8JgoDZs0/j6dMYAIClpRHmzGkIHx+OCBPlRhkqfIoXL45ff/0VgiBAEARcunQJBgYG4nqZTAZTU1NMnz49y4JmFmXEJakjEJEekclkWLCgCerX/w3lytlj8WIvODpaSh2LiLJIhgqfwoULY/369QBSD3WNGzcO5ubmWRosqwjGduL3vKYPUd4jCALCwuKRP7+Z2Fa4sCX+/vt7lCplA4Xiiy9oT0Q5gM6nsw8ePBivX7/G69ev091W309nF96b1qS2dJIwCRFlt4iIBAwfHogbN8Jx5EgXWFi8O7OzdGm7T+xJRLnFV53O/qGccDr7+wTIPr8REeUKR48GY/DgfQgNjQMAjB17BIsW6fdNlYko82X4dHYbGxvx+5zMIPy81BGIKBslJqowffpJLF/+bn6fra0JmjYtKWEqIpJKhgqfQoUKaX3/+vVrGBkZwcjICEFBQTh58iTKli2LGjVqZFnQzCJTJ71bkPMmpUS5WVBQOPr124ObN8PFtnr1imLRoiZwcMiZ8xSJ6OvoPIvv4MGD+Pbbb3Hx4kUEBwejc+fO2LFjBwYMGIANGzZkRcZMpYy8Ln6vMSkgYRIiyiqCIODXX/9Do0YbxaLHyEiBadPqYfPmNix6iPIwnQuf+fPnY8iQIahZsya2bNmCAgUK4J9//sHcuXOxevXqrMiYZTRmhT6/ERHlKIIgoEePvzB27BEkJakBAK6utti/vxP69KkIuZxz+4jyMp0Ln8ePH8Pb2xtA6nyfRo0aAQBKlSqFV69eZW66LKRRmgMynrZKlNvIZDLUquUoLvfp44H9+zujTBl7CVMRkb7I0Byf9xUsWBBnz56Fg4MDHj58CE9PTwDAX3/9hWLFimV2viwjV8V+fiMiypF69/bA1asv0bq1Czw9i0sdh4j0iM6Fz5AhQzBy5Eio1WrUq1cPbm5u+Pnnn7F582YsXrw4KzJmiZT8+j8Rm4g+79q1l/j336fo27ei2CaTyXiqOhGlS+fCp2nTpqhevTpCQ0Ph6uoKAGjXrh169eoFOzteAIyIsodGIyAg4AL8/U8hJUUDV1c7fPttEaljEZGe07nwAQBTU1Ncu3YNO3fuhFqtRvHixdG0adPMzpa1VAlSJyCiLxQSEoPBg/fhxIknYtvKlZdY+BDRZ+k8u/fOnTto3Lgxli5dipCQEISEhGDFihVo2rQp7t27lxUZs4TGhBMdiXKi3bvvoF699WLRI5MBgwdXwapVLSRORkQ5gc4jPtOnT0etWrUwdepUKJWpu6ekpGDChAmYMWNGjjmlXW3tJnUEItJBbGwyxo49gs2bb4htBQuaY8kSb9SqVVjCZESUk+g84nP58mX88MMPYtEDAAYGBvjhhx/w33//ZWq4rCRPeCF1BCLKoAsXQlC//m9aRU/Lls44etSXRQ8R6UTnwsfe3h6PHz9O0/748WOYmZllSqjsoDZz/PxGRCQ5QRAwadJxBAdHAwDMzAywcGETrFzZDPnyGUucjohyGp0PdXXo0AHjx4/H0KFD4e7uDgC4cuUKFi5ciHbt2mV6wKyituC1PYhygtRT05vA03MDXF3tEBDgjeLF80kdi4hyKJ0Ln169eiEhIQFz5sxBdHTqX2B2dnbo3r07evbsmekBs4ra0lnqCET0EVFRiVqjOSVKWGP37vYoU8YeSiWvuE5EX07nwkcmk2Hw4MEYPHgwIiIiYGRkBHPznHfDP0GZcw7LEeUV0dGJGDXqEK5dC8OBA51hamogrnN3d5AwGRHlFhkufHbt2oUDBw7AwMAADRs2RLNmzWBra5uV2bKUYJDzijWi3Oz06acYOHAvnj6NAQD4+R3HrFkNJE5FRLlNhsaM161bh7FjxyIxMREJCQkYNWoU5s6dm9XZspRgmE/qCEQEICVFjRkzTsLH50+x6LG0NEKNGoUkTkZEuVGGRnw2b96M6dOnw8fHBwAQGBiIMWPG4Mcff4RMJsvKfESUiz14EIn+/ffgv/9CxbaaNR2xeLEXHB0tJUxGRLlVhkZ8njx5gho13t3U09PTEwkJCXj58mWWBSOi3EsQBGzYcA2enr+JRY9SKcf48bWxbdt3LHqIKMtkaMRHpVJpXbBQqVTCyMgIycnJWRYsqwlyg89vRESZThAE9OnzD3btuiO2OTlZY9mypihfnhOYiShr5d3zQpUmUicgypNkMhnKlcsvLvv6uuPgwS4seogoW2T4rK69e/dqnbau0Whw4MAB2NjYaG33dh4QEdHHDBpUGVeuhKJdO1d4e5eUOg4R5SEyQRCEz23k6emZsQeTyXDo0KGvDpWlFlkCyTEI830tdZI8SyYD7OwsEB4eg8//76OslB19ERQUjvPnQ9C1q3vWPEEuwZ8L/cG+0C9yOWBra5Fpj5ehEZ/Dhw9n2hPqgwSXH6SOQJTrCYKAVasuY/Lk40hJ0cDFxQ5VqxaUOhYR5XF5co6PLDFc6ghEuVpoaBw6ddqBsWOPIClJDY1GwKJF56SORUSk+y0rcgPBOOdecZpI3wUGPsCwYfsRHp4gtv3wgwfGj68tYSoiolR5svBRmxWROgJRrhMfnwI/v+NYu/aK2GZvb/rmzurFJUxGRPROnix8iChzXbv2Ev367cHdu6/EtiZNSmDevMawszOVMBkRkbYvKnzUajVOnDiBR48eoU2bNnj48CFKlCgBC4vMm3VNRDmDIAgYMeKAWPSYmCgxZUo9+Pq68ZY2RKR3dC58nj9/jl69eiEqKgrR0dFo0KABfv31V/z3339YtWoVXFxcsiJnppInR0kdgSjXkMlkWLCgCRo33ghnZ1ssW9YUpUrZfH5HIiIJ6HxW15QpU1CpUiWcOHEChoaGAIC5c+eiZs2amDZtWqYHzAoaQ2upIxDlaLGx2rercXW1w9at32Hv3o4seohIr+lc+Fy4cAE9e/aEQqEQ2wwMDDBgwABcv349U8NllaTibaWOQJQjxcYmY8iQ/WjZ8g8kJam01lWrVgiGhoqP7ElEpB90LnyMjY0RERGRpv3hw4dat7TQZxozR6kjEOU4Fy6EoH7937B58w1cvx4Gf/9TUkciItKZzoVPhw4dMHHiRBw9ehRAasGzbds2TJgwAd99911m58t0gixPXrOR6IupVBrMmXMaLVr8geDgaACAmZkBXF3tJU5GRKQ7nSc3Dxw4EJaWlvDz80NCQgL69OkDW1tbdO/eHb169cqKjEQkkeDgaAwYsBfnz4eIbZUqFUBAgDeKF88nXTAioi/0Raezd+3aFV27dkV8fDzUajVPYyfKZQRBwNattzBq1GFxIrNcLsOIEdXx44/VoFRy5JSIciadC5+dO3d+cr2Pj88XRiEifSAIAgYO3IetW2+JbUWKWCEgwJs3GSWiHE/nwmfhwoVay2q1GhEREVAqlXB3d9ep8ElKSsLkyZMRGBgIY2Nj9OzZEz179vzkPk+fPkWLFi2wbNkyVKtWTdf4kAkanfchyktkMhmKFLEUl9u3LwN///qwsDCSMBURUebQufA5fPhwmra4uDhMnDhR54sXzpo1C9evX8e6desQEhKCUaNGoWDBgvDy8vroPn5+foiPj9c1NhHpYMSI6vjvvxfo2LEcfHz0/6KkREQZlSkH6s3MzDB48GCsWbMmw/vEx8djy5YtGDduHMqWLYtGjRqhd+/e2Lhx40f32b17N+Li4r4qK29QSqTtzp0IrcNaAGBgoMDmzW1Y9BBRrpNpMxSDgoKg0WT8MFJQUBBUKhU8PDzEtkqVKuHKlSvpPk5kZCRmz56NKVOmfF1Qjerz2xDlAYIg4LffrsLDYzmGDNmPq1dDtdbzPltElBvpfKira9euaX4hxsXF4fbt2+jevXuGHycsLAzW1tbibS8AwM7ODklJSYiKioKNjfZl72fOnInWrVujVKlSukbWokgIAX+fS+vt+89+kE5ERAKGDw/Enj33xbY5c87gt99aSZgqb+PPhf5gX+iXzO4HnQuf9CYUGxoa4qeffkKNGjUy/DgJCQlaRc/bxwGA5GTt+wD9+++/uHjxIv7++29d46ZVsDbs7Hj6vT6wtWU/SCEw8D66d9+J589jxba+fSvhl18aw8zM8BN7Unbgz4X+YF/kTjoXPlFRUfD19UWRIl83V8bIyChNgfN22djYWGxLTEzExIkTMWnSJK32L5WiUiM6POarH4e+nEyW+gslIiIGgiB1mrwjMVGF6dNPYtmyS2Kbra0JVq1qidq1CyEhIQkJCUkSJszb+HOhP9gX+kUuB2xsMq8I1bnw2b17t06HtD7GwcEBkZGRUKlUUCpTY4SFhcHY2BiWlu9Opb169SqePHmCIUOGaO3/ww8/wMfH54vm/PA/sn4QBPZFdgkKCke/fntw82a42FavXlEsWtQE5coVQHg4f8HrC/5c6A/2hX7I7D7QufDp3r07Jk+ejO7du6NgwYIwMtK+tkfBghm7wJmrqyuUSiUuX76MypUrAwAuXrwINzc3yOXv5ly7u7sjMDBQa9/GjRtj2rRpqFWrlq7xifIcQRDQv/9esegxMlJgwoQ66N3bAwoFJzEQUd7yxRcwPHHiBIB3Z34IggCZTIZbt259dN/3mZiYwMfHB35+fpgxYwZevnyJ1atXw9/fH0Dq6I+FhQWMjY1RtGjRNPs7ODjA1tZW1/hEeY5MJsP8+Y3h7f07SpWyxtKlTVGmDG8wSkR5U4YKn/Pnz8PDwwNKpRKHDh3KtCcfM2YM/Pz80K1bN5ibm2Pw4MFo3LgxAKB27drw9/dHmzZtMu35AEAeF/L5jYhyuMREFYyN3/14ly/vgN9/b42qVQvCxMRAwmRERNKSCcLnj565urri5MmTuWKERbWhJiKb7Jc6Rp4mkwF2dhacV5IF4uNT4Od3HNevv8Tu3d9/9mai7Av9wb7QH+wL/SKXZ+4Zdhm6gGEGaqMcQ2VVWuoIRFni2rWXaNRoI9auvYILF55j7twzUkciItI7GZ7jw6u4EuknjUZAQMAF+PufQkpK6lXPTUyU+OYbc4mTERHpnwwXPm3bttU62+pjMnMOUNbIPaNXRCEhMRg8eB9OnHgitrm758fSpU1RqpTNJ/YkIsqbMlz49OjRAxYWOf8qlsqoIKkjEGWK3bvv4KefDiAqKvWigzIZMGhQFYwaVROGhgqJ0xER6acMFT4ymQzNmjXLFZObkws2kDoC0VcRBAE//hiITZtuiG0FC5pjyRJv1KpVWMJkRET6L0OFT26a3EyU08lkMlhavrt9S6tWzpg9uyHy5fv6W7oQEeV2GSp8WrduneYKzUQknXHjauG//16gSxc3tG/vypMPiIgyKEOFz9urKRNR9gsOjsb16y/RrFkpsc3ISIndu9uz4CEi0lGGruNDRNlPEARs2XIT9ev/hv799+D27Qit9Sx6iIh0x8KHSA9FRyeif/89GDhwH2Jjk5GYqMaMGSeljkVElOPpfJNSIspap08/xcCBe/H0aYzY1r59Gfj715cwFRFR7sDCh0hPpKSoMXv2aSxYcE68P5ClpRHmzGkIHx8XacMREeUSLHyI9MD9+5Ho338PLl8OFdtq1nTE4sVecHS0lDAZEVHuwsKHSGIajYAePXYjKCh18rJSKcfo0TUxcGBlKBSchkdElJn4W5VIYnK5DLNmNYRcLoOTkzX27OmAIUOqsughIsoCHPEhkkBKihoGBu/up1W9eiGsXdsSdeoUgZmZgYTJiIhyN/5JSZSNEhNVmDDhKDp02A61WqO1zsvLiUUPEVEWY+FDlE2CgsLh5bUJy5dfwokTTxAQcFHqSEREeQ4PdRFlMUEQsGrVZUyefBxJSWoAgKGhAqam/PEjIspu/M1LlIVCQ+MwbNh+HDr0SGxzdbVFQEBTlC1rL10wIqI8ioUPURYJDHyAYcP2Izw8QWzr08cD48fXgbExf/SIiKSQ5377yuNDpI5AuZxGI2DMmMNYs+aK2JY/vxkWLmwCT89i0gUjIqK8V/iobN2ljkC5nFwug1otiMteXk6YO7cR7OxMJUxFRERAHix81BZOUkegPGDy5Lr4778X8PV1h6+vG2QymdSRiIgIebDwIcpsISExCAoKh6dncbHNzMwAgYGdePVlIiI9w9/KRF9h9+47qFdvPXr1+hsPHkRqrWPRQ0Skf/ibmegLxMYmY+jQ/ejd+29ERSUhLi4FU6eekDoWERF9Bg91EenowoUQDBiwF48eRYttrVo5Y/bshhKmIiKijGDhQ5RBKpUG8+efxS+/nBHP2jIzM8DMmQ3Qvr0rJzATEeUALHyIMiA4OBoDBuzF+fPvrgNVqVIBBAR4o3jxfNIFIyIinbDwIfoMjUZAp047cPfuKwCp1+kZPrwahg+vDqWS0+SIiHIS/tYm+gy5XIYZM+oDAIoUscLu3d9j5MiaLHqIiHIgjvgQpUOjESCXv5uzU7duUaxY0QwNGhSDhYWRhMmIiOhr8E9WovekpKgxY8ZJdOu2C4IgaK3z8XFh0UNElMNxxIfojfv3I9G//x5cvhwKAFi9+gp69aogbSgiIspULHwozxMEARs2XMOECUcRH68CACiVciQnqyVORkREmY2FD+VpEREJGD48EHv33hfbnJyssXSpNypU+EbCZERElBVY+FCedeTIIwwZsh+hoXFiW9eubpgypR7MzAwkTEZERFmFhQ/lOWq1Bn5+x7F8+SWxzcbGGPPmNYa3d0kJkxERUVZj4UN5jkIhR0REgrhcr15RLFrUBA4O5hKmIiKi7MDCh/KkmTM9ceVKKLp1c0fv3h5a1+whIqLci4UP5XovX8bh7t1XqFWrsNhmaWmEo0e7wsBAIWEyIiLKbryAIeVqgYEPUK/eenTvvhvPnsVorWPRQ0SU97DwoVwpPj4FI0ceQpcuOxEenoDo6CT4+R2TOhYREUmMh7oo17l27SX69dsj3k0dALy8nODv7ylhKiIi0gcsfCjX0GgELF16ETNmnERKigYAYGKixJQp9eDr6waZjBOYiYjyOhY+lCuEhMRg8OB9OHHiidjm7p4fS5c2RalSNhImIyIifcLCh3I8tVqD777binv3IgEAMhkwaFAVjBpVE4aGnMBMRETvcHIz5XgKhRwTJ34LAChY0Bzbtn2HCRPqsOghIqI0OOJDOZIgCFpzdry8nDBvXiM0a1YK+fIZS5iMiIj0GUd8KEdRqTSYM+c0+vXbA0EQtNZ17uzGooeIiD6JIz6UYwQHR2PAgL04fz4EQOo9tjp2LCdxKiIiyklY+JDeEwQBW7fewqhRhxEbmwwAkMtlCAuLlzgZERHlNCx8SK9FRydi5MhD2LHjtthWpIgVAgK8UbVqQQmTERFRTsTCh/TW6dNPMXDgXjx9+u4eW+3bl4G/f31YWBhJmIyIiHIqFj6kd9RqDX7++V8sWHAOb+cvW1oaYc6chvDxcZE2HBER5WgsfEjvyOUy3LnzSix6atZ0xOLFXnB0tJQ2GBER5XgsfEjvyGQyzJ3bCNeuvUS3bu4YOLAyFApeeYGIiL6epJ8mSUlJGDt2LCpXrozatWtj9erVH9326NGjaNWqFTw8PNCiRQscOnQoG5NSVoqISMCFCyFabTY2Jjh1qjuGDKnKooeIiDKNpJ8os2bNwvXr17Fu3TpMmjQJixcvxr59+9JsFxQUhEGDBqFt27bYuXMnOnTogKFDhyIoKEiC1JSZjhx5hHr11sPXdxdCQ+O01hkbc0CSiIgyl2SfLPHx8diyZQtWrlyJsmXLomzZsrh79y42btwILy8vrW3//vtvVK9eHb6+vgCAokWL4vDhw9i7dy9Kly4tRXz6SomJKkyYcBTLll0S2yZNOoZly5pKmIqIiHI7yQqfoKAgqFQqeHh4iG2VKlXCsmXLoNFoIJe/G4xq3bo1UlJS0jxGTExMmjbSf0FB4Rg4cD+uXg0V2+rVK4rJk7+VMBUREeUFkhU+YWFhsLa2hqGhodhmZ2eHpKQkREVFwcbGRmx3cnLS2vfu3bs4ffo0OnTooPPzymSpX5T9BEHAr79exuTJx5GUpAYAGBkpMGFCHfzwgwfkcnZMdnv7s8CfCemxL/QH+0K/ZHY/SFb4JCQkaBU9AMTl5OTkj+736tUrDB48GBUrVkSDBg10fl5LCxPAzkLn/ejrvHgRi549d2Pv3ntiW7ly+bFpUxu4uTlImIwAwNaWPxP6gn2hP9gXuZNkhY+RkVGaAuftsrFx+nfYDg8PR48ePSAIAhYuXKh1OCyjXr+OR3I4D5FlJ7Vag9q11+H+/UixbejQavjf/6rByEiJcPaHZGSy1F/uEREx+OBm95TN2Bf6g32hX+RywMYm84pQyQofBwcHREZGQqVSQalMjREWFgZjY2NYWqa9UF1oaKg4uXn9+vVah8J0oVGa8T9yNpPL5Rg5sgb69t2D/PnNsGhRE7Rv74bwcP5S0ReCAPaFnmBf6A/2hX7I7D6QrPBxdXWFUqnE5cuXUblyZQDAxYsX4ebmlmYkJz4+Hr1794ZcLsf69ethb2//xc8rGFp/VW76Mq1bl0ZERAJ8fFxgb28qdRwiIsqjJLuOj4mJCXx8fODn54erV6/i4MGDWL16tTiqExYWhsTERADA8uXL8fjxY/z888/iurCwMJ7VpYc0GgFLllzAiBEH0qzr3dsDdnYseoiISDqSXiFuzJgx8PPzQ7du3WBubo7BgwejcePGAIDatWvD398fbdq0wf79+5GYmIh27dpp7d+6dWvMnDlTiuiUjpCQGAwevA8nTjwBANSpU4Q3FSUiIr0iaeFjYmKCn3/+WRzJed/t27fF79O7mjPpl7/+uoMRIw4gKioJQOrkwIcPo6QNRURE9AHeE4C+SmxsMsaNO4Lff78hthUsaI4lS7xRq1ZhCZMRERGlxcKHvtiFCyEYMGAvHj2KFttatXLG7NkNkS9f+pckICIikhILH9KZWq3B/PnnMGfOaajVqecZmpkZYObMBmjf3hUyXu6UiIj0FAsf0plcLsP58yFi0VOpUgEEBHijePF80gYjIiL6DMlOZ6ecSyaTYcGCJsif3ww//VQdf/31PYseIiLKETjiQ58VHZ2Ix49fw80tv9jm4GCGM2d6wNzc8BN7EhER6ReO+NAnnT79FPXr/4YuXXbi1asErXUseoiIKKdh4UPpSklRY8aMk/Dx+RNPn8bg+fNYTJp0TOpYREREX4WHuiiNBw8i0a/fHly+HCq21azpiFGjakqYioiI6Oux8CGRIAjYuPE6xo8/gvh4FQBAqZRj9OiaGDiwMhQKDhASEVHOxsKHAACvXiVg+PAD2LPnntjm5GSNZcuaonx5BwmTERERZR4WPgSVSoNmzTbj/v1Isc3X1x2TJ9eFmZmBhMmIiIgyF49dEJRKOQYPrgIAsLU1wbp1LTFnTkMWPURElOtwxIcAAB07lkV4eDy+/74MHBzMpY5DRESUJTjik8cIgoBff/0PEyYc1WqXyWQYMqQqix4iIsrVOOKTh4SGxmHYsP04dOgRAKB27cJo0sRJ2lBERETZiCM+eURg4APUr79eLHoA4MqV0I/vQERElAtxxCeXi49PgZ/fcaxde0Vsy5/fDAsXNoGnZzHpghEREUmAhU8udu3aS/Trtwd3774S27y8nDB3biPY2ZlKmIyIiEgaLHxyIY1GQEDABfj7n0JKigYAYGKixJQp9eDr6waZTCZxQiIiImmw8MmFBEHAgQMPxKLHzS0/li1rilKlbCRORkREJC1Obs6FFAo5lizxhrW1MQYNqoy9ezuy6CEiIgJHfHKF2NhkhITEwNnZVmxzdLTEmTM9YG1tImEyIiIi/cIRnxzuwoUQ1K//Gzp12oGYmCStdSx6iIiItLHwyaFUKg3mzDmNFi3+QHBwNB4/fg0/v+NSxyIiItJrPNSVAwUHR2PAgL04fz5EbKtUqQAGDaoiYSoiIiL9x8InBxEEAVu33sKoUYcRG5sMAJDLZRg+vBqGD68OpZIDeERERJ/CwieHiI5OxKhRh7B9+22xrUgRKwQEeKNq1YISJiMiIso5WPjkACkpanh7/4579yLFtvbty8Dfvz4sLIwkTEZERJSz8NhIDmBgoEDPnhUAAFZWRlixohkWL/Zi0UNERKQjjvjkEL16VUBYWDy6dnWDo6Ol1HGIiIhypDxX+AhG1lJH+CRBELBhwzU8exaD0aNrie0ymQxjxtT6xJ5EpK8EQYBGo4ZGo/noNjIZkJiYiJSUZAhCNoajNNgX2Usul0MuV2TbfSTzXuGj1N+7kkdEJGD48EDs3XsfAFCjhiPq1i0qcSoi+hoqVQqio18hJSXxs9u+eiX/ZHFE2Yd9kb0MDY1haWkDpdIgy58rzxU++uro0WAMHrwPoaFxYtvp009Z+BDlYIIgICLiBeRyOays7KBQKD/5V61CIYNazSEGfcC+yB6CIECtViE2NgoRES+QP79jlo/8sPCRWGKiCtOnn8Ty5ZfENltbE8yd2wje3iUlTEZEX0ulSoEgaGBlZQ9DQ+PPbq9UyqFScZRBH7AvspMRFAoFXr0KhUqVAgMDwyx9NhY+EgoKCke/fntw82a42FavXlEsWtQEDg7mEiYjoswkk/EEWqJPyc6fERY+EhAEAatWXcbkyceRlKQGABgZKTBhQh307u0BuTx7JngRERHlNSx8JKBWp9564m3R4+pqi6VLm6JMGXuJkxEREeVuLHwkoFTKERDgjQYNNqBz53IYP74OjI3ZFUSkP777rgVevHguLstkMpibW6B8+Qr48ceRcHD4RlwXGxuLdetW4fDhA4iMfAV7+/xo2LAJunTpDhMTE63HDQ19gbVrf8WZM/8iJuY1Chcugu+/7wwvr2bZ9toy0/nzZ7B37z+YOHGq1FF0lpSUhLlzf8axY4dhZGSEDh26omPHLh/d/ty5M1iyZAFCQp6iTBk3jBgxEkWKFBPXe3nVQ2xsrNY+gYHHYWBggL59u+OXXxbB2tomq15OhvHTNhvEx6fg5cs4FCuWT2wrUcIaZ870hIODmXTBiIg+YciQEWjQoBEAQKPR4NGjB5g92x/Tp/th4cJlAID4+DgMHNgbCoUSI0eOQ5EiRfHw4QMsX74Ep0+fwuLFK2BqmnoZkSdPHmPAgN5wcyuPqVNnwtraBhcunMPs2TMQGRn5yQ9dfZSSkoL58+fg55/nSR3liwQELEBQ0C0sWLAML148x/Tpfvjmm29Qv37DNNs+eHAf//vfUHTt2gONG3vh7793YciQ/ti0aRtMTU0RFvYSsbGx+OOPnTA2fjeR38TEBDKZDG3bfo+AgIUYN84vG19h+lj4ZLFr116iX789EAQBBw92ganpu2sUsOghIn1mbm4OW1s7cdnePj969+6HKVMmIDY2Fubm5li5chmSk5OxevUacXSnQIGCcHevAF/f77FmzUoMHDgUAPDLLzNRsmQpTJ8+SzxluVAhR6SkJGP58iVo3rwVLCwssv+FfqGDB/fDwaEAHB0LSx1FZwkJCfjrr12YM2cBXFxKw8WlNB4+vI9t2/5Mt/DZuXMr3NzKo3fvfgCA/v2H4N9/TyIwcC98fNri0aOHsLW1Q6FCjuk+X+PG3li8eD5evHiOb74pkKWv7XN4qkEW0WgELF58Hl5em3D37ivcuxeJqVNPSB2LiOirGBik/vEml8uhVquxZ89utGvXMc0hLXNzc7Rr1xF79uyGWq3Gy5ehuHjxPL7/vnOa67Q0b+6DOXMWpXmMt27duoH+/XuhQYNa6NChDQ4e3A8A2LPnL3z3XQutbQcN6oNVq5YDAKZP98P06X7o1q0jmjdvhHHj/odBg/pobb98+RIMHToAABATE4OpUyegceO6aN68MebNm4WkpI9feHLnzm349tu64nJcXCxmzJiM5s0boV696ujUqS2OHz8qrq9duzJ+/XUZmjVrgFGjfgQAXLnyH3r16gpPz1rw9f0eR48eErdPSUnBokVz4ePjjbp1q+G771pg167t6WZ5/jwEtWtXTvdrz56/0mx/794dqNUquLmVF9vc3Svg5s0b6V64MSTkGcqUKSsuy2QylChREjduXAMAPHr0EIULF/noe2VgYIAqVap9NH924ohPFggJicHgwftw4sQTsc3NLb94o1EiytsMH+2A2ZXpkKVoz4eQAciKS+YJBuaIqzAeyUV9vupxnj17it9+W4tq1WrC1NQUjx49RFxcHFxdy6S7vbt7BURHR+PZs6d49uwJBEFId1tjY2OUL18h3ceIjHyFH38ciMaNvTFmzARcv34N06f7oWjR4hnKvH//HsyYMQe2trZQKpXo1asrIiNfiXNNjh49hE6dfAEAM2dOgUqlwtKlq6BSJeOXX2Zh7txZGDNmYprHff36NW7evK41t2fBgl/w5Ekw5s1bDGNjE2zatB4//zwVNWrUEgvGU6eOY+nSVVCrNYiICMfIkcPQp88AVKtWEzduXMP06ZNhbW2D8uU98Ntva/DvvycxbdosWFtbY9++fzBv3izUqVMXNja2Wnny53fArl370n0PzM3TXh4lIiIcVlb5xFwAYGNji+TkJERHR8PaWvv2TjY2tggLC9Nqe/kyFJaWqfeODA5+iKSkRAwa1AdPngSjVCkXDBkyAkWKvLsIb5Uq1bBjxxb07Tsw3ZzZhYVPJtu9+w5++ukAoqKSAKTe82XgwMoYPboWDA0VEqcjIn1gemMBlNF3sv05dS185szxx7x5swAAarUaSqUB6tT5FkOGjAAAvH4dDQCwsEj/xslvD1u9fh2NmJjUIs/MTLdrlB08GAgLCysMG/Y/yOVyFClSDK9fRyMpKSlD+5cuXQa1a38rLhcuXATHjx9Fq1ZtcP/+PTx/HoK6devj2bOnOHHiGPbsOQxzc3MolXKMGjUePXp0wuDBw9MUD/fu3YGBgQEKFCgotlWoUBEdOnRGiRKpF5/t2LEL/vprJ169ihAng7dq1UacELxy5VJUrlwVbdt+DwBwdCyMO3du488/N6F8eQ+ULOmMSpWqolw5NwBA1649sGbNSjx58jhN4aNQKLQOS35OYmKiVtEDvBvNS0lJTrO9p2cjjB49HA0bNkG1ajVw4MA+3Lp1AxUrVgYABAc/wuvXr/HTTwNhZmaGjRvXYdiwAdiw4U+YmqZO6yhWrDju3bsLtVoNhUK6z0MWPpkkNjYZY8cewebNN8S2ggXNsXixF2rX/vjwHxHlPfHlhsHs8rRsHfGJLztU5/169eqLunU9ER8fh9WrV+D58+fo23cQrKzyAQAsLa0AABEREenOcwkPDxO3i4tLvR1PTExMmtGET3n8OBjOzs6Qy9/NzOjQocubdY8+u3+BAtrzSTw9G+HYsSNo1aoNjh49hCpVqsHS0grXrl2FRqNB69beWttrNBo8ffoEpUu7arVHRkbCwsJSK5eXVzOcOHEUu3fvQHDwI9y+HSQ+xlvffPOuUAoOfohTp06gUaM6YptKpRIPGX37bT2cP38GixbNw+PHj3DnTurjqdXqNK/zxYsX6Nq1Xbrvwf/+NxaNG2u/LkNDI6SkpGi1vV1+f3LyW9Wr10SPHj9g/PiRUKvV8PCoDC+vZoiLS/0//Msvi6BSqcSJ7BMnTkPbts1w8uQJNG7sBQCwsrKCRqPB69fRkp7dxcInEyQnq9GkSepcnrdatnTGnDkNkS/f5y9TT0R5S3JRn3RHX/TtNgnW1jZiQTN16s/o3dsXo0ePwIoVa6FUKuHoWBiWlla4fftWuoeqgoJuwcrKCgULFoKFhSVkMhlu376F6tVram2XkJCAMWNGYODAYShVyllrnVL58Y+p9O7p9GFRYGhopLXcsGET/PbbGsTExODYscPo2LGruJ+5uTl+/fU3ANr36rK3T3uNNZlMlmYuzLRpk3Dt2lV4eTWFj893sLW1Q79+PT7I8+52DGq1Go0be8PXt2e6r3nFigD89ddONG3aAl5ezTBixOg0c5resrOzw5o1m9JdZ2OTtsiwt7dHdHQUVCqV+HyvXkXAyMgI5ubpTzDv1q0XOnbsiri4WFhb22DChNFiIWdoaKj12oyMjFCgQEGEh78U2zSa1PdT6iuZc3JzJjA0VOD771OPW5uZGWDhwiZYubIZix4iyjUMDAwwevR43Lt3B3/8sRFA6gd0s2Yt8fvvvyE+Pl5r+/j4OPzxxwZ4e7eAUqmEtbU1qlSpjj//3ARB0B7X+uefXbh69bLWtYHecnQsjPv372ntM3HiGGzatB5KpVLreQVBwPPnIZ98HUWLFkOxYiWwc+c2PH36BN9+Ww8AUKRIUcTGxkImk8HRsTAKFy6CpKQkLFmyAMnJKWkex8bGBjExr8VccXGxOHBgH6ZMmfFmpKw+YmKixVzpKVy4KJ4+fQJHx8Li14kTxxAYuBcAsGvXNvz440j07z8YDRo0RkJCwkdf19tCNL2vt4ea3leqlAsUCiVu3Lgutl29ehmurmW1RrHeOnBgHxYs+AWGhoawtrZBUlIi/vvvAipWrAxBENC+fSutSdQJCQl48uSJ1nV+oqOjoFAoYGVl9dHXkR1Y+GSSgQMro2/fijh8uCs6dCib5XeXJSLKbq6uZdGsWSusXbtKPIzVo8cPsLGxxeDBfXH+/Bm8ePEC58+fwaBBfWFra4devfqK+w8e/CNu3ryBCRNG4ebN63j8OBi//74BAQGL0K/fIHGi7PsaN/ZGdHQ0AgIW4smTx9iz5y+cPHkMVapUQ+nSZfD6dTS2bt2MZ8+eYtGiuXj9+vVnX0eDBo2xfv1qVKtWU5xzVKxYcVSrVhOTJ4/HrVs3EBR0C9On+yEhIT7dU+ydnEpBEAQ8evQQQOrIkrGxCY4ePYznz0Nw9uxpzJ07GwDSHFJ6q02bdggKuoUVKwLw5MljBAbuw4oVS8TTvS0trXDq1HE8e/YUV65cxtSpqZOsk5PTzsHRlbGxMby9m2HOnBm4desGjh8/it9//w3t2nUQt4mICBfPaitcuCh27dqGY8cO48mTx/DzG4/8+R1QvXpNyGQy1KxZG6tWLcelSxfw4MF9TJ06Efnz50eNGrXEx7t37y6cnV0k/3xk4aMjQRCwZctNLFx4TqtdoZBj6tR6KF48nzTBiIiyQd++A6FUKhEQsBAAYGpqikWLlqNatRqYM2cmOnVqizlzZqJGjVpYsuRXrVPUixcvgYCAXwHIMHr0CPTs2RkHDuzD6NET0L59p3Sfz8LCArNnz8fly5fg6/s9Nm5ch0mTpqFUKRcULlwEAwcOw7p1q9GzZ2cIAlC/vudnX0PDho2RkBCPhg0ba7VPmDAFBQoUxNChAzBkSH8UKVIUkyfP+GiuMmXK4urVywBSR8QmTpyCo0cPoUuXdli0aB66desJW1s7cW7Oh775pgB+/nkuzpz5F76+32PlyqUYNGiYOB9nzJiJuHfvDrp2/R4zZvjB07MhXF3L4u7d2599jRkxePBwuLi4YsiQfpg792dxTtdbrVp54dChAwCA0qVdMWLEaCxePB+9eqUeHpw1a4E4OtS//xDUq9cAkyePR58+3aBSqTB79gKtScxXr15G9eq1IDWZ8LExuFwq4kUoNArTL9o3OjoRo0YdwvbttyGXy7BrV3tUq1YokxPmfjIZYGdngfDwGOSt/336h32RtVJSkhER8Ry2tgVgYGD42e31bY5PXpaRvtiz5y/s2/ePeBVr+riEhAS0bu2NNWs2aZ0J99anflbkcsDWNvMubMkRnww6ffop6tf/Ddu3p1baGo2AgwcfSpyKiIik0qiRF168eJ6hs8vyusDAvahZs066RU92Y+HzGSkpasyYcRI+Pn/i6dMYAIClpRFWrGiGceNqS5yOiIikYmBggB9/HInVq1dKHUWvpaSkYPv2LeKtS6TG09k/4cGDSPTrtweXL4eKbTVrOmLxYi84OqZ/wS4iIso7atSopTWBl9IyMDDAunW/Sx1DxMInHYIgYOPG6xg//gji41UAUo/3jh5dEwMHVoZCwYEyIiKinIiFTzpSUjT49df/xKLHyckay5Y1RfnyDhInI6KcKI+dQ0Kks+z8GeHQRToMDRVYtqwpjI0V8PV1x8GDXVj0EJHO3p7Km5ycsftKEeVVb39GFIqsH4/hiA+AxEQVIiISUKjQu9PlSpe2w6lTPVC4MOfyENGXkcsVMDExR2xsJIDUi9x96uJtGs272ySQtNgX2UMQBCQnJyE2NhImJubpXjU6s+X5wicoKBz9+u0BAOzf3wlGRu/eEhY9RPS1LC1T75P0tvj5FLlcnub+TyQN9kX2MjExF39WslqeLXwEQcCqVZcxefJxJCWl3tTO3/8U/PzqSpyMiHITmUwGKytbWFhYQ61WfWI7wNraDJGRcbyYpMTYF9lLoVBmy0jPW5IWPklJSZg8eTICAwNhbGyMnj17omfPnulue/PmTUyaNAl37txByZIlMXnyZJQrV+6Lnjc0NA7Dhu3HoUOPxDZXV1u0a1fmix6PiOhz5HI55PKPX71ZJku9f5KBQQo/bCXGvsjdJJ3cPGvWLFy/fh3r1q3DpEmTsHjxYuzbty/NdvHx8ejTpw8qV66M7du3w8PDA3379k1zN+CMOHTkCerXX69V9PTp44H9+zujbFn7r3k5REREpOckK3zi4+OxZcsWjBs3DmXLlkWjRo3Qu3dvbNy4Mc22e/bsgZGREUaOHAknJyeMGzcOZmZm6RZJn9O77wGEhycAAPLnN8PmzW0wbVp9GBvn2aN+REREeYZkhU9QUBBUKhU8PDzEtkqVKuHKlStpJpRduXIFlSpVEs+GkMlkqFixIi5fvvzFz+/l5YSjR7vC07PYFz8GERER5SySDXOEhYXB2toahobvjnnb2dkhKSkJUVFRsLGx0dq2ZMmSWvvb2tri7t27Oj+vvb0ppk+vj44dy3zytFLKOm/fdrkcPH4uMfaF/mBf6A/2hX7J7I9qyQqfhIQEraIHgLicnJycoW0/3C4j7t/Xj5ukEWBjY/H5jShbsC/0B/tCf7AvcifJDnUZGRmlKVzeLhsbG2do2w+3IyIiIvoUyQofBwcHREZGQqV6d12LsLAwGBsbw9LSMs224eHhWm3h4eHInz9/tmQlIiKi3EGywsfV1RVKpVJrgvLFixfh5uaW5kJG5cuXx3///SfexEwQBFy6dAnly5fPzshERESUw0lW+JiYmMDHxwd+fn64evUqDh48iNWrV8PX1xdA6uhPYmIiAMDLywuvX7/G9OnTce/ePUyfPh0JCQnw9vaWKj4RERHlQDIhO+8F/4GEhAT4+fkhMDAQ5ubm6NWrF7p37w4AcHFxgb+/P9q0aQMAuHr1KiZNmoT79+/DxcUFkydPRpkyvNIyERERZZykhQ8RERFRdpL0lhVERERE2YmFDxEREeUZLHyIiIgoz8hVhU9SUhLGjh2LypUro3bt2li9evVHt7158ybatWuH8uXLo23btrh+/Xo2Js39dOmLo0ePolWrVvDw8ECLFi1w6NChbEya++nSF289ffoUHh4eOHv2bDYkzDt06Yvbt2+jY8eOcHd3R4sWLXDmzJlsTJr76dIXBw4cgLe3Nzw8PNCxY0fcuHEjG5PmLcnJyWjevPknf/d89ee3kItMmTJFaNGihXD9+nUhMDBQ8PDwEPbu3Ztmu7i4OKFWrVrCzJkzhXv37glTp04VatasKcTFxUmQOnfKaF/cunVLKFu2rLBu3Trh0aNHwoYNG4SyZcsKt27dkiB17pTRvnhfr169BGdnZ+HMmTPZlDJvyGhfvH79WqhZs6Ywfvx44dGjR8KCBQuESpUqCeHh4RKkzp0y2hd37twR3NzchB07dgjBwcHC5MmThVq1agnx8fESpM7dEhMThYEDB37yd09mfH7nmsInLi5OcHNz03qzlixZInTp0iXNtlu2bBE8PT0FjUYjCIIgaDQaoVGjRsK2bduyLW9upktfzJ49W+jVq5dWW8+ePYW5c+dmec68QJe+eGvXrl1Chw4dWPhkMl36Yt26dULDhg0FlUoltrVp00Y4evRotmTN7XTpizVr1gitW7cWl2NiYgRnZ2fh6tWr2ZI1r7h7967QsmVLoUWLFp/83ZMZn9+55lBXUFAQVCoVPDw8xLZKlSrhypUr0Gg0WtteuXIFlSpVEu/OLpPJULFiRa2rSNOX06UvWrdujZ9++inNY8TExGR5zrxAl74AgMjISMyePRtTpkzJzph5gi59ce7cOTRo0AAKhUJs27ZtG+rWrZtteXMzXfoiX758uHfvHi5evAiNRoPt27fD3NwcRYoUye7Yudq5c+dQrVo1/PHHH5/cLjM+vyW7O3tmCwsLg7W1tdZd3O3s7JCUlISoqCjY2NhobVuyZEmt/W1tbXH37t1sy5ub6dIXTk5OWvvevXsXp0+fRocOHbItb26mS18AwMyZM9G6dWuUKlUqu6Pmerr0xZMnT+Du7o4JEybg8OHDKFSoEEaNGoVKlSpJET3X0aUvmjZtisOHD6NTp05QKBSQy+VYvnw5rKyspIiea3Xq1ClD22XG53euGfFJSEjQ+k8MQFz+8M7uH9v2w+3oy+jSF+979eoVBg8ejIoVK6JBgwZZmjGv0KUv/v33X1y8eBEDBgzItnx5iS59ER8fjxUrVsDe3h4rV65ElSpV0KtXLzx//jzb8uZmuvRFZGQkwsLCMHHiRPz5559o1aoVxowZg4iIiGzLS+9kxud3ril8jIyM0rzwt8vGxsYZ2vbD7ejL6NIXb4WHh6Nbt24QBAELFy5Mc6Na+jIZ7YvExERMnDgRkyZN4s9BFtHl50KhUMDV1RVDhgxBmTJl8L///Q/FihXDrl27si1vbqZLX8yZMwfOzs7o3LkzypUrh6lTp8LExATbtm3Ltrz0TmZ8fueaTxcHBwdERkZCpVKJbWFhYTA2NoalpWWabcPDw7XawsPDkT9//mzJmtvp0hcAEBoais6dOyM5ORnr169Pc/iFvlxG++Lq1at48uQJhgwZAg8PD3Huww8//ICJEydme+7cSJefC3t7e5QoUUKrrVixYhzxySS69MWNGzdQunRpcVkul6N06dIICQnJtrz0TmZ8fueawsfV1RVKpVJrgtPFixfh5uaWZvSgfPny+O+//yC8uU2ZIAi4dOkSypcvn52Rcy1d+iI+Ph69e/eGXC7Hhg0b4ODgkM1pc7eM9oW7uzsCAwOxc+dO8QsApk2bhqFDh2Zz6txJl5+LChUq4Pbt21ptDx48QKFChbIjaq6nS1/kz58f9+/f12p7+PAhHB0dsyMqfSAzPr9zTeFjYmICHx8f+Pn54erVqzh48CBWr14NX19fAKnVfGJiIgDAy8sLr1+/xvTp03Hv3j1Mnz4dCQkJ8Pb2lvIl5Bq69MXy5cvx+PFj/Pzzz+K6sLAwntWVSTLaF8bGxihatKjWF5D615Wtra2ULyHX0OXnokOHDrh9+zYWLVqE4OBgLFiwAE+ePEGrVq2kfAm5hi590b59e/z555/YuXMngoODMWfOHISEhKB169ZSvoQ8JdM/v7/23Ht9Eh8fL4wcOVKoUKGCULt2bWHNmjXiOmdnZ63z/K9cuSL4+PgIbm5uwnfffSfcuHFDgsS5V0b7okmTJoKzs3Oar1GjRkmUPPfR5efifbyOT+bTpS8uXLggtG7dWihXrpzQqlUr4dy5cxIkzr106Ys///xT8PLyEipUqCB07NhRuH79ugSJ844Pf/dk9ue3TBDejBcRERER5XK55lAXERER0eew8CEiIqI8g4UPERER5RksfIiIiCjPYOFDREREeQYLHyIiIsozWPgQERFRnsHChygX8/T0hIuLS5qvjh07Zmh/FxcXnD17NlMzPX36NE0ed3d3dOzYEceOHfvqx9++fTs8PT3F5dOnT4u3HPhwXWbZvn17mtfk5uaGJk2aYNOmTRl+nNjYWPF2IUSUNZRSByCirDV27Fg0bdpUq83AwECiNO9s2bIFBQoUAJB6d/h169Zh4MCB2LNnD4oUKfLFj9u0aVPUq1dPXO7evTvWr18PJyenNOsy0zfffIOtW7eKyzExMdi6dSsmT56MkiVLomrVqp99jLVr1+Ls2bPw8fHJkoxExBEfolzPwsIC9vb2Wl/58uWTOhZsbGzEPIULF8aoUaNgaGiIw4cPf9XjGhsbw8bGRud1X0uhUGi9xyVKlMDIkSNRtGhRHDx4MEOPwQvpE2U9Fj5EeVhsbCzGjBmDGjVqoFy5cvDy8vroh/Tp06fRqlUruLm5oUGDBti8ebO47vXr1/jf//6HihUronbt2pg6dap4U8GMUipTB6DfjkZFR0djwoQJqFmzJipVqoT//e9/iI6OFrefO3cuateuDXd3d3Tt2hV3794FoH046+2/vr6+WLRokda69u3bY+HChVoZOnTogICAAADAnTt30LVrV7i7u6NJkybYuHGjTq/nLUNDQygUCgCphc2yZcvg6emJcuXKoXbt2li8eLGYe/HixTh37hxcXFwAAMnJyZg2bRqqVauGatWq4aeffkJUVNQX5SCiVCx8iPKw6dOn4+HDh1i9ejX+/vtvVK5cGePGjUNycrLWdmq1GsOGDYOXlxf27t2LoUOHYvLkybh37x4AYNy4cYiJicHvv/+OgIAAXLt2DVOmTMlwjri4OMybNw8pKSmoU6cOAGDQoEG4desWli1bhjVr1uD+/fsYPXo0AODAgQP4448/MH/+fPz999+ws7PDmDFj0jzu20NPixYtQs+ePbXWNW3aFAcOHBCXQ0NDcfnyZTRr1gyJiYn44YcfUKlSJezevRujRo1CQECATvNvkpOTsXHjRty7dw+NGzcGAOzcuRPr1q3D9OnTsW/fPgwcOBCLFi3CjRs30LRpU/Ts2RMeHh44efIkgNTi7vr161i5ciXWr1+P2NhYDB06NMMZiCgtzvEhyuUmTZqEqVOnarWdOnUKpqamqFKlCnr06AFnZ2cAQM+ePbFlyxZERESI82+A1PkqUVFRsLOzg6OjIxwdHZE/f37Y29vj8ePHOHjwIM6dOwcLCwsAwNSpU+Hj44MxY8aIbR9q3rw5ZDIZBEFAQkICHBwc4O/vjyJFiiAoKAjnzp3Dvn37ULx4cQDA7Nmz0bRpUzx48ADPnj2DgYEBChYsiIIFC2LChAl48OBBmud4e1jLysoKZmZmWuu8vb3x888/49GjRyhWrBgCAwNRpkwZFC1aFFu2bIGtrS2GDRsGAChWrBiePXuG9evXf3T+TUhICDw8PMTlxMRElChRAvPmzRPbCxQoAH9/f9SoUQMA0LFjRyxZsgR3795F2bJlYWpqCgMDA9jb2yMhIQEbNmzAtm3bxBGgWbNmoVq1arh9+7bYRkS6YeFDlMsNGTJEHHF4y8TEBADg4+ODgwcP4s8//8SDBw9w48YNAKkjPO/Lly8fOnbsiPHjxyMgIAD169dH27ZtYWVlhUuXLkGj0eDbb7/V2kej0SA4OBjlypVLN9eKFSvg4OAAmUwGU1NT2NnZiesePHgAS0tLsegBACcnJ1hZWeHBgwdo1qwZNmzYgAYNGqBChQpo2LAhvvvuO53eFwcHB1SuXBmBgYHo06cPAgMDxUngDx48QFBQkFYho1arxUNW6cmfPz9+++03CIKAK1euYMaMGWjbti28vb3FbapXr44rV67gl19+wf3793Hr1i2EhYVBo9GkebwnT54gJSUFHTp00GrXaDR49OgRCx+iL8TChyiXs7W1RdGiRdNdN3LkSPz3339o1aoVOnbsCHt7e3z//ffpbuvn54fOnTvj4MGDOHjwIP744w8EBARArVbDwsIC27ZtS7OPg4PDR3MVLFgQjo6O6a4zNDRMt12tVkOtVsPe3h579+7FqVOncOTIEaxatQp//vmnzqeCN23aFFu3bkXbtm1x6dIlzJw5EwCgUqlQo0YNTJw4McOPpVQqxfe5WLFiUCqVGD58OBwdHcXCc8uWLZgxYwbatWuHxo0bY9SoUfD19f3oawWATZs2wdTUVGudra2tTq+TiN7hHB+iPCo2NhZ///035s2bhyFDhqBRo0bi5OEPzy4KCwvD5MmTUbRoUfTv3x/btm1D9erVcfjwYRQvXhwxMTGQyWQoWrQoihYtisTERMyaNSvNXKGMKl68OF6/fq11+OrevXuIjY1F8eLFcfToUWzZsgX16tXD5MmTsWvXLjx69Ah37tzR6XmaNGmC27dvY8uWLXBzc0OhQoXE53/48CEcHR3F13T58mX89ttvGX7sZs2aoX79+pg8eTJiY2MBAL///jsGDhyIsWPHwsfHB9bW1oiIiBDfb5lMJu5fuHBhKBQKREVFiRnMzc3h7++PiIgInV4nEb3DwocojzI0NISJiQkCAwPx9OlTnDhxQpyQ/GHBYmVlhQMHDmDGjBl4/Pgxzp8/j6CgIJQpUwZOTk6oU6cOfvrpJ1y9ehU3btzAmDFjEB8fD0tLyy/K5uTkhG+//RajRo3C1atXcfXqVYwaNQpVqlSBs7MzNBoNZs2ahQMHDuDp06fYvn07TExMUKxYsTSPZWpqirt37yImJibNOhsbG1SrVg3Lly/XOiTVsmVLJCYmYuLEibh//z6OHTuG6dOn6zzSMm7cOLx+/Vo8c8va2hqnT5/Gw4cPcf36dfz4449ISUkR328TExO8fPkST58+hbm5Odq1awc/Pz+cPXsW9+7dw8iRIxEcHPzRkTIi+jwWPkR5lKGhIWbPno39+/ejWbNmmDlzJvr37w97e3vcunUrzbYBAQEICgpCy5YtMWzYMHz33Xdo164dgNRJt46OjujevTt69OiB4sWLY+7cuV+V7+eff0bhwoXRvXt39OrVC6VKlcKSJUsApJ6mPmTIEPj7+8Pb2xt79uxBQEAArKys0jxO165dMWvWLCxatCjd53l7Ftf7hY+5uTlWrlyJR48ewcfHB+PHj0fnzp3Rt29fnV5D4cKF0atXL2zYsAH379/H2LFjERsbi1atWmHw4MFwcXFBo0aNxPe7UaNG0Gg0aNasGSIiIjB69GjUqFEDQ4YMQfv27aFUKrFixYpPzjUiok+TCbxiFhEREeURHPEhIiKiPIOFDxEREeUZLHyIiIgoz2DhQ0RERHkGCx8iIiLKM1j4EBERUZ7BwoeIiIjyDBY+RERElGew8CEiIqI8g4UPERER5RksfIiIiCjPYOFDREREecb/AQaXmVQ+SwfcAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# ROC Curve\n",
"fpr, tpr, _ = roc_curve(y_test, y_pred)\n",
"roc_auc = auc(fpr, tpr)\n",
"plt.figure()\n",
"lw = 2\n",
"plt.plot(fpr, tpr, color='darkorange', lw=lw, label='ROC curve (area = %0.2f)' % roc_auc)\n",
"plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')\n",
"plt.xlim([0.0, 1.0])\n",
"plt.ylim([0.0, 1.05])\n",
"plt.xlabel('False Positive Rate')\n",
"plt.ylabel('True Positive Rate')\n",
"plt.title('Receiver Operating Characteristic')\n",
"plt.legend(loc=\"lower right\")\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "427d26655cf59f4d",
"metadata": {
"collapsed": false
},
"source": [
"# Plot the model\n",
"\n",
"This code block plots the model architecture using the `plot_model` function from Keras. The plot shows the structure of the model, including the input and output shapes, the layers, and the connections between layers."
]
},
{
"cell_type": "code",
"execution_count": 60,
"id": "81f2d793ada5c410",
"metadata": {
"ExecuteTime": {
"end_time": "2024-03-21T13:52:30.891207Z",
"start_time": "2024-03-21T13:52:30.879758Z"
},
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"You must install pydot (`pip install pydot`) and install graphviz (see instructions at https://graphviz.gitlab.io/download/) for plot_model to work.\n"
]
}
],
"source": [
"# Plot the model\n",
"from tensorflow.keras.utils import plot_model\n",
"\n",
"# Generate the plot\n",
"plot_model(model, to_file='model_plot.png', show_shapes=True, show_layer_names=True)\n"
]
},
{
"cell_type": "markdown",
"id": "225526f72ffc154c",
"metadata": {
"collapsed": false
},
"source": [
"# Learning Curve"
]
},
{
"cell_type": "code",
"execution_count": 61,
"id": "6b7329b28452b82a",
"metadata": {
"ExecuteTime": {
"end_time": "2024-03-21T13:52:31.015265Z",
"start_time": "2024-03-21T13:52:30.893211Z"
},
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0sAAAIhCAYAAACfXCH+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACvWklEQVR4nOzdd5wTdf7H8dekb2cLLL33KoJSXEWqFEX01LOCp6inYsGOBVDEgg0PGyJYzq4o/lQOBcF6ioIHCEqvStvek2yS+f2R3cDKAru4S7a8n/fIYyYzk5lP8t14efOd+Y5hmqaJiIiIiIiIlGIJdwEiIiIiIiLVkcKSiIiIiIhIGRSWREREREREyqCwJCIiIiIiUgaFJRERERERkTIoLImIiIiIiJRBYUlERERERKQMCksiIiIiIiJlUFgSEREREREpg8KSiIiUctlll3HZZZeFu4yjWr58OR06dGD58uXH7Zgej4dXXnmFv/3tb/Tq1YuTTz6ZCy+8kAULFmCa5nGrQ0REjg9buAsQERE5Fl26dOGdd96hbdu2x+V4aWlpjB8/nj179nDZZZfRvXt3AoEAy5Yt46677mLFihVMmzYNwzCOSz0iIlL1FJZERKRGio6O5oQTTjhux7vzzjvZu3cv77zzDi1btgwtP/3002ncuDFPPvkkAwcOZPDgwcetJhERqVo6DU9ERI7JihUruPTSS+nRowcnn3wyd955JxkZGaW2+emnn7jyyis56aST6Nq1K4MGDWLWrFkEAgEAfv/9dzp06MDLL7/M8OHD6dGjB/Pnz2fWrFkMHTqUL7/8krPOOouuXbtyxhlnsGDBgtC+/3waXnleA7BlyxauuuoqTjzxRPr3789TTz3FpEmTjnjq4W+//ca3337LlVdeWSoolbj88su55JJLiIyMDNXSoUOHQ7br0KEDs2bNOux7f/755+nQoQPLli075PgdOnRg8eLFQPB0wBkzZjBgwAC6du3KWWedxcKFCw9bv4iIHBv1LImISIX99NNP/OMf/6Bv377MnDmT7Oxsnn76acaOHcv777+Py+Vi/fr1XH755QwfPpynnnoK0zT5+OOPeeaZZ2jdujWjRo0K7W/WrFncc889REdH06NHD9577z1SU1N54IEHuPbaa2nSpAlz587lzjvvpFu3brRp06bMuo72moyMDC699FISExN5+OGH8fv9PP300+zevfuIvVTffPMNAIMGDSpzvdPpZPLkycf0Wf75vX/wwQd8+umnDBw4MLTNJ598Qr169RgwYACmaXL99dfz888/c+ONN9KmTRsWL17MxIkT8Xq9jBkz5pjqEBGRQyksiYhIhT3xxBO0atWK2bNnY7VaAejRowejRo1i/vz5XHLJJaxfv57+/fvz2GOPYbEET2Q45ZRTWLp0KcuXLy8VlkaMGMHf/va3UscoLCxk+vTp9OvXD4CWLVsycOBAvvrqq8OGpaO95t///jf5+fksWLCA5OTkUN1nnHHGEd/vnj17AGjatGlFP6qj+vN7Hz16NPPmzcPtduNyuTBNk4ULFzJ8+HAcDgffffcd33zzDU899RQjR44E4NRTT6WwsJDHH3+cM888E5tN//cuIlIZdBqeiIhUSGFhIatXrw71cvh8Pnw+H82aNaNNmzZ89913AIwZM4Y5c+ZQVFTE+vXr+eyzz/jXv/6F3++nqKio1D47depU5rEO7u1p2LAhAAUFBUes70iv+eGHH+jZs2coKAE0adKEnj17HnGfJYHQ7/cfcbtj8ef3Pnr0aAoKCkKn4v3888/s3r2bs88+G4Dvv/8ewzAYMGBA6LP3+XwMGjSI1NRUNm3aVOk1iojUVfqnJxERqZCcnBwCgQBz5sxhzpw5h6x3Op0AuN1upk2bxkcffYTP56Np06b07NkTm812yDDbJdf6/FlERERovqR36mhDdB/pNRkZGXTp0uWQ1yQlJZGWlnbYfTZp0gSA3bt3H3b0vX379tGgQYMKj4b35/feokULevbsyaeffsqIESP49NNPad68OSeeeCIAWVlZmKYZev5n+/fvP2z4FBGRilFYEhGRComKisIwDC6//PJSp9KVKAkr06dP57PPPmPmzJn0798/FApKTpELh4YNG5YZitLT04/4upSUFAC++uqrMsOSz+fj7LPP5sQTT+S5554LBSa/3x/qlcrPzy93naNHj+bhhx8mNzeXRYsWcdFFF4XWxcTEEBkZyWuvvVbma1u0aFHu44iIyJHpNDwREamQ6OhoOnfuzNatW+nWrVvo0a5dO2bNmhUanW7lypX06dOHIUOGhILS2rVrycjICI2Gd7yddNJJrFq1itTU1NCy/fv3s2rVqiO+rl27dpx22mnMmTOHXbt2HbJ+9uzZZGZmMnr0aCD4GQHs3bs3tM3KlSvLXefIkSMxTZOnn36a9PT00H4BTj75ZAoKCjBNs9Tnv3HjRp599ll8Pl+5jyMiIkemniURETnE3r17eeWVVw5Z3r59e/r3788tt9zC1Vdfza233sro0aPx+/3MmzeP1atXc9111wHQvXt3/vOf//DWW2/Rpk0b1q9fz/PPP49hGBQWFh7ndxQ0duxY3njjDa688kquv/56AJ577jmKioqOevrc/fffz7hx47jgggsYO3YsPXr0ID8/n0WLFvHpp59y4YUXMnz4cAAGDBjAww8/zOTJk7nyyivZs2cPzz77LFFRUeWqs2TkuzfffJOePXuW6i0aMGAAJ510Etdddx3XXXcdbdq0Yc2aNfzrX//i1FNPJSEh4Rg/HRER+TOFJREROcTOnTt5+OGHD1l+3nnn0b9/f1JSUpg7dy7PPPMMN954I3a7nS5duvDyyy+HBli46667KCoqYubMmXi9Xpo2bcq1117L5s2bWbp0aZUMlnA0sbGxvPbaa0yfPp077riDqKgoLr74YiIiIg573VSJxo0b88477/Dqq6/yySef8OKLL+JwOGjdujVPPPFEaGQ6gFatWvHoo4/y/PPPc/XVV9OmTRumTZvGtGnTyl3r2WefzZIlSzjrrLNKLbdYLLz44os8/fTTzJ49m/T0dJKTk/nHP/4RCoAiIlI5DPNoV8qKiIjUEqtXryYrK4sBAwaElvl8Pk4//XRGjRrFpEmTwlidiIhUN+pZEhGROmP37t1MnDiR66+/npNPPpnCwkLeeecdcnNzueCCC8JdnoiIVDPqWRIRkTrlrbfe4s0332TXrl3Y7XZ69OjBTTfdRLdu3cJdmoiIVDMKSyIiIiIiImXQ0OEiIiIiIiJlUFgSEREREREpg8KSiIiIiIhIGRSWREREREREyqCwJCIiIiIiUoY6d5+l9PRcwj3+n2FAYmJMtahFqobauG5QO9d+auO6Qe1c+6mN64aKtHPJtkdT58KSaVJtviTVqRapGmrjukHtXPupjesGtXPtpzauGyqznXUanoiIiIiISBkUlkRERERERMqgsCQiIiIiIlIGhSUREREREZEyhDUseTwe7r77bnr37k1KSgrz5s077Lbffvsto0ePpmfPnlx++eVs3br1OFYqIiIiIiJ1TVjD0owZM1i7di2vvvoqU6ZM4ZlnnmHRokWHbLdp0yauueYaBg8ezPz58+ncuTPjxo0jPz8/DFWLiIiIiEhdELawVFBQwHvvvcc999xDly5dGDp0KOPHj+eNN944ZNu33nqLnj17ctNNN9G6dWtuv/12YmJi+Pjjj8NQuYiIiIiI1AVhC0vr16/H5/PRs2fP0LJevXqxevVqAoFAqW137dpF9+7dQ88Nw6B9+/asWrXqeJUrIiIiIiJ1TNhuSpuamkp8fDwOhyO0LCkpCY/HQ1ZWFgkJCaWW79u3r9Tr9+7dS1xcXIWPaxjHXnNlKamhOtQiVUNtXDeonWs/tXHdoHau/dTGdUNF2rm8fwthC0uFhYWlghIQeu71ekstHzFiBNdddx1nnnkmp556Kh9//DG//PILffr0qfBxExNjjr3oSladapGqoTauG9TOtZ/auG5QO9d+auO6oTLbOWxhyel0HhKKSp67XK5Sy0877TSuv/56brjhBvx+P3369OHss88mLy+vwsdNT8/FNI+97spgGMFGrA61SNVQG9cNaufaT21cN6idaz+1cd1QkXYu2fZowhaWkpOTyczMxOfzYbMFy0hNTcXlchEbG3vI9tdeey1XXnklubm5JCYmctNNN9GkSZMKH9c0qTZfkupUi1QNtXHdoHau/dTGdYPaufZTG9cNldnOYRvgoVOnTthstlKDNKxcuZJu3bphsZQu65NPPmH69Ok4HA4SExNxu90sX778mE7DExERERERKY+whaWIiAjGjBnD1KlTWbNmDUuWLGHevHmMHTsWCPYyud1uAFq2bMnbb7/N559/zvbt27n11ltp1KgRp512WrjKFxERERGRWi6sN6WdNGkSXbp0Ydy4cdx///3ccMMNDBs2DICUlBQWLlwIQNeuXZk6dSqPPPII5557LgCzZ88+pAdKRERERESkshimWbfO3ExLC/+FfYYBSUkx1aIWqRpq47pB7Vz7qY3rBrVz7ac2rhsq0s4l2x5N2AZ4EBERERGR8DBNk0J/AdnebHK82eQUZWMCDSMa0jCiEQ6rM9wlVgsKSyIiIiJSq/lNP26fO9xlVJmAGSCvKI9sbxY5RdnkeHPILsoqDkE55Hizg6GoKBiMsounPtN32H0mOpNoHNmEhpGNaOxoSBNLIslGPA3NOOL8TnC7MQsLMQvyobCQQEEBFBZgFhRiFuYXTwswCwqKtysAh4OY++7H1qr1cfx0/hqFJRERERGpMQJmgNyi3GAwOOiHf7Y3i+yi7FLLg70mWeQW5WJi4rK6iHPUo56jHnHFj3qhaXzoecl8lC0KwzCOy/vym34KfQXk+fLIL8on/6BpQUEW/rRUCvMyKfTkUODOwe3Jw+POxe3Jp8hbiNUfwOYHawBs/uJH8bzTD439Js0OWleynSNgIcK04zRt2IsC4Hbj9ARwFe3F5d1LhBccf8pUOX/lff6+S2FJRERERKQ8igJFpLr3k+HJKBV6crxZoR6S7JLl3mzyinIJEDimY7n9btyFe9lXuLdc29stdmLtcdRzxB8IVc6ywlU9YuyxePwe8n15ZQaekvk8Xx75vuIQ5MnFyMnFmZlHRFYhCXmQkGsSnwcJucH55DyILTymt1tO/uJHOba0QKED3I7iqR3cDgP3wcscEHA6sUfHEhGdQGRMErGxycTFNSK5WSec7U+qyjdT6RSWRERERKTKuP1u9hfuZW9xSDn4sbdwD+nuNEwqPupClC2KWEcccfZ6xDniiufjinuM4ogtno91xFHPWY+G9ePZtucPsjxZZHmzyPZmkeXNPGg+i+yDnrv9booCRaR70kj3pFW4PqfXDAWehOLwk5Rr0i7vwLJ6ecHen/Lw2Sz4Ihxgs4HNhmG3Y7E7sNgdWO1OrA4XFntwvWGzgd2OYbOHtj34ddjsGPbi5zb7gW0ddozISIyIyAPTiIjQPHY7AdNPqjuVwsLdZBbsZk/BbvYW7mFPwR/sKdhDpjcD8AEZxY/NwTfgAWOzwcPxT3By/b4V/jzDRWFJRERERI5ZXlFeKPiUDkPB51nerKPuw25xkOhMDJ0aF2uPDYWeOEc94uzFYaj4eYw9FrvFXu4aDQNiHTE0iTJoHNm0XK9x+91keTPJ8WaTVRyscnPTKMzYS1FGKv7MdMysbKzZudhzCojM9ZKYZ5CYZxCfG8DlKV8ANA0D6sVhJCVhq5+MrX4DLEkNsNSvjyWp+FG/PkZM7HE7JfBIrIaNhpGNaBjZiJ6JvQ5ZX+grZG/hHvYW7GFPYUmY2s2egj14/R7iHfFhqPrYKSyJiIiIVHO+gI80dyr73HvZX7iP1ML97HPvY39h8HmWNwubxYbD4sBuseOwOLFb7QfmLXYcFseB9VYH9tC2wXnHQc+D6w+ssxpWMjzpf+oVCk7zfXlHrT/SFkmyqyHJEQ1JjmxEckRDGkYUP49oRLwjPixBwPT7MXOyCWRmEsjMwMzMJJAVnA9kZhKZlYkrM5OkrEzMzAzM/Pyj7bHUMyMyCktSUijwHAg/DYqXN8CSmBjsCaolImwRtIppTauYmnNd0pHUnpYRERGRasEMBMDjwXQXYrrdxdPgc9zug5YF5yl+HnAX4i8sIOAuIFBYQMDthsJCTK8H/H5M0wTTDO7fDEAgAKZZegoHPQ9uj2liFC8zTA5aZoIJFtNkn9VCwG7FtNsw7XZwODAcDiwOJxaHC6vThdXhwnA6wR5cZzgcoe1wODDsR1hmtQa7N0oeUGo+319ApjeTTG9G8TSLTG8GGd4MMjwZZBdlEzgoS5hG8c/y4mmMBXxWKLJAgS0477NCUfGUKg4isfa44gDUiOSI5OIQ1JCGzgY0sMQT5bdDURGmxwNeD2ahBzPbC55sTM9+PF4P+HzBNuNAm5pltXEgEHzvob8Ds9TUDD0PBD8cM7idzzAp2Ls/FIQCmZmY2VlU+MZLNhuW+ASMevFY4oOP0HziQaGofn0skVGV/lnL8aWwJCIiNVbJfdWrw6kp5WX6fJhZWcEfbBnpBHKygz+oI4uvEYiKwoiMOnC9QBj+xdn0+zHz8zBzcgjk5GDm5hDIycbMzg7OZ2dTmJWKO2s/vuxMyC/A4inC5inC6vVjKyrfxeJHY6mUvZTzWP4AFn8A3EXAoVfTB4ofVSm2+NGiCvYdKA6DAZuVgNWC327Bb7Xgtxn4rQY+m4HPapQKWF6riddqUmQJUGQ1icBBTMBFtOkg0m/DFbDi8lmw+0wMbxGmJwe8aZieFeD1hkKuF/BWwXuqqMOOkWAYGLFxWOrFY8SXBKCEg54nBJfVi8eIT8CIjq5R/82Rv0ZhSUREKo1pmpj5+cHTWnKyMXNzgz0HXi9mkbf4B1TwUVnLsFqDP3Ti4v40rYcRF4clNu7QaUxMpYYQ0+st/tfqDMyMjOIgdGBqZqYXP8/EzMmu2L9kO50HAlRESZiKxFISrCKiQstKha2DtqWoiEBuTunwk52NmVMcfnKK1+XmBANRXu5RazSAiHKU77UFR8zy2v80tRl4HOCxgcd+8MPAYwev3cDnsOJ32gnYrRg2G4ZhwbBYMSwWLBZb8dSKUTJvtWKx2LAYVgxLcN5qtWKxWDAsNixWW3B9aF3xvGHBag2QnZWOpzAXjzufIk8+Re58fJ5CfJ4CbEXBYZkdPrD7wO4vmZrBqQ8cfrAdNLX7weEzsfkOXMRvmMHPjuKpYR5YbjWs2AwrNqyh+eD/LFgNCxbDUtxTUtz7clAvmRkIBHtufEVQVAT+0oE1FAYpKv/fXjmVO0Q6HBgOZ3DqdAbnnc7i+eKBCwwLWAwMiyXYG1Zqagl2kBVvE5weWG+ULCvpsSu1zkJkbBRuZ9RBPUHBEGTExtWq0+CkcukvQ0REDnHYnoWSH9XF88F1B83n5R7yI63K+XyYGen4M9Ir9DIjOqZ0iDokbAUfBQ0S8Gz/PXjaTigApZcKRmbe0a/ZKMViwahXL/hjLS4Os8iHWZAfvHlj8ZSi4h+1Hg+mx4OZkVGxY1SCQgfkuSAvAvJcRnAaEVyWH2HBFhtPREIykbFJwRGzXBEYLheWiAgsrkisrigctuD1MsFH8DqYuIOuiSlZFrxm5sB2NsN23P713jAgKSmGtLTcMjOiaZp4Ah7yinLJKwoOAZ1XlEeeL7d4KOjg8v2+fPKKcovX55Lvyw9uV5SLxbDSIKIBDVzJNIgIPpJdDalfvKy+qwEOq6PS3pPp94OvCNNbdGBa5MUsCoYps8hbPC0K/uODzxdcH9r+4G2LA5jNFgw2ziMEnuJlhrN4efF22B3BABQmR2tjkcNRWBIRqWGC/4Jc/KPG68EsKirubfEcWFbyQ+doyzyeY+5ZOCKnMxg6omMxIlzBH1R2e/F1HE4Mh73MZcGpIzi0bfF8yfUfh1tm+nyY2dmh08SOPM0KBRszLxczL5fAH78f8a1kl/c9l1zHEJ+AER+PWS+WonpReGMicce4yI+xkx9jIyfKQlZEgIJAIQW+fAp8BdgMGw6ro/gCfCcOiwNnwEqEF1xeE5fHxOn24/AGcLh92IsfVrcXm9uLpdATfBQUX+NzUOgyC/IxbDYC0dEURTnIj7SS6zLJcHjZb89nry2fXJdZZiDyWw0SnIk0i2pO06hmNItqTovi+caRTbBZ6sbPCMMwcFlduKwuklz1w11OuRhWa7DX1ekKdykiNVrd+K+ciEgYmKYZ/BfbggLMwoLg6WkF+cXTAsyCAgIF+Qd+1B603CzIC07d7oPCjTf0r8HHixERiREbixEbiyWmeBoXhxETF5yPjcWIKZ7GFi+LiamSH2hev5cMT3rxPU/+IMOdTnp2Kh6/B4thxRJtwRpjCc4bFixGPFaSiueDy62GFUsAnPkeHPkeHHke7PluHLlubHmFBx65hdjyCrDmFmAtKsIT7cITG0FhjJP8aDu50VayoyAzyiQjwkeqq4h0u5t8fwH5vj9w+zcf+gaKOHDbkb/CXvyIOfwmDosDp9VZPApaFFneTNz+w/W8GURYo0JhqGTaLLo5TSKbEWXXBeoiUncpLImIlIPp8RBITyOQlkogNZVA6n4C6Wl4iwpxZ2QTKBV0DgQgfL6qLcwwQiNzhXpbHI7iHhvn0Zc5HMUh6KDwExsXCkGGvfz3MTlWbr+bdHfagSDkTiPdkx587g7eDDLDk05OUU7VFGAHEoofx6qIMi8FsVscRNuiiCx+RNmiiLIfeB5ti8JljSBgBvAGPHgDXrx+b3Aamg8u9/iD06JS23hC8wff1LPk9ZAbWmY1rDSKbFIchkqCUXOaRTUnwZmoC9ZFRMqgsCQidZoZCGBmZQYDUFoq/pIwlJZ6IBilp2Jml30y1mFHV/qziIjQHdEtB492VjKNOvj5QRfrR0SELooOBp7ikOMMDkmM7fhd11FRhb5C0typxT1BacGeoFDP0IHn5blHSwm7xU6CM5FEZxKJziQSXIlEWiMJEMAf8AWnZoCAGSBg+ounAfwl8wSX+03/4bej9HKbzYoD14GwUxJ87AfN26KL5yODIcgeTYQ1slKvQTkS0zTxmb5DwlVRcWiKskXXqdPmREQqi/6rKSK1kmmamAX5BNLTg71AaWkE0vYXB6GD5tPTyj8ggcMZvIlg/fpYkhpgTUoiulEDCrFCSciJigqFogOjkkUErx84hvcA1W9YbNM0yfflk+reT5p7P6nuVNLcqaSG5veT6t5PblHu0XdWzGV1hUJQgjORRFcSiYc8TyLGHnNcP4+aclG4YRjYjeDgCFHotDkRkcqisCQi1YYZCASv7Sl1/c5B1/SUZ3lh8TVBhYUHblB5NIaBEZ+AJak+1lJ3WC89b8TElvqh/ld/SJumSaY3g32Fe9lXuJe9BXtC8/sK97LPvRe3z02UPYpoWwxR9miibdGhabQ9hihbFNH2GKLLXBdNlD0Kq1H+oGaaJjlF2cHgU1gSgPaT9qdAVOgvKNf+IqyRJLqSSAqFnkQSnMXPXYkkOoPPo2xR1S4UioiIKCyJVBOmaQaDQlZW8F4sWZkEsrIIZGUGlxU/N7Mzg8tycoKnYJXcuDIi4kAvRsmy4tO4DswffhkuV7mGdTX9fkxP8YhbHg9mYSGm243pLgS3u3g++LxknlLPCzHdnuLtC/8UdMr3A7wijMioYOhJPNAjFOwdanAgCCUmVsk9NvwBH2metANhqPDgMLSPfYV7KQoc/VaNuUW5wV6acp/zV1qkLTIYtoqD1cGhy2FxkOlJJ/WgIFSemgBi7bEkuRpQ31WfJFd96rsaUN/VoNS8BgcQEZGaTGFJpIqYpkkgJyd4b5ZDQk9ZASgreIPNih7nMNfSHAsjIjJ4bU1xiAKzdADyuI+pxgqzWktftxM6te1PN98MXe8THVpmKd6WiEj8kU5wHTwqW+nunwAlN1P0g99f6gJ5OHAa3OFej2GyMyeT39K2sK/gz2FoL/vd+wmYRz7Fz8AgyVWf5IiGpR4Ni6eRtqjie7Xkhqal7/OSR37x9MD9XYLr3X43AAW+Agp8FQui8Y6EYOCJqB8MRM76JEWUDkQuq4YkFhGR2k1hSeqs4LDOnoN6QtzBno6Dw0Fh4UG9KG7MQnfxtBA8R+pFcZNaWHBsN+d0OrHUi8dSr17wDuOhaellltg4TL8Ps6DwwKlrJUNUl9xn5c/zBQVQxvqS09XMwuL15bm5p2EEe6NcERguZ+hmlIYrApyuQ5e5XMXzLtx2k31mFplGAR6HBY/TwO204HYaFDjAazMpMoso8hcVj/5VVPzwUhRIK7XMZxZv4y2iyF1EUdqBddWBzbBRP6JBMAS5GtIwslGpUFTf1QC75cgjziVxbPd18QV8B0LVwWHroBtmuv1uEp2JpXqDEl1JR61JRESkLlBYklrJ9HoJpO7Hv38fgf37CezfF7zIf/8+/MXPzZzsv3bTzXIyoqIOBJx68Rhx9UqHnnrxpecjIqq8poOZpgkez4HAVVgQCmBAmWHHcLmCNwc9yjUmvoCPXfk72JqzhS25m9mau4otOZtJ96Qd2ChA8PSyYzzFLNxcVhcNXMnBEOQq3TuUHNmIBGdCha4Zqkw2i404Rz3iHPXCcnwREZGaTmFJahzT6w0O6VwSfFIPBKJQEMrKrNhOHQ4MpwsjwhW8mWaoR8R1mLBQdo9JaHmEi8Qm9cny28B+fIYOPlZGqIfIBfHHfqOZDE8GW3M2szV3M1tzt7AlZzM78rbhM8u+z1CjyMY0i2pefNNMOw6LA7vFXvxwYLfYiqf20PTQbeyHPHf8ablB6euw/pzvDP4c+Eo//3MgPHh7w4DGDRJJT8+r1iOliYiIyLFRWJJqwTRNKCwkkJuLmZuDmZtLID0V/759pXuFUvdjZmSUb6dOJ9YGycEL+RskY2kQnFpLnsfHB6/PcTgr/eJ+wwB7UgxGNR9u+Fh4/V525m8/qLdoM1tzNpPpLTugRtoiaR3TltYxbWgT247WMW1oFdOaSFvNv/DfMKrfsN4iIiJSeRSWpNKYZnAwgEBx2DFzc4rDz8HzOX+azw3N4yu7B6JMDieWBg2wFgegkkBkrd8AS3LwuREbpx+yf4FpmqR50kr1Fm3N2czO/B34yxi0wMCgSVSzYCiKaUvr2Da0iWlHckRDtYOIiIjUSApLUiGm243326/wLv8hOIpbXkngCU4p+osX1dtsGDGxWGJiiod6/lOvUHEwMuLqdhDyB3zk+fLx+N24/W68AQ9uvwev34Pb78bjd+MJeIJTvyf4CATXlWzz59d4AyWvLdnefdhBEqJtMcVhqC2tY9vSOqYtLaNbEWE7vtdbiYiIiFQlhSU5KtPvp+h/K/F89h+8Xy07+r1wrFaM6BgssbHBm3jGxGCJiQnNB8NQyfKDl8UET4ur5SHINE3c/kLy/jQc9MFDPgenf16ff9AIZsdnNAQLFppFN6d1TBtax7SlTXEwqu9qUOvbSURERERhSQ7Lt3kjns8W4VnyGYG01NByS6PGOAcPw9qkyYEwdFAwMiIi69wPabffzf5S99fZR+76LNLzMouHaQ6GoOD9cPKPeu+d8goOaODEZXXhsDpwWVw4rMHnTqsTp6V4anXitLpwhrZ14rI6D3pt8WssztD2DquTeEcCTquzUmoVERERqWkUlqQU//59eBZ/hufzRfi3bg4tN2JicQ4agvOMkdi6dqtTYcg0TXKKstlXuK/0DUdLnrv3ku3NqvB+LYaVaFs0UfYoom0xB6a2KKLt5ZvaLPoKi4iIiFQV/dISAvl5eL/6Es9nCyn638oD9x6y23H0PxXnsOE4+p2CYa+dN6n0B3ykedJKB6Di3qHg/L5ynfYWaYsk2dWQBhHJJEc0pGViM6xFTiJtJWEoujgcBacuq6tOhU4RERGRmkZhqY4yfT6KfvwB92f/wfvt1+D1hNbZevTENWwEjoGDsMTEhrHKyuX1e9iau4WN2RvYmLOeXXk72e/eR6o7tVynxcU7EkI3Gy0JRMkRDWlY/DzaFhMKP4YBSUkxpNXCocNFRERE6gqFpTrENE18v/2K57OFeL5YjJmdFVpnbdES57AROIeegbVR4/AVWUm8fg9bcrewMXs9m4rD0bbcrWUOeQ1gM2zUj2hAsqthmYGogasBDl27IyIiIlKnKCzVAf7df+D5fBGez/+Df9fO0HIjPgHnkGG4zhiBtX3HGntKmMfvYWvuZjZmrw/2GmVvYHte2cEo1h5H+7gOtI/rSKuY1iRHNCI5oiEJzgSshjUM1YuIiIhIdaWwVEsFcrLxLF2C5/NF+H5ZfWCF04nztNNxnjESe6+TMGw160/A4/ewJWdT6FS6YDDaVuZpdHGOerSP7UD7uA60i+tI+7gOJLt0g1QRERERKZ+a9UtZjsr0esl/9mnc//ch+HzBhRYL9l4nBQdqOO10LJFR4S2ynNx+94FglL2eTTkb2J63vcxgVM9Rj/ZxHWkXG+w1ah/XgQauZAUjERERETlmCku1SCAzg5x778S3JtiTZG3bDucZI3EOGYY1qX6Yqzsy0zTZ597L2ow1rM1cw9rMXw7bYxTviA/1FLUvDke6SaqIiIiIVDaFpVrCt3kTOZNuI7B3D0Z0NDGTp+Hod0q4yzosv+lnW+4W1mb8wi+Zq1mbuYZU9/5Dtot3JISuMQqGo44kueorGImIiIhIlVNYqgU8X39J7oNToLAQS9NmxD76JLbmLcJdViluv5v1Wb8Gg1HGGn7NWku+L7/UNlbDSrvYDnRL6E6X+O50qteFJGeSgpGIiIiIhIXCUg1mmiaF/36ZgjkvAGDvfTIxDzxULe6NlOnJYG3mL6zNXM0vGWvYlLPhkNHpIm2RdKnXja7x3ema0J2OcZ2JsEWEqWIRERERkdIUlmoo0+Mm9+EH8X7xOQCuv11A1ISbwzK6nWma/J6/i7WZa4pPqfuF3/N3HrJdkqs+3eK70zW+B90SutMqpo2G6xYRERGRakthqQbyp+4n9+7b8a3/DaxWom+5A9foc47b8U3TZH32b/ySsSrUe5TlzTpku1bRrema0CMYkBK6a9huEREREalRFJZqmKJf15F79+0E0tMw4uKInfYo9p4nHrfjb8xez6xfn2Jd5i+lltstDjrGdaJbQg+6xnenS3xXYuzhPx1QRERERORYKSzVIO7Fi8h75EHwerG2ak3sI09gbdzkuBw705PB3I2z+c+uTzAxcVldnJjYm67F4ah9bAccVsdxqUVERERE5HhQWKoBzECAgjkvUPj6KwA4TjmV6PvuxxIVXeXH9gV8LNgxn1c3zSXflwfAkMZncHXH60hyVe97N4mIiIiI/BUKS9VcoCCfvGlT8H77NQARl4wj8qp/YlirfmCEFak/8uxvM9mRtx2A9rEdmdBlIl3ju1X5sUVEREREwk1hqRrz79lNzl234d+6GRwOou+4B9cZI6r8uLsL/uD532bx3b5gQKvnqMeVHf7J8KajNHqdiIiIiNQZCkvVVNGqn8m59y7M7CyMhERiH3oMe5euVXrMQl8hb255jXe3vUVRwIvFsHJOi/MY1+4Kou0xVXpsEREREZHqRmGpGnJ/vIC8J2eAz4e1fUdiH34Ma4PkKjueaZos3bOY2eufJc2dCkCvxJO4vvPNtIxpVWXHFRERERGpzhSWqhHT5yP/uX/hfu9tAByDhhAzaTKGy1Vlx9yUvYFnfp3JL5mrAWgU0ZhrO93AKcmn6Z5IIiIiIlKnKSxVE4HcHHKn3EPRT8sBiLzyGiLGXVFlgSXbm8W8DS/yya6PQkOBX9xmLBe0ugiH1VklxxQRERERqUkUlqoB/84d5Nx1K/5dO8HlIuaeqThPH1Q1xwr4+Gjnh7yy8SXyfLkADGo0lGs6Xk/9iAZVckwRERERkZpIYSnMvD/+QO6UezDzcrE0SCb2kSewtWtfJcf6OW0Fz/46k215WwFoE9OOCV1upkdCzyo5noiIiIhITaawFCamaVLw7tvkPzMTAgFsXbsTO/1RLAmJlX6svQV7eGH9LL7e+yUAsfY4rmh/NaOaj9ZQ4CIiIiIih6GwFAZmURF7J08m/733AXCOOJPo2+7CcDgq9Thuv5u3t7zO21tfxxvwYsHC6Bbncnm78cQ6Yiv1WCIiIiIitY3C0nFmBgLk3D6RohU/gsVC5LU3EPH3iyt1IAfTNPlq7zJe+G0W+937ADgh8UQmdJpI69g2lXYcEREREZHaTGHpODMLCij630os0dFET3kQR9/+lbr/gBlg+qopLNvzBQANXMlc2+kGTms4UEOBi4iIiIhUgMLScWaJjib+9XdIat6QLNOBaVbu/t/d9hbL9nyB3WLn4jZj+XvrS3BZq+4+TSIiIiIitZXCUhjYmjXHlhgDabmVut+1mb/w0oYXALih80TObD6mUvcvIiIiIlKXWMJdgFSObG820/53HwHTz6BGQxnV7OxwlyQiIiIiUqMpLNUCATPAI6sfINW9n6aRzbil2x26PklERERE5C9SWKoF3t36JstTv8ducTDlxAeJtEWFuyQRERERkRpPYamGW5uxhpc2zgbghs430ya2XZgrEhERERGpHRSWarBsbxbTVk3WdUoiIiIiIlVAYamGCl6nNC14nVJUc12nJCIiIiJSyRSWaqh3tr7B8tTvcVgcTOmp65RERERERCpbWMOSx+Ph7rvvpnfv3qSkpDBv3rzDbrt48WJGjBhBz549ueiii1i3bt1xrLR6+SVjNXM3vgjAhM4TaRPbNswViYiIiIjUPmENSzNmzGDt2rW8+uqrTJkyhWeeeYZFixYdst2mTZu49dZbueaaa/joo4/o1KkT11xzDYWFhWGoOrwOvk5pcONhjGo2OtwliYiIiIjUSmELSwUFBbz33nvcc889dOnShaFDhzJ+/HjeeOONQ7b97rvvaNu2LWPGjKF58+bccsstpKamsnnz5jBUHj4BM8DDq6eR5k6laVRzJna9XdcpiYiIiIhUkbCFpfXr1+Pz+ejZs2doWa9evVi9ejWBQKDUtvXq1WPz5s2sXLmSQCDABx98QHR0NM2bNz/eZYfVO1vf4EddpyQiIiIiclzYwnXg1NRU4uPjcTgcoWVJSUl4PB6ysrJISEgILR85ciRLly7l4osvxmq1YrFYmD17NnFxcRU+bnXoiCmpoSK1HHyd0o1dbqFtnK5Tqs6OpY2l5lE7135q47pB7Vz7qY3rhoq0c3n/FsIWlgoLC0sFJSD03Ov1llqemZlJamoqkydPpkePHrz11ltMmjSJDz/8kMTExAodNzEx5q8VXonKW0uGO4MHl00hYPoZ1XoUY3terNPvaojq9PcmVUftXPupjesGtXPtpzauGyqzncMWlpxO5yGhqOS5y+Uqtfzxxx+nffv2XHLJJQBMmzaNESNGMH/+fK6++uoKHTc9PRfT/AuFVwLDCDZieWoJmAEm/XQn+wv20yyqOde3m0h6et7xKVSOWUXaWGoutXPtpzauG9TOtZ/auG6oSDuXbHs0YQtLycnJZGZm4vP5sNmCZaSmpuJyuYiNjS217bp167jssstCzy0WCx07dmT37t0VPq5pUm2+JOWp5a0tr/Nj6g84LA4m93wQlzWy2tQvR1ed/t6k6qidaz+1cd2gdq791MZ1Q2W2c9gGeOjUqRM2m41Vq1aFlq1cuZJu3bphsZQuq0GDBmzZsqXUsm3bttG0adPjUWrYrMlYxbyNcwC4scutup+SiIiIiMhxFLawFBERwZgxY5g6dSpr1qxhyZIlzJs3j7FjxwLBXia32w3ABRdcwLvvvsuCBQvYsWMHjz/+OLt37+acc84JV/lVLsuTyYOrgtcpDWl8BiOanhnukkRERERE6pSwnYYHMGnSJKZOncq4ceOIjo7mhhtuYNiwYQCkpKTw8MMPc+655zJy5Ejy8/OZPXs2e/fupVOnTrz66qsVHtyhpgjeT+kB0typNNP9lEREREREwsIwzbp15mZaWvgv7DMMSEqKOWwtb25+jZc2voDD4uC5/nNpHdvm+Bcpf8nR2lhqB7Vz7ac2rhvUzrWf2rhuqEg7l2x7NGE7DU/KFrxOqeR+SrcqKImIiIiIhInCUjWS5clk2v8mEyDA0CbDdZ2SiIiIiEgYKSxVEyXXKaV70mge1YKbu9ym65RERERERMJIYamaeHvL6/yUthynxcmUEx8kwhYZ7pJEREREROo0haVqYHXG/0pdp9QqRtcpiYiIiIiEm8JSmGV6Mnjwf1NC1ykNbzoq3CWJiIiIiAgKS2F18HVKLaJbcnMX3U9JRERERKS6UFgKoze3/JsVaT/itDiZ3HMaEbaIcJckIiIiIiLFFJbCZMXeFby8YQ6g65RERERERKojW7gLqIsyPRnc8d0dBAgwrMkIXackIiIiIlINqWfpODNNk4dWPUBqYSotoltyk+6nJCIiIiJSLSksHWd5vlxWpv2Ey+oqvp+SrlMSEREREamOdBrecRZjj+Whkx6jTXJz6ptNMc1wVyQiIiIiImVRz1IY9G3Qn06JncJdhoiIiIiIHIHCkoiIiIiISBkUlkRERERERMqgsCQiIiIiIlIGhSUREREREZEyKCyJiIiIiIiUQWFJRERERESkDApLIiIiIiIiZVBYEhERERERKYPCkoiIiIiISBkUlkRERERERMqgsCQiIiIiIlIGhSUREREREZEyKCyJiIiIiIiUQWFJRERERESkDApLIiIiIiIiZVBYEhERERERKYPCkoiIiIiISBkUlkRERERERMqgsCQiIiIiIlIGhSUREREREZEyKCyJiIiIiIiUQWFJRERERESkDApLIiIiIiIiZVBYEhERERERKYPCkoiIiIiISBkUlkRERERERMqgsCQiIiIiIlIGhSUREREREZEyKCyJiIiIiIiUQWFJRERERESkDApLIiIiIiIiZVBYEhERERERKYPCkoiIiIiISBkUlkRERERERMqgsCQiIiIiIlIGhSUREREREZEyKCyJiIiIiIiUQWFJRERERESkDApLIiIiIiIiZVBYEhERERERKYPCkoiIiIiISBkUlkRERERERMqgsCQiIiIiIlIGhSUREREREZEyKCyJiIiIiIiUQWFJRERERESkDApLIiIiIiIiZVBYEhERERERKYPCkoiIiIiISBkUlkRERERERMoQ1rDk8Xi4++676d27NykpKcybN6/M7S677DI6dOhwyGPSpEnHuWIREREREakrbOE8+IwZM1i7di2vvvoqu3fv5s4776Rx48YMHz681HazZs2iqKgo9Hz16tXcfPPNXHzxxce7ZBERERERqSPCFpYKCgp47733mDNnDl26dKFLly5s2rSJN95445CwVK9evdC83+/nqaeeYvz48XTr1u04Vy0iIiIiInVF2E7DW79+PT6fj549e4aW9erVi9WrVxMIBA77ug8++IDs7Gyuuuqq41GmiIiIiIjUUWHrWUpNTSU+Ph6HwxFalpSUhMfjISsri4SEhENeY5omL730EmPHjiUqKuqYjmsYx1xypSmpoTrUIlVDbVw3qJ1rP7Vx3aB2rv3UxnVDRdq5vH8LYQtLhYWFpYISEHru9XrLfM3y5cvZu3cvF1xwwTEfNzEx5phfW9mqUy1SNdTGdYPaufZTG9cNaufaT21cN1RmO4ctLDmdzkNCUclzl8tV5ms+++wzTjvttFLXMFVUenoupnnML68UhhFsxOpQi1QNtXHdoHau/dTGdYPaufZTG9cNFWnnkm2PJmxhKTk5mczMTHw+HzZbsIzU1FRcLhexsbFlvuabb75hwoQJf+m4pkm1+ZJUp1qkaqiN6wa1c+2nNq4b1M61n9q4bqjMdg7bAA+dOnXCZrOxatWq0LKVK1fSrVs3LJZDy8rIyGDXrl306tXrOFYpIiIiIiJ1VdjCUkREBGPGjGHq1KmsWbOGJUuWMG/ePMaOHQsEe5ncbndo+02bNuF0OmnatGm4ShYRERERkTokbGEJYNKkSXTp0oVx48Zx//33c8MNNzBs2DAAUlJSWLhwYWjb9PR0YmNjMTSMiYiIiIiIHAeGadatMzfT0sJ/YZ9hQFJSTLWoRaqG2rhuUDvXfmrjukHtXPupjeuGirRzybZHE9aeJRERERERkepKYUlERERERKQMCksiIiIiIiJlUFgSEREREREpg8KSiIiIiIhIGRSWREREREREyqCwJCIiIiIiUgaFJRERERERkTIoLImIiIiIiJRBYUlERERERKQMCksiIiIiIiJlUFgSEREREREpg8KSiIiIiIhIGSoclu68806+/vpr/H5/VdQjIiIiIiJSLdgq+oLo6GjuueceioqKGDZsGCNHjqRPnz4YhlEV9YmIiIiIiISFYZqmWdEXmabJTz/9xKJFi/j8888BGDFiBKNGjeKEE06o7BorVVpaLhV/x5XLMCApKaZa1CJVQ21cN6idaz+1cd2gdj52gUAAv98X7jKOyjAgPj6KzMx8tXEtdnA7Wyw2LJbDn0RX8r0/6j6PJSwdLC8vj5deeomXX34Zr9dL48aNueCCC7j88stxOp1/ZddVojr8h1D/Ua791MZ1g9q59lMb1w1q54ozTZOcnAwKC/PCXUq5WSwWAoFAuMuQKnZwO0dERBMbm1DmGXDlDUsVPg0PID8/n2XLlrFo0SK+/fZbkpOT+cc//sHIkSNJTU3l8ccf58cff2Tu3LnHsnsRERERqcZKglJ0dDwOh7NGXI5htRr4/UrDtZ3VauDzBfB6PeTlZQIQF5d4zPurcFi69tpr+e9//0tsbCwjRozgtddeo3v37qH17du3Jycnh3vuueeYixIRERGR6ikQ8IeCUnR0bLjLKTebzYLPp56l2s5ms2CxBHA4gme45eVlEhMTf8RT8o64v4q+ICkpidmzZx9xUIfevXvz3nvvHVNBIiIiIlJ9lYyIXPJjVKS6Kvkb9ft9WCyOY9pHhSPWtGnT2LJlC59++mlo2fXXX89bb70Vel6/fn3atGlzTAWJiIiISPVXE069k7qtMv5GKxyWnnrqKV544QUiIyNDy/r06cNzzz3Hs88++5cLEhERERERqQ4qHJbmz5/PU089xaBBg0LLxo4dy+OPP84777xTqcWJiIiIiFSGBx6YQkpK78M+fv55RYX3OWHC1cydO7tc25533lksXPhxhY9xND//vIKUlN6Vvl8JqvA1S4WFhURHRx+yPD4+ntzc3EopSkRERESkMt1yy21cc831AHzxxWLefvt15sx5NbQ+Njauwvt86KHHsNns5dp2zpzXiIyMqPAxJLwq3LN06qmnMn36dHbv3h1atm/fPh599FFSUlIqtTgRERERkcoQHR1DYmISiYlJREdHY7FYQs8TE5Ow28sXeg4WGxtX6tKUI4mPj8fpdFX4GBJeFe5Zmjx5Mtdddx2DBw8mLi6YwLOzs+nbty+TJ0+u9AJFREREpPozTRP3cR6a22WzVNpAE3v27Ob880czfvw/efvtNxg2bDgTJ97Bv//9Mh9/vIDU1P3ExdXj7LPP5YorrgaCp+H17NmLK6+8hunTpxIbG0tqairfffc1cXH1uPrq6xg+fBQQPA3viiuuZuTIs5gw4WpOOqkPq1f/j1Wr/keDBslMnHg7ffr0AyA7O4tHH53OTz/9QL16CVxyyWU8/vgjfPttxU8VDAQCvP3263z44XzS09Po0qUrN998O23atAXgiy8+56WXXmDfvr00btyEq6++ntNOOx2A9957m7fffp3MzAxatWrDjTfeSo8eJ/z1D7sGqXBYSkhI4O2332b9+vVs374dm81Gy5Ytadu2bVXUJyIiIiLVnGmajH97NWt25xzX4/ZoHMucC3tU6sh8a9asZu7cfxMIBFi06FPeffctpk6dTpMmTVm+/L88/vgjnHLKaXTo0PGQ186f/y5XXXUt11xzPe+//w6PPfYQKSkDyryE5bXX5nHrrXdx66138cILz/Doow/y/vsfY7FYmDLlbrxeL889N5e0tP088si0Y34/L788hwUL5nPnnffQtGlz3njjVW699QbeeusD3O5Cpk2bzB133MOJJ/Zm6dIlTJ16DwsWLGTv3j0899zTTJ/+GK1atea9995i8uQ7+fDD/xzzPYtqomN6pz6fj/j4eLp3707nzp2JiIhg27ZtLFy4sLLrExEREZEaoLYMJH7BBRfRpElTmjVrTnJyQ+6+ewq9e59Mo0aNGTPmPBITE9m2bUuZr23btj2XXDKOJk2aMn78NXg8nsNu269fCiNHnkWTJk0ZN+5K9u/fR0ZGOjt37mDFih+5556ptGvXnn79UvjHP64+pvdimibz57/L+PH/JCVlAC1btuLOO+/FYrHw2WcLSU3dj8/no379BjRs2IiLLrqURx55AofDyZ49ezAMg4YNG9KoUWOuuuo67rtvGoFA3bqxb4V7lpYsWcJ9991HVlbWIevq16/PyJEjK6MuEREREakhDMNgzoU9avRpeCUaNWocmj/xxN6sW7eWF154hh07trFx4wbS09MPGxiaNm0Wmo+KCvYm+Xy+Mrdt1qz5QdtGhbbdsmUTsbFxNGnSNLS+a9fux/ReMjMzyMnJpnPnrqFlNpuNjh07s2PHds4++1z6909h4sTrad68BSkpAzjrrDG4XC769OlH69ZtGTv2Qtq370BKygBGjz4Hm63C8aFGq3DP0hNPPMHQoUP59NNPiY2N5e233+aFF16gSZMm3HzzzVVQooiIiIhUd4ZhEGG3HtdHVdwY1+FwhOY//ngBN998HV6vhwEDBvH008/ToEHyYV9b1iARpmmWuW1ZocM0TaxW2yGvOdw+jsbhcJa5PBDwEwj4MQyDGTNm8uKLr3D66YP573+/4YorLmXTpg24XC5efPEV/vWvF+jZsxcLF37MFVdcSmrq/mOqpaaqcFjatWsX48ePp3Xr1nTt2pXU1FQGDBjAlClTePnll6uiRhERERGR427Bgvn84x/jufHGWxk+fBRxcfXIyEg/5vBSHi1btiI3N4fdu/8ILduw4bdj2ld0dDQJCYmsW/dLaJnP52PDhvU0b96CHTu288wzM+ncuStXX30d//73uyQnJ7N8+fesXbuGf//7ZU48sTc33HALb745H6/Xw5o1q/7qW6xRKtyPFhsbS2FhIQCtWrVi/fr1DBkyhNatW/P7779XeoEiIiIiIuEQFxfHihU/kpIygIKCAl588Vl8Ph9FRd4qO2bz5i04+eR+PPzwA9x0021kZqaX68a3P/zw31LPHQ4HJ57Ym7///WLmzp1NUlJ9mjZtxhtvvIrX62HQoGEEAn4WLHif6Ohohg0bwbZtW9mzZzft23fE6XTy8stzSEhIpHfvk1m16mcKCwtp06ZdVb31aqnCYWnAgAHcf//9PPDAA/Tp04cZM2YwcOBAPvvsMxo0aFAVNYqIiIiIHHc33XQbDz10P5dffjHx8fEMHjwUlyuCjRs3VOlx7757CjNmPMjVV19ePCbAWbz55mtHfM1tt91Y6nn9+g348MOFXHjhpeTn5zNjxnTy8/Po2rUHs2bNJj4+HoDp0x/j+edn8dprLxMfH88110zg5JP7AjBp0mReeeUlnnpqBsnJDbnvvgdo2bJV1bzpasowK9iPmJeXx/Tp0+nTpw9nn302t99+O59++imRkZE89thjDBo0qKpqrRRpablUYc9puRgGJCXFVItapGqojesGtXPtpzauG9TOFVNU5CU9fQ+JiY2w2x1Hf0E1YbNZ8B3nASiOhdvtZsWK5fTte0rouqalS5fw3HNP8/77H4e5uurv4HY+0t9qyff+qPuraAFffvkld9xxRyiNPv7440ydOhWn03lMdz4WEREREZEgh8PBww8/wJgx5zFq1GgyMtJ5+eUXGThwSLhLq5MqPMDD/fffT2ZmZqll0dHRCkoiIiIiIn+RxWLhoYee4KeflnPZZRdw992306dPf6666tpwl1YnVbhnqU+fPnzyySf885//LDW0ooiIiIiI/HU9epzAiy++Eu4yhGMIS+np6Tz33HO88MILJCQk4HSWHr/9iy++qLTiREREREREwqXCYemCCy7gggsuqIpaREREREREqo0Kh6VzzjmnKuoQERERERGpViocli677DIMwzjs+tdeO/IY8CIiIiIiIjXBMQ3wcDCfz8euXbv46quvuPZajdIhIiIiIiK1Q4XD0oQJE8pc/sEHH/D5559z5ZVX/uWiREREREREwq3C91k6nJNOOonvv/++snYnIiIiIlJprrnmCu6//94y133++X8YPnwgXq/3sK/fs2c3KSm92bNnNwApKb35+ecVZW77888rSEnpXe7ali5dQmZmBgBz585mwoSry/3aijjvvLNYuPDjKtl3bVXhnqXdu3cfsiw/P5+5c+fSpEmTSilKRERERKQyDR06nBdeeIaioiLsdnupdUuXLub00wdV6B6iH320iNjYuL9c1969e5g8+S7ee+//ALjooss4//wL//J+pXJUOCwNGjQIwzAwTTM00INpmjRq1IiHHnqo0gsUEREREfmrBg8eylNPPcaKFcvp1y8ltDw/P48ff/yBxx57ukL7S0xMqpS6TNMs9TwyMrJS9iuVo8Jh6c83nTUMA7vdTlJS0hFHyRMRERGRWsw0wVd4fI9pi4By/v6Mj4+nd+8+fPXVslJh6ZtvviI2No6ePXuRmrqfp59+nBUrfsLjcdOqVWtuvvl2unc/4ZD9paT05l//eoETT+xNfn4eM2Y8xH//+y2JiUmMHj2m1LZr1qzi+ednsXHjegzD4IQTTuSuuyaTlJTE+eePBuD880dz991T2LNnN//730qeeeZFANauXcOzzz7Npk0biI9P4JJLxjJmzHkATJ8+ldjYWFJTU/nuu6+Ji6vH1Vdfx/Dho47hwzzysfbu3cujj05j7do1OJ0uBg8eyg033ILNZmPTpo088cQjbNq0gZiYWM4++1z+8Y+rjqmG6qbCYalJkya88cYbxMXFceaZZwLBQR9OOeUULrrookovUERERESqOdOk3gfnYN9b9jU8VaWo0UlknfNBuQPTkCHDePbZmfj9d2O1WoHg9UKDBw/FYrHwwAP3ER0dw+zZLxMIBHjhhVk88cQjvPrq20fc72OPPczOndt55pkXycrKZPr0qaF1eXl53HHHzfz975dw330PkJaWykMPPcDrr7/MzTffzpw5r3LVVeOYM+dVWrduw+uvvxp67fbt27jxxmv5+98vZtKk+1i3bi1PPPEI8fGJDBgwEID589/lqquu5Zprruf999/hscceIiVlANHR0RX6LI92rJkzZxAREcnLL79JZmYG9957By1atOLcc8/nwQen0L37CUyePI2dO3dw77130LFjp1KhtKaq8AAPTz31FM8//3ypLsKTTz6Z5557jmeffbZSixMRERGRGqIGnGE0YMBACgoKWb36f0AwyPz00w8MHToC0zQ59dTTmTjxdlq0aEmrVq0599wL2LZt6xH3mZeXx7JlS7j55tvp0KEjffr04/LLx4fWezxuxo0bz+WXj6dx4yZ0734Cp58+KLTfevXiQ1On01Vq3x9//CHt23fgmmuup3nzlowYcSZ/+9vfefPNA/c1bdu2PZdcMo4mTZoyfvw1eDwetm3bUuHP5mjH2rNnD9HR0TRs2Ihu3Xrw2GNP06/fKQDs3bubuLg4GjZsRN++/Zk58znat+9Y4Rqqowr3LM2fP5+ZM2fSu/eBET7Gjh1Lhw4duP3227n++usrtUARERERqeYMI9jDU41PwwOIjIyif/8UvvzyC048sTfffPMljRo1pmPHTgCcc855LFnyGWvXrmHHju1s2LCeQCBwxH3u2rUDv99Pu3btQ8s6deocmk9MTGLEiDN555032LRpI9u3b2Pz5o1069bjqPVu376dzp27lFrWrVt3Pvpofuh506bNQvNRUcHeJJ/Pd9R9V/RYl1wyloceup+vv15Gnz79GTx4WCgQXXbZP5g9+1k++ugD+vdP4YwzRlbaNV3hVuGepcLCwjK79eLj48nNza2UokRERESkhjEMsEce38cx9GYNHTqcb775CtM0Wbp0MUOGnAFAIBBg4sTrefvtN0hObsjFF4/l3nvvL/d+Dx6owWY7MNpeaup+xo37Oz//vIIOHTpx4423cOGFl5Zrn2WNzuf3B/D7DwS4P4/s9+dayutoxxo2bATz53/CP/85gcLCAu67705efPE5AC699HLeeWcBl1wylt27/+Cmm67l448XVLiG6qjCYenUU09l+vTppYYQ37dvH48++igpKTX/vEQRERERqb369TuFwsICfv55BStX/sTQocMB2L59K6tW/czMmc8xduwV9O+fQnp6GnDk8NG8eQtsNhu//fZraNmmTRtC819/vYyYmDhmzJjJBRdcRI8ePdm9+4/Q+iMNkNa8eQvWrVtbatm6dWto3rxFxd50ORztWLNnP0tGRgZjxpzHjBkzGT/+Wr76aikej4eZMx/Hbrdz4YWXMmvWbEaPPocvv1xa6TWGQ4XD0uTJkykqKmLQoEH07duXvn37MmDAAPx+P1OmTKmKGkVEREREKoXD4eC00wbyzDNP0bp1W5o1aw5AdHQMFouFL774jL1797Bs2RLmzZsNcMSb1UZFRTN8+ChmznyMdevW8vPPK5g378XQ+tjYOPbt28uKFT/yxx+/8/rrr/DVV0tD+3S5IgDYvHkjBQUFpfZ9zjnns2nTRmbPfpadO3fwn/98wgcfvMe5555/zO9/y5bN/PDDf0s9srOzjnqsnTu389RTM9i8eRNbt27hhx++o127DjidTtasWcVTTz3Gzp3bWb/+V1av/h/t23c45hqrkwpfs5SQkMDbb7/Nhg0b2LZtGzabjZYtW9K2bduqqE9EREREpFINHXoGCxd+zA03TAwta9AgmVtvvYtXXnmJ2bOfpVmzFtx00208+OAUNm3acMRrcCZOvJ2nnnqMiROvJyYmhvPOu5Bnn50JwKBBQ1m9+n/ce++dGIZBp06dmTDhZubOnY3X66VevXqcccYIJk+exLXX3lBqvw0bNmTGjKd47rmnefvt10lObsiECRMZNWr0Mb/3d955g3feeaPUsqeeepaTTupzxGPddtsknnjiESZMuBq/30///qdw8823A/DAAw/z5JOPMn78OKxWK4MGDeHyy6885hqrE8Os4EmNXq+XmTNn0qRJEy655BIAzj33XPr3789NN91U5nmT1UlaWi7HcBpnpTIMSEqKqRa1SNVQG9cNaufaT21cN6idK6aoyEt6+h4SExthtx96nUt1ZbNZ8PmOPFiD1HwHt/OR/lZLvvdHU+HT8B588EG++uorOnY8MBzgddddx5dffsmjjz5a0d2JiIiIiIhUSxUOS59//jmPP/44vXr1Ci0bMmQIDz/8MAsXLqzU4kRERERERMKlwmHJNE08Hk+Zy4uKiiqlKBERERERkXCrcFg644wzuO+++1ixYgUFBQUUFBTw888/M3XqVIYOHVoVNYqIiIiIiBx3FR4Nb9KkSdxzzz2MGzcudEdji8XCmDFjuPvuuyu9QBERERERkXCocFiKiIjgySefJCcnhx07dmC322natCnR0dHs37+fqKioqqhTRERERETkuKpwWCoRGxtLt27d8Hq9LF68mA8//JDvv/+edevWVWZ9IiIiIiIiYXHMYWnlypUsWLCARYsWkZeXR5s2bXQanoiIiIiI1BoVCkt//PEHCxYs4KOPPmLXrl3ExsaSl5fHk08+yYgRI6qqRhERERERkeOuXKPhzZ8/n8suu4whQ4bw7rvvcsoppzBv3jy+++47LBYL7dq1O6aDezwe7r77bnr37k1KSgrz5s077LYbNmzgoosuonv37px11ln88MMPx3RMEREREal7HnhgCikpvQ/7+PnnFRXe54QJVzN37uxybXveeWexcOHHFT5GeS1c+DEpKb355JMFVXaMuqhcPUv33HMPLVq04NFHH2X06NGVdvAZM2awdu1aXn31VXbv3s2dd95J48aNGT58eKntcnNzueKKKxg0aBCPPPIIH330ERMmTOCzzz4jMTGx0uoRERERkdrplltu45prrgfgiy8W8/bbrzNnzquh9bGxcRXe50MPPYbNZi/XtnPmvEZkZESFj1FeS5Z8RpMmTVm0aCFnnjmmyo5T15SrZ+mhhx6iadOmTJo0iX79+jFp0iS++OKLMm9OW14FBQW899573HPPPXTp0oWhQ4cyfvx43njjjUO2/fDDD4mMjGTq1Km0aNGCG2+8kRYtWrB27dpjPr6IiIiI1B3R0TEkJiaRmJhEdHQ0Fosl9DwxMQm7vXyh52CxsXFERkaWa9v4+HicTleFj1EemZkZrFz5E//4x1WsXv0/du/+o0qOUxeVKyyde+65zJ07l2+++YYJEyawc+dOJkyYQN++fQkEAixfvpyioqIKHXj9+vX4fD569uwZWtarVy9Wr14dun9TiR9//JHBgwdjtVpDy+bPn8+AAQMqdEwRERERqRqmaVLoKzyuD9M0K63+PXt2k5LSm1deeYnhwwfy5JOPYpomr702j/PPH83pp/fl7LOHM2/ei6HXHHwa3vTpU5k160kmT57E4MGncO65o1i06NPQtgefhjdhwtW8+upcbrllAoMGncKFF57L8uXfh7bNzs7i7rtvZ+jQUzn//LNZsOB9UlJ6H7b2pUuXEB0dzbBhI0hKql/quACFhYXMmDGdkSMHM3LkYB59dHqo0yMzM4PJkycxbNgARo8+g9mzn8U0zdDnsWfP7tB+5s6dzYQJVwPB0/6uvfYKJk26jTPOGMDnn/+H/Pw8Hnrofs48cyinn96Xiy/+G19//WXo9Yc71qOPPsidd04sVfNTT81g2rT7ytV2ValCAzwkJCRwySWXcMkll7B3714++eQTFi5cyLRp05g1axZnn302kyZNKte+UlNTiY+Px+FwhJYlJSXh8XjIysoiISEhtHzXrl10796d++67j6VLl9KkSRPuvPNOevXqVZHyATCMCr+k0pXUUB1qkaqhNq4b1M61n9q4blA7V0xZn5Npmtz4wz9Zl/nLca2la3x3nu77PEYlNt6aNauZO/ffBAIBFi36lHfffYupU6fTpElTli//L48//ginnHIaHTp0POS18+e/y1VXXcs111zP+++/w2OPPURKygCio6MP2fa11+Zx6613ceutd/HCC8/w6KMP8v77H2OxWJgy5W68Xi/PPTeXtLT9PPLItCPW/MUXn9OvXwoWi4VTTjmNRYs+5R//uCr0uTzyyDS2bNnMI488gdPpYtq0+5gz53kmTLiZSZNuw2q18swzsykoKGDKlEkkJSXRv/+pR/2sfvllDWPHXsE111xPvXrxPP30E+zatYOnnnoGlyuCN998jUcfnUa/fqdgt9sPe6whQ87g9ttvIj8/j6ioaAKBAF9+uZQ777y3nK12ZIZx6N9tef9kjnno8IYNGzJ+/HjGjx/P9u3bQ8GpvGGpsLCwVFACQs+9Xm+p5QUFBbz44ouMHTuWOXPm8Omnn3LllVfyn//8h0aNGlWo7sTEmAptX5WqUy1SNdTGdYPaufZTG9cNaufycbvdZGRYsFoNbLbgSUqmaWIJQ9o0DLDZLOUOSyX1WixGqecAVmtw/qKLLqZFi+YAZGSkct99U+nbty8AzZpdwMsvv8TOnVvp0qUzhmFgsRihGtq1a8+4cf8A4J//vJb33nuLnTu30b17j9BxS7Y95ZRTGT36bACuuGI8l112IdnZmRQWFrBixY/Mn/9/NGnSFOhIWto1PProQ6XqLbFv315++WU1F198KTabhUGDBrNgwfusW7eaE044kZycHL788gv+9a/nOfHEEwG466572LhxI9u2bWbt2jV88MHHNG7cBIA777yHgoKC0OdhtVpKfW6GEXwPJfNXXDEelyt4euGJJ/bikksuo02btgBceulYPv54ATk5meTk5Bz2WCeddBKxsbF8//23DB8+kp9//h9FRUX079+vzPdc3nYOBAwsFgvx8VGhGiu8r2N61Z+0bNmSCRMmMGHChHK/xul0HhKKSp7/+c1YrVY6derEjTfeCEDnzp357rvv+Oijj/jnP/9ZoVrT03OpxB7bY2IYwf8gV4dapGqojesGtXPtpzauG9TOFVNU5CUQCOD3m/h8By6dmNnnedx+93GtxWV14febwNEbzmazhOoNBILbH1y/3x+cb9CgUWh5jx69WLduLc888y927NjGxo0bSE9Po6jIj88XwDRNAgEzNN+kSbPQa53O4LVMHo+31HHL2tblOrDthg0biI2NIzm5cWh9p07dDqm3xGefLcLhcNC7d198vgDdu/ckJiaWTz75mK5dT2DHjh34/X7atesQen3XrifQtesJLF26hNjYuFLvuX//0wBCp9/5/YFS9Ztm8D0EAibx8QnYbI7Q+mHDRvLNN1/y4Yfz2bFjOxs2rAfA6/Wxbdv2wx4rEICBA4fyxReLGTJkOIsXf86AAQMBa5nvubzt7PebBAIBMjPzsdtLXzJU8r0/6v4qdPRKlJycTGZmJj6fD5stWEZqaioul4vY2NhS29avX5/WrVuXWtayZUv27NlT4eOaJtXmP4TVqRapGmrjukHtXPupjesGtXP5HO4zMgyDCFvVjfZ2vBx85tPHHy/gX/96krPOOpsBAwZx/fU3c+ONh/+H+rIGiTjcdVUlv3//vK3VajvkNUe6NmvJks/weDycccaBa/n9fj/Lli1h4sTbyzzOkWooUVZvnd/vL/X8z2eJPfjgFH75ZQ3Dh49kzJjzSExM4p///MdRjwUwZMgZ3HDDNeTn5/H110u5774jn3pYEX/lu13xfq1K0qlTJ2w2G6tWrQotW7lyJd26dcNiKV3WCSecwIYNG0ot27p1K02aNDkepYqIiIhIHbRgwXz+8Y/x3HjjrQwfPoq4uHpkZKRX6sASf9ayZStyc3NKjWi3YcNvZW67c+cONm7cwM0338bLL78Retx//0Pk5+fz1Vdf0rhxE6xWK5s2bQq97ptvvuSKKy6hadNm5ORks2/f3tC69957m0mTbg0NiV5QUBBad6RR9vLz81i8eBEPPPAQV155DQMGDCQ3NxsIhr0jHQugS5eu1K9fnzfeeA3ThJ49Kz42QVUoV1i68soreemll1i3bl2lHTgiIoIxY8YwdepU1qxZw5IlS5g3bx5jx44Fgr1MbnewK/fCCy9kw4YNzJo1ix07dvD000+za9cuzj777EqrR0RERETkYHFxcaxY8SM7d+5g/frfmDJlEj6fj6Ii79FffIyaN2/BySf34+GHH2Dz5k389NMPh73x7ZIlnxEbG8fo0efSunXb0GPw4GG0bNmaRYs+ISoqmuHDR/H004/x669rWb/+V2bPfo5evU6mdes29Op1UmgAiJ9/XsHrr79C7959SEhIoEGDZN588zX++ON3Fi78mO+///awdTscTlyuCL78cil79uxm+fLvefLJxwAoKio64rFKDB48jLfffoOBA0uPgh1O5QpLV199NXl5eUybNo1TTjmFG2+8kTfffJNt27b9pYNPmjSJLl26MG7cOO6//35uuOEGhg0bBkBKSgoLFy4EoEmTJrz00kssW7aMM888k2XLlvHiiy+SnJz8l44vIiIiInI4N910G/n5+Vx++cXcc8/ttG3bjtNOG8jGjRuO/uK/4O67pxAREcHVV1/O448/wsiRZ5V5it8XX3zOsGEjDjkdDuCcc/7GihU/kpq6n5tuupW2bdszceL13HbbjZx4Yi+uuupaAO67bxouVwTXXHM5999/L6NHn8O5556PxWJh0qT7+O23dVx22QUsW7aEsWOvOGzNdrudyZMf4Msvv+DSS89n1qynGDfuChITk9i4cf0Rj1Vi8OBheL0eBg8e9lc/wkpjmBXsR8zLy+Onn37i+++/5/vvvyc3N5e+ffvSt29f+vXrV+0DTFpa+C/eNAxISoqpFrVI1VAb1w1q59pPbVw3qJ0rpqjIS3r6HhITG2G3H/ojvbo6+ML/6sztdrNixXL69j0ldJ3P0qVLeO65p3n//Y/DXF3V+umnH3j00em8997/HfNw8Ae385H+Vku+90fdX0ULiI6OZuDAgQwcOBCA9PR0fvjhB77//nueffZZFi9eXNFdioiIiIgIwUETHn74AcaMOY9Ro0aTkZHOyy+/yMCBQ8JdWpVJS0tjzZpV/Pvf8zjzzLMr9b5Zf9VfHg0vMTGRUaNGMWrUqMqoR0RERESkzrJYLDz00BM8++xM3n77daKiohk2bETotLnaKC8vl4cffoAuXbpy4YWXhrucUsI2dLiIiIiIiByqR48TePHFV8JdxnHTsmUrFi/+OtxllClsQ4eLiIiIiIhUZ+pZCoPvt2XQ2hsg2aGsKiIiIiJSXR3Tr/UtW7aQm5sLwDfffMP999/Pe++9V6mF1VZZhUXcMH8tl760HE8NGJFFRERERKSuqnBYeueddxg9ejS//fYbv/76K9deey27du3i6aef5umnn66KGmuVWJeN5BgHmQVFfLMlPdzliIiIiIjIYVQ4LL300ks8+uijnHzyycyfP59OnTrx0ksv8dRTT6l3qRwshsGITsF7UX36674wVyMiIiIiIodT4bC0b98+evXqBcCyZcsYMiQ45nvDhg3Jz8+v3OpqqZGdGwDw322ZZBZ4w1yNiIiIiIiUpcJhqXXr1nz88ce8//777N69myFDhlBUVMS8efPo2LFjVdRY67ROiqJ70zj8AZPP16eGuxwRERGRWu+aa67g/vvvLXPd55//h+HDB+L1Hv4fsffs2U1KSm/27NkNQEpKb37+eUWZ2/788wpSUnqXu7alS5eQmZkBwNy5s5kw4epyv7aiCgsLGTIkheuuG19lx6hNKhyW7rzzTubOncu9997LxRdfTJs2bXj44YdZvHgx99xzT1XUWCud07MJoFPxRERERI6HoUOH8/3331JUVHTIuqVLF3P66YNwOBzl3t9HHy2iW7cef7muvXv3MHnyXbjdbgAuuugyHnrosb+838P59tuvSExM4pdfVvPHH79X2XFqiwqHpX79+vH999+zfPlyJk+eDMB1113HsmXL6Nq1a6UXWFud1aMxVovBb/vy2JZeEO5yRERERGq1wYOHUlhYyIoVy0stz8/P48cff2Do0OEV2l9iYhJ2u/0v12WaZqnnkZGRxMbG/eX9Hs6SJZ9x6qmn07p1WxYt+rTKjlNbHNPQ4d9++y0+nw+A999/n7vvvptnn332iF2XUlpStJP+reIBWKjeJREREanhTNPELCw8vo8/BY0jiY+Pp3fvPnz11bJSy7/55itiY+Po2bMXqan7uffeOxg+fCADB/bjiisuYc2aVWXu7+DT8PLz85gy5W6GDj2NCy88l/Xrfy217Zo1q7j22isZPPgUhgxJ4bbbbiQtLQ2A888fHZouXPjxIafhrV27hmuvvZIhQ1I4//zRLFjwfmjd9OlTmTXrSSZPnsTgwadw7rmjjhiAcnJy+PHHHzjhhJ7075/CokULD/kMP/tsIRdf/DcGDz6Ff/7zCjZuXB9a9/bbr3PeeWcxdOip3HLLBHbv/gOACROuZu7c2aHtyjpl8aWXXmDUqMHceedEAD7+eAEXX/w3Tj+9L6NGDeaJJx7F7/cf8Vhr1qxiwIA+ZGZmhrZbv/43Bg8+hYKCqhk7ocI3pX322Wd56aWXeOWVV9iyZQuTJ0/m/PPPZ/HixWRnZzNlypSqqLNWGtU5mW+2ZLDw131cm9ISi2GEuyQRERGRCjNNk+zrrsK3ds1xPa6tWw/inn0Ro5y/oYYMGcazz87E778bq9UKBK8XGjx4KBaLhQceuI/o6Bhmz36ZQCDACy/M4oknHuHVV98+4n4fe+xhdu7czjPPvEhWVibTp08NrcvLy+OOO27m73+/hPvue4C0tFQeeugBXn/9ZW6++XbmzHmVq64ax5w5r9K6dRtef/3V0Gu3b9/GjTdey9//fjGTJt3HunVreeKJR4iPT2TAgIEAzJ//LldddS3XXHM977//Do899hApKQOIjo4+pM6vv16KxWKhd+8+JCQk8u9/v8zq1f/jhBNOBGD58u95+OEHuPnm2+jduw/vv/82d9wxkffe+z8+/fT/ePnlOdxxxz20b9+R2bOf5b777mLu3H+X67P/7ruvef75ufj9Af73v5XMnPkYkydPo337jqxf/yvTpk2md++TGDBgEAsWzC/zWC+99BpJSfX5+utlnH32ucXtt5h+/VKIjIwqVx0VVeGepXfffZdZs2bRo0cPPvroI0466STuv/9+HnnkERYuXFgVNdZap7ZJJNppZX+el5W7ssJdjoiIiMixqwH/6DtgwEAKCgpZvfp/QDDI/PTTDwwdOgLTNDn11NOZOPF2WrRoSatWrTn33AvYtm3rEfeZl5fHsmVLuPnm2+nQoSN9+vTj8ssPDJ7g8bgZN248l18+nsaNm9C9+wmcfvqg0H7r1YsPTZ1OV6l9f/zxh7Rv34Frrrme5s1bMmLEmfztb3/nzTdfC23Ttm17LrlkHE2aNGX8+GvweDxs27alzFoXL/6ck07qg8vlolOnLjRokMx//vNJaP1HH33A0KHDGTPmPJo2bcb119/MkCFnkJOTzf/93wdccMHFDB48jGbNmnPLLXdw4om98Xjc5frszz77XJo3D36uERGR3HXXfQwYMIhGjRozcOAQ2rXrEPpMDncsr9fD4MHDWLZsSWi/y5Z9wZAhw8pVw7GocM9SdnY2rVu3xjRNvvzyS6666ioAoqOjS3WdydE5bRaGdqjPh2v28umv+zmpeXy4SxIRERGpMMMwiHv2RXCX74dzpXG5yt2rBBAZGUX//il8+eUXnHhib7755ksaNWpMx46dADjnnPNYsuQz1q5dw44d29mwYT2BQOCI+9y1awd+v5927dqHlnXq1Dk0n5iYxIgRZ/LOO2+wadNGtm/fxubNG8s1OMT27dvp3LlLqWXdunXno4/mh543bdosNB8VFexNKrlc5mDp6WmsWrWSO+4IDshmGAannXY6Cxd+wsSJd+Byudi5cwdjxpwbeo3dbmfChJsB2LlzB1dc0Sm0LiEhkeuvv+mo76FEw4aNQ/MdO3bC6XQyd+5stm3bwpYtm/n9912cfHLfox5r6NAzeOedN8jOzmL37j/Izs6iX7+UctdRURXuWerYsSNz587lmWeeISMjg6FDh7Jv3z6efPJJTjjhhCoosXYb1Tl4g9plG9MoLFLYFBERkZrJMAyMiIjj+ziG3qyhQ4fzzTdfYZomS5cuZsiQMwAIBAJMnHg9b7/9BsnJDbn44rHce+/95d7vwdf+2GwHBn5ITd3PuHF/5+efV9ChQyduvPEWLrzw0nLts6zR+fz+AH7/gQBX1iATZV3LtXTpEvx+PzNmTGfAgD4MGNCHDz54j4KCfL7+ellx3YfvRznSuj+3Q1kdKAe/l+XLv+fKKy8jPT2Nvn378+CDM0qFxyMdq127DjRt2oxvvvmSZcu+4NRTT8PpdB52+7+qwmFp6tSprFixgldffZVbbrmFJk2a8NJLL/HHH3/oeqVj0L1xLE3iXBQU+flyc1q4yxERERGp1fr1O4XCwgJ+/nkFK1f+FBoFb/v2raxa9TMzZz7H2LFX0L9/Cunpwd9mRxpIonnzFthsNn777cCgDps2bQjNf/31MmJi4pgxYyYXXHARPXr0DA2MAIcGjT/ve926taWWrVu3hubNW1TsTQNffPE5vXqdzMsvvxF6vPLKmzRp0jR0Kl7Tps3YvHlT6DV+v5/zzx/NmjWraNq0OZs3bwyty87O4swzh7Bnz27sdjsFBQdGdz74/ZXl448/ZNSo0dxxxz2ceeYYWrRoWWoY8yMdC4KB97vvvuH7779l8OAzKvxZVESFT8Pr2LEjH330Uallt99+e4XGpZcDDMNgZOcGzPl+JwvX7WdEp+RwlyQiIiJSazkcDk47bSDPPPMUrVu3pVmz5gBER8dgsVj44ovPSEkZwG+/rWPevOAIb0ca8TkqKprhw0cxc+ZjTJo0BY/Hzbx5L4bWx8bGsW/fXlas+JFGjRqzbNkSvvpqKR07Bk/Vc7kiANi8eSNxcfVK7fucc87nvffeZvbsZxkx4kzWrfuFDz54j4kT76jQe96zZzdr165h2rRHaN26bal1Z599Li+88Aypqfs577y/c8stE+jRoyfduvXg/fffJhAI0KFDR8477+/8619P0qZNW1q0aMWLLz5Ho0aNi09j7MyiRZ+Grh166aUXjlhPbGwca9euZsuWzRiGweuvv0J6elrocz7SsQCGDDmD1157GZfLFTp1r6oc09Dhv/76K7feeivnnHMOo0eP5vbbb+fHH3+s7NrqjJHFp+L9uDOT1DxPmKsRERERqd2GDj2DTZs2MnTogV6JBg2SufXWu3jjjde47LIL+Pe/X+Gmm27DarWW6ikqy8SJt9O1a3cmTrye6dOn8re//T20btCgoZxxxgjuvfdOxo8fy88/r2DChJvZsWMbXq+XevXqccYZI5g8eRKffLKg1H4bNmzIjBlPsXz5fxk37kJefXUuEyZMZNSo0RV6v0uWfE69evVISRlwyLqRI0djs9lYtGghJ5xwIrfccicvvzyHceMuZNOmjcyYMROn08UZZ4zkoosu5YknHuXKKy/F6/UwbdoMAC688BLat+/A9ddfzdSp95Qa4KIsV1xxDfHxCVxzzeVMnHg9DoeDMWPOC33ORzoWBHvAWrZsxYABA494yl5lMMyKDFAPLF68mIkTJzJs2DB69uyJ3+9n1apVLFmyhJkzZzJkyJCqqrVSpKXlUrF3XPkMA5KSYkrVMv6tVazencONp7XispOaHXkHUu2V1cZS+6idaz+1cd2gdq6YoiIv6el7SExshN1ec84sstks+HxHHqxBaoZAIMB5553Fvffez4kn9i617uB2PtLfasn3/mgqHMWefvppbrvtNi6//PJSy1955RVmzZpV7cNSdTWycwNW787h01/3cWnvpsd0waKIiIiISG323/9+y48/fo/D4QzdH6oqVfg0vF27djFw4MBDlg8cOJBt27ZVSlF10ZAO9bFbDbakFbAxtWruQCwiIiIiUpO99da/WbbsCyZNug+L5ZiuKKqQCh+hTZs2fP3114cs/+qrr2jSpEmlFFUXxbrsnNYmEYCFv+4LczUiIiIiItXPrFmz+eijRfTo0fO4HK/Cp+HdcMMN3HDDDaxevZoePYLjoa9atYrPPvuMGTNmHOXVciQjOyfzxcY0Fv22nxtOa43NolPxRERERETCpcI9SwMHDmTOnDl4PB7eeustPvjgA0zT5M0332TkyJFVUWOd0b9lPPUi7GQUFLF8R2a4yxERERE5rAqOESZy3FXG3+gxjbXXr18/+vXrV2qZx+Nh165dNGumkdyOlc1q4YyO9Xnnf7tZuG4fp7RKCHdJIiIiIqVYrVYAvF4PDoczzNWIHJ7XG7wlj9V67MOLV9rA5D/++CNXX301v/32W2Xtsk4a2TmZd/63m6+2pJPn8RHtrNqx40VEREQqwmKxEhERTV5e8CwYh8NZI0bxDQQM/H71htV2gYCBzxfA6/WQl5dJRET0XxoIQr/Eq5lOydG0TIhge0YhSzemMbpbw3CXJCIiIlJKbGzw7JeSwFQTWCwWAgHdZ6m2O7idIyKiQ3+rx0phqZoxDIORnZN57tvtfPrrPoUlERERqXYMwyAuLpGYmHj8fl+4yzkqw4D4+CgyM/N14+Fa7OB2tlhslTK0uMJSNTSiUwOe/3Y7P/+eze5sN43jXOEuSUREROQQFosFi8UR7jKOyjDA5XJhtxcpLNViVdHO5QpLP/3001G32bBhw18uRoIaxrro1bweK3Zmsei3/VzRt3m4SxIRERERqXPKFZYuu+yycu2sJlzcV1OM7NSAFTuz+PTXffyjTzN9tiIiIiIix1m5wtL69eurug75k0Htk3j0i83szCxk3d5cujaKDXdJIiIiIiJ1yl+/6kmqRJTDxsB2SQAs/HV/mKsREREREal7FJaqsVGdGwDw+fr9FPk11KWIiIiIyPGksFSNndQ8nqQoB9luH99tzQh3OSIiIiIidYrCUjVmtRgM7xTsXfr0131hrkZEREREpG5RWKrmRnVOBuDbrRlkFxaFuRoRERERkbpDYamaa1s/inb1o/AFTBZvSA13OSIiIiIidYbCUg1Q0ru0UKfiiYiIiIgcNwpLNcAZnRpgMeCXPbnszCwMdzkiIiIiInWCwlINkBTloG/LeEC9SyIiIiIix4vCUg0xslPwVLz//LqPgGmGuRoRERERkdpPYamGGNA2kSiHld05Hlb9kR3uckREREREaj2FpRrCZbcyuH0SAAt/3R/makREREREaj+FpRpkZPGoeEs2pOIu8oe5GhERERGR2k1hqQbp2TSOhjFO8r1+vt6SHu5yRERERERqNYWlGsRiGIzs3ADQqXgiIiIiIlVNYamGGVF8Kt4P2zNIz/eGuRoRERERkdpLYamGaZkQSZeGMfhN+Gy9epdERERERKqKwlINVDLQg07FExERERGpOgpLNdCwDvWxWQw27M9jc1p+uMsREREREamVFJZqoHqRdlJaJwDwn1/3hbkaEREREZHaSWGphioZ6OE/v+3HHzDDXI2IiIiISO2jsFRDpbRKINZlIzXPy4qdWeEuR0RERESk1lFYqqEcNgtDO9QHYOFvOhVPRERERKSyKSzVYKOKT8VbujGNAq8/zNWIiIiIiNQuCks1WNdGMTSPj8DtC7BsU1q4yxERERERqVUUlmowwzAY0akBAJ9qVDwRERERkUqlsFTDjegcDEsrdmaxL9cT5mpERERERGoPhaUarklcBD2bxGICi37bH+5yRERERERqDYWlWmBk8UAPn/66D9PUPZdERERERCqDwlItMKRDfRxWg23pBWzYnxfuckREREREaoWwhiWPx8Pdd99N7969SUlJYd68eYfd9tprr6VDhw6lHsuWLTuO1VZf0U4bA9omAfDprzoVT0RERESkMtjCefAZM2awdu1aXn31VXbv3s2dd95J48aNGT58+CHbbtmyhccee4x+/fqFlsXFxR3Pcqu1kZ0bsHhDKp/9tp+bTmuFzapOQxERERGRvyJsYamgoID33nuPOXPm0KVLF7p06cKmTZt44403DglLXq+X33//nW7dulG/fv0wVVy99W0RT0KknYyCIr7fnsmpbRLDXZKIiIiISI0Wtu6H9evX4/P56NmzZ2hZr169WL16NYFAoNS2W7duxTAMmjVrdrzLrDFsVgtndAwOI75Qp+KJiIiIiPxlYetZSk1NJT4+HofDEVqWlJSEx+MhKyuLhISE0PKtW7cSHR3NHXfcwY8//kjDhg254YYbGDBgQIWPaxiVUv5fUlJDZdcyqksyb/38B19vSSPP4yPGFdazLOu0qmpjqV7UzrWf2rhuUDvXfmrjuqEi7Vzev4Ww/ZouLCwsFZSA0HOv11tq+datW3G73aSkpHD11VezePFirr32Wt555x26detWoeMmJsb8tcIrUWXXckpiNO2To9m4L48fdudy0cnNK3X/UnHV6e9Nqo7aufZTG9cNaufaT21cN1RmO4ctLDmdzkNCUclzl8tVavl1113HZZddFhrQoWPHjqxbt4533323wmEpPT2XcN+KyDCCjVgVtZzRoT4b9+XxzvIdDG0dX7k7l3KryjaW6kPtXPupjesGtXPtpzauGyrSziXbHk3YwlJycjKZmZn4fD5stmAZqampuFwuYmNjS21rsVgOGfmudevWbN68ucLHNU2qzZekKmoZ3rEBz3y9jVV/5LDq92x6NNGIgeFUnf7epOqonWs/tXHdoHau/dTGdUNltnPYBnjo1KkTNpuNVatWhZatXLmSbt26YbGULuuuu+5i0qRJpZatX7+e1q1bH49Sa5QGMU6GdQyOGHj7R7/ye1ZhmCsSEREREamZwhaWIiIiGDNmDFOnTmXNmjUsWbKEefPmMXbsWCDYy+R2uwEYNGgQH3/8MQsWLGDHjh0888wzrFy5kksvvTRc5Vdrdw9tT8cG0WQWFnHzB2vJLiwKd0kiIiIiIjVOWO9cOmnSJLp06cK4ceO4//77ueGGGxg2bBgAKSkpLFy4EIBhw4YxZcoUnn/+ec4880yWLl3KSy+9RNOmTcNZfrUV6bDy1DldSI5xsiOzkDv+71e8vsDRXygiIiIiIiGGadatMzfT0sJ/YZ9hQFJSTJXXsjk1n/FvryLf62dk5wZMHd4BQ2NmHhfHq40lvNTOtZ/auG5QO9d+auO6oSLtXLLt0YS1Z0mqVtv6UTxyViesRvBGtXO+3xHukkREREREagyFpVqub8sE7hrSDoA53+/kk3V7w1yRiIiIiEjNoLBUB4zp3ohxJzcDYPrnm1ixMyu8BYmIiIiI1AAKS3XEdSktGdqhPr6Aye3/t45t6QXhLklEREREpFpTWKojLIbBlOEd6N44ljyPn5s/+IX0fG+4yxIRERERqbYUluoQp83CE2d3oWk9F7tzPNy6YB3uIn+4yxIRERERqZYUluqYepF2Zp7TlTiXjXV7c5n8nw0ENIamiIiIiMghFJbCwJqxCXL3he34LRIieezsLtitBss2pfGvr7aFrRYRERERkepKYek4MzzZ1Hv7DJh9GoY7M2x19Gwax+QzOgDwxsrfeX/V7rDVIiIiIiJSHSksHWemIwZ/XAvI20vUdw+GtZbhnRrwz1NaAPDY0s18tzUjrPWIiIiIiFQnCkvHm2Ehb9BjgIHrt3ew7/o2rOVc0ac5Z3VJJmDC3Z/8xob9eWGtR0RERESkulBYCgNfo95w0ngAYr68E4oKw1aLYRjcPbQdJzWvR0GRn4kfrmVfrids9YiIiIiIVBcKS+EyeDL+6EZYc3YQ9dOTYS3FZrXw6FmdaZUYSWqel4kfriXP4wtrTSIiIiIi4aawFC6uWPIHPARAxKoXsaX+EtZyYlw2nj63KwmRdjal5nP3J7/hC2hIcRERERGpuxSWwsjbaijutmdhmH6il94OgfD25jSKdfHkOV1x2ix8vz2Tx77YjKl7MImIiIhIHaWwFGZ5pz5AwBmHPW0tEavmhLscujSMYfqojhjAB2v28PqK38NdkoiIiIhIWCgshZkZWZ+8UyYDEPXj41iywn+D2AFtk7j59NYA/OvrbXyxMTXMFYmIiIiIHH8KS9WAp+MFeJucguH3EPPlXVANTn276MQmXHBCYwCm/GcDv+zOCXNFIiIiIiLHl8JSdWAY5A58FNPqxPHHdzjXvxvuijAMg1sGtiGldQIeX4BbF6zj96zwDXEuIiIiInK8KSxVE4G4luSffBsA0d89gJG/P8wVgdViMH1UJzo0iCazsIibP1hLdmFRuMsSERERETkuFJaqkcITrqIoqSsWTzbR304JdzkARDqsPHVOF5JjnOzILOSO//sVry8Q7rJERERERKqcwlJ1YrGRN+gxTMOKa/PHOLYtDndFANSPdjLznK5EOaz8/Hs20xdv1JDiIiIiIlLrKSxVM7763Sg84WoAor++G8ObG+aKgtrWj+KRszphNWDhr/uZ8/2OcJckIiIiIlKlFJaqofyTbsEf2wJr3h6ifngk3OWE9G2ZwJ1D2gEw5/udPLJkE2n53jBXJSIiIiJSNRSWqiN7BLkDZwDg+uU1bHt+CnNBB5zTvRFX9GkGwPzVezjnpR957ttt5Lp9Ya5MRERERKRyKSxVU0VNT6Gw098xMIlZdgf4PeEuKeTalFY8f353ujaKwe0L8PLyXYyZ+yOv/bgLd5E/3OWJiIiIiFQKhaVqLL//vQQi6mPL3ETkymfCXU4pvZvXY95FJ/DY6M60Sowkx+1j1jfbOHfeT3ywejc+v0bMExEREZGaTWGpGjNd8eSeNg2AyJXPYE3fEOaKSjMMg9PbJfHW2F5MGd6eRrFOUvO8PLxkMxe8soLP1+8noFHzRERERKSGUliq5rxtRuFpOQwjUETMstshUP1Oc7NaDM7s0pD3/3EStw5sQ3yEnV1Zbu75dD2X/ftn/rstQ0ONi4iIiEiNo7BU3RkGeQMeJGCPxr7vZ1xrXwt3RYflsFm48MQmfDj+JK7p34Ioh5WNqfnc9MFarnl3Dav/yA53iSIiIiIi5aawVAMEohuT3/9uAKJ+eARL7h9hrujIohw2xvdrwYIrT+aSXk1xWA3+93s2499ezS0frmVzan64SxQREREROSqFpRrC3eVSihqdhKUon+ivJkENOK2tXqSdm09vzfwrTuLsbg2xGvDN1gwufm0lkxeu5/eswnCXKCIiIiJyWApLNYVhIff0RzEtDpw7luLc/H/hrqjcGsa6uHdYe96+vDdD2idhAv/5bT/nv7yCx77YTLpubCsiIiIi1ZDCUg3iT2hPQe8bAIj+ZjKGOzPMFVVMy4RIHj6rM69d2pO+LeLxBUzeXbWbMS/9yPPfbiPPoxvbioiIiEj1obBUwxSceD2+hA5YCtOJ/u6BcJdzTDolxzDrvG6lbmw7b/kuzn7pR/79k25sKyIiIiLVg8JSTWN1kDtwBiYGrvXvYd/1dbgrOmZl3dj2X18X39h2zR7d2FZEREREwkphqQbyNexFYbfLAYj58i4oKghvQX/BYW9su3gTw1/4gfsXbeDrLel4fApOIiIiInJ82cJdgBybgr534tz2GdacnUT9+AT5p9wX7pL+kpIb2w7r0IAP1uzh5eU7ySgo4pN1+/hk3T4i7Vb6t0pgYLtE+rdKINqpP10RERERqVr6xVlDmY5o8gY8TNyn44hYPQdPu7PxNege7rL+spIb2553QmNW/5HNsk1pLNuUxv48L0s2prJkYyp2q0GfFvEMbJvEaW0SqRdpD3fZIiIiIlILKSzVYN6Wg3G3OxvXpo+IXnY7Wed9AtbaERxsFoNezerRq1k9bh3Yhl/35YWC087MQr7dmsG3WzOwGNCzaRwD2yYxoG0iDWNd4S5dRERERGoJhaUaLi/lfhw7v8Keto6I1S9SeOL14S6p0hmGQZeGMXRpGMP1KS3ZllFQHJzS2bA/j5W7slm5K5vHl22hS8MYTm+byMB2SbRIiAx36SIiIiJSgyks1XBmZBJ5KVOJ/eJmon58Em/rEfjrtQ53WVXGMAxaJ0bROjGKK/u24I/sQr7anM6yTWms/iOHdXtzWbc3l2e/3U7rxEhOb5fEoLZJtG8QhWEY4S5fRERERGoQwzRNM9xFHE9pabmE+x0bBiQlxVReLaZJ3MeX4Nj1Nd4m/cg++93gQeqYtHwvX29OY9nmdH7amYU/cODDbRzrDAandkl0axyLpYo/n0pvY6mW1M61n9q4blA7135q47qhIu1csu1R96mwdPxVxRfWkrOThLcGY/gKyR34GO7OF1XOjmuoHHcR327NYNmmNL7fnllq6PGESDunt03i9HaJ9G5WD7u18kfQ13+U6wa1c+2nNq4b1M61n9q4bqiKsKTT8GqJQGxz8vvcTvR3DxD13wfxthhEICo53GWFTazLzsjOyYzsnIy7yM/32zNZtimNb7amk1FQxAdr9vDBmj1EO62ktE5kYNtE+rVKIMJuDXfpIiIiIlJNKCzVIoXdr8C56SPs+1cT/c195Jwxu06ejvdnLruVge2SGNguiSJ/gJW7sli6KY2vNgeD06Lf9rPot/04bRb6tojn9HaJnNo6kbiI2jGyoIiIiIgcG52GFwZV2RVsTfuV+HdHYJh+PC2Hknv6o5hRDSr3ILWEP2Cydk8Oyzal8+XmNP7IdofWWQ3o2aweA9smcXrbRBrEOCu0b3X31w1q59pPbVw3qJ1rP7Vx3aBrlipBdfiSVPUX1rXuDaK/vg8j4CXgiif39EfwthlV+QeqRUzTZFNqPl9uTuPLzelsSs0vtb6iQ5LrP8p1g9q59lMb1w1q59pPbVw3KCxVgurwJTkeX1hr+m/ELLkZe9o6ANztzyXvtGmYzriqOWAt83tWIV8WD0n+y+4cDm6mVomRDGybyOntkujYILrMIcn1H+W6Qe1c+6mN6wa1c+2nNq4bFJYqQXX4khy3L6zfS+RPM4n8+RkMM4A/qiG5g5+kqNlpVXjQ2ufgIclX7MzCd9CQ5A1jgkOSn942kROaxGG1BIOT/qNcN6idaz+1cd2gdq791MZ1g8JSJagOX5Lj/YW17V1JzJKbsWVvA6Cw2zjy+t0D9qOfTial5bp9fLstnS83pfPfbRm4DxqSvF6EnQFtEjm9XSInt4inScO4avH3JlVH/+db+6mN6wa1c+2nNq4bFJYqQXX4koTlC1tUQPT304n45VUAfHGtyB0yE1/DXsepgNrHXeRn+Y4svtycxjdb0sl2+0LrIu1WBnZqQN+msfRrmaCR9Wop/Z9v7ac2rhvUzrWf2rhuUFiqBNXhSxLOL6x919fEfHEL1vy9mIaFghMnUHDSzWB1HN9CahlfwOR/v2fxZfHIevvzvKF1VgN6NInj1DaJnNo6oVwDREjNoP/zrf3UxnWD2rn2UxvXDQpLlaA6fEnC/YU13FlEfzMZ18YPAChK6kLukJn4Ezsd/2JqoYBp8tu+XH7anctnv+xlc1rpkfWax0dwWptETm2TQPfGcdgsuhdWTRXu77JUPbVx3aB2rv3UxnWDwlIlqA5fkuryhXVs/oSYryZhcWdiWhzk97mdwhOuBos1fEXVEge38R9Zbr7Zks43W9NZuSu71AARcS4b/VolcGrrBPq3SiDaqftE1yTV5bssVUdtXDeonWs/tXHdoLBUCarDl6Q6fWGN/P3EfHkHzu1LAChqdDI5g58iENcivIXVcIdr4zyPj+U7Mvl6Szrfbc0odZ2T1WJwYtMDp+s1rRcRhsqlIqrTd1mqhtq4blA7135q47pBYakSVIcvSbX7wpomrt/eIerbKViK8jFtkeSlTMbd+ZJgsVJh5Wljf8Dkl905fLM1na+3pLM9o7DU+taJkaHg1LVRbGhYcqk+qt13WSqd2rhuUDvXfmrjukFhqRJUhy9Jdf3CWnJ2EvPFRBy7lwPgaT6QvEGPE4hKDnNlNc+xtPGuzEK+2ZrON1vS+d/v2fgPel18hJ3+rRM4rU0ifVvEE+nQqZLVQXX9LkvlURvXDWrn2k9tXDcoLFWC6vAlqdZfWDNAxOqXiPrhUQy/h4CzHnkDHsbT7qxwV1aj/NU2znEX8f22TL7Zms5/t2WS6zlwup7datCrWT1ObZ1I98YxtEyIxGVXeAqHav1dlkqhNq4b1M61n9q4bqiKsKSryaU0w0LhCVfjbTaAmC9uxp76C7GfX4t72yLyTnsQ0xUf7grrhFiXnTM6NeCMTg3w+QOs3p3D11uCvU67stz8sD2TH7ZnAmAxoGm9CFonRtI6KYo2xdMW8RHYrZYwvxMRERGRmks9S2FQY/51w19E5IqniVw5C8P0449MJnfQ4xS1GBjuyqq9qmpj0zTZkVFY3OOUwabU/FKDRBzMajFoER9Bm6QoWidG0iYpijZJUTSJc+n6p0pSY77LcszUxnWD2rn2UxvXDepZkuPLaqegz214Ww4mZsnN2LK2UO+Tyyjschl5/e8FR1S4K6xzDMOgZWIkLRMjueykZpimSUZBEVvS8tmSXsCWtHy2phWwNT2ffK+frekFbE0vKLUPp81Cy4RI2iRF0iYxitZJwSDVMMaJoQE9REREREIUluSofMk9ybxgEVE/PEzkmnlErPs3jl1f4W3Sn0BkAwJRDYqnyQQi6xOIbAA2V7jLrhMMwyAxykFilIOTWxw4RdI0TfbletiSXsDWtPxgiCoOTh5fgA3789iwP6/UvqIcVlolHhSgEqPo1DCaWJf9eL8tERERkWpBYUnKxx5B/qkP4G05jJilt2DN2UlEzs7Dbh5wxgUDVHF4Cgapg4JV8bzpiNXw5FXAMAwaxrpoGOvilFYJoeX+gMnubHcoPAV7pPLZkVFIvtfP2j25rN2TG9reasAJTeM4rU0iA9om0iRO934SERGRuiOs1yx5PB7uv/9+Pv/8c1wuF1dccQVXXHHFEV/z+++/c9ZZZ/HCCy/Qp0+fCh+zOpyrWtPPmzU8OTi2fYY1bzeW/P1YCoofxfOG31PufZlW5596pw6EKV/9bviSOoNR8wYpqGlt7PMH2JlVyJa0glCQ2pyax64sd6nt2iZFcVrbRAa0SaRTcnSdP22vprWzVJzauG5QO9d+auO6odZdszRjxgzWrl3Lq6++yu7du7nzzjtp3Lgxw4cPP+xrpk6dSkFBwWHXS9UznbF4Op5/mJUmhjfnQIjK34elIPWg+f0HnnuyMfwerLm7sObuKnN3gYhEvE1Pxdt8AEXNTiUQ1bAK31ndZbNaaJ0YRevEKIZ2qB9a/ntWIV9vCd40d9Xv2WxOy2dzWj7zfthJg2gHpxb3OPVuVk8j74mIiEitE7awVFBQwHvvvcecOXPo0qULXbp0YdOmTbzxxhuHDUv/93//R35+/nGuVCrEMDCdcfidcfgT2h15W19hcXBKPRCkikOWNW8Ptr0rsBSm49q0ANemBcGXJHTA2/x0vM1Oo6jxyWDTaWFVqWm9CC7u1ZSLezUlq7CI/27L4KvN6Xy/PYP9eV7mr97D/NV7iHJY6dcygQFtEzmlVcL/t3evQXJUh9mA375M99x3d/a+i0A3JKSVEEKAICAuKhtjgquEkx+EzwmOsU2qDEo5JCbIjlEMAdt8vtspbBNiKBzjOJQd2/EPW/5iQDYGrCAIEpJ2V3dpL7P3uXZPd5/vR/fM7mhndd3dmZ15n6qp7j7dM3Nmj85o3z3dpxHx8wxfIiIiWvjK9hvNvn37YFkW1q9fXyjbsGEDnnrqKTiOA1ku/iv16OgonnzySTzzzDO444475ru6NBfUAJzoxXCiF5feb5vwDfwPfEdfhnbsJaiDb0Md2Q91ZD+Cu78NoejIdWyEuehGmItuhN24itc/zaH6gA+3r27F7atbYVgO/nB0DC/1DuHl3hEMp0zsOBDHjgNxKLKEKy+qw03eqFNblJN9EBER0cJUtrAUj8fR0NAATdMKZU1NTTAMA2NjY4jFYkXHf/7zn8edd96JSy89w2jFGVTC79L5OlRCXSqaqsHqvBZW57XIXPcpSJlR+I7vhHbsJfiOvgQl2Qft2MvQjr0MAHCCLTAXbULuYjc8iWDzGd5g7lR7G/t9Mm5YFsMNy2J4WAjs7U/gpZ5hvNQzjIPDabxxdAxvHB3D//3vXqxoCXnBqQkrW0JVdZ1TtbczsY1rBdu5+rGNa8O5tPPZ/lsoW1jKZDJFQQlAYds0zaLy3/3ud9i1axd+/vOfX/D7Njae+UKu+VJJdVkYIsCiu4Hr7gaEAIa6gd7/B/T+Gji8E3J6EP79L8K//0X38Na1wPLNwLLNwKJrAd/8j3DUShu3NEdx89pOAMChoRR27B3Ar/YO4A9HRnBgMIUDgyl899Wj6KwP4D2rWvDe1W3YuDRWNdc51Uo71zK2cW1gO1c/tnFtmM12LltY0nV9WijKb/v9k7/UZrNZfPazn8UjjzxSVH6+hofLPwuKJLmNWAl1WdCkdmD5/3EftgFf3x+8U/Zehhr/X2DAe/z2axCqH7mOa72JIm6EHVsxp39equU2jgC4c3Uz7lzdjNG0iZ0H89c5jeLEWAbPvnoEz756BGFdwVWL6tEc1tEQ9KEh4END0Id6bxkL+hD1+6DIlftnwFpu51rBNq4NbOfqxzauDefSzvljz6RsYam1tRWjo6OwLAuq6lYjHo/D7/cjGo0Wjnv77bdx7NgxbN26tej5H/vYx7BlyxZ87nOfO6f3FQIV00kqqS4LnqzD7LweZuf1SF33MKT0ELTjO6Edexm+Yy9BSQ1AO/obaEd/AwCwQ63IdVwHq3kNrKbVsJq6IAKNs16tWm/j+oCGO7racEdXG7I5G68fHcPLPcN45eAwRtI5/KZn+LTPlwDUBdwgVT8lUJ0arBoCGhqCPtQFfFDLEK5qvZ1rAdu4NrCdqx/buDbMZjuXLSytWrUKqqpi9+7duOqqqwAAu3btwtq1a4smd7j88svxy1/+sui5t956Kx577DFcf/3181pnWjhEsAnGii0wVmwBhIAyst+7vukl+E78HkpqAEr3TwBvlj0AsIOtsJpWw/bCk9W0GnbdEkBWyvUxqorfp+DGZY24cVkjbEfgnb4JvDuQxGgmh9G0idF0DmOZXGE5nrUgAIxl3G2MnN371PnVyRAV1NAU0tAc1tAS1ieXEQ0hjTP2ERER0emV7beFQCCALVu2YPv27Xj88ccxODiIZ555Bk888QQAd5QpEonA7/fjkksumfb81tZWNDbO/kgAVSFJgt14GTKNlyFzxccBKwtf3xvwDbwJZWgv1KE9UMYPQ0kPQDk6ABz978JTheqH1bgKVuNqWM1d7rJxFaCFyviBFj5FlrCusw7rOutmPMayHYxlLYylcxjNFIep0SnLMW85nslBABjPWhjPWjgymjltHUKaguawhqawjpawhuYSy1hIK8tIFREREVWGsv5p9eGHH8b27dtxzz33IBwO44EHHsCtt94KALjhhhvwxBNP4IMf/GA5q0jVSPUjt2gTcos2TZaZKagj+6AO7YHqBSh1eB8kKwPfwJvwDbxZOFRAgl13CWxv9MlqckOUE27nNDuzSFVkNIXckSHgzOHUdgTGs7miUDWSNhFPmoinTMQTBuJJE4NJAynTdh8jGRwemTlUyRIQC54yMhXR0RRyt1siGsJ1wVn81ERERFRJJCFq68zNoaHyX9gnSUBTU6Qi6kKn4dhQxg8XwpMy7C1TA6UP1+sL4cluWo3I8qswJLVDKLzPUKVJmzYGkwbiSTdAuQ8Dg/llwsBwyoR9Fv1TlSUsaQxiZUsYK1vCuKwljEtbQjzNr0rw+7o2sJ2rH9u4NpxLO+ePPeNrMizNP3bYhU3KDHsBKj8CtRfKaA8kx5p2rJBk2NGLYcdWwm64FFbsUtixFbDqlwO+QBlqT2fLdgRGMzkvPJlesJoMVPGkiYGEO0p1KgnAxQ0BNzy1hgtBqi7gm/8PQheE39e1ge1c/djGtYFhaRZUQidhh61CtgF1pBuKdxqfb2gPfCP7gOxYycMFJDjRRbAaLoUduxRWwwrYsUthN1wKoYXnt+50AQRyPh9+t68f+weS2DeQxP7BJAaTZsmj26N6UYC6rCWMprA+z3Wmc8Hv69rAdq5+bOPawLA0Cyqhk7DDVj9JApoawxg+ehDKSDeUkQNQRyeXcmbmKbPtcGdRgLJiK2A3LIfQZ54Mgcpjpr48kjaxf9ANTwcGk9g3mMTxsWzJ12gMaVjZEsJlLWGsbI3gspYw2qM6JF7/VhH4fV0b2M7Vj21cG+YiLPGkeqK5IkkQoRbkgi3IXVQ8zb2UGZ4MTyMH3EA12g0lPQgleQJK8kThnlB5dqgVdsMK91S+/EhUuBNOqBlQKnh0wrEhp/qhJI5DThyDMuEtEycg2QZyLeuR67gaubarIYJN5a7trIgFNVy3OIbrFscKZYmshQPxZCFE7RtM4shIGsMpE787ZOJ3h0YLx0b9KlZ4I0+LGgLwqzL8qgxdVaCrMnRVhuYt/d4yv6+Sb+JLRES00HBkqQz4143qd75tLGVHoYz2uAFqtNs9tW/0AJRk32mf5/gb4ARb4IRai5Z2YbsFTrB1bq6TcizIyX4oiWOQE8ehTByDnDgBJXHMDUjJkyWv5yrFql+KXPvVyLVfg1z7NXDqFlf0DIMX2pezORvd8RT2Dbohav9AEj1DKVjO+X8xKLI0JUBNBilNkaH75Gn7wpqKqy6ux4ZF9dBV+cxvUGP4fV0b2M7Vj21cG3ga3iyohE7CDlv9ZruNJWNiSnjKn87XAzk1AMkpfX1MKY4W9YLT9GDlhFrghNrgBFuKr5uyc5BTfV4IcsOQkjwBeSIfhvogiemTHEwlZB+ccAfs6CLYkU44kUWwoxcBAHx9u+Drex3qyP7p9Q00u6NO7dcg1341rKYuQK6cAfG56Ms528HB4bR7DdRgEv0TWZi2A8NyH1lrct2wbJiWA/Nspu07g4BPxsZLGrBpWSNuWBpDLKjNwqdZ+Ph9XRvYztWPbVwbGJZmQSV0EnbY6jdvbSwEJGMMcmoAcnrQXRbWB6Hky9IDkKzS18yUfFk1CDvUAsk2Iaf6IQnn9MfLmhuCootgRy6CE7kIduQi2NFFcCKd7qiWrJz2NaTsKHz9/wNf3+vw9b0BdWD3tCAo1CBybVdOjj61XlnWGwRXSl92hIA5Q5AqLnPLp24PJAz87tBI0aQUEoA17RFsWtaITUsbsawpWLPXUFVKG9PcYjtXP7ZxbWBYmgWV0EnYYatfxbWxEJDMRMlAJaenBq1ByLnk9KcruhuCohfBjkwJRNFFcCIXwQk2A9Isn8JlZaEOvl0IT77+P0A2xovrJSmwmrqQ63BHnnJtV0OEWma3HqdRce18noQQ2D+YxCu9I3jl4DDeHSj+N9AR1QvB6cpFdfAptXO6XrW0MZ0e27n6sY1rA8PSLKiETsIOW/0WdBvn0pBTA1DSgxCyCjt6MUSgqfzXDgkHysgBNzh5AUpJHJ92mFW3GJZ32l6u/WrY9UtnP8h5FnQ7n8ZgwsDOQyN4pXcYbxwdg2FNjiyGNAXXLm7ApqWNuH5JDPXB6r53VLW2MRVjO1c/tnFtYFiaBZXQSdhhqx/beH7IiZOTI099r0MZ3gcJxT9woQZgxVbAil0Gu3ElrMbLYMdWwgm2XHAArIV2zuZsvHZkDK8cHMbOgyMYTk2eridLwNr2KDYta8SNyxqxOBaoutP1aqGNie1cC9jGtYFhaRZUQidhh61+bOPykIxx+Pp3Qc2PPg3shmQbJY919Ho3ODWuhBW7zAtRK87pfla11s6OEHh3IIlXeofxcu8wuuOpov0X1fuxaWkjNi2LYX1nHdQqOF2v1tq4VrGdqx/buDYwLM2CSugk7LDVj21cIRwLyvgRKCP7oA7vgzqyH8rwfijjh2actMIOt58yCnUZrIblgOqfdmytt3P/RBavHHRP1/vDsTHkpszKF9YVXLc4hk3LYlgaC6EuoCLq9yHgkxfU6FOtt3GtYDtXP7ZxbWBYmgWV0EnYYasf27jCWRmoo72FEKUM74c6sm/G+1kJSYZdt8QbhZoMUU79YjS11LOdAaRNG68dGcXLvcP47cERjGZyJY/zKRLq/D5E/SrqAj7U+dWi7ZnKy3UPKPbl2sB2rn5s49owF2Gpcm5YQkQ0X9QArOY1sJrXYOpJepIx7t7DanifG56G90Md3gfZGIM61gt1rBd67y8KxwtFByJtqPdF4WhRCH+du9TrIPQ6OLq3rkXh+OvdpV4HoUdLjlQtZEFNwS2XNuGWS5tgOwJ7+hN4pXcYrx0ZxWDSxHgmB8sRyNkCQykTQ6mzvz8YAOiq7AaofJDKByu/DxFdRUBTENIUBH0Kgt56wNsOae5+VV44I1pERFQZOLJUBvzrRvVjG1cRISCnB6GM7C8ahVJHDkCyMuf/sopeCE5CPzVkTSn3x+CE22GHOyACsTmb2W+uCSGQyTmYyOYwnrEwns1hPGtN384Ul09kc5iFe+4CcANXPkwVApXPC1magqCmusspgSukKehsiSIgbLSE9ZqaNr2W8Du7+rGNawNHloiI5pskwQm1wgm1Irfoxsly4UBJHEXMl8b4YB+k7DgkcwKyMQ7JmHBvFmxMeOvjkE13KRkTkCAg2QaU9CCQHjzrqghZ84JTG5xwRyFEOaF2OJEO2KF2iEBj+ad5L0GSpEJIaYue/fOEEEiZNsYyOUxk3VA1MSVcjWdySJo20qaNtGkhbTpI5yxv20Y6ZxeupcrfiHemUwTP+BkANIU1tEV0tEX9aI/qaI24y/aoH21RHWGd/60SEVUTfqsTEZ0PSYZTtxhoiiAXPIe/VAoHkpnwQtQEZGPMDVle2JKMcS9wucFKzgxBTvZBTschOSaUiSNQJo7M/PKFQNUOJ9wOJ9zhrU+GK+GPVWSgKkWSJIR19YJCSM52kCoEKjdAucHKRsq0kcnZJfZPridNGyfGMjAsB/GkiXjSxP/2JUq+V1hX0BZxg1N71O8Fq8kw1RjSIC+Qnz0RETEsERHNL0kunG4HAPbZPs82IacGICf7oCRPugEqeRJKqs9b74OSHjy7QKXocEJtboiKdMKuW+xOYFG/FHb9EgjtzKclLCQ+RUZ9QEZ94NxvoJs/TSMen8BoOoe+CQP9CQP9E1l3fSKL/gkDfRNZjGctJA0bPUYKPUOpkq/nUyS0RvSi0am2iB/1QV/RNVkRv4/XWBERVQCGJSKihUDR4EQXwYkugjXTMV6gmhqmCuEq1Q8lcRJyJu6eAniaQOUEmmHXL4FVtwR2ff6xFHbdYkANzNUnrGiSJKEhqKEhqGF1W+kwmTZtDCTc4NQ/kUV/wigKVINJAzlb4PhYFsfHsgDGT/ueEV0tTLled8osgXWByWV0ynZIUxbU1OxERJWOYYmIqFpMCVQzsk03OHmjUXLiOJTxQ1DHDkEZOwQ5Ey88fH2vT396uMMbhcoHKG8ZXQQo2hx+uMoX1BQsaQxiSWOw5H7LEYgnjcJIVP+Egf6Eu5x6TVbScMcbE4aFhGEByJ51HRRZmhaoon4VixoCWNMewarWCK+rIiI6B/zGJCKqJYoGJ3oxnOjFJXdLZgLK2CEoYwehjHvLsUNQxg9BNsahJE9CSZ4ETvy26HlCUuBELnJHpAohagnsuiUQ/gYI1Q/IvgVzrdRcUGUJ7VE/2qN+rEfdjMdZtoMJwyrMBjiWn9BiSqDKzyA44U1yMZ61YFgObEdgJJ3DSLr0JBYSgCWNQaxpj6CrPYo1bREsbQrxlD8iohkwLBERUYHQIrBaLofVcvkpOwSk7GhxgPIClTp2CJKVLpzapx39TenXlhQ3NKkBCNUP4S2RX1f8ED53CZ/f3T71GG9ZtK3o7pTqsupeEyargKQAsgIhKZPlkgrIMiCpgKxU7DTsqiIjFtQQC57bSF02VzxrYD5QjWVy6Imnsad/An0TBg4Op3FwOI2fvjMAAPCrMla1RbCmLVIIUa0RfS4+GhHRgsOwREREZyZJEIEYrEAMVtuG4n1CQE4PnDIi5T3GD0Ny3BvQSsKGlEsBudKTH8w3AckLTe5DeKEKsuqFLG+fT0M9VAhFA2Sfu1S0U7Z1iNPtU3xuuXzqfh1C0dz7avkb4PjrAeX8gorfp6DNd/qp2YdTJt7pS2BP/wTe6Utgb38CKdPGm8fH8ebxyWuomsMautoiWNMeLZy+F9SU86oXEdFCxrBEREQXRpLghNrghNqQ67yueJ8QgG1AsrKQ7CyQy0Cys5CmLGFn3f1WBpKVBaasT992n1coy2UAJwdJ2IBjuVOze0s4lls+U7Uh3Od4U2ac7kS0+fzPUqhBOP56OP4GCN1bzrTtb4Cj10P4690RtDNoDGm4aXkjblreCABwhMDhkbQboPoSeKdvAr1DKcSTJn7TM4zf9AwDAGQJWNoYQld7BGu90aclsSAUnr5HRFWOYYmIiOaOJHmnzPlxtreimlVCuMFJ2IBjF4WqQphybEDYU9YtwHEgCXd/fUTD+Og4hGVCst0HnPwy5y5tA5KdA2zTHUnLH2fnINkGJCc3WeYU74NteDcwHoMkHPeUxmTavTbsHDhaZEp4ckephL/e3c7PYihJcGOhVFjvkiR0QQJaJKAFMB1gIGHi5IQ7m9+JcQMThg0xKkGMAj17JXRDgk+R0RH1o70+gIb6BmQjy2BGFkPVdWiKDF2V4fOWmiJDm7LkNVJEtFAwLBERUfWSJPdUOiiAgmmB7UwBTpLg3ng4dA43Hj5fwvFuVjwGOTsKKestT9mWjTFI2VHI2TF3n+GePiebCcBMQMHRC65KDMCqqQUz3aIq6T2Ou5uWkHFEtKJHdOIt0YlupxM9ohO9ogNZTJ5eqEgoCk/5pa7kA5Y0We4FroagD40hzbuey11vDGqIBtSKudGvYTkYSZsYTpkYTuUK6yPpHHRVxuUdUVzRGUXDOV6PRkTlw7BERERUCSQZIj8aVLf47J/n2JCM8eIQVRSqRgHbAIR36iGEO+JWtHTc15pSXvJYb10IgYxpIWHkkMzmoJrj6LSPIYQ0lkl9WIY+vA9/mKyikHBcNKFHdKJbuAGqx+pET64TcZSeav1sKbKEhkA+SPkQ80JUY8g3K8EqH4BGUiaGvADkhqBcoXw4ncNwykTKPLvbTC+OBXBFZ537uCiKjqif98ciqlAMS0RERAuZrEAEYrADsXl/64D3AIC0EMim+qGMdkMd6YYy2u2tH4CcHcXFUhwXI47N2F30GkagFanwUkyEl2IstBSj/sUYDixGQqmDaTkwbIFszsZoenKkZjidw0jKxHjWgu0IDKVMDKXMM9Z3pmAVC/mg+FQcG0q64Sf/HmmzcN+rs+VTJO81vaDmvf54xsLuE+M4OJzG4ZEMDo9k8JP/7QcAtIQ1rPPC0/qLoljWFKqY0TKiWsewRERERBdOkuCE2+GE25FbdGPxrsww1NFuKCPdUEYOQB3tgTJ6AEpqAHrGfcTirxY9xwk0wmpYDrthBeyGZXDq6iF8QQhfCEILQ/gaYMlBjFgahnI+DGWlQoga8UZ6RtLnH6ym8ikSYkGtELLyAajZL6FVN9CsGmj0GWiQMwgiBdkcgGROQDaTkMwJSGYSUG2IZQFkl+k4mZZxNCnh0ISD3gkgldaQ6dbxmwM6fgEdshbA4tZmrOhoxuqLWnBZRyM0H2cjJCoHhiUiIiKaUyLQiFygEbmOa4vKJWMcymjP5EhUPkgljkHODEPLDAMnXzvta7fk30NW3SBVeATdUBUKQXSGYKtBZBBACn4kHB1jto4xS8OwpWHYVFHnl1EnkoipWdQrBqJSGhFkEBQpaFYSkpmEZCYgpSYgj3rrtnHOP4sg3GvC1uQLZvpNbNB77AZsIcGU/LDVACRfAD5/GJIv4H5G1V26U87nJzRxCpObSCjezj8kOIDjbXvHSEJACAeObcN2HDiODcdbCseB4tPg9wchqX53+ntV96a/1711775niuaWq7o7db63D95U+cXP809Ooe8LA6q/pm9eTZWHYYmIiIjKQuh1sNo2TL93Vy7tjT65p/TJ44ch5xKQcmk3tOTSkHJJSLmUO708AMmxIBnjgDFe4p1cIQBNc/A5HF8IQosUPRwtAqFHIHzuEpICWBlvyvu0+8hvWxlgSpljuktV5AAAiiQQQAawMu5M95k5+BAVQig6HL0OQq+H8Ne5sznqde7sjvrkdmGmx/xSj57V9PlE54r/qoiIiKiy+IKwWi6H1XI5zjh247g3O3YfU0KUmZpS7j0KQeuUMisNVfPDVEKFcCO0MBwtesYQJHxh9wbGc8HOAbk0Tg6PYv+JQfT0DeHI4DCSyQkEYCIIA37JQBAGGjQHOQfIWgIOZLhjRxIcyBBT1h1I7raQYEOGmOFYRVGg+1ToPgV+nw8+RUZ8IgXTyEKHCV3KQUcOGnIIyxY6whLag0BLAGjyC4QU25023zK8KfKz3np+qn13X2HdG6WTbANKehBID57zj8ttm1MDlbsUeh0Qa4KetiEk1W2zohtQu2XuzandsmnHSd76TMfLPkANcGSsyjAsERER0cIlKxB61B1ZOE+SBDQ1RTAxNA9TxJ8LxQcodejorENH52Lc4hUPJQ3sPjGB3SfG8ebxcXTHUxCnjDbpqoyIriKiqwjrCsLeesSvTq7ny/354yaXuipPq44QAgMJA3sHktjTl8De/gm8O5B0ZwEchfvw1PlVdLVHsLo14i7bIoidbsp0Idzwmh2bnN3RGPOmyM/P9phfTj1m3J02H1Omz08cn/FtImf5oz9fQtHhBGJw/I0QgUY4Ux6ltoUvzHBV4SQhKuprYc4NVcAXYf5LuRLqQnODbVwb2M7Vj21cGxZ6OycNC8fGMgj6FDcMaSq0EmFnLjhC4MhIBnv6J9wANZDEgcEkLGf6D7I9qqOrzQ1Oq9siWNUaQVCbhVE5x4JkTBSCVD5EuevjhfuR+ZGBkTXcm1A7+RtUW1PWHUiO5d3E2ppcz9/Ueuq+QlnugqouZA1OsHFKuIrBCTR5YWpy3fHHIIJNDFdncC59OX/smXBkiYiIiGgBC+sqVrXO9ZhJabIkYUljEEsag7ijqw0AYFoOuuNJ7OlPYm//BPb0J3B4JIO+CQN9EwZ2HBjyngssaQwWRp+WN4XQFvWjKaRBkc8hEMjqGafPlyTA3xRBYi4CsXDcAGWbbkDLDEHODEPKjkBOD0HODkPOjEDKDHv7Rtz9VhqSY0JJ9kFJ9p3926mBwsQek0s/MLVMze9zj8W04yeXUP1Fz4My012oaxPDEhERERHNGk2V0dUeRVd7FEAHAHf0692BRGH0aU/fBAaTJnqH0ugdSuNnewYKz1dkCa1hDW1RP9qjOlqjfrRHdLRH/WiN6miL6PBX0lTqkuzNAKi517pFLzq75+UykDPDXpga9sLU5GPatpV23y4/KUh2ZE4+jlB0b3r+cGGqfqcwZX9ocl9hGTplGYbjLavhGi6GJSIiIiKaU2FdxdUXN+DqixsKZUNJo2j06dhoBgNJE7YjcHLCwMmJmaf3iAV9aIv60RbR0RZ1g1R7VEdbxI+2qI6oX4U0D7+kW45AznZgWA4sR6Der0JVzvIUSF8Aju+isw9XVsaduMRKQ8pl3KWVgZTLFM+0OHVppYFcdsqxU2ZhzD8vl3b3CweAO8mGlDGAzPB5/lQmCUmenM5fC8MJtSNx8+fh1F1ywa89XxiWiIiIiGjeNYV13LRcx03LGwtl+RsH909kvdP2shhIuMu+CQP9E1lkcg5G0jmMpHPY258o+dpBn4K2aHGQWtQSweh4BoblwLQcmLYDwxIwbacQePLlpu2uG5YXhuwp+6Ys7VNO6ZMANIY0tER0tIQ1tEZ0tEZ0tIR1tyyioTmkn981ZfnT7879mWcmBOCYU6bnT3ozSnr3GMul3JssT9kuXubXE5MzUUJAEg4kb+INpACM9sA3+DYMhiUiIiIionOjyFIhYKzrnL5fCIGJrIV+L0j1JdwA1T8lWI2kc0jnbBwcTuPgcHpe6y8ADKVMDKVM7D3NcbGgbzJAhd1wVRSqwtr8nmooSd5Ng3UIf8OZjz8T4cAx00gmxpBIjCGVGEcmOQZH0dG1+GacZl7EisOwREREREQLgiRJqAv4UBfwYWVruOQx2ZyN/qkhylvP2AJwBDRFgqbI0FQZuirDp8jQvW1NlQv78/s0dcp+RfKW8rTXkCVgJJ3DYMJwH0kDAwkTg8nJ7cGEAdMWhZGxfYPJGT9rnV89JURpiPp9CPoUBDQFQZ+MgE9BwKcgqE0u/ao8J6cgCiG8UT0To179R9MmRjOT68P5snQOY5kciidFdCch+Vx0GO9f1Trr9ZsrDEtEREREVDX8PgWLY0EsjgULZfM1PXxTSENTSMPqttKzEwohMJ6xMHBKgBpImoWQNZAwkLUcjGctjGctdMdT51QHCUDAp8DvkydDlBew3HV5esDyjnGEwNiU8DOSLl43LOecfyZ1fhUNQR8agho66/xF160tBAxLRERERETzQJIk1Ad9qA/6sLKl9MiYEAJJw54MVIVQZSJhWEjnbGRM213mbGRyTmEbcE8FTOfc7ZH0hd0HqhRdlRHzwk8s6Ctabwj6EAto7jLoQ33Ad/YTXlQohiUiIiIiogohSRIifhURv4rlTaGzfp4jBAzLQdrMhyi7sJ7OOchO3fbCVTbnFIUvAMXhJ3BKEApqCPjm5jS/SsWwRERERES0wMmSVLiGiWbPwh4XIyIiIiIimiMMS0RERERERCUwLBEREREREZXAsERERERERFQCwxIREREREVEJDEtEREREREQlMCwRERERERGVwLBERERERERUAsMSERERERFRCQxLREREREREJTAsERERERERlcCwREREREREVALDEhERERERUQkMS0RERERERCUwLBEREREREZXAsERERERERFQCwxIREREREVEJDEtEREREREQlqOWuwHyTpHLXYLIOlVAXmhts49rAdq5+bOPawHaufmzj2nAu7Xy2/xYkIYQ4/yoRERERERFVJ56GR0REREREVALDEhERERERUQkMS0RERERERCUwLBEREREREZXAsERERERERFQCwxIREREREVEJDEtEREREREQlMCwRERERERGVwLBERERERERUAsPSPDMMA9u2bcNVV12FG264Ac8880y5q0Sz7Fe/+hVWrlxZ9Ni6dWu5q0WzxDRN3HHHHXjttdcKZceOHcOHP/xhXHHFFbj99tuxc+fOMtaQLlSpNn7sscem9evnn3++jLWk8zEwMICtW7fimmuuwaZNm/DEE0/AMAwA7MfV5HTtzL5cPY4cOYJ7770X69evx80334ynn366sG82+7M6G5Wls/fFL34R77zzDp599lmcPHkSDz30EDo6OnDbbbeVu2o0S3p6enDLLbfg0UcfLZTpul7GGtFsMQwDDz74ILq7uwtlQgh84hOfwIoVK/Diiy9ix44duP/++/GLX/wCHR0dZawtnY9SbQwAvb29ePDBB3HnnXcWysLh8HxXjy6AEAJbt25FNBrF97//fYyPj2Pbtm2QZRmf+tSn2I+rxOna+aGHHmJfrhKO4+DjH/841q5dix//+Mc4cuQI/uZv/gatra244447ZrU/MyzNo3Q6jR/96Ef47ne/i66uLnR1daG7uxvf//73GZaqSG9vL1asWIHm5uZyV4VmUU9PDx588EEIIYrKf//73+PYsWN44YUXEAwGsWzZMrz66qt48cUX8cADD5SptnQ+ZmpjwO3X9957L/v1Anbw4EHs3r0bv/3tb9HU1AQA2Lp1K77whS/gxhtvZD+uEqdr53xYYl9e+IaGhrBq1Sps374d4XAYixcvxnXXXYddu3ahqalpVvszT8ObR/v27YNlWVi/fn2hbMOGDXjrrbfgOE4Za0azqbe3F4sXLy53NWiWvf7669i4cSN++MMfFpW/9dZbWL16NYLBYKFsw4YN2L179zzXkC7UTG2cTCYxMDDAfr3ANTc34+mnny78Ap2XTCbZj6vI6dqZfbl6tLS04Ktf/SrC4TCEENi1axfeeOMNXHPNNbPenzmyNI/i8TgaGhqgaVqhrKmpCYZhYGxsDLFYrIy1o9kghMChQ4ewc+dOfPvb34Zt27jtttuwdevWonanhefuu+8uWR6Px9HS0lJU1tjYiP7+/vmoFs2imdq4t7cXkiThqaeewssvv4z6+nr85V/+ZdFpPFT5otEoNm3aVNh2HAfPP/88rr32WvbjKnK6dmZfrk6bN2/GyZMnccstt+B973sfHn/88VntzwxL8yiTyUz7hTm/bZpmOapEs+zkyZOFdv7qV7+K48eP47HHHkM2m8VnPvOZcleP5sBM/Zp9unocPHgQkiRh6dKl+NCHPoQ33ngD//AP/4BwOIz3vve95a4enacnn3wSe/fuxX/8x3/ge9/7HvtxlZraznv27GFfrkJf//rXMTQ0hO3bt+OJJ56Y9f+XGZbmka7r0xoqv+33+8tRJZplnZ2deO2111BXVwdJkrBq1So4joO/+7u/w8MPPwxFUcpdRZpluq5jbGysqMw0TfbpKrJlyxbccsstqK+vBwBcdtllOHz4MH7wgx/wF6wF6sknn8Szzz6Lr3zlK1ixYgX7cZU6tZ0vvfRS9uUqtHbtWgDuBD1/+7d/iz/5kz9BJpMpOuZC+jOvWZpHra2tGB0dhWVZhbJ4PA6/349oNFrGmtFsqq+vhyRJhe1ly5bBMAyMj4+XsVY0V1pbWzE0NFRUNjQ0NO0UAFq4JEkq/HKVt3TpUgwMDJSnQnRBHn30Ufzrv/4rnnzySbzvfe8DwH5cjUq1M/ty9RgaGsKOHTuKypYvX45cLofm5uZZ7c8MS/No1apVUFW16AKzXbt2Ye3atZBlNkU1eOWVV7Bx48aiv2i8++67qK+v5zVpVWrdunXYs2cPstlsoWzXrl1Yt25dGWtFs+lrX/saPvzhDxeV7du3D0uXLi1Phei8ffOb38QLL7yAL3/5y/jjP/7jQjn7cXWZqZ3Zl6vH8ePHcf/99xcF3XfeeQexWAwbNmyY1f7M39DnUSAQwJYtW7B9+3a8/fbb2LFjB5555hn8xV/8RbmrRrNk/fr10HUdn/nMZ3Dw4EG89NJL+OIXv4iPfvSj5a4azZFrrrkG7e3tePjhh9Hd3Y3vfOc7ePvtt/Gnf/qn5a4azZJbbrkFb7zxBv7lX/4FR48exb/927/hJz/5CT7ykY+Uu2p0Dnp7e/HP//zP+NjHPoYNGzYgHo8XHuzH1eN07cy+XD3Wrl2Lrq4ubNu2DT09PXjppZfw5JNP4q/+6q9mvT9LotQNJWjOZDIZbN++Hb/85S8RDodx7733TvsrBy1s3d3dePzxx7F7926EQiHcdddd+MQnPlF0ah4tbCtXrsRzzz2HjRs3AnDvIv7pT38ab731Fi655BJs27YNf/RHf1TmWtKFOLWNd+zYga9//es4fPgwOjs78clPfhK33nprmWtJ5+I73/kOvvSlL5Xct3//fvbjKnGmdmZfrh4DAwN49NFH8eqrryIQCOBDH/oQ7rvvPkiSNKv9mWGJiIiIiIioBJ6GR0REREREVALDEhERERERUQkMS0RERERERCUwLBEREREREZXAsERERERERFQCwxIREREREVEJDEtEREREREQlMCwRERERERGVoJa7AkRERGdj8+bNOHHiRMl9zz33HDZu3Dgn7/v3f//3AIDPf/7zc/L6RERUuRiWiIhowdi2bRtuv/32aeV1dXVlqA0REVU7hiUiIlowIpEImpuby10NIiKqEbxmiYiIqsLmzZvxve99Dx/4wAdwxRVX4OMf/zji8Xhhf29vL+69915ceeWV2LRpE775zW/CcZzC/v/8z//EbbfdhnXr1uGuu+7C3r17C/uSySQ++clPYt26dbj55pvxs5/9bF4/GxERlQfDEhERVY1vfOMb+OhHP4of/vCHyGQyeOCBBwAAIyMjuPvuu9HS0oIf/ehHeOSRR/D888/jueeeAwC88sor+PSnP4177rkHP/3pT7FmzRrcd999ME0TAPCrX/0KXV1d+PnPf473v//92LZtGxKJRNk+JxERzQ9JCCHKXQkiIqIz2bx5M+LxOFS1+Azyjo4O/Nd//Rc2b96M97znPdi2bRsA4NixY3jPe96Dn/3sZ/j973+PZ555Bjt27Cg8/wc/+AG+9a1vYefOnbj//vsRDocLkziYpomvfOUr+MhHPoIvfelLOHz4MF544QUAQCKRwFVXXYV///d/x7p16+bxJ0BERPON1ywREdGCsXXrVtx6661FZVPD05VXXllYX7RoEerr69Hb24ve3l50dXUVHbt+/XrE43FMTEzg0KFDuOuuuwr7NE3DQw89VPRaeZFIBABgGMbsfTAiIqpIDEtERLRgNDY24pJLLplx/6mjTrZtQ5Zl6Lo+7dj89Uq2bU973qkURZlWxhMziIiqH69ZIiKiqrFv377C+pEjR5BIJLBy5UosWbIEe/bsQS6XK+x/8803EYvFUF9fj0suuaToubZtY/Pmzdi1a9e81p+IiCoLwxIRES0YiUQC8Xh82iOdTgNwb07761//Gvv27cO2bdtw/fXXY/HixfjABz4A0zTx2c9+Fr29vdixYwe+8Y1v4M/+7M8gSRL+/M//HD/96U/x4x//GEeOHMETTzwBIQS6urrK/ImJiKiceBoeEREtGI8//jgef/zxaeV//dd/DQC488478eUvfxknT57ETTfdhH/8x38EAITDYTz99NP4p3/6J2zZsgWxWAz33HMP7rvvPgDA1VdfjUceeQTf+ta3EI/HsWbNGjz11FPw+/3z9+GIiKjicDY8IiKqCps3b8b999+PD37wg+WuChERVQmehkdERERERFQCwxIREREREVEJPA2PiIiIiIioBI4sERERERERlcCwREREREREVALDEhERERERUQkMS0RERERERCUwLBEREREREZXAsERERERERFQCwxIREREREVEJDEtEREREREQl/H9NGGvD+CzFvQAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 1000x600 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Learning Curve\n",
"plot_learning_curve(history)"
]
},
{
"cell_type": "markdown",
"id": "42eff9445377f73c",
"metadata": {
"collapsed": false
},
"source": [
"# Multi-Layer Perceptron (MLP)\n",
"\n",
"This code block is implementing a Multi-Layer Perceptron (MLP) for a binary classification task using TensorFlow. The MLP is a class of feedforward artificial neural network that consists of at least three layers of nodes: an input layer, a hidden layer, and an output layer. Except for the input nodes, each node is a neuron that uses a nonlinear activation function. MLP utilizes a supervised learning technique called backpropagation for training.\n",
"\n",
"Here's a step-by-step breakdown of what the code does:\n",
"\n",
"1. **Model Creation**: A Sequential model is created using Keras. This model is composed of the following layers:\n",
" - Dense layers: These are fully connected layers. The first Dense layer has 64 units and uses the ReLU activation function. The second and third Dense layers have 32 and 16 units respectively, and also use the ReLU activation function. The final Dense layer has 1 unit and uses the sigmoid activation function for binary classification.\n",
" - BatchNormalization layers: These layers are used to normalize the activations of the previous layer, which speeds up learning and provides some regularization, reducing generalization error.\n",
" - Dropout layers: These layers are used to prevent overfitting. They randomly set a fraction of input units to 0 at each update during training time.\n",
"\n",
"2. **Model Compilation**: The model is compiled with the Adam optimizer, binary cross-entropy loss function, and accuracy as the evaluation metric.\n",
"\n",
"3. **Model Training**: The model is trained on the training data for 20 epochs with a batch size of 32. The validation data is set to the testing set. Early stopping is used to stop training when the validation loss has not improved for 10 epochs.\n",
"\n",
"4. **Model Evaluation**: The model's performance is evaluated on the testing data and the loss and accuracy are printed. The model also makes predictions on the testing data, converts the predicted probabilities to binary outputs, and generates a classification report.\n",
"\n",
"5. **Visualization**: The training and validation accuracy and loss over epochs are plotted.\n",
"\n",
"The mathematical concept behind the Dense layer is the dot product operation, which is a mathematical operation that takes two equal-length sequences of numbers and returns a single number. In the context of a MLP, the two sequences are the input data and the weights of the neurons. The dot product operation involves multiplying each pair of input and weight and summing the result.\n",
"\n",
"The mathematical formula for the dot product operation is: $$ a \\cdot b = \\sum_{i=1}^{n} a_i b_i $$ Where:\n",
"- $a$ and $b$ are the input data and weights respectively\n",
"- $n$ is the number of dimensions (length of the sequences)\n",
"- $a_i$ and $b_i$ are the $i$-th elements of the input data and weights respectively."
]
},
{
"cell_type": "code",
"execution_count": 77,
"id": "c8745832a585d5ec",
"metadata": {
"ExecuteTime": {
"end_time": "2024-03-21T14:18:16.905913Z",
"start_time": "2024-03-21T14:17:42.584884Z"
},
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 1/20\n",
"1050/1050 [==============================] - 3s 1ms/step - loss: 0.9170 - accuracy: 0.6429 - val_loss: 0.6545 - val_accuracy: 0.7518\n",
"Epoch 2/20\n",
"1050/1050 [==============================] - 2s 2ms/step - loss: 0.7946 - accuracy: 0.6978 - val_loss: 0.6269 - val_accuracy: 0.7786\n",
"Epoch 3/20\n",
"1050/1050 [==============================] - 2s 2ms/step - loss: 0.7336 - accuracy: 0.7254 - val_loss: 0.6138 - val_accuracy: 0.7845\n",
"Epoch 4/20\n",
"1050/1050 [==============================] - 2s 2ms/step - loss: 0.6988 - accuracy: 0.7419 - val_loss: 0.5919 - val_accuracy: 0.7999\n",
"Epoch 5/20\n",
"1050/1050 [==============================] - 2s 1ms/step - loss: 0.6646 - accuracy: 0.7605 - val_loss: 0.5755 - val_accuracy: 0.8098\n",
"Epoch 6/20\n",
"1050/1050 [==============================] - 1s 1ms/step - loss: 0.6390 - accuracy: 0.7719 - val_loss: 0.5508 - val_accuracy: 0.8233\n",
"Epoch 7/20\n",
"1050/1050 [==============================] - 1s 1ms/step - loss: 0.6062 - accuracy: 0.7902 - val_loss: 0.5226 - val_accuracy: 0.8363\n",
"Epoch 8/20\n",
"1050/1050 [==============================] - 1s 1ms/step - loss: 0.5865 - accuracy: 0.7997 - val_loss: 0.5012 - val_accuracy: 0.8468\n",
"Epoch 9/20\n",
"1050/1050 [==============================] - 1s 1ms/step - loss: 0.5602 - accuracy: 0.8129 - val_loss: 0.4835 - val_accuracy: 0.8514\n",
"Epoch 10/20\n",
"1050/1050 [==============================] - 1s 1ms/step - loss: 0.5405 - accuracy: 0.8214 - val_loss: 0.4676 - val_accuracy: 0.8544\n",
"Epoch 11/20\n",
"1050/1050 [==============================] - 1s 1ms/step - loss: 0.5227 - accuracy: 0.8270 - val_loss: 0.4543 - val_accuracy: 0.8598\n",
"Epoch 12/20\n",
"1050/1050 [==============================] - 1s 1ms/step - loss: 0.5074 - accuracy: 0.8349 - val_loss: 0.4389 - val_accuracy: 0.8665\n",
"Epoch 13/20\n",
"1050/1050 [==============================] - 1s 1ms/step - loss: 0.5010 - accuracy: 0.8351 - val_loss: 0.4297 - val_accuracy: 0.8644\n",
"Epoch 14/20\n",
"1050/1050 [==============================] - 1s 1ms/step - loss: 0.4831 - accuracy: 0.8423 - val_loss: 0.4223 - val_accuracy: 0.8637\n",
"Epoch 15/20\n",
"1050/1050 [==============================] - 1s 1ms/step - loss: 0.4743 - accuracy: 0.8434 - val_loss: 0.4099 - val_accuracy: 0.8692\n",
"Epoch 16/20\n",
"1050/1050 [==============================] - 1s 1ms/step - loss: 0.4630 - accuracy: 0.8459 - val_loss: 0.4002 - val_accuracy: 0.8735\n",
"Epoch 17/20\n",
"1050/1050 [==============================] - 2s 1ms/step - loss: 0.4498 - accuracy: 0.8517 - val_loss: 0.3928 - val_accuracy: 0.8750\n",
"Epoch 18/20\n",
"1050/1050 [==============================] - 2s 2ms/step - loss: 0.4453 - accuracy: 0.8488 - val_loss: 0.3881 - val_accuracy: 0.8701\n",
"Epoch 19/20\n",
"1050/1050 [==============================] - 2s 1ms/step - loss: 0.4364 - accuracy: 0.8539 - val_loss: 0.3777 - val_accuracy: 0.8770\n",
"Epoch 20/20\n",
"1050/1050 [==============================] - 2s 1ms/step - loss: 0.4300 - accuracy: 0.8547 - val_loss: 0.3751 - val_accuracy: 0.8736\n",
"263/263 [==============================] - 0s 591us/step\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAJOCAYAAABm7rQwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1gU1xoG8HdmdpdeBBQBe++CLcbYe0E0PTGWRE1vN01NNImJJEaTm2a60US9mmKqGhOjxthbbLH3Dii9s2Vm7h/DLiwsAgq7LLw/Hx62zM5+g4eFffnOGUFVVRVEREREREREREROJLq6ACIiIiIiIiIiqnkYShERERERERERkdMxlCIiIiIiIiIiIqdjKEVERERERERERE7HUIqIiIiIiIiIiJyOoRQRERERERERETkdQykiIiIiIiIiInI6hlJEREREREREROR0DKWIiIiIiIiIiMjpGEoRERGRWxs3bhzGjRvn6jJKtXPnTrRs2RI7d+502nMajUZ8/fXXuP3229G5c2d069YN99xzD3755Reoquq0OoiIiIgc0bm6ACIiIqKaoG3btvjuu+/QrFkzpzxfUlISJk+ejPj4eIwbNw4dOnSAoijYsGEDpk2bhn/++QezZs2CIAhOqYeIiIioKIZSRERERE7g6+uLyMhIpz3f1KlTkZCQgO+++w6NGjWy3d63b1+Eh4fj3XffRb9+/TBgwACn1URERERUGKfvERERUY3wzz//YOzYsejYsSO6deuGqVOnIiUlxW6b3bt3Y9KkSejatSvatWuH/v37Y968eVAUBQBw6dIltGzZEl999RWGDh2Kjh074scff8S8efMwaNAg/P333xg5ciTatWuHIUOG4JdffrHtu+j0vbI8BgBOnz6NBx98EJ06dUKPHj3w3nvv4cUXX7zmlMWjR49iy5YtmDRpkl0gZXX//ffjvvvug7e3t62Wli1bFtuuZcuWmDdvXonH/umnn6Jly5bYsGFDsedv2bIl1q5dC0CbRjh37lz06dMH7dq1w8iRI7F69eoS6yciIqKagZ1SREREVO3t3r0bDzzwALp37473338f6enp+OCDDzB+/Hj88MMP8PT0xLFjx3D//fdj6NCheO+996CqKlauXImPPvoITZo0wYgRI2z7mzdvHqZPnw5fX1907NgRy5cvR2JiIl5//XU8+uijiIiIwIIFCzB16lS0b98eTZs2dVhXaY9JSUnB2LFjERwcjNmzZ0OWZXzwwQeIi4u7ZtfV5s2bAQD9+/d3eL+HhwdeeeWV6/paFj32n376Cb/99hv69etn22bVqlUIDAxEnz59oKoqHn/8cezduxdPPfUUmjZtirVr1+KZZ56ByWTC6NGjr6sOIiIicn8MpYiIiKja++9//4vGjRvj888/hyRJAICOHTtixIgR+PHHH3Hffffh2LFj6NGjB95++22IotZMfsstt+Cvv/7Czp077UKpYcOG4fbbb7d7jtzcXLzxxhu4+eabAQCNGjVCv379sHHjxhJDqdIes2TJEmRnZ+OXX35BaGiore4hQ4Zc83jj4+MBAPXq1Svvl6pURY89JiYGCxcuRF5eHjw9PaGqKlavXo2hQ4fCYDBg69at2Lx5M9577z0MHz4cANCrVy/k5ubinXfeQXR0NHQ6/kpKRERUE3H6HhEREVVrubm5OHDggK1rx2KxwGKxoH79+mjatCm2bt0KABg9ejTmz58Ps9mMY8eOYc2aNfjwww8hyzLMZrPdPlu3bu3wuQp3L9WtWxcAkJOTc836rvWYHTt2ICoqyhZIAUBERASioqKuuU9r8CbL8jW3ux5Fjz0mJgY5OTm2KXx79+5FXFwcRo0aBQDYvn07BEFAnz59bF97i8WC/v37IzExESdPnqzwGomIiMg98M9SREREVK1lZGRAURTMnz8f8+fPL3a/h4cHACAvLw+zZs3Cr7/+CovFgnr16iEqKgo6nQ6qqto9xroWU1FeXl62y9Zuq6KPLc9jUlJS0LZt22KPCQkJQVJSUon7jIiIAADExcWVeLa/K1euoE6dOuU++17RY2/YsCGioqLw22+/YdiwYfjtt9/QoEEDdOrUCQCQlpYGVVVt14u6evVqiSEfERERVW8MpYiIiKha8/HxgSAIuP/+++2m4FlZQ6E33ngDa9aswfvvv48ePXrYwhfr1DpXqFu3rsPwKTk5+ZqP69mzJwBg48aNDkMpi8WCUaNGoVOnTvjkk09swZQsy7Yuq+zs7DLXGRMTg9mzZyMzMxN//PEH7r33Xtt9fn5+8Pb2xuLFix0+tmHDhmV+HiIiIqpeOH2PiIiIqjVfX1+0adMGZ86cQfv27W0fzZs3x7x582xnw9uzZw9uuukmDBw40BZIHTp0CCkpKbaz7zlb165dsX//fiQmJtpuu3r1Kvbv33/NxzVv3hy9e/fG/PnzcfHixWL3f/7550hNTUVMTAwA7WsEAAkJCbZt9uzZU+Y6hw8fDlVV8cEHHyA5Odm2XwDo1q0bcnJyoKqq3df/xIkT+Pjjj2GxWMr8PERERFS9sFOKiIiI3F5CQgK+/vrrYre3aNECPXr0wLPPPouHHnoIzz33HGJiYiDLMhYuXIgDBw7gscceAwB06NABv//+O7755hs0bdoUx44dw6effgpBEJCbm+vkI9KMHz8eS5cuxaRJk/D4448DAD755BOYzeZSp9299tprmDBhAu666y6MHz8eHTt2RHZ2Nv744w/89ttvuOeeezB06FAAQJ8+fTB79my88sormDRpEuLj4/Hxxx/Dx8enTHVaz7S3bNkyREVF2XU/9enTB127dsVjjz2Gxx57DE2bNsW///6LDz/8EL169UJQUNB1fnWIiIjI3TGUIiIiIrd34cIFzJ49u9jtd9xxB3r06IGePXtiwYIF+Oijj/DUU09Br9ejbdu2+Oqrr2wLjU+bNg1msxnvv/8+TCYT6tWrh0cffRSnTp3CX3/9VSmLhpfG398fixcvxhtvvIEpU6bAx8cHY8aMgZeXV4nrWlmFh4fju+++w6JFi7Bq1Sp88cUXMBgMaNKkCf773//azoQHAI0bN8acOXPw6aef4qGHHkLTpk0xa9YszJo1q8y1jho1CuvWrcPIkSPtbhdFEV988QU++OADfP7550hOTkZoaCgeeOABW9BGRERENZOglrb6JhERERG5xIEDB5CWloY+ffrYbrNYLOjbty9GjBiBF1980YXVEREREd0YdkoRERERVVFxcXF45pln8Pjjj6Nbt27Izc3Fd999h8zMTNx1112uLo+IiIjohrBTioiIiKgK++abb7Bs2TJcvHgRer0eHTt2xNNPP4327du7ujQiIiKiG8JQioiIiIiIiIiInE50dQFERERERERERFTzMJQiIiIiIiIiIiKnYyhFREREREREREROx1CKiIiIiIiIiIicjqEUERERERERERE5nc7VBThbcnIm3P18g4IABAf7VYtjoYrDcUGOcFyQIxwX5AjHBTnCcUGOcFxQSTg2yMo6FkpT40IpVUW1+eaoTsdCFYfjghzhuCBHOC7IEY4LcoTjghzhuKCScGxQWXH6HhEREREREREROR1DKSIiIiIiIiIicjqGUkRERERERERE5HQMpYiIiIiIiIiIyOkYShERERERERERkdMxlCIiIiIiIiIiIqdjKEVERERERERERE7HUIqIiIiIiIiIiJyOoRQRERERERERETkdQykiIiIiIiIiInI6hlJEREREREREROR0DKWIiIiIiIiIiMjpGEoREREREREREZHTMZQiIiIiIiIiIiKnYyhFREREREREREROp3N1AVQ+siJjZ8I25MSnw1sJwE11e0ASJVeXRURERERERERULgyl3Miq0yswY8sUxGXH2W4L9wlHbM+5iG4a48LKiIiIiIiIiIjKh9P33MSq0yswac04u0AKAOKz4zFpzTisOr3CRZUREREREREREZUfQyk3ICsyZmyZAhVqsfust83YOhWyIju7NCIiIiIiIiKi68JQyg3siN9WrEOqMBUq4rIuY0f8NidWRURERERERER0/RhKuYErOQkVuh0RERERERERkasxlHIDod51K3Q7IiIiIiIiIiJXYyjlBrqH9UC4TzgECA7vFyAg3DcC3cN6OLkyIiIiIiIiIqLrw1DKDUiihNiecwGgxGAq9pY5kETJmWUREREREREREV03hlJuIrppDBYMWYIwnzC720VBxKcDv0R00xgXVUZEREREREREVH46VxdAZRfdNAbDGo/AzoRtyEAynl/zAq7mXkECFzgnIiIiIiIiIjfDTik3I4kSbonohXEdx2HGzTMBAPP2vossU6ZrCyMiIiIiIiIiKgeGUm7szpZ3o2lgMyTnJWP+v5+5uhwiIiIiIiIiojJjKOXGdKIOU7q+BAD4eP+HSMtLdXFFRERERERERERl49JQymg04qWXXkKXLl3Qs2dPLFy4sMRtt2zZgpiYGERFReH+++/HmTNnnFhp1TWq2W1oHdQGGaZ0fHbgI1eXQ0RERERERERUJi4NpebOnYtDhw5h0aJFePXVV/HRRx/hjz/+KLbdyZMn8fDDD2PAgAH48ccf0aZNG0yYMAHZ2dkuqLpqEQURU7vNAAB8/u+nSMpNcnFFRERERERERESlc1kolZOTg+XLl2P69Olo27YtBg0ahMmTJ2Pp0qXFtv3mm28QFRWFp59+Gk2aNMELL7wAPz8/rFy50gWVVz3DGo9Ax9pRyDZn4aN977u6HCIiIiIiIiKiUrkslDp27BgsFguioqJst3Xu3BkHDhyAoih22168eBEdOnSwXRcEAS1atMD+/fudVW6VJggCXrxJ65ZaePALXMlOcHFFRERERERERETX5rJQKjExEbVq1YLBYLDdFhISAqPRiLS0NLttQ0JCcOXKFbvbEhISkJrKhb2t+tUfiG51uyNPzsP7e99xdTlERERERERERNekc9UT5+bm2gVSAGzXTSaT3e3Dhg3DY489hujoaPTq1QsrV67EwYMHcdNNN5X7eQXh+muuKqzHUPhYBEHAS91fxuhfRmDx4a/weORTqO/fwDUFkks4GhdEHBfkCMcFOcJxQY5wXJAjHBdUEo4NsirrGHBZKOXh4VEsfLJe9/T0tLu9d+/eePzxx/Hkk09ClmXcdNNNGDVqFLKyssr9vMHBftdfdBVT9FhGhQzHgAMDsP7senx86D18GfOliyojV6pOY5wqDscFOcJxQY5wXJAjHBfkCMcFlYRjg8rKZaFUaGgoUlNTYbFYoNNpZSQmJsLT0xP+/v7Ftn/00UcxadIkZGZmIjg4GE8//TQiIiLK/bzJyZlQ1Rsu36UEQfsmd3Qsz3d6EevPrsfX+7/Gg20eR9PAZq4pkpzuWuOCai6OC3KE44Ic4bggRzguyBGOCyoJxwZZWcdCaVwWSrVu3Ro6nQ779+9Hly5dAAB79uxB+/btIYr2S12tWrUKBw4cwPTp0xEcHIy8vDzs3LkTb731VrmfV1VRbb45HB1L59BuGNxwKP48/wfe3vUWPh3EbqmapjqNcao4HBfkCMcFOcJxQY5wXJAjHBdUEo4NKiuXLXTu5eWF0aNHY+bMmfj333+xbt06LFy4EOPHjwegdU3l5eUBABo1aoRvv/0Wf/75J86dO4fnnnsOYWFh6N27t6vKr9KmdpsOAPjp5HIcSznq4mqIiIiIiIiIiIpzWSgFAC+++CLatm2LCRMm4LXXXsOTTz6JwYMHAwB69uyJ1atXAwDatWuHmTNn4q233sJtt90GAPj888+LdVSRpn3tjhjZdDRUqJi7601Xl0NEREREREREVIygqjWrqS4pyf3ntgoCEBLid81jOZ5yDL2/vQkqVKy7cxM61I50ao3kfGUZF1TzcFyQIxwX5AjHBTnCcUGOcFxQSTg2yMo6FkrDVqNqqmVQK9ze4i4AwJxdb7i4GiIiIiIiIiIiewylqrHnu06DJEhYe34NdifsdHU5REREREREREQ2DKWqsSYBTXFvq7EAgLfYLUVEREREREREVQhDqWru2S5TYBAN2Hzpb2y5vMnV5RARERERERERAWAoVe3V86uPcW3vBwDM3jkLNWxdeyIiIiIiIiKqohhK1QD/6fQ8PCVP7E7Yib8urHV1OUREREREREREDKVqglCfupjY/iEAwOxdseyWIiIiIiIiIiKXYyhVQzwZ9Qx89L74N3E/Vp9d5epyiIiIiIiIiKiG07m6AHKOYK9gPNzxMbz7z1zM2RWLoY2GQxIlV5dFREREREREVKrLlwUkJwsl3h8SoiI8nLOC3A1DqRrk0Y5PYMHBL3As5Sh+Pf0Tbmt+p6tLIiIiIiIiIromoxEYPNgbiYklT/aqU0fBnj3Z8PBwYmF0wxhK1SABHoF4PPIpvLnzdczd9SZimt4KncghQERERERENRO7b9yDwQBERKhISlKhqsX/vwRB+38yGFxQHN0QJhI1zOQOj+DzAx/jTPppLD/+Le5tPdbVJRERERERURVXNLypVQtITS3oWnHH8IbdN+5DEIBp04y45x5vh/erqoBp04wQSs4Xq6yaHowylKphfPW+eKrTc3h120t455+3cFuLO+Eh8RWWiIiIiIgcKzm88bFdcsfwht037iE1FTh1SkRmpoDwcAXx8YLd/5coqujQQUG/fjKOHxexZYsEPz8Vfn7I/6x9+PoCtWqp0OtdeDBFMBhlKFUj3d9uEj7Z/yEuZl7A0qOLMbHdg64uiYiIiIiIqqjqGt5U5+4bd2A0AgkJAuLjRcTFCYiLK7g8bZoJLVsqAIDvvtPjlVc8S9yPohT8P+3aJeHFF0vedsGCXIwcaQEArF8vITbWwxZg+fqq8PUtCLNGjLCgVSuthpQU4Nw50Xafr68KHx/c8Niort9b5cFQqgby0nnhmS4vYNqm5/DeP2/j3lZj4aXzcnVZRERERERUBVVEeCPLgMkEmM2A0SjAbNaum0wCTCagcWMFPvmNV2fPCjh2TLJtU/Qxo0ZZUK+eNp1pxw4Jv/6qs+2r6H6nTTOiUyctWFi9WofYWIPtPut+BUGFqgKAffeNpyfw1Vd6rFihQ1CQilq1gOBgBUFBKjp2VBAWVnWnVLl6SlhODhAfLyAuTrSFTaNHm9GwofacX32lx9SpJYdHd95psYVS9eqpqF9fQViY9jXftk1CUpLWLSUIKtq00bqkACAiQkF0tBmZmQKysgRkZgKZmYLtuq9vwTEnJIg4fLjkM9K3aKHYQqktW3SYPNn+PbMgFARYr79utIVdhw6J+PJLvS3oKtq11aZNwdhRFGDKFCPGjKm5wShDqRrqvtbj8fG+D3Ax8wK+PrQAj0Y+4eqSiIiIiIiqBVcHAjciNxdISRGQlmb/kZoKhIYqSEwUoCiFj02Flxfw2mseePnlgvDIbAZ+/jnXFiy8954Bc+eWPP9o9epsdOmibfv77zrMnFlyYNGuXQ7q1dNCiOPHRSxYUHIbycSJJtvlnBzg1KmSQ4jCFEVATg6wZo3juV4ffpiLe+7RQogNGyQ89pgngoLU/PBKRXCwarvev7+M1q21YzMata+xvz8gljxj64ZU9pSwrCzYwqa2bRXUrq2N5d9+0+GddwyIjwdSUvyKPa5ZMwUNG2pfs+Bg7TGenirCwlRb4BQeriA8XEXr1rLtcdHRFkRHW2zX//pLsgWkqirg5ZcLQpv+/WX071/w2MIUBfnho2bgQAu++y6nWHilBVhaUGolikCDBgoyMwVkZACyrIViGRlARoYApWBTnD0rYtmyksfku+/mYexYMwBg82YJY8Z4OwxGJUlF+/YFgVt1xVCqhvKQPPBcl6n4z4bH8eHe/2Jc2/vhq/d1dVlERERERG6tKqwRYzRq04Ksb9QPHhRx5IhoC5jS0+0Dp8WLcxESor1bf/11j2uGPMUJyM0Fjh4tHvbk5RVcLjr9SK/XpiRpH6pdJ0hYmIrOneVi2xgMgF4PWwgCAB07ynj2WaPtPg8Pbc0g7br2pt6qd28ZK1bk2ParbadtP368F44dEyHLAiRJRatWCp55xoS0NAEpKVrImJKifaSmCoiIKKghKUlAcrKI5GTHX6Hg4FxbKLVli4R77/WGJGnhlTW4CgrSgqw777Sge3cthEhL09ZSst5f1iDreqeEqSqQng54eABe+U1Bu3eL+N//DPndTlrHU2ZmwT6/+ioXI0ZogZEsw67zyNtbRUSENWxSUadOwf/FwIEWHDuWiVq1yj8Frl8/GZGRMvbvlxAZKZc5tCn6tQsNVREaWrbHFg7GVFUb29bwKjNTQP36BcfWooWCl14y2oKurKyC7TIzBdStW7Ct9Wvp6P9Jlqt/lxTAUKpGu6vlvfhw77s4k34aX/77Gf7T+XlXl0RERER0w9y5S4XcX0WtEWOxID88gi1I6t1bhi7/HdyPP+qwcaMOaWkoFjLl5go4dCgLdepo4/ybb/T48suSnzAlRbCFUoGBKvR6FQEBWmgSEID8zyoCA1Vs3y7ZwhtRVNGwoYpZs/Js4ZFer8LDQwt8GjUqePP90EMmTJxosoVB13qjfeutFtx6q6XkDQqJjFQQGWkqfUMAdeqoqFPHcQjx8ssF0xNlWeu+KanjpqhhwyzYuDHbFlpZA6zUVO1y8+YFX4e0NMH2HElJApKS7PfVtauM7t21y//8I9lN67IGWcHB2ufHHjNh6FCtxitXBPz9t2QLsB54wISnn3a8RIuqCujUScbs2QbExYm2aXbx8QJycgQsXJhrC2ASEkR8803xbrGAAK2rqXDQ0727jO++y0Hbtt7w8sqEr2/J/8/e3trH9RAEYPp0I6ZP98D06c4PbQRBC+28vFTUqQMA9j9PWrZU0LJl2cbksGFaOJeRIWDcOC+cPClCUYQa0yUFAIKqqjXqJ3JSUibc/YgFAQgJ8auQY/np5HI8snYSAjwC8c/YfxHgEVghNZLzVeS4oOqD44Ic4bggR6rLuDAagU6dfGr0mYwqUnUZF85WeHqRIw8+aEJoqIq0NGDaNJMtoJo924AfftAjLU2w60axKhw0vfSSxzWDpq1bs21hyJIleqxcqUNgoGr7KBw69eplgb+/9jiLBZCkksOEosf27bc5ZQ5vqjJVBYYM8bZ136xZk1NpYYfJBFtgVTi8SkkRMHx4weLaa9dqi3YnJwvIzi5ezLx5ubj7bi08WrdOKmFdIhVFp4TVr6/i3LmSXyPnzs3D/fdr08vOnhXw889627S68HAFdetqZ7JzhK8Z16+6fW9Zx0Jp2ClVw41udjs+2PNfHE05gk8PfIRp3Wa4uiQiIiKi61Zdz2TE7q+qJSlJm8qUlCQgMdHa8SIgKUlEUpKARYtyERkp4+BBraOoqPnzCwbgI4+YbUFTZqaAixftwwJf34IQyVSo+WLwYAvq1i3oYCr64VfoveC4cWaMG2cu07HpSnmHeL1Tp6o6Z3bfGAzWqWPX/p4dNEjGoEHZALTAvXB4lZIiICqq4Gvv6wv07Wux3ZeSonU9FQ6kAK1D67HHjNiwQUJ4uGq3jpN1XSfPQst5NW6s4tlny9b1Qzemun5vlYadUm6ootPn386sxAN/3AcfvS/+GXsQwV7BN75Tcjr+VYIc4bggRzguyJHqNC5K61Jxt78+u7L7q7LHRVUK2y5f1gKh4kGT9vHDD7nQ589ieuQRT/z0k+MFsAHg4MEsHD4sOhyHrVrJaNRIQUCANlXumWeMCArS7jtzRuua0UIobYqUvuSncZlNmyS8/LI3Zs3KQe/e7vO9VNPk5AAjRnjj6FH7KWGV2QVWnX6WuMLGjRKmT/fAG28Y0aePe39vsVOKymx442h0qB2JfxP346N97+PVHrNcXRIRERFRuZnNwLff6hEXJyA4WMkPOwreeQmCdhp361+fp071gCxra4N4emrdAR4e2pnEIiIU21otgLbYryAAnp7aOiIeHtpl6+NK6y65EdW1+8sZC4KfOSPg3DmxUMhkHzqtXp1j+7rFxnrgxx9LToBSUgRbZ0vdutqizSEhqu2jdm3tIyREgbe3aut6sHZLlSUQaNJERdH1aaqiPn1kHDkCJCXJDB6qMG/v4mtl1YSFs91Znz4ytmzJcXUZTsVQiiAIAl7sNgP3/nYHFh76Ao90fByhPnVdXRYRERERFAXYv19EXJyIhAQh/wxQou0sUF27yvjoI+0UX5KkBU0Wi+N3XKpq/4bs22/1yM11vO3NN1swdGiu7fqECV5ISnIcnrRvL2P9+oI3EaNGeSExUcgPubQQyxp4NWyoYuZMo23br77SIzNTgIeHahdyeXpqnTLdu8sQBGDaNGOJ3V9Fj8tdXG/YduSIiNOnxWLdTNp1ERs3Ztse8847Hvjhh2sHTXXraqlKw4YKGje2Bk1KkaBJhY9PQfoyc6bR7v+xJIX/3xgIkCvU1Clh5D4YShEAoH+DQeha9ybsTtiJ9/e+g9m93nF1SURERFTJik6dqlULSE0tCF4qc+pUXh4QHy8gIUFEXJxgFzq1aKHgxRcL1jCJjvYuMWiynjEM0E73ffvtFhgM2jop33yjx+XLAhRFO0tY06b2ZzKaMsWInBwBRiOQl6ed1j4vT7verJli9zz166vw9laQl6dtk5cHmExaTYXXXwGAM2dEXLniOMBq08b+DeHnnxtw5ozjbRs0UPDPP9p6Mv36yfDyUksM0Z55xhMHDmTbrt99txf275cgSSoEQQvsrB9+fio2bCgI0aZM8cDevRJEUbtf+6xCkrSzpG3YUPA8H3xgwL59YqHtCj5Lkoq33zbappt9/70OBw9KdvsrvP1jj5lKDdtSU4GOHX2we3dBt9THHxuwfHnJQVNysoCwMG1cNGumoF072a6jKSSkoMvJ379g/EybZsK0aRW7dg4DAXI1V5+pjqg0DKUIQH631E0v47Zfo7H48Fd4LPIp1Pdr4OqyiIiIqJKUPHXKx3bpeqZOqSqQkQHEx2thkxY0iahdW8WECdpCy4oCNG3qC7PZ8bujq1dlAFo4IIpAx45aQBQWZr8Yb3i4inr17MOjefPybJc7dZJtgYeiCJg1y/4N2eOPl23hZwBYs6b4dApF0cI1uUjOsHRpLrKz7UOuvDwgN1dAQIB9yDd6tBnx8WJ+2FUQeBmNAkJDC45NEIC6dRWcPSuVqd6MDG1toqKLHAMoVsPp0yL+/dfxfg0G+23/+UfCmjUlv4V4++2C7qH163X4+eeSw6MHHzTZQpsDB0SH3VLnz2t1JScLtoC0VSsF3bpZ7KbNFf5cq1ZBzc8+a3LpIs0MBKgqqIlTwsh9MJQim54RvdErog82X96I9/55G+/2m+fqkoiIiKiSXM/UKUUBEhMF29Q5Dw/VtmC4qgJ9+3rj/Hkx/4xP9rp0kW2hlChqa/IkJQFhYQUhkzV0atLEPmj6/ffrezNV2V0qoqit2VJUhw5K8RtLUJ7OnB07cjBkiLdtjSJRVNGmjYJvvsktFnbMn5+LnBwBiqKFZtbPsoxi2778shEpKSbb/bJc8DiNl23bBx4wYcAAS7F9yrIAVdU6oKyGDrWgXj0FsiwU215RtDF4ramJjz5qRO/eWpdTcHBB0PTkkyY8+WSZv2wux0CAiKhkPPueG6rMMxrsit+J6J8HQRIkbB3zD5oENK3YJ6BKwzNdkCMcF+QIxwVZleUsdcuX63H+vDa1LiFBsJtG16WLjNWrC95sd+7sYzudfa1aKurWLehsat1awYMPFnQmZWUBPj7FA5KKVp3OZAQU/z+r7DMJOuP1QlVhF7Y54wxhdGP4c4RKwrFBVjz7Hl2XbmE3YWCDwVh34U+8s/stfDJwvqtLIiIioutgNmtTnpKStA6W9u0LundefNEDly5pC0UbDCpMJqDwNC9rKNCvn4wpUzxx4ULBFD9RVFGnjtZFVXR9pK++yoWvr4q6dVWHHUSF+fpWxFGWrrp1qVTHNYqKdktxQXAiqpFkGfod2yBeSYASWhfm7j3s20+rKYZSVMzUbtOx7sKf+PHE93i603NoGdTK1SURERG5VNEFwYuqzAXBrWRZO1OYNWiSJODmmwsCiccf98SFC9rZx5KTBaSlFdQbFSXbrYm0dq3OLmgq/lwFocArr2ifw8O1KXZ16qjQlfAbZHmmrdH1qa5rFFXHsI2IKkk1DG8Mq1bAd8YUSHFxttvk8HBkxc6FKTrGhZVVPoZSVEzHOlEY0SQGv51Zgbm738SCIYtdXRIREZHLlLwgeIHrXRA8PR35p7MXkZQkwMNDxaBBBW/Gx43zwvnzWgiVnCzYrf1UNGjatUvC+fP2NYqithZP4YWfAeDZZ42wWIT8tXoUTJniiePHRSiKYNclBQAxMZayHxQ5RXXr/gKqb9hGRBWrOoY3hlUr4D9pHIrOdxTj4+E/aRwyFixx22MrC4ZS5NDUbtOx+sxKrDz9Cw4mHkD72h1dXRIREbmJqtBVVJHKuiC4Xq+tk6SFTNaOJhE+PipGjy4IdmJivHDunBZCFV6fCQA6dpQxaFBB2HDsmFgsaKpVS0VIiIIGDey7kl55xQhVhe2MZNYwSnSQpY0ZYx80vfoqp06R61XHsI3cSDXsvqluqmV4I8vwnTEFUNVi50oVVBWqIMB3xlSkDBtRbccjQylyqFVQa9zW/E78ePJ7zNn1Bv434ntXl0RERG6gsrqKnEGW7X/f+/dfERkZArKzgV69LNi/33HBqiogORlo3NgXubnFk5yOHWW7UOrKFREJCQVfHz8/LUAKCVHRurX9lKW5c/MgigVBU1CQFn45MnLk9Xc0ceoUEdVk1bH7ptopLbwB4Df1WaTXrZu/vQJBkQufIjT/ulLkeuH7FQfbFzzGbntFhiArdtchyxCs29tdt96vFLkuQ0xKsht3RQmqCinuMvQ7tsF8S69K+/K6EkMpKtELXafhl1M/4s/zf+CfhF3oUrebq0siIqIqrqxdRQZDxTyfqmrdRDk5QHa2kP8B2+e6dVXcdltBWDN5sidSUwXk5AjIyrJ/TNeuMn7+Ode27T33eCEpqeRwDShYEDwtTbAFUl5eql23UvPm9h1NH32UC4MBtvs9PUvev7PCIUEAZsww4uWXvTFjBrukiKjmqJbdN4W5QweY2QwxJRlCUhLEZO1DSE6CmJQEMSUZYnIyxDOnrh3eABASr6LW8IHOq9uJxCsJri6h0jCUohI1CWyGe1rdh6VHF2P2rlj8GLPC1SUREVEVV/QsWkWpqoDbbjPj778luwCpfn3FtpaSxaIt2l00YLIGSL17W7BgQZ7t+QYO9IbZ7DhF6dnTYhdKbd6sQ2qq422zs+1vb9JEQXCwCh8fwMdHRU4OsGeP/a9O1qluEREqPD21IMrH59pfo65dq+Zi4H36yDhyBEhKknkabyKqGcoydWr6FKQMGYYS21SrMJd1gOXkQLx4wRYyCcn5wZI1bMoPnLTLyRAz0ivsqZVaQVD9/ABRhCpJWgAnSYAoadd12mVIUsH9oljkuvV+0XbZdr8oAZJY5Hpp22uPKb69BOnUSfh8+G7pxxVat8K+RlUNQym6pme7TMH3x7/B5kt/Y8vlTegZ0dvVJRERVRvutvZSXp4WGPn6atdzc4EfftAjNVVASoqA1FQBqalAcrK2YLfJBIfdUq+8Urw1aPhwsy2UkiRgxQodZNnx1yY93f72evVUyLIKH5+CAMl6uWVL+wDojTfyIAgosi3g66vC19f+a71qVa7ddVUFhgzxxsGDImTZfkFwdhYREVUxZjPEpESIiVchXr0CIbHgsvb5KqTz50qfOhUfh9oRwVC9faD65H8Uvuzj6+B2X/v7vb0d3g6DAZX1A6TCOsBUFUJGen6wlGQfLllDpxT7+5CTg6By1quKItSgICjBIVCCQ6AGh0AJDs6/HgwxKQk+784tdT8ZC5e41zQ3WYbnD99CjI+H4OAvQqogQAkL1zrcqilBVWvW38KSkjLd/q9/ggCEhPg57VimbXoOCw/NR7e63bHy1jUQ+Jt3leTscUHugeOi6jIagU6dfFyy9pKiADqdH06dykJKioCAANimmGVmAq+/7oG0tMJBk2Cb8jZmjAnvv28EoC3q3aSJX7meOyBAQa1a9sGRr6+KTp1kPP642bbdwoV6eHjYb2e9HBAA1K7tmgH911+SXRfYt9/moH//6rH+El8vyBGOCypGlmHYuQ0BOelI9w6A6SYnTgezWLTw4+oVCPnBknj1qhYyJV6BmJhYEDqlpDinphugSlLxAMvHJz/EKn47Sri9aGAGQUBQ57YQ4+KKdYAB+UFH7TrI/PRLCGmptmlyBV1MhYKnlGQIZrODvZRybAZDoYAp2BYwqfm3KcEhUEPyLwcFQ61VCw7PzGEly9oxlRLepOw5VPWmJ5bCFiACdsem5r/vdtcppNafH6VhpxSV6j+dn8eyo0uwK2EHNlxch/4NBrm6JCIit1cRay+pKpCdDaSlCUW6lQQ0baqgd28tLElOFjB2rJftvrQ06x9OtZane+8144MPtOlwoggsWlTykxae+ubjAwwbZoa/v3ZGuKAg1fY5MFDFjBkeOHHCvqtozZqcMv1ReOLE8v8C7AxcEJyIarKi08ECUAHTwWRZm+ZVpItJC5ryLyfldzulpDgMJEqiShKUkNpQateBWqcOlNr5H/mXxatX4fvqS6XuJ33h/2Bp1x5Cdnb+R1bB55ycIrcVuT3Hwe15+VPQZRlCRjpQgdPXAEDV668ZJAmqCunqFQTePrLs+/T2gRIS4jBcUkJCoAZpwZMaEoKglo2RbASKT4q8AZKErNi58J80DqogOAxvsmLnuF0gBQCm6BhkLFhSbKqlEhaOrNg5bhlIlQc7pdyQK/5i9erW6fj0wDx0rB2FP+/4m91SVRD/kkmOcFxUbUW7bop6+GEjQkPV/CBJQLduMu6+W1sfKT5eQNeuPjCZHL8eFw6asrOBxo2L/6XK11cLkIYPt+D117XuJ1UF3nnHgMBALWAq/BEUpCJ/mYbrOr7q0lW0caOE6dM98MYbRvTp4/7HY8XXC3KE4+IGucMi02VUeDpY4Z88Drs5ZFmb7mULlop0MRUKnoTkpPIFTaKoBSJ1QqHUrp3/2T5sst6mBgVVze4biwVCTraDECurWPCFEm53uL1cvp9Jcp1QKI0a26bI2U+Zs+9kgpdXmfZZ2a8ZjtfJiqge4U01er0Ayt4pxVDKDbnil4Ok3CR0WdIeOZZsfD10GYY3iXbOE1OZ8ZdGcoTjoupRFODCBQHHj4s4dkzCsmU6XLgglrh+UmElBU0GQ/EAqVcvGZMmaX8lVVXgjz90duFS8+a+SE+v3HFhXYPJ2lVU1i4pcg2+XpAjThsX1ezNGODCRaYrgqoCZrMWnOTmQsjKRMDo4RATEx1PBwMADw/ITZsXBE1K2U/qoAqCFogUDpZs4VKh4KlOqBY0VeDYqDZTp1QVMBoh5GRDv3EDAh6eWOpD0n7+rcLXX3LKa0Y1fL2ojhhKlaA6/KLlql8aZ+98He/teQetg9pgw93bIApl/FM5OQXfTJAjHBeul5UFLFxowLFjIk6cEHHypIjc3IJf6W+5xYKtW4vPpm/WTEbDhqrdtLjISBkDBmh/BVVV4NIlAbVqaestlSfscea4qK5dRdURXy/IEWeMC7cOb0pQrq6i6yHLEHJzgJzcguAoN0frnsn/jNxc7Xqh24TcQrfn5miPy8mGkL8f5OYW3FbOrpuiVEHQFq6uEwolpGjYVKSjKTgY0LluZZlq133jwvWX+LOErBhKlaA6fHO46hs9LS8VXf7XARmmdHw+aCFubX6H856cSsUfAOQIx0Xlk2Xg/HkBx49LOHFCxLFjIpo1U/DccyYA2oLmjRr52nVCGQwqmjVT0LKlgl69ZCxerC92RrfK7CriuCBHOC7IEWdMxanU8KYyqar2Q8Bi0aZjyRbAbIFgMiJwSF+IV66U2FWk1qqF7GkvQzDm5YdAOYA1OMopFBbl5uaHSNl2twlGo/MOU5Kg6g0Q83JL3Tb7yf/ANPp2LWwKDnFp0FRu1az7xlUdYPxZQlZc6JwqXKBnLTwe+RRm75qFubvfxMimo6ETOYSIqGZQ1YJuJEUBnnjCE8eOiTh1SkRenv3bjs6dZVso5eEBPPigGUFBKlq0UNCypdYBVfj39PBwxbb2kiwLmDbNyGluRFT9yTJ8Z0wpFkgB2ptoFYDfc08iKyNdmwpmsQCyBYLFAlhkwGLOv2zROofMZvttit1mDZDMBfuQLdo2snZdyN8WZrO2vWwfONkuW/Kf4zoIAITUVPhNffZGv4IAoJ2pzdsbqpc3VC+vgsve3oDtNp/8z9pleHnZtrH77OUF+BTelw+g10O/bQsCbx1Rai3m/oNgad+xQo7L6SSpwqeyuVJNXzyb3Ac7pdyQK9PnLFMmuv6vA5LzkvFBv09wb+uxzi2ASsS/SpAjHBflZ7EA584JOHZM63w6flz7qFNHxfffF/yVuEsXH1y4oE1j9vRU0by5ghYtFLRqpaB9e7lcC3o7e+0ljgtyhOOCHLnhcaGq2innL1+GdPkSxMuXbJ91Rw9Dd/RIhdfsakXPDFYSc8coyE2b2UIlOAiVtM9egDVUKhIkwdOzfPO3r5cLp4PRDXJyBxh/lpAVO6WoUvga/PBkp2cxc9t0vPPPW7i9xV0wSNc4XzkRUQW5fFlAcnLJv3iHhKgIDy/7bz9mM3D1qoCIiILH3HmnF7Zvlxye0e7KFfsFW19+2QgPDxUtWypo0EC9od/vBAGYPt2I6dM9MH06u6SIyI3k5kKKuwTx0iWIcZchXbpo//nyZW2tohtgbtsOSr36gKSDqtNpU8J0+ZclHaAvdFmng6qTAJ1euyxZt5eg5t+m3S4Ber3d4wpvoz0ufxtJV+xxdtvodAX7liTot28tU1dR9sxY9+nMkSRkxc6F/6RxxUI363SwrNg5DKSqomrWAUbVD0MpKrf7207Cp/vn4WLmBSw9uhgPtJvs6pKIqJozGoHBg72RmFjyCRbq1FGwZ082PDzsbzebgbNnCzqejh/XFhw/dUpESIiKAwcK3iypKmAyCfD2Luh8atlSm3LXsqViN4Vv1Kjrm7ZRkj59ZGzZklOh+ySq8arZGjEAnHtMFgvEqwnA8RQYjpyAePGSFkBdvpTf+XQRYkpKmXalhIRAjqgPJTwCcr16UMLrQcjOhM87c0p9bHbsHLd6U23u3gNyeHipXUXm7j1cUN3143QwIqoMDKWo3Lz13vhP5+fx4ubn8d6et3FPq/vgpfNydVlEVI0ZDEBEhIqkJBWqWryNSBBUhIWpOHtWxIULAgYPLpg6d9ddXg7PbgcAGRlAdjbg46Ndf+MNIzw981C/vgqRJxglcmvV9YxuFXZMqgohJUULli5fhnj5IiS7z5cgJsRrazkB8L/GrhQfXyj16uUHTvnBU0Q9KBH1oEREQA6LALwc/K4oy/BctqTahTfVuavIFB2DlGEjYNi5DQE56Uj3DoDppmoQ9hKRy3BNKTdUFebpGmUjbl7aCZeyLuL1W97EIx2fcE0hZFMVxgVVPdVpXPz1l2RbDNwRUVShKAIEQcXZs1nwzt/0+ec98OOPerRsqdgWGte6nxRERNTM8Kk6jQuqONVpXLj1Gd1KUO5jysqCFHfZbg0nKb/DSYy7BCnusnZmt1Koej2EevVgrhtuC5pka9gUXg9KvXpQ/QOue10jV50hzBkch4gR1aKrqDq9XlDF4tggq7KuKcVQyg1VlW/0pUcW45m/n0CIVwh2jf0Xvnpf1xVDVWZcUNXi7uNCUYCzZwXs3y9h1CgLhg/3xsGDImTZ8ZsfX19tjaf583NRr552wDk52h/ouU5TAXcfF1Q5qs24sC7IHBdX7IxuQDkWZLZ+EVS1+OVr3VfosoCy7gMl3idABWQZgUP6QbyS4PiYAKjePjDf0hNSXBzEyxchpqVd88tkJdcJhRIRASWiPuSIiILQKTwCSr36UOvUQUidgEodF9U5vKmWU0hRjV4vqMJxbJAVFzqnSndXy3vx4b53cTb9DBb8+zme7vycq0siIjemqsClS1oAtX+/iP37JRw4ICEjQ3sL1qZNNqZNMzrslnrxxTzcdZcF4eFqsfDJu+TmKiKqJoSMdIgXLkC6eAGGjX/ZhRvFtlVVSHGXERIRXJBWFwqCynLWtKpGACDkZMNj7Rq72xX/AK2jKUJbw0mpVw9yftgkh0dACQtHsYX4iu7bCYG+dUpYdQxvuMg0EdG1MZSi66aX9Hih64t4bN2D+Gj/B7i/3SQEeAS6uiwichNXrgjw81NtodG8eQbExhZ/c+TpqaJdOwU5OUC/fjIiI2Vbt5QkqWjfXsF//mNmJxRRNVY4dJIunod48QKkCxe0zxcvQExPK/8+FaX0jVxMFQQtFVLVMoVlufeNh3HkKC2AioiA6netlaCqGIY3REQ1EkMpuiG3NrsDH+z5L46nHsNnBz7G1G7TXV0SEVVBqamwdT7t26d1QcXHi1i0KBfDhmlnsWvTRoZOp6JNGwWRkTKiohR07CijVSsFukI/rQp3S8mygGnTjAykiNyckJ4G8eLFGwqdlOBgyPUbQPXyhmH71lK3T5+/CJZuNxW0AgkCVAh2120fQH47Ukn3CQWPL3z/NbYtdr3o5UL0Wzcj8NYRpR6T8Y67GewQEZFbYShFN0QSJUzpNh2T1ozDZwc+xuT2jyDYK9jVZRGRC6lqwXuqHTskPPmkJ86fL76auCiquHCh4M1X794yzpzJgqfntfdv7Zbav19CZKSMfv3kaz+AiEony9Dv3AbkpENfCWfTEtLTHHY6SRe14EnMSC91H9bQSanfEHL9BtrlBg0g128IuV59wNfXdixBnduWekY3U3SM20wPM3fvATk8vPqdpY6IiGo8hlJ0w0Y0GYn2IR1xMOkAPtr3Pl7tMcvVJRGRk+TlAYcOifkdUBIOHBAxdqwZDz9sBgCEhCi2QKpxYwVRUTI6dtS6oNq1k23vIQHAYCjbcwoCMH26EdOne2D6dHZJEd2oootMBwCQw8ORFTu3zItMOzV0Ko0kISt2LvwnjYMqCA7P6JYVO8dtAikA1fOYiIiIwLPvuaWqeEaDdefXYMxvd8JL54Vd9x1AqE9dV5dU41TFcUGuVxnjIjlZwJtvGrBvn4Rjx0RYLPap0K23mvH553kAtLPnbd4soWNHGYGBFfP8dOP4ekFWhlUr4D9pXP5Z3gpYg46MBUtgio6pWqFTOY6tup3RzRXHxNcLcoTjgkrCsUFWZT37HkMpN1QVv9FVVcWInwbhnyu7MLn9w3iz19uuLqnGqYrjglzj8mUByckFby9r1fJBamq27XpIiIrw8GsPElkGTp0SbWfBq19fwWOPad1PublA06a+tjAqJESxrf+kdUIpqFOHg7Aq4+sFASiY5hYXB0cNhyoA6PRQvbwgZmaUujslJCQ/bGoIxVHo5ONT0UdQOlmufmd0c/Ix8fWCHOG4oJJwbJAVQ6kSVIdvjqr6jb750kbcvmIkDKIBO+7bh3p+9V1dUo1SVccFOZfRCHTq5IPExOJrOFnVqaNgz55su7OAqyrw66862xS8AwckZGcXvE2NjJTx5585tutffKFHeLiKqCgZ4eEqp9C5Gb5e1ABZWRATr0JMSoSYmKhdtn3kX79wHlJ8XOn7ylclQyeqdHy9IEc4LqgkHBtkVdZQimtKUYXpVa8Pekb0xpbLm/Denrfx374furokohrHYAAiIlQkJalQ1eJJkSCoqF1bxdq1OmRkAGPGWPJvB2bN8sDFiwVhlre3ig4dtM6nrl3tFxN/6CFz5R4IUVXlqs4bVYWQmWELlYTEqxCvFgmZrJeTrkLIySl9n2WU9eos5N4/maETERERVTiGUlShpnabgS0/D8ayo0vweNTTaBLQ1NUlEdUoggBMm2bEPfd4O7xfVQUcPixh4kQv1Kql4t57s2xdTrffbkZ6umCbgteiheL2s1yIKpLj9XzKtyC4HUWBkJbqsJNJKNrZlJQIwWgs1+5VLy8otetACQnRPteuA6V2bSi160CtXQdiQgJ8X55W6n4skZ0YSBEREVGlYChFFeqmsO4Y0GAQ1l9Yi//unoOPB37h6pKIaoy8PODECRH9+smIjJRx8KAIWS7eLSWKKlq10s6El5NT8F7zpZdMTq6YyH0UXhC8MDE+Hv6TxtkWBIcsQ0hOdjxdLv9DyA+ZxKRECBZLuepQfP2g1K4NNaR2saCp8HW1Th2oPr645txaWYbXpx9CjI+3O5ublSoIUMLCtW4wIiIiokrANaXcUFWfp3vg6j4M+qEPBAjYdM9OtAxq5eqSaoSqPi6oYqkqcOaMgD17JOzdK2HfPgmHDokwmwUcP56Jffskh91Sr72WhwkTzPB23EhFNQRfL8qpTAuC66AGBEJITYGgKOXavRIYmN/RZO1iKh4yWe+v6G9eW9gG2AVTRc++RzUXXy/IEY4LKgnHBllxTSlymY51ojC88UisPrsSb++ejS+HLHJ1SUTVyhdf6PHOOx5ISyv+9jgkRMGFC8W7pSRJRfv2Ch55xMxFyYlKYrFAvHwJ0vlz2se5sxDPn4Pu8EG7KXtFCfmPFZKTAGiBjhocnB8k1YFSO8QuZLILnUJqa4vBuYgpOgYZC5YUm5aohIUjK3YOAykiIiKqVAylqFJM6fYSfj+7CitO/4yDic+ife2Ori6JyG0YjcChQyL27pVsnVDz5+eiY0et+8LbG0hLE+DhoQVNnTvL6NRJ+2jQoOBMeIXXlpJlAdOmGRlIUY0nZKRDOn8O4jktdNICKO2zeOliuafTFZY1fSby7rkPanAwoHOfX7FM0TFIGTYChp3bEJCTjnTvAJhuctIC7kRERFSjuc9vTORW2gS3xa3Nb8dPJ3/AnF1v4H8jvnd1SURV2rFjIhYv1mPvXm0anslknx7t2SPZQqmhQy1o1y4bbdoo12ywsHZL7d8vITJSRr9+cskbE1UXsgwx7nKRbqeztutiSso1H656eEBu0BByw0ZQGjaC3KgxkJMD39mzSn1qS5euUENDK+pInEuSYL6lFxDiB3NSZv6cRCIiIqLKxVCKKs0LXV/Er6d+xp/n/8A/CbvQpW43V5dE5HKpqcC+fVoHVM+eMm6+WQuKkpIEfPllQcIUFKSgUyfF1gHVuXNBoBQSoiIkpPR3jIIAzJhhxMsve2PGDHZJkQvIMvQ7tkG8kgAltK62YHYFdN8IWZlap5MteDqjBU7nz0G6eAGC2XzNxyshtSE3bKR9NGoMuVFjLYBq2AhK3TBAFIsdh9eiBVwQnIiIiKiCMZSiStM0sDnubjkGy44twVu73sAPMb+6uiQip7JYtGl41il4e/ZIOHOm4M1uRobJFkpFRsp48EGTLYRq1EitkBCpTx8ZR44ASUkyF5skpzKsWlFsnSI5PBxZsXNLX6dIUSDGxxUETefPFppqdw5iUtI1H67q9ZAbNLQFTXKjJrYQSmnYEKpv6Ytu2pEkZMXOhf+kcVAFweGC4FmxczjdjYiIiKicGEpRpXq2yxQsP/EtNl3agK2XN+OWiF6uLonI5vJlAcnJJSc/ISEqwsPLluSoKnD+vACTSUCLFto0u4QEAYMH+xTbtnFjrQOqW7eC7idfX+CNN4zlPAKiqsl2RrciSagYHw//SeO0M7r1G1DQ6ZQfOonW6xfOQzCZrvkcSnBwQbdTw8ZQGjUuCJ7Cwis8IOKC4EREREQVj6EUVaoG/g0xts0EfHXoS7y1KxYrRv8BgXOIqAowGoHBg72RmCiWuE2dOgr27MmGh0fx+9LTtWl4e/daP0QkJYkYOtSMxYvzAAARESpatZIRHq7apuBFRckICqqsoyKqAmQZvjOmAKqKoq/2gqpCBeA/eTwERbnmblSdDnL9BvndTo0LptpZu538AyrtEEpiXRC8MqYkEhEREdVEDKWo0j3T+QV8c/R/2Bm/HRsurkf/BgNdXRIRDAYtNEpKUqGqxYNSQdC6pAwGrdnDmqWqKjBokDf+/bf4m1C93n5fggBs2pRTacdAVKXIMqTjx+C5/Bu7TqKiBADID6SUwMD8oKmxbVFxW7dTeETVPIOddUFwIiIiIrphVfC3Papu6vqE4f52k/HZgY/w1s5Z6Fd/ALulyOUEAZg2zYh77vF2eL+qCoiIUDBypBfMZgFr1uTYHmftnGrYUEHnzgULkbdrpzjsqiKqdlQV4oXz0O/bA92+vdDt2wP9vwcg5GSXeRcZ734I49j7K69GIiIiIqryGEqRUzwZ9QwWH/4K+xP34Y9zqzGs8QhXl0SEfv1kREbKOHhQhCwXD0p/+00PQOuayswE/PLXRn7vvTwEBZXtDHhE1YGQlAT9/j3Q7d2jBVD790JMTi62neLjC7lxE+gP/VvqPpXGTSujVCIiIiJyIwylyClqe9fGQx0exft738FbO2MxpNEwiELJa/kQVRRVBa5cEXDypIiTJ0WcOqV9PntWxLZt2SV2SzVuLKNv34IuKJ9C65VbFzInqpaysqA/eEALoPbvhX7fHkgXzhfbTNXrYWnbDpaozjBHdYYlqjPkZs0BAEGd20KMj7c7S53tcYIAJSxcW4uJiIiIiGo0hlLkNI9FPomFh+bjaMph/HrqJ9za/A5Xl0TViMkEnD0rolkzxbbm8FtvGfDFFwZkZTmeLnr+vGjrlvr3XxGKIkAUVbRrp2Dt2hxwlilVe2YzdEcOF0zB27cH0vFjDhchtzRvAUtkJ5g7aQGUpW17lDRfNSt2LvwnjYMqCHbBlJr/TZUVO4eLgxMRERERQylynkDPWng08gnM2fUG5u5+EyObjoZO5BCk8snIAI4fL+h4OnVKxIkTEs6fFyDLAnbsyEKTJtqbYL0eyMrSgqZGjVQ0b66gWTMFzZvLaNZMQb16SrG1pRRFwEsvGRlIUfWjqpDOnoZurzb9Dgf3I3jfPgh5ecU2lcPCtQ6oTp1hiewES2RUuc52Z4qOQcaCJfCdMcVu0XMlLBxZsXNgio6pkEMiIiIiIvfm0kTAaDTitddew59//glPT09MnDgREydOdLjt2rVr8e677yIhIQGtWrXCjBkz0LZtWydXTDfqoQ6PYv6/n+J02in8cOI73NPqPleXRFWQLAOXLgm24OmOOyy29Zs++cSAd9913J3h66viyhURTZrIAIAxY8yIjragUaNrL0Bu7Zbav19CZKSMfv3kCj8mImcTryTkd0D9A/3ePdAd2AcxLc1uGwGA4h8AS1Qn2xQ8S1QnKHXDbvj5TdExSBk2Avod2yBeSYASWlebsscOKSIiIiLK59JQau7cuTh06BAWLVqEuLg4TJ06FeHh4Rg6dKjddidPnsRzzz2H119/HZ06dcLXX3+Nhx9+GGvXroWXl5eLqqfr4WfwxxNRz+D17S/jnd1v4bbmd8IgGVxdFpXB5csCkpNLbh8KCVERHn59C38fPChi9WqdLYQ6c0ZEXl7Bc7VsmWMLilq0UBAebu14sv8IDVXtOpzCwlSEhZVekyAA06cbMX26B6ZPZ5cUuYAs31B4I2SkQ3dgvzYFL38tKCnucrHtVA8PWNp1gKVTZ3j16YmUZq0hN2oKiJW0xp8kwXxLr8rZNxERERG5PZeFUjk5OVi+fDnmz5+Ptm3bom3btjh58iSWLl1aLJTaunUrmjVrhtGjRwMAnn32WSxduhSnTp1C+/btXVA93YiJ7R7EZwc+woXM81h2dAnubzfJ1SVRKYxGYPBgbyQmlvzGtU4dBXv2ZBfrSFJV4OpVwW663cmTIp5/3oiuXbV1aw4fFvHf/9o/0GBQ0bSpFj75+hYES7feasFtt1kq7uDy9ekjY8uWnArfL1FpDKtWFJvmJoeHIyt2ruNpbkYjdIcP5q8Bpa0FpTt5othmqiBAbtUa5shOWgdUp86wtGoDGAwQBMArxA9KUibAk0gSERERkYu4LJQ6duwYLBYLoqKibLd17twZn332GRRFgVjor7aBgYE4deoU9uzZg6ioKPz000/w9fVFgwYNXFE63SBvvTee6fw8Xtz8At7dMxd3txoDLx073qoygwGIiFCRlKRCVYu3EQmC1pFUeG3kbdskzJrlgZMnRWRkFH/M0KEWWygVGalg7FiTrfupWTMFDRqoDhtF2MVE1Ylh1Qr4TxqnpbeFiPHx8J80DhlfLoLcopVtEXLdvj3QHT4EwWwuti+5fgO7KXiWDh2h+vo561CIiIiIiMrNZaFUYmIiatWqBYOhYOpWSEgIjEYj0tLSEBQUZLt9+PDh+OuvvzBmzBhIkgRRFPH5558jIKDsi65S1TK2zf34aN8HuJx1CYsPL8TDHR93dUl0DUUXAy9KVQUcPCjihx/0GDdOe7MsisCePVL+ZRUNGhReaFxBjx4F3U6tWil4911j5R8IUVUiy/CdMQVQVRTNWgVVhQrAf/IEu7PXWSlBQVoAFdkJlk6dYY7sDLV2baeUTURERERUUVwWSuXm5toFUgBs100mk93tqampSExMxCuvvIKOHTvim2++wYsvvoiff/4ZwcHB5Xre6tBlYT0Gdz4WT50Hnus6Fc9ueBIf7PkvmgU2R4YpHaE+ddE9rAckkQvhlldlj4v+/WU0aybj1CkRKPYWWjtr3dmzou3527eXsWBBLpo3V9C4sQJPz8qpi66tOrxeVDs5OZDOnIbht5V2U/aKEgBAVaEaDLbpd+YobSqe0rBRsf/U8vwXc1yQIxwX5AjHBTnCcUEl4dggq7KOAUFVHfwJ1gl+//13xMbGYuvWrbbbTp8+jeHDh2Pnzp0IDAy03f7CCy/A29sbr732GgBAURQMGzYMt99+Ox566CFnl04VxCybUf+9+riSfcXu9nr+9fDB0A9wW+vbXFRZzZaRAWzbBmzapH0MGwZMn67d9/33wN13F3/Mm28C48YBERH8AUQEQDuF5IULwPHjwIkT9p8vXizfvpYsAcaOrZw6iYiIiIhcyGWdUqGhoUhNTYXFYoFOp5WRmJgIT09P+Pv72217+PBhjBs3znZdFEW0atUKcdf4C3NJkpMziy7d4XYEAQgO9nP7Y1l1ekWxQAoALmdcxh3f34GFQ5cguqmDRX7JoesdFxYLsHatDtu2Sdi+XcLBgyIUpXCyZMHDD+cCAPr1A1q39saJEyJkWYAkqWjfXsHkyTkQBCA5uWKPiW5cdXm9qKqE5GRIp09BOnVS+3w6//PZMxCMJU9JVQIDodQJhe7E8VKfI90vCOakzIosm+OCHOK4IEc4LsgRjgsqCccGWVnHQmlcFkq1bt0aOp0O+/fvR5cuXQAAe/bsQfv27e0WOQeAOnXq4PTp03a3nT179rrOvKeqxdaTdVvufCyyImP65ikO71OhQoCA6VumYmijEZzKV06ljYsrVwRcviygU6eCVcmfeMLTbjHyhg0V9Ogh4+abLejeXbbb36uvFqwtJcsCpk0z2p6Xqi53fr1wudxcSGfPQDp9Cjpr6HTqJKQzpyCmppb4MNVggNy4CeSmzSE3bQZLs+aQmzSD3Kw51KAgQFEQ1LktxPh4h+tGqYIAJSwcppt6VNoZ8jguyBGOC3KE44Ic4bigknBsUFm5LJTy8vLC6NGjMXPmTLz55pu4evUqFi5ciNmzZwPQuqb8/Pzg6emJu+66C9OmTUO7du0QFRWF5cuXIy4uDrfeequryqcbtCN+G+KyS+50U6EiLusydsRvwy0RvZxYWfVz8aKA7dsl7NghYft2HU6fFtGggYJ//skGAEgScOedZlgswM03y+jeXUZ4eMk/Qfr1kxEZKWP/fgmRkTL69ZOddShEGlmGfsc2iFcSoITWhbl7Dzg8VWN5KArESxdt3U6606fyL5+CeOmiw9DIVk5EvfywqZld+KTUb3DtuiQJWbFz4T9pHFRBsHsONX8ebFbsnBs/NiIiIiKiKsploRQAvPjii5g5cyYmTJgAX19fPPnkkxg8eDAAoGfPnpg9ezZuu+02DB8+HNnZ2fj888+RkJCA1q1bY9GiReVe5Jyqjis5CRW6HRX31lsGfP+9Hpcu2XceCoIKf38VWVmAr6922+zZZT/znSAA06cbMX26B6ZPN3INKXIqw6oV8J0xxW6BcDk8HFmxc2GKLn26r5CaYptqVxA8ndSm2+Xllfg4xT9AC53yO53kps1gadoccuMmgI/PdR+PKToGGQuWFDsmJSwcWbFzynRMRERERETuymULnbtKUpL7z20VBCAkxM+tj2Xr5c249dcRpW7386jf2Cl1DYoCHDsmYvt2Cbt3S1i2TI/MTG1cTJvmgYULDZAkFZGRCm6+2YKbb5bRrZuMgABXV07OUh1eL6wMq1bAf9I4QFXtzjRn7SrKWLBEC3Hy8iCdO2ubYqcrtN6TmJJS4v5VvV6bblc0eGraDGpISOWu4l8Z3V/XUJ3GBVUcjgtyhOOCHOG4oJJwbJCVdSyUxqWdUlRzdQ/rgXCfcMRnx0MtYbGUUO9QdA/r4eTKqjaLBTh0SAuhtm+XsHOnDqmpBW+Ud+8GWrXSLo8fb8awYRZ07izbOqKI3JYsw3fGlGKBFAAIqvYq4v/oJCiv1oV46cK1p9uFhWuhU+Epd02ba9PtdC76sShJMN/CAJ6IiIiIahaGUuQSkightudcTFozDgIEh8FUnsWI02mn0CKopQsqrBqMRm2BQE9P7foXX+gxc6an3Tbe3iq6dpVx880y6tXzsN3epo0CoupCv2Ob3fS2ogQAMBohXTwPAFD8/CE3bWpbZNzW+dS4KZjSEhERERFVDQylyGWim8ZgwZAlmLFlit2i53W9wyCJEi5nXcLoX4dh+cgVaBvSzoWVls/lywKSk0ue5hMSopa4kHhODrBnj4Rt27SFyffskfDuu3m44w4LAOCmm2T4+6vo3l1G9+4W9Ogho317BXq9tT3SA0lJlXJYRM5nNkO/awcM6/6Ex0/Ly/SQ7OemIveBB6HWrl250+2IiIiIiOiGMZQil4puGoNhjUdgR/w2XMlJQKh3XXQP64E0YxruWjkaB5MO4LZfR+D7kb+gY50oV5dbKqMRGDzYG4mJYonb1KmjYM+ebHjkNzVduSJg/nw9tm/XYf9+EWaz/RvpffskWygVFaXg+PEsnoyLqi3xSgL0f62Dx9o10G/cADEzo1yPN/fsDbVOnUqqjoiIiIiIKhJDKXI5SZSKLWYe7BWMn0atxD2rbsOeK//gthUj8W30j+ha9yYXVVk2BgMQEaEiKUmFqhbv0hAEFT4+wPbtEvr2lW23f/hhwbS7sDAFN98s2z6aNy+YhieWnHURuSdZhm7vPzCs/xOGdWuh/3e/3d1KSAhM/QfB1H8gfGbOgHglweF6UaogQAkL1xYIJyIiIiIit8BQiqqsAI9ALB/5K8b8did2xG/DnStGY9mI5egR0dPVpZVIEIBp04y45x5vh/erqoCzZwV88okBffvmAgBCQ1U88YQRLVpoYVSDBipnHVG1JqQkw7BhPQzr/oRhw7piZ8QzR3WCacBgmAYOhiWyky2NVQ0e8J80Dqog2AVT1rPvZcXOqdQz1hERERERUcViKEVVmq/BD99E/4gJv4/BpksbcO9vt+ProcvQr8EAl9RjsQDJyQKuXBFw9ar1Q8TVqwK8vVXMmGFCv34yIiNl7N8vAsXOEwa0aCGjdWv7RchfecXkpCMgcgFVhe7QvzCsXQPDuj+h2/sPBKXge0DxD4Cp3wCYBg6Gqd/AEqffmaJjkLFgCXxnTLFb9FwJC0dW7ByYomMq/VCIiIiIiKjiCKp6jfNmV0NJSZlw9yPWFrT2c/tjKc+C4HmWPEz8YyzWXfgTBtGAhUOXYHCjYRVSh6oCmZnA1asCrlwRC4VNAjw9gRdeKAiMunXzwblzjufQ1aunYO/ebADAX39JDrulvvgiF6NHWyqk7qKqy7igiuWqcSFkpEO/8W9tWt76tZCuJNjdb2nTTguhBg6GuUs3QFeOv5HIMvQ7tkG8kgAltK42ZY8dUuXC1wtyhOOCHOG4IEc4LqgkHBtkZR0LpWGnFLlEeRcE99R54uthy/DQnw9g9dmVuP+P+/D5oK8wsumoaz5HYmJBwGQNnDw8gKeeKgiaevf2xvHjjt/Q1qun2IVStWuruHBBRe3aKurUKfyh2J1Rr18/GR06yDh8WIQsC5AkFe3bKxg1qnICKSKXU1VIJ45rU/LWrYF+53YIloLxrnr7wNS7ry2IUsIjrv+5JAnmW3qVvh0REREREVVpDKXIJcqyIHh4uAqDodBjJAM+H/g1Hv7jYay++AMeXHM/xvl+iYYZ90CSgEcfNdu2HTjQG//+6zhoiohQ7EKpgAAtTPL318KlwmFTeLj9NLtvv82Bt3fpTRmCALz0UsHaUrIsYNo0I9eKouolJweGrZu0aXnr10K6eMHubkvTZvkh1BCtm8nDo4QdERERERFRTcRQilyiLAuCR0XJdiFOdLQX9uzxhax8C8RMhhL1NRZlTgRWKghLuN8ulPL01IImg8G+m6l2bRUREfZ9pF99lQcfHxXejkux41d696FNwdpSEiIjZfTrJ5f+IKIqTjx7Bob1f8Jj3Z/Qb90MwWi03ad6eMB8Sy8YBw6Gqf8gKE2aurBSIiIiIiKq6hhKkcv06yejfXsZhw6JDrulVq/WYc6cgje8gqB1HAESgrbMh+LngbRmnwOjJqFlThaAB2zbfvFFHry8VAQGotTupNq1K2eysyAA06cbMX26B6ZPZ5cUuSmjEfod27Rpeev/hO7USbu75Xr1bVPyTLf0Bnx8XFQoERERERG5G4ZS5DKCAOTmwmEg1a2bBZGR9lPn5s3Lg4eHtgC6Xg+o6ly8slXC5/9+gr+9n8an+7PxaOQTAGC3vpMr9ekjY8uWHFeXQVQuYtzl/LWh/oRh098QcrJt96k6Hcw33QzTwCEwDRwMuUXL0pNfIiIiIiIiBxhKkdOYzcAff+jQr58Fvr7abY88YsaMGSKMRi2csi4IvnJlbrH3uY0a2QdNgiDg9Vtmw1PnhQ/2/hevbnsJeZZcPNPlBScdEVEVJ8vQ79wG5KRD7x0A000lnKXOYoH+n122IEp35JD9buqEap1QAwbD3KcvVP8AJx0AERERERFVZwylqNIlJgpYskSPRYv0iI8XMWdOHh54QFv/6b77zKhXT7nuBcEFQcBLN70CT50n5ux6A7N3zYJRzsPUbjMgsHuDajDDqhXwnTEFUlwcACAAgBwejqzYuTBFx0BITIThr7UwrP8Thg1/QUxPsz1WFQRYOne1TcuztOsAiCWfKZOIiIiIiOh6MJSiSrN3r4gvvzRgxQodTCYtIAoJsZ+SJ0k3viC4IAh4rstUeEieeH37y3h3z9vIteRhZo9YBlNUIxlWrYD/pHGAat9dKMbFwX/iWMiNG0M6dw5CofuVWrVg6jdQC6L6DYQaHOzssomIiIiIqIZhKEUVzmQCRo3yxp49BdOEOneWMXGiCTExlmJnha+oBcGfiHoanpIHXtoyBZ8emAejnIc3e70NUWCHB9UgsgzfGVMAVUXRbyXrdd3ZswAAc4dImAYOgmnAYFg6dXE8tY+IiIiIiKiSMJSiCpGWBgQGapcNBqB2bQUGg4jRoy2YNMmEqCjlWg+vsAXBJ3d4BB46Tzz/99NYeGg+jLIR7/T5AJLIN9tUTakqhKtXoTtyCLojh2H4e71tyt61pC9YDNPI0ZVfHxERERERUQkYStF1U1Vgxw4JX36px5o1Omzblo0GDbTpQK+9ZsR//2tE7drOPwveuDb3w0PywFN/PYqlRxcjz5KHeQM+g07kcCc3l5cH3YljkI4chu6wFkLpjh6CmJRU7l0JZnMlFEhERERERFR2fJdO5ZaTA/z4ox4LFuhx5EhBB9K6dTpMnKi90W3c2PlhVGF3tbwXHpIHHl03GT+e/B4mxYRPB34Jg2RwaV1EZaKqEOMua91Phw9Byu+Ckk6fgiAXX3NNFUXITZvB0qYdVB8feC1bUupTKKF1K6NyIiIiIiKiMmMoRWWWmgq8/74Hli3TIz1dW53Gy0vFHXeYMWmSGW3aXHuKnrONanYbDJIHHlwzAStP/wKTbMT8wYvgqfN0dWlEBbKzoTt2ROt6OnJI64I6ctjubHiFKbVqwdK2PSxt2kJu0w6WNm1hadka8PLSNpBlGP5eDzE+3m4hcytVEKCEhcPcvUclHhQREREREVHpGEpRmen1wJIlemRlCWjYUMHEiSbce6/ZtpZUVTSs8QgsHv4N7v/9Pqw59zvG/34Pvh66DN56b1eXRjWNokC8cF4Lnw4f1DqfjhyCdO6s4/BIp4PcvKUWOrVpB0tbLYRSQuvimmcDkCRkxc6F/6RxUAXBbt9q/uOyYudwUXMiIiIiInI5hlLkUGYm8N13emzbJmHBgjwIAuDrC8ycaUTdugoGDJDd5j1t/waDsHTEcoxbfTf+vvgX7vvtTiwZ8R189b6uLo2qClmGfsc2iFcSoITW1bqIbmCACxnpkI4csS0+rjtyCNLRIxCzsxw/fZ1QyNbwKf+z3KKldtaA62CKjkHGgiXwnTHFbtFzJSwcWbFzYIqOua79EhERERERVSRBVR38ib4aS0rKhLsfsSAAISF+lXIsJ0+KWLBAj+++0yM7W+uqWLEiB927F1/Hxt3sjN+Be1fdjixzJrqEdsO30T/C3yPA1WVVmMocF9WZYdWKYuGNHB6OrNi5pYc3sgzp7BnoDh+0rfukO3IY0sULDjdXPTxgadk6P4DKD6Fat4Vau3ZFHpJdfYad2xCQk4507wCYbrqxsI2qD75ekCMcF+QIxwU5wnFBJeHYICvrWCgNO6UIsgysXSvhyy8N2LSpYEi0aCFj4kQz2rVz/0AKAG4K644fYn7F3atuwz9XduGOFTH4buTPqOUZ5OrSyEUMq1bAf9I4FP2JKcbHw3/SOGQsWGILpoSU5CLrPh2C7thRCHl5DvctR9SzX/epbXvITZoCOie+7EoSzLf0AkL8YE7KBPiLARERERERVSEMpQibNkkYP15bY0kUVQwebMHkyWb06iVfc+kad9QptAt+GrUKd60Yhf2J+3Drr9FYPvJX1PaupE4VqrpkGb4zpgCqiqLDXFBVqAD8nnoEliVfQTp6BFJCvMPdqN7esLRuY5t6J7dpB0vrNlADa1X6IRAREREREbkzhlI10KFDIi5cEDF8uAUA0KePjM6dZdx8swX3329GgwbVu52ifUgH/Dx6Ne5YEYMjyYdw66/D8UPMCtT1CXN1aeRE+h3b7KbsFSUAELKyYNiw3nab3LBRwbpP+WfAUxo1BkTRCRUTERERERFVLwylagizGVi9WocFC/TYsUOHkBAF/ftb4OmpvZ9evTqn2nVFXUuroNb4dfRq3P5rDE6kHseoX4bhx5iVqOdX39WlkROIly/BY/m3Zdo2d8w45N03HnLrNlB9S58TTURERERERGXDUKqau3pVwJIleixapEdCgtbNodOpuOUWGenpAjw9ta6omhRIWTUNbI5fb/0dt/86EmfTz9iCqUYBjV1dGlU0WYbun93wWLcGhrVroDtyqMwPNd55Dyxdb6rE4oiIiIiIiGomhlLV2Lff6vDcc54wm7XEqXZtBePHmzF+vBlhYdV7il5ZNfRvhF9H/47bV4zEmfTTtmCqWa3mri6NbpCQmgLDhvUwrF0Dw19rIaam2u5TRRGWTl0gHT8GITOj2JpSAKAKApSwcJi793Be0URERERERDUIQyk3cfmygOTkgrfOtWoBqakF69iEhKgIClKRmSmgdm0tcIqKUmA2C+jcWcbkySZER1vg4eH00qu8CL96+HX077hjRQyOpx7DqF+G4YeYFWgd3MbVpVF5qCqko0dgWLcGHmvXQLd7JwRFsd2tBATCNGAgTAOHwNR/INSgYNvZ91Roi5vbdpXfOpgVOweQJGcfCRERERERUY3AUMoNGI3A4MHeSEwsupiyj+2St7cKT08VffvK+Owz7RT1LVsq2Lo1G82bK6BrC/Wpi59Hr8adK0bhcPJB3PrrcCwf+Sva1+7o6tLoWnJyYNi6SeuGWvcnpEsX7e62tG6jhVCDhsDcpRugs3/JM0XHIGPBEvjOmGK36LkSFo6s2DkwRcc45TCIiIiIiIhqIoZSbsBgACIiVCQlqVBVhxONkJMjICdHwN69gMmkPQYAA6lyCPEKwU+jVuKeVbdh39W9uG3FSHwb/SM6h3Z1dWlUiHjxQn4ItQaGLZsg5OXZ7lM9PWHq1UcLogYOhlK/Qan7M0XHIGXYCOh3bIN4JQFKaF1tyh47pIiIiIiIiCoVQyk3IAjAtGlG3HOPd0lboE0bGc8/b8LQoZaizSBUDrU8g7B85K+497c7sDthJ+5cMRrLon9A97CbXV1azWWxQP/PLlsQpTt6xO5uuV59mAYOhmnQEJhu6Q14l/R9cg2SBPMtvSqoYCIiIiIiIioLxhduol8/GZGRMg4eFCHLBd1SgqCiRQsFGzbk1Mgz6FUGf48AfDfyZ4xffQ+2XN6Ee1beisXDv0Xven1dXVqNISQnw/DXWq0basN6iGlptvtUUYSl600wDhoK06AhkFu1rpmnjyQiIiIiInJzDKXcREndUqoq4LXXjHxPXsF89b5YOmI57v99DDZcXI/7frsTXw9digENB7u6tOpJVSEdPgSPdWtgWLsGuj277Rcpr1ULpv6DtG6ofgOg1gpyYbFERERERERUERhKuZGi3VKSpKJ9ewX9+smuLq1a8tJ5YfHwb/Hgmgn449xqjP/9XswfvAjDm0S7urTqITsbhs0btWl56/+EFHfZ7m5Lm3YwDRoC46ChsHTuwjWeiIiIiIiIqhmGUm6kaLeULAuYNo1dUpXJQ/LAgiFL8Oi6yVhx+mdMWjMOnw78EqOb3+7q0tySeP4cDOvWwGPtGui3boZgNNruU728YOrdt2CR8oh6LqyUiIiIiIiIKhtDKTdj7Zbav19CZKTMLikn0Et6fDZoATwkDyw/8S0eWTcJeXIe7ml1n6tLcw1ZLvuZ6sxm6HfvhOHPP7RFyk8ct99Vg4YwDRwM4+ChMPfoBXh6OuEAiIiIiIiIqCpgKOVmBAGYMcOIl1/2xowZ7JJyFp2ow7wBn8FD8sD/ji7CU389CpNswvi2D7i6NKcyrFoB3xlTIMXF2W6Tw8ORFTsXpugYAICQlATD+j9hWPentkh5RrptW1WSYL7pZq0batAQyC1acpFyIiIiIiKiGoqhlBvq00fGkSNAUpIMVXV1NTWHKIh4p+8H8NB5YMHBL/D8xqdhlPPwYIdHXV2aUxhWrYD/pHEoOujE+Hj4TxwL4+jbIV08D93ePRAKbaMEB9svUh4Q6OTKiYiIiIiIqCpiKEVUDqIg4s2eb8NT8sLH+z/A9C1TkWvJw1OdnnF1aZVLluE7Ywqgqija12QNoDx/+dF2m7ldB5gGD4Fp4BBYojpzkXIiIiIiIiIqhqEUUTkJgoBXbn4dnjpP/PefOYjd8SqMch6e7zINQjWdiqbfssluyl5Jch59ErmPPA4lLNwJVREREREREZE7YyhFdB0EQcDUbtPhKXnijZ2v4e3ds5FnycOM7jOrRzClKJCOHoFh89/Qb94I/aa/y/QwS8dIBlJERERERERUJgyliG7A052fg6fOEy9vfRHz9r2HPEsuYnvOcctgSjx/DoZNf0O/+W8YtmyCmJRU7n0ooXUrvjAiIiIiIiKqlhhKEd2ghzs+DoPkgambnsX8g5/BKJswt8+7UFUVO+K34UpOAkK966J7WA9IYtVZW0lITIRhy0boN2+EYdNGSBfO2d2venvD3L0HTL36wnxLT/hPGAMxId5uEXPbtoIAJSwc5u49nFQ9ERERERERuTuGUkQV4IF2k+EpeeI/Gx7H4iMLcTrtJM6kn0Z8dsE6TOE+4YjtORfRTWNcUqOQlQn9ti22EEp39LDd/apOB0unLjD16gNz774wd+4KGAy2+7PemAv/SeOgCoJdMKXmd4Vlxc7hguZERERERERUZgyliCrIva3HwkPngcfWPoitcZuL3R+fHY9Ja8ZhwZAlzgmmjEbo/9mlTcfbtBG6fXsgyLLdJpa27fNDqD4wd+8B1devxN2ZomOQsWAJfGdMsVv0XAkLR1bsHJiiXRO2ERERERERkXsSVNXBXJxqLCkpE+5+xIIAhIT4VYtjqW5kRUabr5oi1Zji8H4BAsJ8w7Fn7KEKn8onKDJCLp1G9orV0G/6G/qd2yHk5trX17ARTL37wty7L0y39IYaElL+J5Jl6Hdsg3glAUpoXW3KHjukqiy+XpAjHBfkCMcFOcJxQY5wXFBJODbIyjoWSsNOKaIKtCN+W4mBFACoUBGXdRk74rfhloheN/Zkqgrp9CnoN/0Nw+aN0G/dBKSlwafQJkrtOjD16g1zr74w9eoDpUHDG3tOAJAkmG+5wdqJiIiIiIioxmMoRVSBruQkVOh2RYnxcQUh1OaNkOLj7Dfw84OxR0+Ye/WBqVdfyK1aaxE1ERERERERURXDUIqoAoV61y3Tdv56/zJtJ6SlQr91Cwyb/4Z+09/QnTppd79qMMDcrTvM+etCBQ7sg8y0XLbKEhERERERUZXHUIqoAnUP64Fwn3DEZ8dDRcnJ0JN/PYIXur2Eca3vh17SF9yRkwP9rh35nVB/Q/fvAQiKYrtbFQRYOkbapuOZu3UHvL0B5DdE6fgtTURERERERO6B72CJKpAkSojtOReT1oyFoAJqoZlz1uuh3qG4knMF0zY9h/kHPsXM2mMx+pAZhs2boN+9E4LJZLdPS/MWtul45lt6Qg2s5eSjIiIiIiIiIqp4DKWIKthtRwH/74D/DAUuBRTcXi8DeO8PoN+9T+JrYRdmm37H6fRTGJc+Ez2vAG+fB7qbADksPD+E6gNz775QwsJddzBERERERERElURQ1Zq1+kx1ODUlT7NZhckygjq3hRgXB0UANjcE4n2BsCyg13lAVAFr81SGBzDnFuDdHkBefjw8KnQgXhrwNhoHNi33U3NckCMcF+QIxwU5wnFBjnBckCMcF1QSjg2yso6F0ohOqIWoxtDv2AYpLg4CAEkF+p4D7j2kfZYKBVLmjlEQp7yO51/ciB0TDuHeVmMhQMCvV9ah57fdMGPLVCTnJrvuQIiIiIiIiIgqGUMpogokHT1cpu1yH30CuU/+B5aOUQgPaIAP+n+Cv+7ain71B8CsmPHFv5/ipqWR+HDve8i15FZy1URERERERETOx1CK6EapKnS7d8LvwfvhO2NamR6ihNYtdlvbkHb4buTP+H7kL2gX0gEZpnTE7ngVPZZ1xvfHv4GiKg72REREREREROSeGEoRXS+TCR4/fo/Aof1Qa8QgeP76EwRFgWowoKTp06ogQA6PgLl7jxJ327d+f6y7cxPm9f8M4T4RuJx1CU+sfxgDl/fGxosbKudYiIiIiIiIiJyMoRRROQnJyfB+/x0EdWkP/0cnQ79vL1QPD+SOGYeUDduQ8dlCQBCgCoLd46zXs2LnAJJ0zecQBRF3txqD7fftxYzuM+Fn8MehpH9x58pRuGfVbTiSXLZpgkRERERERERVFUMpojKSjh2F73NPITiqNXzefB1SQjzkOqHInjodyXuPIOv9jyG3bQdTdAwyFiyBEhZm93glLBwZC5bAFB1T5uf00nnhqU7PYtd9B/Bg+0egE3X468I69P/+Fvznr8cRnxVX0YdJRERERERE5BSCqtasEzVWh1NT8jSbTqQoMKz/E16ffwrDpoKpc+YOkch96FEYR90GeHg4fqwsQ79jG8QrCVBC62pT9krpkCrNmfTTeGPHa1h5+hcAWmj1SMfH8UTUf+Dv4c9xQcXw9YIc4bggRzguyBGOC3KE44JKwrFBVtaxUOp2DKXcD7/RnSArC57fLYPX/E+hO3MaAKCKIkzDRyLnocdguam79h/hIrsTdmLmthnYnbATABDiFYIXur6IZ3o/ifTUPI4LsuHrBTnCcUGOcFyQIxwX5AjHBZWEY4OsyhpKcfoeUSHihfPweXU6giNbw+/F56E7cxqKfwByHn0SKbsOIGPhEli63+zSQAoAuta9Catu/RNfDV2KJgFNkZSbhKmbnkO7T9vhtzMrUcOyZiIiIiIiInJDOlcXQORyqgrdzh3w/uITGFavhKAoAABLk6bIffBR5N09BvD1dXGRxQmCgBFNRmJww6FYcvRrvLN7Nk4kn8D9v9+Hm8Juxqs3z0KXut1cXSYRERERERGRQ+yUoprLZILH998gcHBf1IoZAo9Vv0JQFJh690P60u+Rum0P8iY9VCUDqcL0kh4T2z2IXWP3Y3qv6fDSeWFn/HYM/2kgJq0ZjzPpp11dIhEREREREVExDKWoxhESE+H93zkI6tQW/k88DP2BfVA9PZE7dgJSNu5A+g+/wjRoKCC617eHn8Efsf1jseO+vRjTahwECFh5+hf0+qYbpm+eguTcZFeXSERERERERGTjXu+6iW6AdPgQfP/zOII7tYHPnDcgXb0CObQusl96Bcn7jiLr3XmQW7dxdZk3LNw3Au/3/xgb7t6G/g0GwqyYMf/gZ+i2tCM+3Pseci25ri6RiIiIiIiIiKEUVXOyDMMfqxFwWzSC+vWA17IlEIxGmCOjkPHpl0jZcwg5/3keanCwqyutcG2C2+Lb6J+wfOSvaBfSAZmmDMTueBU9lnXGd8eWQVEVV5dIRERERERENRhDKaqWhKxMeM3/FEE3d0LA+Htg2LIJqiQhL+ZWpK5ai7Q1f8N4+12AweDqUitdn/r9sO7OTZjX/zNE+NbD5axLePKvRzBweW9svLjB1eURERERERFRDcWz71G1Ip47C68Fn8Nz2f8gZmYAAJSAQOSNux+5Ex+EUq++iyt0DVEQcXerMYhpdivm//sZPtj7XxxK+hd3rhyFfvUH4JWbZ6FtSDtXl0lEREREREQ1CDulyP2pKvTbtsB/whgE3RQJ788/gZiZAUuz5sic8y6S9x9F9iuv19hAqjAvnRee6vQMdt13AA91eBR6UY8NF9ej//e34Om/HkN8VpyrSyQiIiIiIqIawqWhlNFoxEsvvYQuXbqgZ8+eWLhwocPtxo0bh5YtWxb7ePHFF51cMVUpRiM8vl2KwAG9EDh6ODx+XwVBVWHqNwDp3/yA1C27kffAZMDHx9WVVjnBXsGI7TkHW+7djZimt0KFim+O/Q/dl0XhzR2vI9OU4eoSiYiIiIiIqJpz6fS9uXPn4tChQ1i0aBHi4uIwdepUhIeHY+jQoXbbzZs3D2az2Xb9wIED+M9//oMxY8Y4u2SqAoSrV+H19Zfw+noBxKREAIDq5YW8O+9F7oOPQG7ZysUVuo/GAU3w5ZBF+CfhcczcNgO7Enbg/b3v4H9Hv8ZzXaZhfJsHoJf0ri6TiIiIiIiIqiGXhVI5OTlYvnw55s+fj7Zt26Jt27Y4efIkli5dWiyUCgwMtF2WZRnvvfceJk+ejPbt2zu5anIl3cED8PriU3j8/AMEkwkAIIeFI3fSQ8gbOwFqUPU7g56zdKnbDStvXYPfz/6GWTtewem0U3hx8/P48uBnmNH9NQxvHA1BEAAAsiJjR/w2XMlJQKh3XXQP6wFJlFx8BERERERERORuXBZKHTt2DBaLBVFRUbbbOnfujM8++wyKokAUHc8s/Omnn5Ceno4HH3zQWaVSZZNl6Hdsg3glAUpoXZi79wAkyXaf4Y/V8Jr/KQzbttgeYu7cFbkPPwbjiBhAz06eiiAIAoY3icaghkOw5OjXeGf3bJxOO4UH/rgP3ep2x6s9ZuFK9hXM2DIFcdkFa0+F+4QjtudcRDeNcWH1RERERERE5G5cFkolJiaiVq1aMBgMtttCQkJgNBqRlpaGoKCgYo9RVRVffvklxo8fDx+uE1QtGFatgO+MKZDiCkIOOTwc2dNnQkxOgteXX0C6cA4AoEoSjDGjkfvgo7B06eaiiqs/vaTHxHYP4s4Wd+Ojfe/jswMfY1fCDoz4aZDD7eOz4zFpzTgsGLKEwRQRERERERGVmctCqdzcXLtACoDtuil/alZRO3fuREJCAu66667rft78GUhuzXoM7n4shlUr4DdpHKCqdreLcXHwe/whWA9PqVULeeMeQN6kB6GERwAA3PzQK0VFjwt/D3+81P0VPNBuMt7cOQvfHlvqcDsVKgQIeHnrVAxvMoJT+aqY6vJ6QRWL44Ic4bggRzguyBGOCyoJxwZZlXUMuCyU8vDwKBY+Wa97eno6fMyaNWvQu3dvuzWmyis42O+6H1vVuPWxyDLw8rRigRRQKHDS6YB58yCOHw9vb294O7VA91XR4yIkpCUexuQSQylAC6YuZ13G0Zz96Nuob4U+P1UMt369oErDcUGOcFyQIxwX5AjHBZWEY4PKymWhVGhoKFJTU2GxWKDTaWUkJibC09MT/v7+Dh+zefNmPPHEEzf0vMnJmY5yELciCNo3uTsfi37rZgRcunTtjSwWpIc1gDlHBnIynVOYG6vMcXEi7kyZt2vn27lin5xuSHV4vaCKx3FBjnBckCMcF+QIxwWVhGODrKxjoTQuC6Vat24NnU6H/fv3o0uXLgCAPXv2oH379g4XOU9JScHFixfRufONveFVVYfNOW7JnY9FSEgo83bueoyuUhnjoo533TJtdybtDBRFtZ2pj6oOd369oMrDcUGOcFyQIxwX5AjHBZWEY4PKyvEp7pzAy8sLo0ePxsyZM/Hvv/9i3bp1WLhwIcaPHw9A65rKy8uzbX/y5El4eHigXr16riqZKpBSu07ZtgstWxhClat7WA+E+4RDKGU1rzm730D0z4OxM36HkyojIiIiIiIid+WyUAoAXnzxRbRt2xYTJkzAa6+9hieffBKDBw8GAPTs2ROrV6+2bZucnAx/f392YFQHOTnw+vLza26iCgLk8AiYu/dwUlF0LZIoIbbnXAAoFkwJ+f+im8TAS+eF3Qk7MfLnwRi/+h4cTznminKJiIiIiIjIDQiqWrOa6pKS3H9uqyAAISF+bnksQmIiAsbfDf2ef6DqdIDFAggChEIHouYHjxkLlsAUHeOqUt2OM8bFqtMrMGPLFMRlx9luC/eNQOwtcxDdNAYJ2fF4e/dbWHZ0MWRVhiiIuLfVWEzp+hLCfMMrpyi6Jnd+vaDKw3FBjnBckCMcF+QIxwWVhGODrKxjodTtGEq5H3f9RpdOnUTAvbdDOn8OSmAgMhZ/CyEpCb4zpkCKKwg55PAIZMXOYSBVTs4aF7IiY0f8NlzJSUCod110D+sBSZTstjmZegJv7HgNq8+uBAB46bzwUIfH8ETU0wjwCKy84qgYd329oMrFcUGOcFyQIxwX5AjHBZWEY4OsGEqVoDp8c7jjN7p+xzb4j78HYloa5AaNkP7tj5CbNdfulGXod2yDeCUBSmhdbcqeJF17h1RMVRwXu+J34vXtL2NXgrbGVC2PWnimywt4oN2D8JA8XFxdzVAVxwW5HscFOcJxQY5wXJAjHBdUEo4NsiprKOXSNaWoZvD4+QcE3BEDMS0N5s5dkPr7+oJACgAkCeZbesF4250w39KLgVQ10i3sJqy8dQ0WD/sWLWq1RKoxFa9sfQk9lnXG8uPfQlEVV5dIRERERERELsJQiiqPqsLrw3fh//BECCYTjMNHIu3HVVBr13Z1ZeREgiBgaOPh+Pvu7Xiv70eo6xOGi5kX8Pj6hzDg+17468I61LCGTSIiIiIiIgJDKaosFgt8n38avrEzAQA5Dz+OjAWLAW9v19ZFLqMTdbivzXjsGLMPM7rPhJ/BH4eTD+KeVbfhjhUxOHB1n6tLJCIiIiIiIidiKEUVTsjKRMDYu+C15GuogoDMN+cie9ZsTssjAIC33htPdXoWu8cewMMdH4dBNGDz5Y0Y9EMfPPznAzibfsbVJRIREREREZETMJSiCiXGxyFw5FAY/loH1csLGV8vQ97kR1xdFlVBQZ7BmHXLbGwbswd3tLgbAgT8fOpH9PymK17a/AKScpNcXSIRERERERFVIoZSVGGkw4cQOGwAdIcPQgmpjbRfVsM0bISry6IqroF/Q3wycD7W3bUZ/eoPgFkx48uDn6Pb/zriv//MQbY529UlEhERERERUSVgKEUVQr9hPQJHDoEUdxmWFi2R+vt6WKI6u7osciPtQzrgu5E/44eYFehYOwpZ5kzM2fUGbloaia8PLYBZNru6RCIiIiIiIqpADKXohnkuW4KAMXdAzMqEqUdPpK36E0rDRq4ui9xU73p9seaODfhi0Fdo6N8IV3OuYMqmZ9D7u5uw8vSvPFMfERERERFRNcFQiq6fqsJ79uvw+8/jEGQZeXfcjfTvfoYaWMvVlZGbEwURo5vfjq33/oM3e85FsGcwTqedwqQ14zD8p4HYEbfN1SUSERERERHRDWIoRdfHaITfYw/C5713AADZz76AzI+/ADw8XFwYVScGyYDJHR7BrrEH8GyXKfDWeWPPld2I+WUoxv52F46lHHV1iURERERERHSdGEpRuQlpqQi4+1Z4/vg9VJ0Ome9/jJxpLwOC4OrSqJryM/hjWrcZ2HnffkxoOwmSIOHP83+g73c34+m/HkNc1mVXl0hERERERETlxFCKykU8fw6BIwbBsG0LFF8/pC9djrwx41xdFtUQoT518Xaf97D5nl2IbjIKiqrgm2P/Q/elUXh9+ytIy0t1dYlERERERERURgylqMx0+/ag1rAB0J08ATk8Ammr/oS53wBXl0U1ULNazbFw6BKsvm0duof1QJ6ch4/2vY9uSzvik/3zkGfJc3WJREREREREVAqGUlQmht9/Q+Do4RCTEmFu1wFpv6+H3Katq8uiGq5L3W74dfTv+N/w79AqqDXSjGmYuW06eizrjO+OLYOsyK4ukYiIiIiIiErAUIpK5fnlZ/C/fwyE3FyY+g9E+orfoYSFu7osIgCAIAgY3GgYNty1DR/0+wThPhG4lHURT/71CAYs74X15/+EqqquLpOIiIiIiIiKYChFJZNl+Lw8DX4vTYGgqsgd9wDS//c9VF8/V1dGVIwkSri39Vhsv28vXr75dfgbAnAk+RDu/e0O3L5iJPZd2ePqEomIiIiIiKgQhlLkWE4O/CeNh/fnnwAAsma8hqx33gd0OtfWRVQKL50Xnoz6D3aPPYDHIp+Ch+SBLZc3YciP/fDgmvtxJv20q0skIiIiIiIiMJQiB4TERATeHg2P1SuhGgzI+OIr5D71DCAIri6NqMxqeQZhZo9YbBuzB3e1vBcCBPx6+if0/KYrpm16Dok5ibZtZUXG1sub8dPJ5dh6eTPXoiIiIiIiInICtr2QHenUSQTcczukC+eg1KqF9EXfwtL9ZleXRXTd6vs1wEcDPsejHZ9E7I5Xsf7CWiw8NB/fHf8Gj0U+icYBTRG7/RXEZcfZHhPuE47YnnMR3TTGhZUTERERERFVb+XulMrKysI777yDM2fOQFEUTJkyBZGRkRgzZgwuX75cGTWSk+h3bEPg8AGQLpyD3LAR0n5bx0CKqo22Ie3wTfSP+GnUKkTWjkK2OQtv756Nx9ZNtgukACA+Ox6T1ozDqtMrXFQtERERERFR9VfuUOq1117Dxo0bIQgCVq5ciT///BNvvvkmQkJC8Nprr1VGjeQEHj//gIA7YiCmpcHcuStSf/8LcrPmri6LqML1jOiNNXf8jc8HLYQkSA63UaGdrW/G1qmcykdERERERFRJyh1Kbdy4EW+//TYaN26MNWvWoF+/fhg+fDieffZZ7N69uzJqpMqkqvD68F34PzwRgskE44gYpP20CmpIiKsrI6o0giCgjncoZLXkwEmFirisy9gRv82JlREREREREdUc5Q6lVFWFXq9HXl4etm/fjj59+gAA0tPT4e3tXeEFUiWyWOD7/NPwjZ0JAMh55AlkLFgMeHm5ti4iJ7iSk1Cm7TZcXA9FVSq5GiIiIiIiopqn3Audd+/eHS+//DK8vb0hiiIGDhyI7du3Y9asWejfv39l1EiVQMjKhP/kCTD8tQ6qKCLrjTnIm/Swq8sicppQ77pl2u7Dve9ixamfMb7tRNzT6j6EeLGLkIiIiIiIqCKUu1PqzTffRJs2bWAwGPDxxx/D19cXx48fR58+fTBjxozKqJEqmBgfh8CRQ7VAytsbGV8vYyBFNU73sB4I9wmHAKHEbXz0PvDV++Fcxlm8vv1lRC5qhUfWTsKOuG1QVdWJ1RIREREREVU/glrD3lklJWXCHY/YbL4EiyUJACAIQGCgD9LSsm3HotPVhl4fUep+pMOHEHDfnZDiLkOpXQfpS7+HJbJTZZZOTiIIQEiIn9uOcVdYdXoFJq0ZB6BgcXMAtqBqwZAl6NdgAH45+SMWHV6A/Yn7bNu0CmqNCW0n4s4W98DfI8C5hZcDxwU5wnFBjnBckCMcF+QIxwWVhGODrKxjodTtrieUWrFiBb7++mtcuHABP//8MxYvXozatWvjoYceuq5inckdvzkUxYgTJ9pClq+WuI0k1UGLFochih4lbqPfsB7+k8ZDzMqEpUVLpC/7AUqDhpVRMrkAfwBcn1WnV2DGlimIy46z3RbuG4HYW+YgummM3bb7r+7F4sNf4aeTy5FjyQEAeOu8cWvzOzCh7URE1ql6AS/HBTnCcUGOcFyQIxwX5AjHBZWEY4OsyhpKlXtNqWXLluGTTz7BI488grfffhsA0K5dO7z55pswmUx44oknyl8tXZMgGKDX14MsJwFwtOCyCL2+HgTBUOI+PJctge9zT0GQZZhu6YWMr/4HNbBWpdVM5C6im8ZgWOMR2BG/DVdyEhDqXRfdw3pAEqVi20bW6YTIOp0ws0cslp/4DosOL8CxlKNYenQxlh5djI61ozCh7UTc2vwO+Oh9XHA0RERERERE7qPcnVLDhg3D1KlT0bdvX0RFRWHFihWoX78+Nm7ciFdeeQUbN26srForhLsmtllZ63D+/G0l3t+w4U/w9R1Y/A5Vhfdbs+Dz3jsAgLw77kbmex8BHiV3VJF74l8lnE9VVexM2IFFhxZg5elfYFJMAAA/gz/ubHE3JrSdhNbBbVxaI8cFOcJxQY5wXJAjHBfkCMcFlYRjg6zK2ilV7oXO4+Li0LRp02K3169fH2lpaeXdHZWRj88AeHp2AlC0e0OCp2cn+PgMKP4goxF+j062BVLZz05B5sdfMJAiqiCCIKB72M34dNCXODDhOF69ORaN/Bsj05SBhYfmo8933THy5yH44cR3yLPkubpcIiIiIiKiKqXcoVTHjh3xyy+/2N2mqioWLlyIDh06VFRdVIQgCAgNnQFALnKPjFq1JkIQ7M8gJqSlIuDuW+H503KoOh0yPvgEOdNmaHElEVW4YK9gPB71FHbctw/LR/6KEU1iIAkSdsZvx2PrHkTk4laYuW0GzqSdcnWpREREREREVUK5p++dOHECDz30EIKDg3Hs2DHcfPPNOHfuHPLy8jB//ny0bt26smqtEO7cRqiqKs6c6Ye8vP0ouraUr+9QBAc/Bh+fPpAunEfAmDugO3kCip8/MhYugblPP5fUTM7DVtmqJyE7HkuPLsaSw18jLvuy7fbe9frh/raTMKTRMOglfaXWwHFBjnBckCMcF+QIxwU5wnFBJeHYIKtKPfue0WjEihUrcObMGciyjMaNGyMmJgY+PlV/YV93/+YouraUp2dn5OXtsV33Upqjy72pkK4mQY6oh/SlyyG3aeuKUsnJ+AOg6rIoFqy/sBaLDi3A+gtroUL7Dwr1rov72ozHuNb3I8KvXqU8N8cFOcJxQY5wXJAjHBfkCMcFlYRjg6wqNZRyZ+7+zaGqKs6e7Yfc3L3w8uqExo03wGQ6hZSUz5CWtBghf1vQZpYMc7sOyFi2HKYQD+h0Qa4um5yAPwDcw4WM8/jfkUX439FFSMpNBACIgohBDYdgQtuJ6Fd/oMMz/10vjgtyhOOCHOG4IEc4LsgRjgsqCccGWVVaKNW/f/9i6xcVtn79+vLszumqwzdHdvYGXL06DXXqvAUfH21antf8T+ExeyoUTwAdByFz/tfI1V3GmTM94e8/GsHBj8HLq5NrC6dKxR8A7sUkm/D72VVYdHghtlzeZLu9gV9DjGtzP+5tPQ51vOvc8PNwXJAjHBfkCMcFOcJxQY5wXFBJODbIqtJCqZ9//tnuusViwcWLF/HTTz/h6aefxp133lm+Sp3M7b85ZBmGndsQkJOOdO8AmLrcBJ9Zr8D7808AALnjJyLrrXcAnQ5JSe/jypVXbA/19u6OoKDH4O8fDUHQueoIqJLwB4D7Opl6AouPfIXvji1FmjENAKATdRjROAYT2k3ELeG9rvnHgGvhuCBHOC7IEY4LcoTjghzhuKCScGyQldOn761fvx4LFy7E0qVLK2J3lcadvzkMq1bAd8YUSHFxtttUT08Iedqp5rNefh25Tzxtd4a93Ny9SE7+FBkZP0FVzQAAvb4+goIeRlDQZIiit3MPgioNfwC4v1xLLlac+hlfH16APVd2225vFtgc49s+gLtbjkEtz/JNx+W4IEc4LsgRjgtyhOOCHOG4oJJwbJBVWUMpsaKesFmzZjh48GBF7Y6KMKxaAf9J4yAWCqQAQMjLgwog55HHkfvkf+wCKQDw8uqEevXmo3nzQwgJeQGSFAyz+SKSkt5HBf73E1EF8NJ54e5WY/D77eux/q4tmNB2Enz0vjiVdhKvbH0JHRe1whPrH8Y/CbtQw5YDJCIiIiKiaqjcnVK7d+8udlt2djaWLFmCtLQ0/PjjjxVWXGVwy8RWlhHUuS3EuDg4msCjAlDCI5Cy5xAgXXuBZEXJQ3r6cqiqjKCg+7XHqwri4p5GQMBo+Phce80wqrr4V4nqKcuUiR9PLsfXhxbgcHJB8N82uD0mtJ2IO1rcBV9DyX+B4LggRzguyBGOC3KE44Ic4bigknBskFWlTd9r1apVsdv0ej3at2+Pl19+Ga1bty7P7pzOHb859Fs3I/DWEaVul/bzbzDf0qvc+8/M/B0XLtwNAPDwaIWgoEcRGHg3p/a5Gf4AqN5UVcXeq//g60ML8Oupn5Ana9N2ffS+uL35XZjQbiLah3Swe4ysyNiZsA05Yjq8lQDcVLdHhZ7Zj9wXXy/IEY4LcoTjghzhuKCScGyQldPXlHIX7vjN4fHTcvg/MqnU7TI+WwDjbeVfaN5kOo/k5I+RlvY/KEoWAECSaqFWrYkICpoMvT6i3Psk5+MPgJojNS8F3x//BosOL8SptJO22zuHdsGEtpMwqtltWH9+LWZsmYK47IIpv+E+4YjtORfRTWNcUTZVIXy9IEc4LsgRjgtyhOOCSsKxQVYVGkrFFVnH6FrCw8PLvK0ruOM3R2V3SlnJcjpSU5cgJeVzmM3n82/VoVmzHfDwaHHd+yXn4A+AmkdVVWyL24JFhxfgtzMrYVa0kxl467yRY8kptr2QPwF4wZAlDKZqOL5ekCMcF+QIxwU5wnFBJeHYIKsKDaVatWplW2fI0eaCIEBVVQiCgKNHj15Huc7jlt8c1jWl4uMhOCheFQQoYeFlWlOqLFRVRmbm70hO/gSKkokmTTbZ/v9zc/+Fp2drCIL+hp+HKhZ/ANRsV3Ou4ttj/8OiQwtxMetCidsJEBDmG449Yw9xKl8NxtcLcoTjghzhuCBHOC6oJBwbZFXWUEpXlp2tX7/+hguiGyBJyIqdC/9J46AKgl0wpeaHRVmxcyokkAIAQZDg7x8Nf/9oyHKmLZCS5QycOzcMouiPoKCHUKvWBOh05Ts9PRFVjjredfBUp2cRVbszbl85ssTtVKiIy7qMHfHbcEvE9XdWEhERERER3agyhVIREaWvKWQymXD06NEybUvlZ4qOQcaCJfCdMQVSoemUSlg4smLnwBRdOVNxJKkg2TQaT0AUvWCxXMbVq68iMfEtBAaOQXDwI/DwaFkpz09E5ZOYd7VM213JSajkSoiIiIiIiK6tTKFUYXv37sVrr72GU6dOQVEUu/skScKhQ4cqrDiyZ4qOQcqwETDs3IaAnHSkewfAdFOPCuuQKo23dxc0b34YGRk/Ijn5E+Tl/YvU1AVITV0AX98BCA2dDU/P4mdnJCLnCfWuW6btPt3/ERr7N0FUaOdKroiIiIiIiMgxsbwPiI2NRUREBD777DN4eXlh3rx5mDFjBgIDAzF37tzKqJEKkyRtMfN779U+OymQshJFDwQGjkGTJpvRqNHv8PMbCUBAVtYGiKKXU2shouK6h/VAuE+4bVHzkhxI3IchP/bDhN/H4EjyYSdVR0REREREVKDcodTJkyfx3HPPoVevXmjbti30ej3+z959x0dR5g8c/8xsybb0skkIvYtIVWlKb1JU9E79KRaw3J2ep3d2OfE8LOB5np7n2bChd3Y9QAVpFkBQqQJKCZ30nuxmN1vm90eShZhZCJDO9+2LF9mZZ2aeke8M5Jvn+T5XX301s2fPZv78+Q3RR9EMKYqC3T6Udu3epmvXzaSmPofZ3D60/8iR35CV9RAVFYeasJdCnHkMqoE5wyp/QPDLxJRS9d/cC//OFd3/D1VR+XzfYka+O4TfLJvB3qI9TdFlIYQQQgghxBnqpJNSVqsVQ9XonE6dOrFz504AzjnnHPbt21e/vRMtgtnckdjYa0KfKyr2UVT0X/Lz/8Hu3edw6NB1uN3rdVduFELUv8mdpzJ//AJS7Ck1tqc4Upk/fgE3nH0j/xz9Al9fsZ6pnS9FQ+Oj3R8w9L/ncueq2zhcKslkIYQQQgghRMNTtDpkCnw+HyaTCYDbb78dTdOYNWsW3377La+//jqvv/46ixcv5pVXXuHLL79s6D6fltawNGVzX2ZT0wKUlX1Bfv7zuFxfhbZbrf2Ji/sdUVGXoKpmfL7D+P15Yc9jNCZiMknh/Lpq7nEhGl8gGGB91lrcajG2YDTnJw/BoNae8vtj7hae+G4Oyw4sBcCsmrm21w38YcBdOG3Oxu62aATyvhB6JC6EHokLoUfiQoQjsSGqVcfCCdvVJSl13nnnMWHCBCZPnkz79u25++67GTt2LFdeeSU33HADP/zwAwaDgYcffphf/epX9XIDDaU1PBwt6UH3eLaRn/9viovfQ9O8AKSkPEtMzFXs2tWLQCD8SmEGQxLdum1HVSMaq7stWkuKC9F4TiYuvstczxPf/ZXVR74GwGa0MbP3LdzW7w/EWuIaobeiscj7QuiRuBB6JC6EHokLEY7EhqhWr0mphQsXsmTJElavXk1sbCwXXXQRU6ZM4ayzzkLTNPbs2UNUVBROZ/P/iXpreDha4oPu9+dSUPAqJSUf0KnTlyiKjb17R+LxbAL0bkLFYulLp06rUJTjF2wWlVpiXIiGdypx8fXhL3l8/SNsyP4BgEhzFL/tcxu39PkdkeaoBuytaCzyvhB6JC6EHokLoUfiQoQjsSGq1WtSqlpZWRnLly9nyZIlrFmzhrZt2zJ58mSmTJlC27ZtT6vDjaU1PBwt+UHXNC2UZCotXcbBg5eFbdu+/Uc4HGMaq2stXkuOC9FwTjUuNE3jiwNLeHz9X9mRvw2AOEscv+/3R2b0vgmrUVbbbMnkfSH0SFwIPRIXQo/EhQhHYkNUq2tS6qQKnTscDi655BJeeOEFvv32W2666Sa2bNnCpEmT+NWvfsWbb755yh0WZ4ZjRz1ZreehqjG67VQ1Fr+/sJF6JYT4JUVRGN9hIit/vZqXxr5G55guFHgK+Mu3szjvrT68uu1lKgIVTd1NIYQQQgghRAt20qvvVXM4HFx66aW8+OKLvPTSS/j9fh5//PH67Jto5YzGaNq2fVV3XzBYiNv97TGfyzly5DYKCuZTXr6JYFC+GRaiMaiKyiVdL+ObK7/jmZHP0zayHdnuLO77+k8M/k9//vvTW/iD/qbuphBCCCGEEKIFMp7KQZqm8f333/PFF1+wfPly3G43Y8aM4e67767v/olWzm4fjcXSH49nCxAADJjNHYmOvgqb7bxQO49nK0VFb1JUVDkaT1EisFjOxmrtj9XaH5vtQszmljGFVIiWyKgauarnNVzW7de89dMbPP3DkxwqPcgfVv2Of256mnvOfYCpXS5FVU75Zx1CCCGEEEKIM0yda0r5/X7Wrl3LsmXLWLFiBW63m+HDhzNlyhQuvPBCzGZzQ/e1XrSGua2tbZ5uWdlyDhyYFvqsV0uqomIvhYVvUV6+AY9nE4FAUY39TudjJCTcBoDPl4Xb/S1Wa39MpnZnTKH01hYXon40VFy4fW5e2/YK/9z0dwo8BQD0iu/NfefPYlz7CWfMc9dSyftC6JG4EHokLoQeiQsRjsSGqFbXmlJ1Gil1991389VXX+F2uxk8eDD33HMPY8eOxW63n3ZHhTg6WmojFkt/7PbRtdqYzZ1wOh8CKkfqVVTsxePZSHl55a9jR1W5XKs4cuQWAAyGBKzWfqERVVbrAIzGpMa5MSFaMZvJxq39bufaXtfz4pbn+feW59ie/yPTP7uCAc5zuf/8P3Nh2oim7qYQQgghhBCiGavTSKmrr76aSZMmMWHCBOLi4hqjXw2mNWRsW2P2uaxsFZmZ95CSMg+HY+Rpnau4+CPy8p7B4/kRqF3rpl27D4mMHAuA35+PohgxGKJP65rNQWuMC3H6GisuCj0F/GvTs7zy4wu4/W4AhrW5kPvP/zPnJp/fcBcWp0TeF0KPxIXQI3Eh9EhciHAkNkS1uo6UqvP0vdaiNTwc8qDXTTDoweP5MTSayuPZiNe7i27ddmIyJQOQk/MYublPYDZ3DY2kslr7Y7Gcg6pamvgOTo7EhdDT2HGR7c7m2Q1P8cb2V6moWpBgbPvx3Hf+n+mdcE7Dd0DUibwvhB6JC6FH4kLokbgQ4UhsiGqSlAqjNTwc8qCfukCgFIPh6INx5MhvKSp6W6elEYulF+3afYDJ5Dypa/h8h/H788LuNxoTMZnanNQ560LiQuhpqrg4XHqIv/8wj//+/BYBLQDA1M6Xcu95D9I1tlvjdUTokveF0CNxIfRIXAg9EhciHIkNUU2SUmG0hodDHvT65ffnUV6+ITSiqrx8I4FALqpqp0ePwyiKAYCMjD/g8eyoUZ/KbO5co6BzMOhl165eBAI5Ya9nMCTRrdt2VDWiXu9D4kLoaeq42Fu0h3nfP87Huz9AQ0NVVH7V7Ur+NPBeOkR3bPwOCaDp40I0TxIXQo/EhdAjcSHCkdgQ1eq10LkQrZnRmEBk5HgiI8cDlYXUfb7D+Hz7QwkpAJfrGyoq9lBevj60TVVjqgqpDyQpaRaKYsZkSiMQyAOCOldTMZnSUJSWsVqlEKerU0wXXhg7n9v7/5G53z3K5/sW8+7O//Dh7ve4uud1/HHA3aQ4Upu6m0IIIYQQQogmoDZ1B4RobhRFwWxui91+QY3t7dq9S5s2LxIXdwtW67koSgTBYBEu1ypKSz9FURQURcHpnIV+QgogiNM5q8boKiHOBGfF9+KNif9h6WWrGNF2FP6gnze2z+f8t/vy0JoHyCsPP+VVCCGEEEII0TrJSCkh6igioisREV2JibkKAE3z4fHsoLx8Y42RT1brBYAC/HK8qoLF0ge7fXSj9VmI5qafcwDvTfmEbzPW8Nj6R1if+S0vbHmOBTte55Zzfstv+/6e6IiYpu6mEEIIIYQQohHISCkhTpGimLBa+xAXdwOxsVcfsz1AbOwNOkdoeL0/kZf3ZON1UohmanDqUBZesoR3Jn9In8R+uHxl/H3Dkwx86xye2fAUZb6ypu6iEEIIIYQQooFJUkqIeqaqNlJSnsZi6Q9U16RSADOa5kVVo0JtA4FCysq+QqtanUyIM4miKIxqN5YvLv+S1ya8TY+4nhR7i3h0/V84760+vLjlX3j8nlrHBYIB1hz5ho92v8+aI98QCMrzI4QQQgghREskSSkhGsDR2lLV3yxrtGv3Xzp2XEF09K9C7YqL/8eBA1PYtasnmZn34nZ/zxm2IKYQKIrCpE5TWPXrtTw/5mU6RHUkrzyXP6+5n0Fv9+PN7a/hC/gAWJy+kAELenHp/ybxm2UzufR/kxiwoBeL0xc28V0IIYQQQgghTpYkpYRoIHb76KrRUmCx9MfhGIPNdi5GY3yojaa5MBhi8PuzKCj4N/v2jWb37j5kZz+Cx7O9qbouRJMwqAYu73YFa676gadGPEuqvQ0ZriPc9dUfGPrfgTz4zT3MXDqdDFdGjeMyXZnMXDpdElNCCCGEEEK0MJKUEqKBVI6Wmo3Z3B2nc7buinvx8bfSrdse2rV7l+joX6Gqdny+/eTl/Y309KH4/flN0HMhmpbJYGL6Wdez7upNzBn6BAnWRPaX7OPlH19Aq7WAAKFts9bcK1P5hBBCCCGEaEEkKSVEA3I4RtK16/c4HCPDtlFVM5GRE0lLm0/37ntIS3uNyMhJOBzjaoyqysz8E3l5z+HzZYQ9lxCticVo4eY+v+O7a7ZwTc/rjttWQyOj7AjrMtc2Uu+EEEIIIYQQp6tJk1Jer5cHHniAgQMHMmzYMF599dWwbXfu3MlVV13FOeecw5QpU1i3bl0j9lSIxqGqdqKjL6Ndu//Srt27oe0+XwYFBa+Qnf0Au3b1ZN++iygoeFVGUokzgsPkYFjahXVqm+3OauDeCCGEEEIIIepLkyal5s2bx7Zt23jjjTeYPXs2zz33HEuWLKnVrrS0lBkzZtClSxcWLVrE2LFjue2228jPl2/IRet17HQ/VbWTnPwkNtsgQMPtXk1m5h3s3NmVAwcup6zsq6brqBCNwGlLrlO7R9Y+xCPfPsR3mesJasEG7pUQQgghhBDidDRZUsrtdvP+++/z4IMP0qtXL8aOHcuNN97I22+/Xavtxx9/jM1m4+GHH6Z9+/bcfvvttG/fnm3btjVBz4VofAZDNPHxN9Ox4xd07boNp/MRLJZzAD9lZV/g9x8OtQ0EyggGPU3XWSEawKCUIaTaU1GoXZvtWBmuIzy36R9M/ngsvV/vxh9X/Z5l+5fg8cszIYQQQgghRHNjbKoL//zzz/j9fvr16xfaNmDAAF544QWCwSCqejRf9t133zF69GgMBkNo24cfftio/RWiuTCb25GQcAcJCXfg9e6iuPgDIiMnh/YXFr5GTs4TREZOJjr6chyOESiKqQl7LMTpM6gG5gybx8yl01FQahQ8r05U/Wv0i5gMZj7ft5jlB5aRW57DWz+9wVs/vYHNaGdUuzFM6HgRY9uPJ9YS11S3IoQQQgghhKjSZEmp3NxcYmNjMZvNoW0JCQl4vV6KioqIizv6DcOhQ4c455xz+POf/8zKlStp06YN9957LwMGDGiKrgvRbEREdCMp6YEa21yu1QSDpRQX/5fi4v9iMMQTFXUJ0dGXY7MNRlFkfQPRMk3uPJX54xcwa/U9ZLiOFvxPcaQyZ+hcJneeCsDFXaZREahgbcZqluz7lCX7PiPDdYTFe//H4r3/w6AYGJw6lIkdJzGh4yTaRrZrqlsSQgghhBDijKZomlZ7fe1G8Mknn/DMM8+watWq0LZDhw4xZswYvvrqK5KTj9YPGTt2LIWFhVx77bWMGTOGTz/9lLfffpvPP/+clJSUk7pufn4pTXPH9UdRID4+slXci6g/1XGRl1eMy7We4uIPKC7+mEAgL9TGbO5M167foyhNlo8Wjaw1vi8CwQDrMteS7crCaU9mUMoQDKohbHtN09iau5nP9i1myb7P2JG/vcb+sxPO4aKqBNXZCb1r1HNrrVpjXIjTJ3Eh9EhcCD0SFyIciQ1RrToWTtiuqZJSn3/+OXPmzGHNmjWhbenp6Vx00UWsX7+emJiY0PYJEyaQmJjIggULQtsuueQSJkyYwG9+85vG7LYQLUow6KeoaCU5Of8lN/cjYmPHcvbZH4T2HznyL2JiRmO392jCXgrRuPYW7uV/P/+P/+38H98c/KZGQfT20e25uPvFXNzjYi5odwEmg0x9FUIIIYQQoqE02XAJp9NJYWEhfr8fo7GyG7m5uVgsFqKiomq0TUxMpFOnTjW2dejQgczMzJO+bmvI2Er2WegJHxeDSUgYTFzcPAKBQvLySgHweneze/dtAFgsvYmOvpzo6Mswm/WnMlVUHK4x6uqXjMZETKY29XU7op7I+6K2KBKZ3vVGpne9kfzyfJYdWMLnez9l1aEVHCg+wLPfPcuz3z1LTEQMY9uPZ2KnyYxsOxqH2dHUXa83EhdCj8SF0CNxIfRIXIhwJDZEtbqOlGqypFTPnj0xGo1s3ryZgQMHArBhwwZ69+5do8g5QN++ffn+++9rbNu7dy+TJ0/mZGkarebhaE33IupPuLhQFAtGY0poXzDoxeGYQFnZcjyeH/F4fiQ7ezZW63lVCarLMRoTQm3T00cQCOSEva7BkES3bttR1YiGuC1xmuR9oS/OEs8V3a/miu5X4/a5+frwlyzZ9ylL939Gvief93e9y/u73iXCEMGFaSOY0HES4zpMxGlzNnXX64XEhdAjcSH0SFwIPRIXIhyJDVFXTZaUslqtXHLJJTz88MM89thj5OTk8Oqrr/L4448DlaOmIiMjsVgsXHnllbz11lv885//ZOrUqXzyySccOnSIiy++uKm6L0SLZ7GcTfv27+H3F1BSspCSkg9wub6hvPw7ysu/w2RqQ1TUFAAUxYzJlFY1UiqoczYVkykNRTHr7BOiZbCZbEzoeBETOl5EIBjg++zv+HzvYj7ft5j9JftYdmApyw4sRUFhgPNcJnaazMQOk+gS27Wpuy6EEEIIIUSL1GQ1pQDKy8t5+OGH+eKLL3A4HMycOZPrr78egO7du/P4448zbdo0oHIU1aOPPsru3bvp3LkzDz74IOeee+5JXzMvr+UPI1QUSEiIbBX3IupPfcSFz5dFSclHlJZ+Trt276OqFgByc5+itPQzysu/D3ts+/Yf4XCMObULiwYj74vTp2kaOwt/Zsm+T/l832I25Wyssb9rTDcmdJzExI6T6O8ciNoCVriUuBB6JC6EHokLoUfiQoQjsSGqVcfCCds1ZVKqKbSGh0MedKGnoeJC0zT27BlARcWeMC0MWCx96NRp1RmxallLI++L+pdZlsGS/Z+xZN+nrD7yNb6gL7QvyeZkfIeLmNjxIoa1GY7FaGnCnoYncSH0SFwIPRIXQo/EhQhHYkNUk6RUGK3h4ZAHXehpyLjweHZQXPwBhYULCASya+2XUVLNl7wvGlaJt5iVB5fz+b7FLD+4jNKKktA+u8nBqHZjmNhxEmPajSPGEhv2PIFggHWZa8l2Z+G0JTMoZQgG1dBg/Za4EHokLoQeiQuhR+JChCOxIapJUiqM1vBwyIMu9DRGXASDQdLTz6eiYhdQeRGDIY7u3fehKAqaFuTAgalYLP1wOIZjsw1GVe0N0xlRJ/K+aDwVgQrWHPmGJfs/Zcm+z8h0ZYT2GVUjg1OHMbHDRUzoOIm0yLahfYvTFzJr9T1kHNM+1Z7KnGHzmNx5aoP0VeJC6JG4EHokLoQeiQsRjsSGqCZJqTBaw8MhD7rQ01hxUVa2nAMHpoU+t2nzEjExVwJQXr6ZvXsvPKZPJqzWc7Hbh2O3D8dqHYiqSjH0xiTvi6ahaRpbcjfx+b7FLNn3GT8V7Kixv3dCHyZ2nITNZOcva2ehUfMPR6FyKuz88QsaJDElcSH0SFwIPRIXQo/EhQhHYkNUk6RUGK3h4ZAHXehprLjQNI29e0fi8WzEYulfo5ZUIFBEaelSXK6vcbm+wuc7WOPYxMR7SEqaVXUeP6CgKA03RUnI+6K52Fe8lyX7PuPzfYv5LmsdQU1vFcuaFBRSHKlsuGZbvU/lk7gQeiQuhB6JC6FH4kKEI7EhqtU1KdX8lwgSQjQriqLgdM7GbO6O0zm7RnFzgyGGmJgraNPmX3Tt+iNdu24mJeVZoqKmYTAkYLcfHUVVWvoFO3d25ODBq8nPfxGvdydnWI5cnEE6Rnfit31vY+GlS9h2/R6eGfk85yYPOu4xGhoZZUdYl7m2kXophBBCCCFE4zI2dQeEEC2PwzGSrl2/P24bRVEwmzsRF9eJuLjr0X4xMsTtXlM1smoRpaWLADAak7HbL8RuH05U1GQMhvCFoYVoqRKsCVzV8xoijBF8n7XuhO2zXJmN0CshhBBCCCEan4yUEkI0CkVRUZSjrxyn8y907LiCpKTZ2O0jURQLfn8WxcXvkZFxK35/Qait15uO35/bFN0WosE4bcl1aveXb//MC1ueo8hT2MA9EkIIIYQQonHJSCkhRJNQFCM227nYbOeSmPgngkEP5eXfU1b2JV7vT5jNnUJts7NnU1q6kIiIs0JF0+32oRgM0U14B0KcnkEpQ0i1p5LpyqxV6LyagkKWK5OH1jzA4+v/yrSuv2LG2TfRO7FPI/dWCCGEEEKI+idJKSFEs6CqFuz2C7DbL6i1LxgsBsDr3YHXu4OCgn8DKlZrPxyO0SQmPlijtpUQLYFBNTBn2DxmLp2OglIjMVW9+t7zY17G5XPx6raX2ZG/jbd/epO3f3qTgc7zmNH7JqZ0voQIQ0RT3YIQQgghhBCnRVbfa4FkRQOhp7XHhd+fX7Wq39e4XF9SUZEOgNV6Hp06LQ+1Kyx8g4iIHlit/VEU03HP6fMdxu/PC7vfaEzEZGpTPzfQRFp7XLQGi9MXMmv1PWS4MkLbUh1tmDN0LpM7TwUqV71cn7WO1358iUV7/4c/6Acq61Nd0/N6ru11A2mRbet8TYkLoUfiQuiRuBB6JC5EOBIbolpdV9+TpFQLJA+60HOmxYXPdxiX6ytUNZKoqMpv3AOBIn7+uQMQRFUjsdmGYLcPx+EYTkRErxo1rYJBL7t29SIQyAl7DYMhiW7dtqOqLXckypkWFy1VIBhgXeZast1ZOG3JDEoZgkE16LbNdmfz1o7XeXP7a2RWJbJURWVch4nMOPsmhqeNPOHIQYkLoUfiQuiRuBB6JC5EOBIbopokpcJoDQ+HPOhCj8QFVFQcJDv7QVyurwkEahaFNhjiSUy8i/j4W4HKkSd7947E49kMBGufDBWLpS+dOq1q0VMDJS5aL3/Qz5J9n/Hatpf55shXoe2dY7pwQ68buaLH/xEdEaN7rMSF0CNxIfRIXAg9EhciHIkNUa2uSSlZfU8I0WqYze1o23YB3bvvo1Onb3A6H8XhGIeq2gkE8lEUa6htRUU6qhqFfkIKIIjTOatFJ6RE62ZUjUzuPJUPL17E6iu/Z2bvm3GYIkkv2sOsNffR540e/OnLP7A9b1tTd1UIIYQQQghdMlKqBZLss9AjcRGepvkoL9+I2dwJozERgIKCl8nM/FOYIwxYLH1a/CgpkLg405RVlPL+rnd5bdvL/FzwU2j7+SmDmXH2TUzqNBWzwSxxIXRJXAg9EhdCj8SFCEdiQ1STkVJCCFFFUUzYbOeHElIAVuv5JCT8EbO5i84RAWJjr2vxCSlx5nGYI7nh7Bv56op1fHLxZ0ztfClG1cj6zG+5ZdkM+r15Fk+s/ysZZUeauqtCCCGEEELISKmWSLLPQo/ExamprC11AR7PNo5O5VPo3v0gRmM0AH5/DgZDYotMUklciCxXJguqCqNnu7MAMCgGLu5xMdd0u4GhqRe2yNgW9U/eF0KPxIXQI3EhwpHYENVkpJQQQtSBoig4nQ9zbG2ppKSHQgkpgAMHLmPPnv7k5f0Dvz/8an1CNEfJ9hTuPvd+Nk7fzivj3mBI6jACWoCPfvqIaf+bwgXvnMf8H1+ktKKkqbsqhBBCCCHOMDJSqgWS7LPQI3Fx6o6uxLcRi6V/jVpSPt8R9uwZSDDoqmptJDLyImJjr8XhGI2iGJqu43UgcSH0/Fywg//ueYM3tyzA5SsDwG5y8KtuV3DD2TfRM/6sJu6haAryvhB6JC6EHokLEY7EhqgmI6WEEKKOKkdLzcZs7o7TObvGVCaTqQ3duu0iNfU5rNZzAT+lpQs5ePBydu06m+LiD5qu40Kcop7xZ/H8pOf58fqfefyCJ+kW2x2Xr4zXt89n+LuDuPiTifxvz0f4Ar6m7qoQQgghhGjFZKRUCyTZZ6FH4qJxeDw7KCx8g+LidwgECmnX7l0iIycCEAiUoigRqKq5iXt5lMSF0PPLuNA0jdVHvua1ba/w+b7FBLQAAE5bMtPPup5re91Asj2liXstGpq8L4QeiQuhR+JChCOxIarJSCkhhGgAFstZpKTMpVu3naSlvYHDMTa0Ly/vaXbt6kFW1iy83l1N2EshTo6iKFyQNpxXJyxgw/Rt/HHgPSRak8h2Z/G3H56g/4Je3Lj0OtYeWc0Z9rMsIYQQQgjRgCQpJYQQp0BVLURHX4qiGEPbXK6VBAJ55Oc/y549A9m3bzxFRW8TDLqbsKdCnJxURxvuO28Wm67dwYtjX+X8lMH4g34Wpn/MJf+7iOHvDuLVbS9TVlHa1F0VQgghhBAtnEzfa4FkSKTQI3HR9DTNT1nZMgoLX6e0dCnVK/qpahSxsTNITn6k0fskcSH0nGxcbM/bxmvbXuGDXe/g9lcmWR2mSH7d/UpuOPsmusf10D0uEAywLnMt2e4snLZkBqUMwaA278UBzmTyvhB6JC6EHokLEY7EhqhW1+l7kpRqgeRBF3okLpoXny+DoqL/UFj4Jj7ffmJjZ5Ka+jRQWb8nGCzFYIhq8H5IXAg9pxoXJd5i3t35H17b9gp7inaHtg9rcyE3nH0TEztOwqhWjh5cnL6QWavvIcOVEWqXak9lzrB5TO48td7uRdQfeV8IPRIXQo/EhQhHYkNUk6RUGK3h4ZAHXeiRuGieNC2Iy/U1JlMbIiK6AuB2r2f//qlER19KTMx12GyDaqz4V58kLoSe040LTdP4+vCXvLrtZZbu/4ygVjkqMMWeGiqK/sdVv0ej5skVKuN8/vgFkphqhuR9IfRIXAg9EhciHIkNUa2uSSnjCVsIIYQ4ZYqi4nCMqLGttHQpmlZOUdF/KCr6D2ZzV2JjryMm5iqMxsSm6agQJ0FRFIa3HcnwtiM5XHqIN7e/xls/vU6mK4O53z0a9jgNDQWFWWvuZWLHSTKVTwghhBDiDCeFzoUQopElJf2Zjh2XExNzLapqp6JiN9nZs9i5szuHDk3H7y9o6i4KUWdpkW15YNBDbLr2J54f8zLdY3set72GRkbZEdZlrm2kHgohhBBCiOZKklJCCNHIFEXBZjuPNm2eo1u3naSkPIvVOgDwU16+CYMhJtQ2GHQ1WT+FOBkRhggu73YFdw68q07ts1xZDdwjIYQQQgjR3Mn0PSGEaEIGQxRxcdcTF3c9Hs82fL5MFKXy5wXBYAW7d/fDYjmH2NjriIycgKKYmrjHQhyf05Zcp3az1zzA5pwNTOw4mfNSBoUKpAshhBBCiDOH/AtQCCGaCYvlbCyWs0Ofy8vX4/dnUVaWRVnZFxgMicTEXE1s7PRQ0XQhmptBKUNItaeS6cqsVej8WDnl2by49Xle3Po8cZY4xnWYyMSOkxmeNhKbydaIPRZCCCGEEE1FVt9rgWRFA6FH4qJ18nr3UFT0FkVFb+H354S222xDcTr/is02sNYxPt9h/P48oDIuYmLsFBW5QnFhNCZiMrVplP6L5qmh3xeL0xcyc+l0gBqJqerV954f8zJWo43P9y3mi/2fU+gtDLWxGq2MaDuaiR0nMa7DBOIs8fXfQaFL/h4ReiQuhB6JCxGOxIaoVtfV9yQp1QLJgy70SFy0bprmo7R0KYWFb1BWtgwI0rnzt1gsvQAIBj2oqoVg0MuuXb0IBHLCnstgSKJbt+2oakQj9V40N43xvlicvpBZq+8hw5UR2pbqaMOcoXOZ3HlqaJs/6Gd95rd8vm8xn+/7lEOlB0P7VEVlcMpQJnacxISOk2gX1b5hOisA+XtE6JO4EHokLkQ4EhuimiSlwmgND4c86EKPxMWZw+c7QmnpMuLirg9tO3z4Rrze3cTEXEtR0et4PD8CQZ2jVSyWvnTqtApFURqry6KZaaz3RSAYYF3mWrLdWThtyQxKGYJBNYRtr2ka2/J/5PO9i1my/zO25W2tsb9XfG8mdpzExE6TOTu+t8RwPZO/R4QeiQuhR+JChCOxIapJUiqM1vBwyIMu9EhcnLmCQQ87d3YhGCyp2hIBeMO2b9/+IxyOMY3SN9E8tZT3xcGSAyzZ9ymf7/uUbzPXENSOJlrbRrarTFB1nMz5KYOlUHo9aClxIRqXxIXQI3EhwpHYENUkKRVGa3g45EEXeiQuzmx+fx5FRe9QVPQGXu/OMK0MWCx9ZJSUaJHvi/zyfJYdWMLn+z7ly0MrKPeXh/bFRsSGCqWPaDtKCqWfopYYF6LhSVwIPRIXIhyJDVFNklJhtIaHQx50oUfiQkDl9Kfy8u/IyXkMl2tVrf0ySkpAy39fuH1uvjq8KlQovcBTENpnNVoZ3nYUF3WczNj2E4i3SqH0umrpcSEahsSF0CNxIcKR2BDV6pqUkrHuQgjRiiiKgs12Pu3bf8LevRfi8WwFNKpHSQUC5Rw+PIP4+N9jtfZr6u4KcUpsJlvV1L1J+IN+vstcFyqUfrC0csrfkn2foioqg1KGhAqlt4/q0NRdF0IIIYQQx5CRUi2QZJ+FHokL8UtlZcs5cGBa6HP79h+RkzOX8vL1ANhsQ4mP/z2RkRNQFLWpuimaQGt9X2iaxvb8baEElRRKPzmtNS7E6ZG4EHokLkQ4EhuimkzfC6M1PBzyoAs9EhfilzRNY9++kZSXb8Rq7U/HjqvweLaQn/8vios/BPwAmM2diY//HTEx/4eq2pu206JRnCnvi7oUSp/QcRKDUoZIoXTOnLgQJ0fiQuiRuBDhSGyIapKUCqM1PBzyoAs9EhdCj8u1ipyc+0hKegK7fWRou893hIKClygoeI1gsAgAu30UHTp80jQdFY3qTHxfnKhQ+tgOE0KF0u2m8MnZQDDAusy1ZLuzcNqSGZQyBINqaIxbaHBnYlyIE5O4EHokLkQ4EhuimiSlwmgND4c86EKPxIXQc6K4CATKKCp6i/z853E6HyY6elrV9iJ8vkNYLL0buceiMZzp74vjFUq3GCyMaDuKiR0nM7bDBBKsCaF9i9MXMmv1PWS4MkLbUu2pzBk2j8mdpzbqPTSEMz0uhD6JC6FH4kKEI7EhqklSKozW8HDIgy70SFwIPXWNC00LVLWvHPGRl/cPsrMfwm4fSXz8rTgcY6TuVCsi74uj9AqlV1MVlfNTBjOx4yQi1Aju++YuNGr+D1OorEs1f/yCFp+YkrgQeiQuhB6JCxGOxIaoJkmpMFrDwyEPutAjcSH0nGpcZGbeS0HBS0Blsioiojvx8bcRHX0FqmppmM6KRiPvC30nKpQejoJCiiOVDddsa9FT+SQuhB6JC6FH4kKEI7EhqtU1KSU/9hZCCFFLSspcunbdTHz8bahqJF7vTjIyfs+uXWeRm/tkU3dPiAahKApnJ/Tm7nPvZ+WvV/PDNT8yZ+gTnB1//GmsGhoZZUdYl7m2kXoqhBBCCNE6SFJKCCGELrO5PcnJj9Gt2w6czscwmdoSCOTh9e5s6q4J0SjaRbXn5j6/47b+d9Sp/RvbX+XHvK2cYYPQhRBCCCFOmax/LIQQ4rgMhmgSEm4jPv43lJQsJCKiR2if17uTrKwHiI+/Dbt9BIqiNGFPhWgYTltyndp9sudDPtnzIUk2JyPbjmZUuzEMbzuSOEt8A/dQCCGEEKJlkqSUEEKIOlEUY2h1vmr5+f+irGwZZWXLiIg4m4SEW4mKuhxVjWiiXgpR/walDCHVnkqmK7NWofNKCtER0ZznPJ81Gd+Q487m3Z3/4d2d/0FBob9zACOqklT9kwa26LpTQgghhBD1SQqdt0BSPE7okbgQeho6Lioq9pKf/2+Kit4iGHQBYDQmExd3M7GxN2A0ygiR5kjeFydvcfpCZi6dDlAjMfXL1fe8AS/rM79l5cHlrDq4nJ8KdtQ4T0xEDMPTRjGq3RhGthtNsj2l8W7iBCQuhB6JC6FH4kKEI7Ehqsnqe2G0hodDHnShR+JC6GmsuAgECikoeJ2Cghfw+zMBMJna0bXrVhRFyhc2N/K+ODWL0xcya/U9ZLgyQttSHW2YM3QukztP1T0mo+wIXx5aycqDy/nq8CqKvUU19p8Vf3Zoqt95KYOIMDTdKEOJC6FH4kLokbgQ4UhsiGqSlAqjNTwc8qALPRIXQk9jx0UwWEFJyUfk5z9HZORFJCU9AICmBSkv/x6r9TypO9UMyPvi1AWCAdZlriXbnYXTlsyglCF1no7nD/rZmL2BlYeW8eXBFWzK2Vhj1JXNaOeCtAsZ2W4Mo9qOoUN0x4a6DV0SF0KPxIXQI3EhwpHYENUkKRVGa3g45EEXeiQuhJ6migtN09A0H6pqBqC09HMOHrwCi6Uf8fG3Eh19KYpiarwOiRrkfdE85Jfn89XhlVVT/VaQW55TY3+n6M6MbDeaUW3HMKTNBdhN9gbtj8SF0CNxIfRIXIhwJDZEtbompaTQuRBCiHqnKAqKYg59rqjYj6JY8Hg2ceTIjWRnzyY+/jfExl6HwRDTdB0VognFW+OZ1vVXTOv6K4JakO15P1YmqA6t4LusdewtTmfvj+nM//ElzKqZQalDGdVuDKPajaF7bA8ZdSiEEEKIFk9GSrVAkn0WeiQuhJ7mFBd+fz4FBa9QUPASgUAuAKrqICZmOk7nX1BVS9N28AzSnOJC6CutKOGbw19XJamWc6j0YI39qfY2laOo2o3hwrQRREfEnPY1JS6EHokLoUfiQoQjsSGqyfS9MFrDwyEPutAjcSH0NMe4CAY9FBe/T37+c3i9P2GxnEOnTt/IqI9G1BzjQoSnaRp7inaz6uByVh5aztojq/EEPKH9BsXAAOe5oVFU5yT2RT2FBQYkLoQeiQuhR+JChCOxIapJUiqM1vBwyIMu9EhcCD3NOS40TcPlWgkYcDhGABAIlHLo0DXExt5AVNRkFOXoLHOf7zB+f17Y8xmNiZhMbRq4161Dc44LcWLl/nK+zVhTmaQ6uJzdRbtq7I+3xDOi7WhGthvNiLajSbIlnfCcgWCA9VlrcavF2ILRnJ9c9wLuonWT94XQI3EhwpHYENUkKRVGa3g45EEXeiQuhJ6WFhf5+c+TlXUfACZTe+Ljf0tMzHQUxcyuXb0IBHLCHmswJNGt23ZUNaKxuttitbS4EMd3qPQgqw6uYOXB5Xx9+EvKfKU19p+T2JdRbStHUQ1wnovJUHORgcXpC5m1+h4yXBmhban2VOYMm8fkzlMb5R5E8yXvC6FH4kKEI7EhqklSKozW8HDIgy70SFwIPS0tLvz+HAoKXqKg4BUCgQIAVDWKmJjrcLlW4fXuAII6R6pYLH3p1GmVTAOsg5YWF6LufAEfP2R/x8qqUVQ/5m2psT/SHMWFaSMY2bayHtXmnE3MXDodjZqBoFD5HM0fv0ASU2c4eV8IPRIXIhyJDVFNklJhtIaHQx50oUfiQuhpqXERDJZTVPRf8vP/RUXF7qqtJsAX9pj27T/C4RjTKP1r6VpqXIiTl+PO4ctDlaOovjy0ggJPQY39RsWIX/PrHqugkOJIZcM122Qq3xlM3hdCj8SFCEdiQ1Sra1LKeMIWQgghRCNTVStxcTOIjb2esrKl5Of/C1WNxec7hMezBQgc09qAxdIHu310U3VXiGYryZbEr7tfxa+7X0UgGGBr7mZWHlrOqoMr+D5rfdiEFICGRkbZEdZlrmVomwsasddCCCGEOFNIUkoIIUSzpSgqkZETiYycSDDoxe3+hgMHpv2iVQC7/QKCwVIMhqgm6acQLYFBNdDPOYB+zgH8aeC9vLX9df741e0nPO7lrS8Q0AIMcJ6L3WRvhJ4KIYQQ4kwhSSkhhBAtgqpGYLePxmLpj8ezmWNrS+XnP0NBwQs4HGOJjp6GwzEBg8HRZH0VoiXoGNO5Tu0+27eIz/Ytwqga6ZPYj8GpQxmcMoTzUgYRHRHTsJ0UQgghRKsmSSkhhBAthqIoOJ2zaoyWio7+FeXlm6mo2E1p6WJKSxeTlvYm0dGXNF1HhWgBBqUMIdWeSqYrs1ah82oxETGMbjeWdZnfcqTsMBuyv2dD9vc8t+kfKCj0SujN4JQhDEodyqCUISTaEhv5LoQQQgjRkklSSgghRItydLTURiyW/rRp8woAXu92ios/oqxsKZGR40Lt8/Kepbx8I9HRl+FwjEFVrU3VdSGaFYNqYM6wecxcOh0FpUZiqnr1vb+PeC60+t6h0oN8m7GGdRlr+TZzDelFe9iWt5VteVt5+ccXAOga041BqUMZnDqEwSlDaROZ1vg3JoQQQogWQ1bfa4FkRQOhR+JC6GmtcVFWtorMzHtISZmHwzHyuG337Dkfr/cnAFTVQWTkRURFTcPhGI2qRjRGd5ud1hoX4tQsTl/IrNX3kOHKCG1LdbRhztC5oYSUnmx3NuurElTfZqxlR/62Wm3aRbZnUFWCanDqEDpGd0ZRlAa5D9Ew5H0h9EhciHAkNkS1uq6+J0mpFkgedKFH4kLoOdPjQtM0yss3UFLyMSUlH+PzHQ7tU9UoYmKuJCXlb03Yw6ZxpseFqC0QDLA+ay1utRhbMJrzk4dgUA0ndY5CTwHfZa2vGk21hi25mwlogRptkmxOBqcMrUxUpQ6lR1xPVEWtz1sR9UzeF0KPxIUIR2JDVJOkVBit4eGQB13okbgQeiQujtK0IOXl31Nc/BElJZ/g92cSHX0laWkvVe3XcLu/wWYbjKKYmri3DUviQuip77go85XxQ9Z3rMtYw7eZa9mY/QPegLdGm5iIGAZV1aQanDKE3ol9MKpSXaI5kfeF0CNxIcKR2BDV6pqUkr/1hRBCnBEURcVmOx+b7XySkx/H7V6PwRAV2u/x/Mj+/ZMxGOKIirqYqKhLsduHoSjyV6UQp8JhcjCi7ShGtB0FgMfvYVPOBr7NWMO3GWv4Pus7irxFLNn/GUv2fwaAzWjnvJTzq6b7DaVvUn8sRktT3oYQQgghGpD8S1sIIcQZR1FU7PbBNbb5fIcwGBIIBPIoLHyNwsLXMBgSiYqaSnT0ZVUjqE5uOpMQ4iiL0cLg1MpkE4Av4OPHvC18m7GWdZlrWJf5LcXeIr48tJIvD60EIMIQQX/nwNAKfwOTz8NhctT5moFggHWZa8l2Z+G0JTMo5eSnJQohhBCi4cj0vRZIhkQKPRIXQo/ExcnRND8u12pKSj6ipGQhgUBBaF/79p/gcIxqwt7VH4kLoaep4yKoBfkpfwfrqgqnf5uxhtzynBptDIqBPol9q1b4G8r5yYOIscTqnk+3gLs9lTnD5h23gLuoqanjQjRPEhciHIkNUU1qSoXRGh4OedCFHokLoUfi4tRpmg+X6yuKiz/G7V5Lly7fhWpN5eY+jd+fTXT0NKzWc1vcamISF0JPc4sLTdPYW7wnlKBal7mWQ6UHa7RRUOgZ34vBVSv8nZ86BKfNyeL0hcxcOh0NrVZ7gPnjF0hiqo6aW1yI5kHiQoQjsSGqSVIqjNbwcMiDLvRIXAg9Ehf1Q9O0UOJJ0zR27+4VWsnPZGpLVNSlREdfisXSv0UkqCQuhJ6WEBeHSg+yLmMt6zIrE1V7inbXatMpujNZrkzcfrfuORQUUhypbLhmm0zlq4OWEBei8UlciHAkNkQ1KXQuhBBC1JOaiaYgycl/o6TkI0pLP8PnO0R+/rPk5z+LydSBuLgZJCTc0VRdFaJVaxvZjrbd2/Gr7lcCkOPOYX1VgurbjLXsyN/G3uL0455DQyOj7Ahv7Xid8R0vIsGaKCv+CSGEEE1ERkq1QJJ9FnokLoQeiYuGFQyWU1a2nOLiDyktXYKmuYmLu4mUlKcA0LQAXu/PRESc1axGUElcCD2tIS6KPIX8Y+NTPL/52TofoyoqCdZEku0pJNuScdpTSLYnhz4n21Nw2lNIsCagKmoD9r55ag1xIeqfxIUIR2JDVGsRI6W8Xi9/+ctf+OKLL7BYLMyYMYMZM2botv3tb3/LypUra2x74YUXGDlyZGN0VQghhKhFVa1ERU0hKmoKwaCb0tKlRER0D+13u9exf/9EzOZuREdfSlTUZVgsPUL7fb7D+P15Yc9vNCZiMrVp0HsQojWJscQytv34OiWl4izxFHuLCGgBctzZ5Liz2Xqc9kbVSJLVSbI9mSR7cihhlVyVxHLaKr+Os8Q1aBJaVhQUQgjRmjRpUmrevHls27aNN954g4yMDO69915SU1OZMGFCrbbp6ek8+eSTDB58dAnv6OjoxuyuEEIIEZaq2oiOvrTGNq93F4oSQUXFLnJz55KbO5eIiJ5ERV1KVNQU9u+/mEAgJ8wZwWBIolu37ahqREN3X4hWY1DKEFLtqWS6MmsVOoeaNaUA8jx5ZLsyyXJlku3OJsuVSZYrq3KbO4ssVya57hz8QT8ZriNkuI4c9/pm1YzTnowzlLSq/D3J5jyaxLIlEx0Rc9LJK1lRUAghRGvTZEkpt9vN+++/z8svv0yvXr3o1asXu3fv5u23366VlKqoqODw4cP07t2bxMTEJuqxEEIIcXLi4m4gOvoySks/o6TkY8rKluP1/kRu7k/k5j6G2dyDQCAPCOocrWIypaEo5sbuthAtmkE1MGfYPGYunY6CUiMxVb363pyhc0Oji5w2J06bk3MS+4Y9pz/oJ9edU5mwqkpUZf8yieXOJK88j4pgBYdKD9ZaKfCXLAYLztA0warRVscksSqTWsk4TJEoihJ2RcFMVyYzl06XFQWFEEK0SE2WlPr555/x+/3069cvtG3AgAG88MILBINBVPXonP29e/eiKApt27Ztiq4KIYQQp8xgiCIm5kpiYq4kECiitPRTios/oqIineTkRzl48LIwRwZxOmc1q1pUQrQUkztPZf74BbVGFaU4UpkzdO5JJ2+MqpEURyopjtTjtqsIVJDzi0RVlqsqieXOIrvq60JvIZ6AhwMl+zlQsv+457QZ7ThtTo6UHdYd+aWhoaAwa829TOw4SabyCSGEaFGaLCmVm5tLbGwsZvPRnwAnJCTg9XopKioiLi4utH3v3r04HA7uuecevvvuO5KTk/n973/P8OHDm6LrQgghxCkxGGKIibmamJirCQYrUBQTFkt/PJ4tQOAXbePx+4vx+wswGuP0TyiECGty56lM7DipUesvmQ1m0iLbkhZ5/B+kevwest1ZR6cJ1hiBlRWaSlhSUYzb72Jfyd7jnq96RcE1R77hwrYj6vGOhBBCiIbVZEmp8vLyGgkpIPS5oqKixva9e/fi8XgYNmwYN998M8uWLeO3v/0t7777Lr179z6p67aGHzhX30NruBdRfyQuhB6Ji+bLYKj8O8/pnMWBA9Nq7Q8E8jly5AZAJSbmatLS/lVv15a4EHpaY1wYDQaGpV3Q1N2oxWqy0CG6Ax2iOxy3ncvnItuVxXs73+GpH+ae8LzTP7uCMR3GM7rdWEa3H0OyPeW0+9oa40KcPokLEY7EhqhW1xhosqRUREREreRT9WeLxVJj++9+9zumT58eKmzeo0cPtm/fznvvvXfSSan4+BMvSdhStKZ7EfVH4kLokbhovuLjL6Gg4FxKSzdSOVrKgNXambi4yRQWLsXt3k5UVNvQkrp+fxm7dv2GuLhxxMaOIyIi+TSuLXEhapO4aD4SiKQ9ybiNRXVKSpUHylmU/gmL0j8B4BznOUzsMpGJXSYypO0QTAbTKfdF4kLokbgQ4UhsiLpqsqSU0+mksLAQv9+P0VjZjdzcXCwWC1FRUTXaqqpaa6W9Tp06sWfPnpO+bn5+KVrt6fgtiqJUPuSt4V5E/ZG4EHokLlqGuLj7KS2tHi0VICnpCSIjxxAb+zAVFYdRFAN5eaUAlJR8Tk7O2+TkvA2AxdIHh2MMkZFjsNnOQ1FO/E2nxIXQI3HRfPW09a3TioIvj3uNLw+tZMWBZWzK2cjW7K1szd7K3DVzcZgiGd52RNUoqrGkOtrU6doSF0KPxIUIR2JDVKuOhRNpsqRUz549MRqNbN68mYEDBwKwYcMGevfuXaPIOcB9992Hoig8/vjjoW0///wz3bp1O+nrahqt5uFoTfci6o/EhdAjcdG82e2jq2pLbcRi6Y/dPjr052UypQFH//zM5i4kJNxFWdkKPJ5NeDxb8Hi2kJf3FKoaSVraK0RGTqzTdSUuhB6Ji+ZHVeq2ouC5yYM4N3kQd5/7APnl+Xx5aAUrDi7jy0MryCvP49O9i/h07yIAesadxch2YxjdbiznpwzGbDj+Sp8SF0KPxIUIR2JD1JV64iYNw2q1cskll/Dwww+zdetWli9fzquvvsq1114LVI6a8ng8AIwaNYpFixbxySefcODAAZ577jk2bNjANddc01TdF0IIIeqNoig4nbMxm7vjdM4+7op7ERFdcTofonPnr+jePZ02bV4iOvrXGAzxBIOlmM1dQm1LShaRlXU/ZWUrCAY9jXErQogGUr2iYMov6kSlOFKZP35BrRUF463xXNbt1zw/5mW2Xb+HpZet4t7zHmSg8zxUReWngh08v/lZLls4he6vduDaz6/i9W3zOVR6sDFvSwghxBlO0bSmy1+Wl5fz8MMP88UXX+BwOJg5cybXX389AN27d+fxxx9n2rTK6Qzvv/8+r7zyChkZGXTt2pX777+fc88996SvmZfX8ocRKgokJES2insR9UfiQuiRuDhzaFoQj2crFkufUFLr0KHplJT8DwBFsWK3D6ua6jeW1NS+5OeXSVyIEHlftAyBYOC0VxQs8OTz1aFVrDy4nJUHl5NbnlNjf7fY7qFRVEPaDKWNM0HiQtQg7wsRjsSGqFYdCyds15RJqabQGh4OedCFHokLoUfi4sxWWvo5JSWLKStbjt+fWWOf1dqVjh2/RVGOP2VHnDnkfXFmCmpBtuVtZcWBZaw4uIwfsr8jqAVD+21GG6M6jWJY8ghGtR1Lh+iOTdhb0VzI+0KEI7EhqklSKozW8HDIgy70SFwIPRIXAkDTNLzenygrW05Z2XLc7jVERg6kXbulobjIzLwXkykVh2MMERFnHXcKoWid5H0hAIo8hXx9+EtWHFzGyoPLyXZn1djfOaYLo9uNZVS7MQxOHYbVaG2inoqmJO8LEY7EhqgmSakwWsPDIQ+60CNxIfRIXAg9wWAZkZFluN3JaBoEAoX8/HNHoHJ0hNGYgsMxpurXCAyG2KbtsGgU8r4Qv6RpGjsKtrEu72sW/rSY7zLXEdACof1Wo5UhqcNCSapOMV2OczbRmsj7QoQjsSGqSVIqjNbwcMiDLvRIXAg9EhdCzy/jIhAopqjoHcrKluFyfYOmlR/TWiUh4Q6czoebqruikcj7Qug5Ni6KPcV8ffgrVh6snOqX6cqo0bZDVEdGtx9bWYsq9QJsJlsT9Vo0NHlfiHAkNkQ1SUqF0RoeDnnQhR6JC6FH4kLoOV5cBIMe3O61oal+Xu/PpKQ8Q1zcDQBUVOwjJ2dO1Siq0RiNSbXO7/Mdxu/PC3t9ozERk6lNvd6TOH3yvhB6wsWFpmn8VLCjqlj6MtZnfosv6AvtjzBEMDh1aNUoqrF0iel63GnB9VHAXTQeeV+IcCQ2RDVJSoXRGh4OedCFHokLoUfiQug5mbioqDiEwRCJwRADQH7+i2Rl3R3ab7H0DU31s9nORdOC7NrVi0AgJ8wZwWBIolu37ahqRH3cjqgn8r4QeuoaF2UVpXx9+KuqWlTLOFJ2uMb+dpHtGdVuDKPbj2NomwtwmByhfYvTFzJr9T1kHDPyKtWeypxh85jceWq935M4ffK+EOFIbIhqkpQKozU8HPKgCz0SF0KPxIXQczpx4fFsp7j4Q8rKluPxbK6xT1WjaNfuY7Ky7q7aF9Q5g4rF0pdOnVZJMfVmRt4XQs+pxIWmaewq3MmKqml+6zPWUhGsCO03q2bOTx3C6HZjMSpG/rzmPjRqnlyh8v0wf/wCSUw1Q/K+EOFIbIhqkpQKozU8HPKgCz0SF0KPxIXQU19x4ffnUFa2omqq3woCgRJ69DhAefl6DhyYFva49u0/wuEYc+oXFg1C3hdCT33ERZmvjDVHvmHFgS9YeXA5B0sP1O3aKKQ4UtlwzTaZytfMyPtChCOxIarVNSllbIS+CCGEEKIVMhqTiIm5ipiYq9C0ABUVezAYIrHbR2Ox9Mfj2VjrGIPBiaZBMOhCVe1N0GshRGNzmByM7zCR8R0momka6UV7WHHwCz7Y9R5bcjeFPU5DI6PsCE98N4fxHSbSIboT8ZZ4GWUphBCtiCSlhBBCCHHaFMVARET3qq8VnM5ZuqOlAoFsDh6chtHYhm7ddoS+udQ0P4oi/ywRorVTFIUusV3pEtuVRFsSv1k284THPLPxKZ7Z+BQAkeYoOkR1pGN0p6O/R1f+nmxPQVXUhr4FIYQQ9Uj+9SeEEEKIend0tNQWIAComExtsdmG4Havxmo995iElMbu3X0wmdpgsw3Dbr8Qm+08VFWWkxeiNXPakuvU7uz43hR4CshwHaG0ooQf87bwY96WWu0sBgvtozrQIbojHX6RtGrraIfJYKrvWxBCCHGaJCklhBBCiHpXe7RUkNTUp0O1pILB8lDbioo9+HyH8PkO4XavIy/vbyiKCat1IHb7BURGTsRqHdAEdyGEaEiDUoaQak8l05VZq9A5HK0ptexXX2NQDZT7yzlYcoD9JfvYV5zO/uJ97Cvey/6SfRwsOYAn4GFn4c/sLPy51rkMioG0yLZ0jO5UNcqqUyhh1T6qA1ajtUHuMRAMsC5zLdnuLJy2ZAalDJH6WEIIcQxJSgkhhBCiQRxbW8pi6Y/dPjq0T1WPfgNoNneha9ctuFyrcbm+weX6Br//CG73t7jd3xIMloeSUsGgm/LyDVit56Kqlka/JyFE/TGoBuYMm8fMpdNRUGokpqpX35szdG4oiWM1Wuke14PucT1qncsf9HO49FAoSbWveC/7q77eX7wPT8DDgZL9HCjZz5eHVtY6PsWeqjslsENUR6Iiok/p/hanL2TW6nvIcGWEtqXaU5kzbJ6sKCiEEFVk9b0WSFY0EHokLoQeiQuhpzHjoqxsFZmZ95CSMg+HY2SdjtE0DZ9vX1WS6mtiY6/Fbr+w6nwrOHDgUhQlAqv1XOz2C7DbL8BqHShJqtMk7wuhpzHiQjd542jDnKFz6yV5E9SCZLuyfpGw2se+kr3sK95LaUXJcY+Pt8RXTgmMOjZZVTnSKsGaoFt4fXH6QmYunV5rBFh1sm3++AUtOjEl7wsRjsSGqFbX1fckKdUCyYMu9EhcCD0SF0JPS46L4uIPycq6H78/q8Z2RbFgs51HUtLD2GwDm6h3LVtLjgvRcBorLppqmpumaRR4CthflaA6dkrgvuK95JXnHvd4u8lRa4RVu6j23Lb8ZrLd2brHVE9L3HDNthY7lU/eFyIciQ1Rra5JKZm+J4QQQogWIzr6MqKiplFRsSc01c/t/ga/PweX6+sa0wJLS5dRXr4Ru/1CrNYBqKq5CXsuhDgeg2pgaJsLGv26iqIQb40n3hrPAOe5tfaXVZSyr2oK4L7ivRw4ZqTVkbLDuHxlbMvbyra8rXW+poZGRtkR1mWubZJ7FkKI5kSSUkIIIYRoURRFISKiKxERXYmLm4GmaVRU7MblWkNERM9Qu+Li9ygufpfc3EdRFCs22yDs9srV/SyWfpKkEkKckMMcSe+Ec+idcE6tfR6/p6rw+t4ao6u25W4lpzznhOd+fP1fGd/xIs6KO4uz4s8m2Z6iOxVQCCFaM0lKCSGEEKJFq0xSdSMioluN7Q7HGDStApfrGwKBPFyuVbhcqwBQ1Ui6d9+NqtrqdA2f7zB+f17Y/UZjIiZTm1O/CSFEi2MxWugW151ucd1rbF9z5Bsu/d+kEx7/XdY6vstaF/ocGxHLWfFnc1Z8L3rG9+Ks+F50j+uJ3WSv974LIURzIUkpIYQQQrRKMTFXEBNzBZqm4fX+HJrq53J9g8nUtkZC6sCBy4EANlt14fR+KErlP5OCQS/p6SMIBMKPfDAYkujWbTuqGtHQtyWEaOYGpQwh1Z5KpiuzVqFzqKwpFWuJ4+ZzfsvPBTvYkb+dPUW7KfQWsibjG9ZkfFOjbcfoTrWSVe2jOqAqamPelhBCNAhJSgkhhBCiVVMUBYulJxZLT+Ljb0bTggQC+aH9waAbl+tLNK2CsrIVAKiqo2q634XYbMMxmdIIBPKAoM4VVEymNBRFpgMKISrrY80ZNo+ZS6ejoNRITFWvvve34c/UWH3P4/ewu3An2/O3sSN/e9WvbeSV57K3OJ29xeks3vu/UHub0U7P+LNCyaqz4nvRM+4sYiyxjXejQghRD2T1vRZIVjQQeiQuhB6JC6FH4qImTQvi9e6oKpy+Grd7NYFAYWh/ZORFxMXdyIED08Keo337j3A4xjRGdxuMxIXQI3Fx6hanL2TW6nvIcGWEtqU62jBn6NwaCanjyXHn8NMxSaod+dvZVfgz3oBXt30bR1pVkursUNKqc3QXTAZTvdxTNYkLEY7EhqhW19X3JCnVAsmDLvRIXAg9EhdCj8TF8VUmqbaHVvdzOMYTG3sde/eOxOPZTM3RUgomU0c6dPgMszm1iXpcPyQuhB6Ji9MTCAZYl7mWbHcWTlsyg1KGYFANp3VOf9DP3qL0UJKq+vfDZYd025tVM93ielSNpqocVXVWwtkkWZNOqbB6IBhgfdZa3GoxtmA05yef/j2J1kPeGaKaJKXCaA0PhzzoQo/EhdAjcSH0SFycmrKy5ccdLWU0puJ0PkRMzP81Yq/qj8SF0CNx0XIUe4v4qeCnyiRVXmWy6qeCHbh8ZbrtE6wJ9Kye/leVrOoW1wOr0Rr2Grqjv+ypzBk2r86jv0TrJu8MUa2uSSmpKSWEEEIIUQd2+2gslv54PFuAAKBgMMRhMCRTUfETfn8GquoItS8rW0Vm5l1YrQNCvyyW3lIMXQjRIKIjYhiUMphBKYND24JakEOlB2uMqNqRv429RenklefxzeEv+ebwl6H2qqLSObpLrcLqbSPb8eneRcxcOr1W8fZMVyYzl05n/vgFkpgSQpw0GSnVAkn2WeiRuBB6JC6EHomLU/fL0VLVtaSCQRfl5VuxWHpgMFQWGs7NfZKcnL/WOF5RTFgsvbFY+hMf/1siIro2av+PR+JC6JG4aJ3cPje7Cn+ulawq8BTotneYIqkIeKkIVujuV1BIcaSy4ZptMpXvDCfvDFFNRkoJIYQQQtSzo6OlNmKx9MduHw2Aqtqx2wfXaBsbOwOL5RzKyzdQXr6R8vINBAL5VV9vJC7uhlDb0tLPcbvXhUZUGY2pp1TrRQgh6sJmstE3qT99k/qHtmmaRrY7q8bqfzvyt7O7cCdlvtLjnk9DI6PsCF8f/pKR7UY3dPeFEK2IJKWEEEIIIepIURScztlkZt6D0zn7uIkjozGeyMjxREaOByq/4fP5DoSSVBERPUNtS0oWUlT09jHHOmtM+7PZhsq0PyFEg1IUhWR7Csn2FEa1O7qaaEWgghe3/Iu/rpt9wnNc9ellnJ1wDn0T+9PfOYC+Sf3pHttDRk8JIcKSpJQQQgghxElwOEbStev3J32coiiYzR0wmzsQHX1ZjX2RkRehKGbKyzfg8WzH78+mtPQzSks/AxR69DgIVCalXK5vURRjVX0qSz3ckRBChGc2mOnvHFintkEtyNbczWzN3cybO14FwGa0cU5iX/om9ad/UmWiqn1UBxkNKoQAJClVg6Zp+P2+pu7GCSkKeDwefL4KmafbwhkMRlRVbepuCCGEaGJRUVOIipoCQDDoxuPZWjWiagOBQBEGQ3SobU7OX3C716IoJiIizsZq7Y/VOhCrdQAREV1RlLqPSPD5DuP35wGV/74oLbVTXu4K/fvCaEzEZGpTfzcqhGiRBqUMIdWeSqYrs1ahczhaU+qTiz9ja+5mNuVsZHPORjbnbsLlK2Nd5lrWZa4NtY+zxIWmD1YmqgaQZEtqzFsSQjQTUui8it/vIz8/C00LNn6nToGqqgSDLaOv4visVgdRUXGn/dMiKSoo9EhcCD0SFy3boUPX43J9TSCQV2uf2dyJrl03hz77/fkYDPp/xwSDXnbt6kUgkBP2WgZDEt26bZepg2cweV+IaovTFzJz6XSAGokphcr3i97qe4FggD1Fu9mUs6HyV/YGtudvwxesPRAgzdGWvkn96eccQL+k/vRJ7EukOaoB70g0BHlniGp1LXQuSSkqR0gVFOQQDPqJjo5HUZr/yBWDQSEQOKP+6FodTdOoqPBSVlaI1eogOjr+tM4nfwEIPRIXQo/ERctXWZ/qYKiAeuWvTdjtF9K+/XuhNrt2dQO0Y+pT9cdi6Y/RGIemaezdOxKPZzOg94MuFYulL506rZJpNmcweV+IYy1OX8is1feQ4coIbUt1tGHO0Lm1ElLheANeduRtY2POBjbnbGRTzgZ2F+6qNQJLQaFrbLfKRFVSZaKqV0JvIgySJG/O5J0hqklSKgy9hyMQ8JObe4To6ASsVnvTdOwkGY0qfr+MlGoNyspKKCsrJCmp7WlN5ZO/AIQeiQuhR+KiddI0P4FAMUZj5Q85/P5cdu7sDvhrtTWbOxEdfSU220AOHJgW9pzt23+EwzEm7H7R+sn7QvxSIBhgfdZa3GoxtmA05ycPOe1C5qUVJWw5ZtrfpuwNHC47VKudSTXRK/7sqtFUlfWpusZ0k0LqzYi8M0S1uialpKYUhKbBGQzyv0M0PrO58qc9gYAfVTU3cW+EEEK0VIpiDCWkoLIeVM+eR2rUpyov30BFxV4qKvYSCBRit4/GYumPx7MFCBxztspRUna7LO0uhKjJoBoY2uaCek08RJqjGNbmQoa1uTC0Lcedw+acDWyqGk21OWcjBZ4CNuduYnPuJl7jFQDsJgd9EvuGRlP1cw4gzdH2pEd4BoIB1mWuJdudhdOWzKCU00+2CSFOTLIwx5Ch6aIpSNwJIYRoKKpqxWY7H5vt/NA2v78Aj2cTRmMyiqLgdM7SGS0VxO8/QkbGbdjtQ7HbR2IypTRu54UQZ7QkWxLjOkxkXIeJQOWU5IOlB9iUfTRRtTV3My5fGWszVrM2Y3Xo2ARrAn0Tj9an6ps0gARrQthr6U5LtKcyZ9i8Ok9LFEKcGpm+B/h8FeTnZxIfn4LJ1DJGqjz22F/47LNFYfc/++wL9O9ft6Vbq91228306zeAmTNvOWHbyy+fwowZN3PRRVNO6hp19dlni3jssb9w332zmDz5kga5RnNRX/EnQ2WFHokLoUfiQhxL0zTS0y/A692Gfm0pSE5+gvj43wEQCBTi9+dhNneRH6ycAeR9IfQ0l7gIBAPsKtxZVUi9MlG1I38b/mDtacvtItuHpvz1S+rPOUl9cZgcoQLuejWtQL+AuwivucSGaHpSUyqM1pKU8nhcuFzlAKxYsYx33nmLl19+I7Q/Kioak8l0UucsKSnGaDRhs9lO2LawsBCbzUpEhOXkOl5Hf/zjbRw5cpjExCSee+6lBrlGcyFJKdGQJC6EHokL8UtlZctrjJZKS1uAqlpwu9ficq0mJeVprNZzACgsfIuMjN9hNDqx2YZisw3Bbh9GRESPFrFYjDg58r4QeppzXHj8HrblbWVzzsZQMfU9RbtrtVMVla4x3ThYepByv1v3XAoKKY5UNlyzTaby1VFzjg3RuKSmVFMIBDCtW4uanUXQmYxv0BAwNMzLy+GIxGKxV33tQFVV4uPDD0mti6io6Dq3jY2NPa1rHU9hYQEbNnzP/fc/xKOPPkxGxhFSU9s02PWEEEKIM53dPhqrtT/l5RuxWvsTFTUVRVGIjBxfq63fn42iROD3Z1NS8hElJR8BYDDEYbMNITn5Uczmjo19C0IIAYDFaGFg8nkMTD4vtK3YW8SW3M2ViarsykRVhusIOwt/Pu65NDQyyo5w91d30s/Zn5iIWGItsZW/R8QSa4nDarQ261GjUitLNHeSlKon5sULccy6B0PG0XnIgdRUyubMo2Jy4w/3zMzM4Fe/msqNN/6Gd955m3HjJnDnnfewYMFrLFr0Cbm5OURHx3DxxdOYMeNmoOb0vUcffZioqChyc3NZs+ZroqNjuPnm3zFhwiSg5vS92267mXPPPZ8tWzaxefMmkpKc3Hnn3Zx//mAAiouLmDv3Ub7/fh0xMXFcffV0/va3J1i9+gfdvq9cuRyHw8G4cRN58cV/sWTJp6E+ApSXl/PPf/6dL79cCcDw4aO44467iIiIoLCwgKeffpJ169ZisViYNGkqN9/8O7KyMvnVr6by/vsLSUlJBWD+/BfZtGkDzz33Ep99tohFiz4mJiaOjRu/509/uo+hQy/gmWeeYu3a1ZSVlZKa2obf/Ob3XHjhCICw15o371EKCvKZO/fpUJ+ffnoeZWWl/PnPf63fP2ghhBCiHlTWlppNTs59JCXNPu43WImJfyI+/lbKyzfgdq/B5VqD272eQKCA0tLFpKb+M9S2qOg9fL4j2O1DsFj6yYIeQogmER0Rw4VpI7gwbURoW7Yri+c3/5N/b/ln+AOrvPXT67z10+u6+yIMETWTVZY4YiNiibHEhn6Ps8QR84ttdqO9wZNZUitLtASSlKoH5sULiZo5nV+OT1QzM4maOZ2S+QuaJDEFsHXrFubPX0AwGGTJkk95773/8vDDj9KmTRrr16/lb397gqFDL6R79x61jv3ww/e46abfcsstt/LBB+/y5JOPMWzYcBwOR622b775Kn/603386U/38cILzzF37hw++GARqqoye/YDVFRU8Pzz88nLy+GJJ46fmFmx4gsGDx6GqqoMHXohS5Z8yg033BR6aT/xxF9JT9/DE088RUSEhb/+9c+8/PK/ue22O7j//rswGAw899yLuN1uZs++n4SEBIYMueCE/69+/HEr1147g1tuuZWYmFieeeYpDh06wNNPP4fFYuU//3mTuXP/yuDBQzGZTGGvNWbMeO6++w+4XGXY7Q6CwSBffrmSe++dVcc/NSGEEKLxORwj6dBhR52mXKiqpaoA+lASE0HTfJSXb8Lj2VFjBcDCwjdwu78BQFFs2GznVU33G4rVOhBVtTbkLQkhRFhOezLjOkyoU1JqZNvRmA1mCj2FFHkLKfQUUugtwB/04w14yXZnke3OOqnrm1VzjSTV0d/jjklwHf29OtllNznqlMwKVysr05XJzKXTpVaWaDYkKRWOpoFbf25xDYEAjgfuBk3jl68GRdPQFAXHg/dQcOGIE0/ls9kqJ17Wo1//+iratEkDIDc3hwcemM3AgZVDWS+55HJee+1l9u1L101KdenSjauvvg6AG2+8hfff/y/79qXTu3efWm0HDx4WKnp+3XUzuf76qygoyMftdvPDD9/x7ruf0KZNGl27duOGG27mb397XLe/2dlZ/PjjFq644moAhg8fySeffMDWrZvp06cfJSUlfPnlCp5++l+cc05fAO6++wF2797Jnj272bZtK++997/QdL+77rqf8vLyOv2/UhSF666bEaqT1bdvf6688mo6deoCwFVXXcOiRZ9QUJBPaWlp2Gv16zeAyMgo1qz5hnHjJrJlyyZ8Ph/nnTeoTv0QQgghWhpFMVUlnM6rsT06+lIMhhjc7jUEAgW4XF/icn1Jbi4YDIl0774n9M2VpvlRFPmnqRCi8QxKGUKqPZVMV2at5A0crSn1n0kf1JrypmkaLl8Zhd5CijyFFHoLKfQU1EhcFXmPbj+2jS/ooyJYQY47mxx39kn12agaa0wfrE5cHZvYijHH8ODqe3TvSUNDQWHWmnuZ2HGSTOUTTU7+5tejacRMHofp+/WnfSpF0zBkZpDYJe2EbX3nDaJo0dJ6TUxVT1UD6N9/INu3b+OFF57jwIF97Nq1k/z8fIJB/ZV20tLahr622ytHR/n9tVeyAGjbtt0xbe2htunpu4mKig4lxgDOPvucsP1dseILzGZzaOpfdYLn888X06dPP44cOUQgEKBHj56hY/r06UefPv1YuXI5UVHRNepPXXDBCKByOuOJxMbG1SjcPmHCJL755ksWLvyYAwf2s3Nn5ZzzYDDIwYMHwl4LYNSosaxatZxx4yaycuVyhg8fidEoj5sQQogzS1zcjcTF3YimBfF6d+J2r66a7rcGi6VvjZ/279lzHgZDDDbbUOz2IdhsgzEYYpqu80KIVs+gGpgzbB4zl05HQamRxKlefW/O0Lm6iRtFUXCYI3GYI2kb2a7W/nA0TcPtd1cmsKoSWscmsQqOSWAVVe0v8BRQ6CmgIliBP+gnrzyXvPLcU77v6lpZr217hYu7TCPBmtCs62KJ1k2+Sw6nlTyUZvPR2g2LFn3Cs8/+nSlTLmb48FHceusd3H77b8Ieq7d6X7jFGvUSLpqmYTAYax1zvAUfly9fitfrZfz44aFtgUCAVauWc+eddx83sXO8fXov2UAgUOPzsf+vAObMmc2PP25lwoSLuOSSy4mPT+A3v7nhhNcCGDNmPL///S24XGV8/fVKqSUlhBDijKYoKhZLTyyWnsTF3YSmaQSDpaH9Pl8GFRV7ACgv/4H8/GcABYulNzbbUCIjJ+JwjKjz9Xy+w/j9eWH3G42JmEyyiIoQAiZ3nsr88Qtq1V5KcaQyZ+jcep/ipigKdpMdu8lOWmTbEx9QRdM0yv3lNaYP/nJUVnUCa3fhLnYX7TzhOR9YfTcPrL4bhymSjtGd6BjdiU7RnUNfd4zpTJI1SRJWokFJUkqPolSOWKrD9D3TurXEXHXZCdsV/ffDytX4jqcBpu8d65NPPuSGG27k//7vWgBKS0spKMg/bpLodHXo0JHS0pIaK+jt3PmTbtuDBw+wa9dO7rjjLvr3Hxjavm/fXmbPfoCvvvqSoUOHYTAY2L17N3369AXgm2++5LXXXmbWrEcoKSkmOzsLpzMZgPfff6eqcPn9ALiP+TPNyDgStt8uVxnLli3hpZdep2fPXgB8++1qoPIvhLS0tmGv9fjjT9Gr19kkJiby9ttvommVI76EEEIIUUlRFAyGqNBnkymVrl23HVM4fQ0VFel4PFvxeLaiab5QUioY9FJaugibbSgmU0qtcweDXtLTRxAI5IS9vsGQRLdu21HViHq/NyFEyzO581QmdpzUrFepUxQFm8mGzWQj1XH8pPqaI99w6f8mnfCcidYk8spzKfOV8mPeFn7M21Krjc1o101YdYrpjNOWLAkrcdokKRWOokDVNLTj8Y0YRSA1FTUzE0UnuaMpCsGUVHwjRp24plQDi46O5ocfvmPYsOG43W5eeulf+P1+fL6KBrtmu3btOe+8wTz++CP84Q93UViYz/z5L+q2Xb58KVFR0UydOq3GqKVOnbrw2muvsGTJYsaNm8CECZN45pknueuu+1FVlRdffJ7Bg4fSqVNnBgw4lyee+Cu33XYnxcVFvPXW61x77Qzi4uJISnLyn/+8yYwZN7Nlyya+/XY1Xbt21+2L2RyBxWLlyy9XEhMTy8GDB/j7358EwOfzHfda1UaPHsc777zNlCkXY2jiP3shhBCiuTOb22E2tyMm5ioAfL5M3O61uFyriYo6+s1VeflGDh+eUXVMp6rpfkOx2YZiNrdHUcyYTGkEAnmAXokCFZMpDUWRlQCFEEcZVAND25x4caSWoK61sjZcsw1f0MfBkgPsK9nL3qJ09hWns694L/tK9nG49CBuv4vt+T+yPf/HWuexGW20j+oYSlJVJq46MdDcB7MWiYLaGLcrWjhJSp0ug4GyOfOImjkdTVFqJKa0qqxx2Zy5TZ6QAvjDH+7iscf+wvXX/x+xsbGMHj0Wi8XKrl0nHtp5Oh54YDbz5s3h5puvJzExkYsumsJ//vNmrXYrVnzBuHETa02jA7j00st45pmnyM3N4Q9/+BP/+MffuPPOWzGZTIwaNZabbvotAH/+81956qknuOWW67HbHUydeinTpv0KRVG4//4/8/TTTzJ9+q8ZMOBcrr12Bt9+u0a3zyaTiYceeoTnnvsHH3zwDikpbbjuuhm8/PK/2bXrZ9q37xD2WtVGjx7Hm2++yujR4+rp/6QQQghx5jCZUoiOvozo6Joj0jWtHIulDx7PVioq9lJRsZeiogVVx7QlJeVvOJ2zOHBgWpgzB3E6Z8lP94UQrdbJ1MoyqAa6xXWnW1ztH9Z7A14OlRxkX3E6e6uTVcV72VuczqHSg7j9bn4q2M5PBdtrHWsxWOgQ3ZGOx04HrBptlepog6qcesIqEAw061Ft4uQoWkPO3WqG9JY59vkqyM/PJD4+BZPp1H5qZl68EMesezBkHJ2HHEhtQ9mcuVRMrv+lNo1GFb9fv0B5c+LxePjhh/UMGjQ0VIdp5crlPP/8M3zwwaIm7l3D+v77dcyd+yjvv7/wuP/wrY/4g8rBfQkJkXVaylucOSQuhB6JC6GnpcVFIFCE270Ol2stbvdqyss3AQE6dlyB1TqQvXtH4vFspuZoKRWL5Rw6dfpKklJ11NLiQjQOiYuWYXH6wlq1slIdbeqlVlZFoILDpQdDSapjE1YHSw4Q0AJhj40wRNA+qgOdojvT4RdTA9s40o6bYNK9J3sqc4bNq/f6X+L0VL8nTthOklL1lxQgEMC0bi1qdhZBZ3JlDakGGiHVUpJSwWCQKVPGcskllzNp0lQKCvKZO3cOgwYN5dZb/9DU3WsQeXl5bN26mQULXmX48FFcf/2Nx20vSSnRkCQuhB6JC6GnpcdFIFBGefl32O0XoCgmysqWhx0tZTKlYTZ3ITX1n5jN7auOL0FRLKiqTOs7VkuPC9EwJC5ajsYeVaQoEB1rYfP+HVXTAffWSFgdKNmPP6i/ojuASTWFElYdozvR4ZiE1dbczdz0xfW1piRWj/6aP36BJKaakbompWT6Xn0yGPANbR3zkOuLqqo89thT/Otf/+Cdd97CbncwbtzE0HS71qisrJTHH3+EXr3O5sorr2nq7gghhBBnBIPBgcMxKvTZbh+N2dydiopdEPoGxgAE8PkO4/MdRlWP/mM5J+dRCgpeqqpt1bnqVxciIiq/Npnao5zGdBMhhGgKTVEry2QwVSaUojrV2ucP+jlSdrgyYVVSlbCqSl4dKNlPRbCCPUW72VO0u87Xq0xSKcxafS8TO06SqXwtjCSlRIPr06cvL730elN3o9F06NCRZcu+bupuCCGEEGc0RVFISXm8xmipdu3ew2rtR0VFOhUV+zAa40L7fL5DQICKin1UVOwDltc4X/fu6RiNiQCUln6Oz5dVlbDqgtGYItMBhRCiDoyqkfZRHWgf1YGRjK6xLxAMcKTscI3RVdWF1/cWp+ML+o5zZo0M1xG6zW9HWmQ7ku3JOO3JJNtScNqTcdqSSbYnk2xPIcnmxGyQUbHNhSSlhBBCCCFEq2S3j8Zi6Y/HsxGLpT8OxxgURcFoTMBmO79G27Zt38bvz6KiYg9eb3pV4moPFRXpBAIFGAwJobaFha9TWvp56LOi2DCbOxER0QWzuTOJifehqhH1ei8+32H8/ryw+43GREym4y8TL4QQzZlBNdAuqj3totozvO3IGvs+3PUev11+/LIoAKW+0rDF148Vb4nHaU+pTFTZUnDanZWfq75OtlUmr0wG02nd08k4Uwu4S1JKCCGEEEK0Soqi4HTOJjPzHpzO2ccdzaQoCiZTCiZTCnZ7zakumqbVONZqHYSmBaoSV/vRNDde7za83m2oqoOkpIdCbQ8fvgWv9+fQNECzuTJxFRHRGYMhtk73EQx6SU8fQSCQE7aNwZBEt27b6z0ZJoQQzUGyPaVO7Z4e+S9S7alku7PIcmWS5cok251d+bsri2x3Fr6gj3xPPvmefHbkbwt7LgWFeGtCjVFWR0ddpZBc9XuiLQmjenqplTO5gLskpYQQQgghRKvlcIyka9fvT+scv0xmJSbeCdwJgKb5qKg4EBpZFQyW12jv8WzG6/0Jj2dTrfOaTG3p2nVbqL3bvR5FsWI2d8JgcBxzfTMmUxqBQB41VxOspmIypaEoMh1FCNE6DUoZQqo9lUxXZq1C51CZQEpxpHJl9/877uiioBak0FNYlazKJMuVRbYri6yqr3PcWZXb3Fn4g37yynPJK89le/6PYc+poJBgTaxMWtmcoeRV5eejCa0Ea6Ju8mpx+kJmLp1e674yXZnMXDq91Rdwl6SUEEIIIYQQp0hRTEREdCEiogswvtb+tm3fxOvdRUVFetW0wMopgX5/FqoaVSOBlZFxJ15v5U/tjcbkGqOqIiPH4/FsDNOLIE7nLKlrJYRotQyqgTnD5jFz6XQUlBoJnOrV9+YMnXvC6W6qohJvjSfeGk8vzg7bLqgFyS/PJ9udRbarMmGV5c6sSmBVbst2ZZPtziKgBcgtzyG3PIfwqavKa1cnr5JtlTWvEq1JzP/xJd1Em4aGgsKsNa27gLskpYQQQgghhGggERHdiYjoXmt7IFBKIFBQY5vRmIjfH08gkI/fn4Xfn4XbvRoAs7l7VX2sLUDgmKMUTKZ2aJoBr3cPJlMaqmppwDsSQoimMbnzVOaPX1BrmluKI5U5Q+fW62giVVFJtCWSaEvk7ITeYdsFggHyPfmVSaqqUVZZrmNHXWWS5c4i151DQAuQ484mx53N1jr2Q0Mjo+wI6zLXNvoqio1FklJCCCGEEEI0MoMhEoMhssa2Dh3+B0AgUFhjVFVFRTpGYyoOx4gaqwlW0vD5DnDw4MWhLTbbMDp2/Cz0ubDwbVTVhsnUBpOpLUajE0VRG+zehBCioUzuPJWJHSc1m4LgBtVAki2JJFsSvekTtl0gGCDPk1c16uponatvM9ay+shXJ7xOtjurPrvdrEhSqoV65JHZfPbZorD7n332Bfr3H3jS59U0jY8//oBp03513Ha33XYzP/+8g4ULl2Kz2U/6OkIIIYQQQp/BEIvNNhCbrea/5TRN+8VoKQWDIY6IiHMIBDLw+Q4TDLpQ1Zr/NsvKupdgsCT0WVFMGI2pmExp2GyDcTqPFmb3endjNCZhMEQ35C0KIcQpM6iGFjdqyKAacNqcOG1OzknsG9q+5sg3dUpKOW3JDdi7piVJqXpw5IhCfn74OfwJCRqpqbXniJ6OP/7xLm655VYAVqxYxjvvvMXLL78R2h8VdWr/kNi8eSN///vc4yalcnNz2LZtK4mJSaxatYJJk1pv0TUhhBBCiOaicjXBWceMltJIS3sZh2NM5SdNIxAoRNM8oWOCwQoiI8fh8x2u+pWJpvnw+Q7g8x1AVR01rrF370iCwRJUNapqZFUa+fmdCAScWCxnExk5oV7vyec7jN+fF3a/0ZiIydSmXq8phBDNRV0LuA9KGdIEvWsckpQ6TV4vjBtnIzc3/BDopKQgGza4iKjHFXodjkgsFnvV1w5UVSU+PuG0z6tpJ06erVjxBZ07d6V37z58/vliSUoJIYQQQjQSu3101WipjVgs/bHbR4f2KYqC0RhXo72qmklLezX0WdP8+P1ZoSSVwRAb2hcMulAUY9XXJXi9JXi9P1FWVrnf4RhfIym1e3d/DIYYTKa0ql+V0wMrv26P0Rh/3HsJBr2kp48gEMgJ28ZgSKJbt+2oaj3+Q1oIIZqJ+irg3pJJUuo0mc3Qpo1GXp6GptUeLaUolaOkzI28Qm92dhZ///tcfvjhO2Jj47jooilcd91MDAYDfr+fp556gq+/XkVFRQX9+w/krrvux+/3c/vtvwFg2LCBYacALl/+BX379mPQoCF8+OG7ZGZmkJKSGtr/00/befbZv7Nr188kJjq58cZbGDOmcjWadevW8tJL/+LAgf2kpbXj97+/k4EDz2P+/BfZtGkDzz33Uug8l18+hRkzbuaii6Zw220307lzF9auXUMg4Oett95jz57d/Pvf/2TXrp9RFIW+fftz330PkZCQEPZavXufw5Qp43nwwdkMHz4KAL/fz9Sp43nkkccZOPC8BvszEUIIIYQ4XZWjpWaTmXkPTufsk15xT1GMoSTSL6mqnR499hMMuvD5juDzHcLnO4zJlEtxcToWy9Fiv4FAMRUVewAoL/+h1rkcjvG0b/9+6HNGxh1Vo57SQr+MxsqRWIFAHhDU6a2KyZSGojTyP6SFEKIRNWYB9+ZIklLH4XKF32cwgMUCigL33eflyittuu00TeGPf/Ry7L8Xwp3XXk+lmTRN48EH76FLl6689trb5OXl8eSTj6GqKtdffyMffvgumzZt5O9//xcWi4W//e1xnn327zz88KM8+ug8HnzwHv73vyW6UwCPHDnMzz/v4He/u51zzumL3W5nyZJPueGGmwAoLCzgzjtvZdy4idx//5/Ztu1HHn30Ydq374jBYODee+/khhtuYvTocXz55Uruv/9PvPPOx3W6r88+W8Tf//4cJpOZYFDjnnvu4IorrubPf36EvLxcHnvsEd566zXuuONu9u5ND3utCy4YzqpVK0JJqe+/X4/RaKRfvwH18wcghBBCCNGAHI6RdO36fYOdX1XtRER0IyKiG4oCCQmR5OWVcuyAelW10anTV1Ujrg5VJbGOfm02twu1DQSKKSx8VedKVE0f1EtIAQRxOmeddOJNCCFamuZWwL0xSVLqODp2jAy7b8wYP//5TzkAI0cGUBT9kVIA//63mQkTykOfBw60k59fe7pfTk7pafa40oYN35OVlclLL72Oqqq0a9eBW2+9g8ce+wvXX38jmZmZREREkJKSQlRUNA8++DDFxcUYDAYiI6MAwk4FXLasMlnVp08/DAYDQ4ZcUCMptXz5F0RGRnPHHXeHrl1SUozX62XVqmX07t2H66+/EYDp06/H4ymnrHpM+AkMGTKM3r0rVzTIz8/juutu5Morr0ZRFFJT2zBixCh++mk7AJ9++r+w1xozZjyzZz+A1+slIiKCVauWM3LkaAyG1v/ACyGEEELUB0UxYbX2w2rtp7v/lyUhkpJmH5O0OozPd4RgsJhgsAyDIYFAoJDK4u3HXiOCgoIFeDzbsVj6YLX2qTHdUAghWpOWWMC9PkhSqh4oSuU0Pq83/P7GdODAPkpKihk/fnhoWzAYxOv1UlxcxNSpl7J8+VKmTh1Pv34DuPDCkVx00eQ6nXv58i8YMmRYKIEzfPhIvvjic7Zs2UyfPn05ePAA3bp1Q1WPJt2uvPIaAN544xW6d+9Z43w33fTbOt9XcvLRKYLx8QlMnDiZd999m927d7F//z727NkVSlodPHgg7LXatEnDbDaxfv23DBkyjK+//pJ5856ucz+EEEIIIcTxHTu6yWCIJjHxT7XaBALF+HxHKC/fSEbG72rt1zQvpaUfU1p6dFR9fPztJCfPqdrvJxAoPmHtKiGEEM2XJKWOY9++8COXfjmo5qefyrjkEhvbtqkEgwqqqnH22UE++cRdq+0PPxxnXmA9CAQCtGvXgSeeeKrWPrvdQXR0DB98sIi1a1ezdu03vPjicyxbtoR//evl4553z57d7N+/l4MH97Ns2ZIa+5YsWUyfPn0xGsOH1PH26Q3LDgRq/rTMfExhrtzcHG68cTrdu/dk4MDzmTr1UtauXc327T+e8FpGo5ERI0bz1VcrMJlM2O32UDJLCCGEEEI0DoMhGoMhmoiInhQUvILHs4XK0VIGIiJ64XQ+jMezFY9nM+Xlm/H59mMyHZ0W6PX+RHr6UEymNCyWvlWjqfpisfTFZHI22X0JIYSoO0lKHcfJ1HhyOOCBB47WlgoGFR54wIvDUbttfdWOCqdt2/ZkZ2cRExOLo6oD33+/js8+W8ysWX/h888XYzabGT16HKNGjWHbth/5zW9uoLCw4Lhz9les+AKHI5LnnnsJVT3a7o03XmXlymXcccddpKW15dtvV6NpWuhcDz10Pz169CQtrR27du2scc7f/GYGl19+BSaTCbfbHdrudrspLCwI25evv15FZGQ08+b9I7Ttgw/eDX19vGuNGTOesWMncP/9d2G12hg1aqzUKhBCCCGEaCKVxdtnceDAtKotAZKTH8bhGENk5JhQu8opfkdH43u9uwFCKwmWli4O7TMak0lOfpzo6MsA0LQgoMi/+YQQopmpXdhInLKRIwP07Vs5uqdv3wAjRwZOcETDOO+8QSQnJ/PII38mPX0PW7ZsYt68x7BYLBgMBlyuMp555il++OE7MjKOsGzZ5yQlOYmOjsFqtQLw888/4f3FfMTly79g3LgJdOnSlU6duoR+XXnl1bhcLr7++kvGjZtIcXExzz//LIcOHeSzzxaxevVXnHvu+VxyyWVs3bqJd955i8OHD7FgwWvs25dO37796dHjLNLTd7Ny5XIOHjzAvHmPoh6nqFtUVDTZ2Vn88MN3HDlymLfeep2vvlpJRUUFwHGvBXDOOX2xWCx89tliRo8e10B/EkIIIYQQoi7s9tFYLJX/TrNY+mO3j67VxmCIxWA4uhBPdPQ0evQ4TIcOn+N0PkZ09BVERHQHFPz+LFQ1KtS2tHQRO3d24cCBaWRnP0JJyUIqKg7Uqn0lhBCicclIqXqkKPDgg14efDCCBx/0NnotqWoGg4Ennvg7//jHk9x883VYrTZGjhzDbbf9AYBp035NTk4Of/3rQ5SWltC9e0+eeOIpDAYDnTp14dxzz+e3v53Bww8/Glqhbtu2H8nMPMLkyRfXul7Pnr3o3r0nn3/+KWPHTuDJJ//BM888xQcfvENqahtmz55D167dAZgzZx4vvPBPXnrpeTp06MTcuU+TkJBIfHwCV1zxf8yb9ygGg8oVV1xNXl5u2HscNWosW7ZsYtase1EUhZ49z+K22+5g/vwXqaiooE2btLDXgsqfyI0cOYY1a76mR4+eYa8jhBBCCCEaXuVoqdlkZt6D0zm7ziOaDIYo7Pah2O1DQ9sCgTK83m1ERPQKbSsv30wgkEtZ2XLKypYfc3wsFktfkpMfw2LphRBCiMalaGfYjwd+uZwtgM9XQX5+JvHxKZhMZv0DmxmjUcXvD7d8rqiLv/xlFmlpbZk585Ym7Ud9xV+4JZvFmU3iQuiRuBB6JC6EntYSF8FgOR7PNjyeLZSXb8bj2YLXuwNN8wHQtetmzOZOAOTnv0hp6aIaNarM5s4oSt0nmfh8h/H788LuNxoTMZnanN5NNaHWEhei/klsiGrVsXAiMlJKnHG2bfuRnTt/4ptvvmTBgveaujtCCCGEEKKBqaoVm+1cbLZzQ9uCQS9e7w48nq2YTB1D293utbhcX+NyfX3M8ZFYLOdgsfQhKek+DIaYsNcKBr2kp48gEMgJ28ZgSKJbt+2oasTp3ZgQQrRwkpQSZ5z169fyzjtvc/PNt5KSktrU3RFCCCGEEE1AVSOwWvthtfarsT0p6QEcjjGhVf88nm0Eg6W43WsoL/8Op/ORUNu8vGfw+Q5hsfTFau1LRER3FMWMyZRGIJAH6M1sUDGZ0lCUljFDQwghGpIkpcQZZ+bMW5p8yp4QQgghhGieIiK6VxVMnw6Apvnxenfh8WzG789BVY8mk4qLP8Dj2RL6rCgRWCxnYzQmop+QAgjidM6SlQCFEAJJSgkhhBBCCCFEWIpixGI5C4vlrFr7EhLupLz8h1CdqmCwlPLyDVXHmdG0AHDsitwKJlM7FCWaQKC4xmqCQghxJpKklBBCCCGEEEKcgujoaURHTwNA04JUVOwNFVP3+3MoLv7vL47Q8PkOsH//aACMxiTM5q7Y7UNJSpp1tJWmyUgqIcQZQZJSQgghhBBCCHGaFEUlIqILERFdiI6+DE3T8Hp3Vk3vCwAKBkM8ZnMPfL49+P1Z+P05VVMCbTXOtWtXTwyGaMzmrkREdCUiogtmczciIroet8i6EEK0NJKUEkIIIYQQQoh6pigKTucsDhyYVrVFIy3tJRyOMQAEAiVUVOzB692FwRAXOs7vz8fvz8Dvz8Dr/YnS0prnjYq6mLZtF4Q+l5Utx2TqgNncAUWRb++EEC1Lk761vF4vf/nLX/jiiy+wWCzMmDGDGTNmHPeYw4cPM2XKFF544QXOP//8RuqpEEIIIYQQQpwcu300Fkt/PJ6NWCz9sdtHh/YZDFFYrf2xWvvXOMZgiKVr1x/xendRUbEbr3d3KHnl92diNDpDbQOB4lDSS1FMmEwdiYioHFFlNnfFau2vWwvrVPh8h/H786quBaWldsrLXWha5X6jMRGTqU29XEsIceZo0qTUvHnz2LZtG2+88QYZGRnce++9pKamMmHChLDHPPzww7jd7kbspRBCCCGEEEKcvMrRUrPJzLwHp3N2nepEKYqK2dwes7k9MLbGvkCgFE2rOOZzPhZLb7zePWhaORUVu6io2BUaXRUbO4PU1H8AEAy6yMy8t2o6YDfM5i5Vo6tMJ+xTMOglPX0EgUBO2DYGQxLdum1HVSNOeD4hhKjWZEkpt9vN+++/z8svv0yvXr3o1asXu3fv5u233w6blFq4cCEul6uRe9o8PfLIbD77bFHY/c8++wL9+w88qXPedtvN9Os3gJkzbzlh28svn8KMGTdz0UVTTuoaJ7Jx4w/cfvtvWL36h3o9rxBCCCGEEE3B4RhJ167f18u5DIbIGp/N5k507rwGTQvi8x2homJX1ciq3Xi9e7Baj34/4PXuoajozV+c0YjZ3JGIiK5ER19JdPQlQO1C64pixmRKIxDIA4I6PVMxmdJQFHO93KcQ4szRZEmpn3/+Gb/fT79+/ULbBgwYwAsvvEAwGERV1RrtCwsLefLJJ3n11VeZPHlyY3e3TgLBAOsy15LtzsJpS2ZQyhAMqqFBrvXHP97FLbfcCsCKFct45523ePnlN0L7o6JOfnnZxx57EqPxxD8pAXj55Tex2awnfQ0hhBBCCCFE/aocXdUWs7ktDsdo3TYGQyyJiffVSFppmpuKisrPNtvgUFuvdwf7908KFVo3m7vicIzF49kYpgdBnM5ZsmKgEOKkNVlSKjc3l9jYWMzmo9n0hIQEvF4vRUVFxMXF1Wj/xBNPcOmll9K1a9fG7mqdLE5fyKzV95DhyghtS7WnMmfYPCZ3nlrv13M4IrFY7FVfO1BVlfj4hNM658kksmJjY0/rWkIIIYQQQojGYza3IynpgdBnTQtWFVPfjde7C7t9aGif17ubQKCA8vL1lJevP8GZVUym9iiKA58vA6PRiaI0zA/mhRCtT5MlpcrLy2skpIDQ54qKihrb165dy4YNG1i8ePFpX1cveX+6Cf3F6QuZuXQ6GlqN7ZmuTGYunc788QsaJDF1PJmZGfzqV1O58cbf8M47bzNu3ATuvPMeFix4jUWLPiE3N4fo6BguvngaM2bcDNScvvfoow8TFRVFbm4ua9Z8TXR0DDff/DsmTJgE1Jy+d9ttN3PuueezZcsmNm/eRFKSkzvvvJvzz6/8aUtxcRFz5z7K99+vIyYmjquvns7f/vbEKU3RCwaDvPPOW3z88Yfk5+fRq9fZ3HHH3XTu3AWAFSu+4JVXXiA7O4vU1DbcfPOtXHjhCADef/8d3nnnLQoLC+jYsTO33/4n+vTpe/r/s+uJopxeLFYfKz+gEseSuBB6JC6EHokLoUfiovWqHF2VhtmcRmTkyBr7oqLG07nz6lCh9aO/fkLTvL84UxCfbx/794+r+mzEZGqDydQWszmN2NgbsNsrvy8IBj1omh+DwdHwNyiahLwzRLW6xkCTJaUiIiJqJZ+qP1ssltA2j8fDQw89xOzZs2tsP1Xx8ZG1tnk8HgoKVAwGBaOxctqgpmm4/ScuqB4IBnhw9d21ElIAGhoKCrPW3MOoDqNOOJXPZrSd1JDX6r6qqlLjM4DBUPn1tm1beP31twgGNb744jPef/+/PPLIY7Rp05Z169Yyb95jXHjhcHr06ImiKKhq5f8DRVH48MP3uOWW33Hrrb/nvff+y5NPPs6IESNwOCJD161u++abr3H33fdxzz338+9/P8e8eY/y8ceLyO7IXQAALSNJREFUUVWVhx9+kIoKLy+99Bq5uTk8+ugjtfr7y37r7QN4+eWX+OijD7j//j/Ttm1bFix4g7vu+j3vvfcJ5eXl/PWvD3HffbMYMGAgK1cu5y9/eZCFC5eQlZXJ888/wxNP/I2OHTvz3nv/4aGH7mPRoiW1poo2tmBQQVVVYmPtDRbjQkhcCD0SF0KPxIXQI3FxpokEkoChNbYGg0E2bOiPy7UNCAAGrNZOmExOvN5DeL2HAT8+3wF8vgO43ZCaOo2EhMr4yc1dwY4dl2I0xmGxtCMiol2N36OjhxERISv4tQbyzhB11WRJKafTSWFhIX6/H6Oxshu5ublYLBaioqJC7bZu3cqhQ4e4/fbbaxx/0003cckll/DII4+c1HXz80tDy5ZW8/kqCAaDBAIafn8QTdOY/PE4vs860VDVE9PQyCjLoMOLqSdse17yIBZdurROiSmjUcXvrywyGAxW3lD1Z4BAoPLryy+/iuTkyhd7VlYW998/m379zgVg6tRpzJ//Inv27KFLl+5omkYwePT/QZcu3bjqqmsBmDHjFt5997/s3r2H3r37hK5b3Xbw4KFMmFBZ62v69Blcf/1V5OTk4na7+f779bz77ie0aZNGx45duOGGm/jb3x6v0d9f9ltvn6ZpvP/+u9xyy60MGXIBAPfc8yC//vXFfPrpYs46qxd+v5/4+EQSE5P59a+vpmPHLhgMJg4fPoKiKCQmOklKSmbmzN8yaNAwKiqOxl9TCQQ0gsEghYUuTCbfKZ9HUSpf/noxLs5cEhdCj8SF0CNxIfRIXIhfSkiYjcs1repTgKSkuURGjgFA0wL4/Vn4fIepqDiEz3cYv78HeXmVywEWFOwFwO8voKysgLKyzTXO3bbtm6Fi62VlK8nJ+RtmcxomUxomU9uq39thMrWpt9FWFRWHqwq46zMaEzGZJFFWV/LOENWqY+FEmuy78Z49e2I0Gtm8eTMDB1auCrFhwwZ69+5dY+TKOeecwxdffFHj2HHjxjFnzhyGDq2Zua8LTaPWw6H3sCi0jvGGKSlHk2H9+w9k+/ZtvPDCcxw4sI9du3aSn59PMKi3ggakpbUNfW23V770/X6/btu2bdsd09YeapuevpuoqGjatEkL7T/77HNO6V4KCwsoKSnmrLPODm0zGo306HEWBw7s5+KLpzFkyDDuvPNW2rVrz7Bhw5ky5RIsFgvnnz+YTp26cO21V9KtW3eGDRvO1KmXNnlC6lh6sdmU5xGti8SF0CNxIfRIXAg9Eheimt0+Gqu1P+XlG7Fa+2O3jz4mNgwYjW0wGttgtZ4fOqZ6f1zcTURHX4HPdwSf7yA+3+GqX5UJLLO5c6itx/Mzbvdq3GEmr7Rt+zZRUVOq2v5IWdnKqqRVZQLLaExGUY4/IyIY9JKePoJAICdsG4MhiW7dtqOqEXX53yOqyDtD1FWTfUdutVq55JJLePjhh3nsscfIycnh1Vdf5fHHHwcqR01FRkZisVho3759reOdTifx8fEN0jdFUVh06dI6Td9bl7GWqz697ITt/jvpQwalDjlum5OdvlcXx9btWrToE5599u9MmXIxw4eP4tZb7+D2238T9liTqfZKfFqYN4teckfTNAwGY61jwp3jRMxm/b8IgsEAwWAARVGYN+8f7NixjdWrv+brr1fx8ccf8PzzL9O1a3deeul1Nm/eyJo1X/PZZ4v45JMPmT9/AYmJSafUHyGEEEIIIc40iqLgdM4mJ+c+kpJmn/T3LwZDFAZDFBZLz+O2i4yciNGYSEXF0aRV9a9gsAijMSXU1uX6huzsP/+inyaMxjaYTGk4nY9gs1UOhPD7cwkECjAa26CqdkymtKqRUno/qFcxmdJQFLPOPiFEfWjSYSL3338/Dz/8MNdddx0Oh4Pf//73jBtXWSBv2LBhPP7440ybNu0EZ2kYiqJgN9lP2G5E21Gk2lPJdGXq1pVSUEhxpDKi7YlrSjW0Tz75kBtuuJH/+7/KKXmlpaUUFOSfcpKoLjp06EhpaQkZGUdITa0c9rpz50+ndC6Hw0FcXDzbt/9I167dgMrRWDt3/sy5557PgQP7WbToE2677Q7OOutsbrrpt0yf/mvWr/8Wr9fLhg3fc911M+nffyC33HIbU6eOY+vWzYwePe4EVxZCCCGEEEJUczhG0qHDDvLyGm6KltncEbO5o+6+QKAEVbUe07Yz0dG/PiZ5lYGm+fD59uPz7a9xbHHxB2Rl3QuAwRCLqsagn5ACCJKQcOfp34wQIqwmTUpZrVbmzp3L3Llza+3buXNn2OOOt6+xGVQDc4bNY+bS6SgoNRJT1VMA5wyd2+QJKYDo6Gh++OE7hg0bjtvt5qWX/oXf78fnqzjxwaeoXbv2nHfeYB5//BH+8Ie7KCzMZ/78F0943Lp1a2t8NpvN9O8/kCuu+D/mz3+RhIRE0tLa8vbbb1BR4WXUqHEEgwE++eQDHA4H48ZNZN++vWRmZtCtWw8iIiJ47bWXiYuLZ+DA89i8eSPl5eV07ty1oW5dCCGEEEII0QAMhqganyMjxxMZOT70WdP8odpWPt8hIiK6HbPPh6rGEAwWEQgUEggUhrsKRmMyhw9PB4wYjXEYDDV/JST8gYiIyu8nKmtoHcJgiKtqG4ui1J550lgq63lJrSzR/DWfgjot2OTOU5k/fgGzVt9DhisjtD3FkcqcoXOZ3HlqE/buqD/84S4ee+wvXH/9/xEbG8vo0WOxWKzs2tWwSb4HHpjNvHlzuPnm60lMTOSii6bwn/+8edxj7rqrZmH7xMQkPv74M6688hpcLhfz5j2Ky1XG2Wf34Z//fJHY2FgAHn30Sf7973/y5puvERsbyy233MZ55w0C4P77H+L111/h6afn4XQm8+c/P0KHDvo/fRFCCCGEEEK0TIpiDNWXgkE19iUk3E5Cwu0EAiWhpFVZ2XIKCn75g/MANtsgSko+BPz4/Tn4/TVrT8XFzQh9XVLyUa0phKoajcEQi9EYR0rK01it/QAoL9+C271eN9GlqvbTLukitbJES6JoDTl3qxnSG2Lq81WQn59JfHwKJtOpzxcOBAOsy1xLtjsLpy2ZQSlDGmyE1LGr7zVnHo+HH35Yz6BBQ0N1p1auXM7zzz/DBx8sauLeNQ/1FX+KAgkJkQ06jFq0PBIXQo/EhdAjcSH0SFwIPa0tLjRNY+/ekXg8W4AAYMBi6UOnTqvQNA+BQAGBQAF+f37o60CggNjYmRiNlXWO8/NfoqDg+ap9xfCL0i6dOn2J1dofgLy8Z2olsKopipn27T/Gbq9cbbys7CtKSj6qkbg6msyKxWRqW2MqY8372Uy4WlkWS186dVpV7zWNW1tsiFNXHQsnIiOl6pFBNTC0zQVN3Y1mxWw28/jjj3DJJZczadJUCgryee21lxg5ckxTd00IIYQQQgghqoq3z+LAgep6xgGczlkoioKiWFHVNiec6hYffzPx8TcDoGkBAoGiGgkss7lLqK3Z3JHIyKk19gcCBWhaBZpWgao6Qm09nk0UFr4W9rrt23+MwzEagOLiT8jPf7ZqxFUkx6uVVX1//9/encdFWe1/AP88MwPDLooruZuAKYJKeUu8Am5o6VXT0kwx18ylvCYKlkuuSW65XNE09VIupDfTvNeflLkVapKgGAoDKAniuKCsMzDz/P5AJocZEA2eQfi8X695yXOeM2e+jx6OD1/OOQ+RpTEpRVVKJpNh6dKV2LBhDXbvjoC9ffF+TxMmTLZ0aERERERERAAAe/uesLHpjIKCGNjYdIa9fc+nbksQ5FAoXAyzqEpzchoIJyfjLV5EUYRen/vwyYCNDOV2di+jQYOQh/tf3X1k1tZd6HT3IJf/+RlabQry8399THTFs8Bksrq4fXstlEp3KJUesLJqDkGQPfU1Ez0tJqWoynl5eWPz5u2WDoOIiIiIiMis4tlS85GREYxGjeZLPotIEATI5Q6Qyx2Myu3susLOrmuF2qhTZzCUSreHias7yMuLQXb2t6VqFc8Cy8mJglq95JHPt4VS6WZIUjk7j4SVVZO/eFVEj8ekFBEREREREdV6Dg7+aNv2nKXDeGrW1i1hbd3ScFzWXln29j2h1+fByWkINJqr0GqvQhTzUVAQ+7Au4OQ0AEBxUior6ytkZx+FUulheFlbt4ZM9vT74RKVYFKKiIiIiIiIqIYpb6+sR5cQimIRtNpUaDRXoNEkQKNJgLV1a0M7ubkn8eDB/lKtK2Bt3RpKpQdcXVdBoWj4sC3ubk5PhkkpIiIiIiIiohqoIntlCYICSuXzUCqfB/Cqyfm6dcdAqWz3MGF1BRrNFej12dBqr0KrTYJMtsVQNyPjn0hOPg6Fwu3hrCq3hzOr3EyWJj6pwsI/UFR0u8zzCkWDx25IT9UPk1JERERERERENVBl7JVlZ/c32Nn9zXAsiiKKitKh0SSgsPAGZDJbw7mCgnjk5ycBSEJ29mGjdqysmuP5589DJlMCALTaa5DL60Aud35sDHq9BiqVH3S6W2XWkcsbws0t3tA+PRuYlCIiIiIiIiKqoSp7ryxBEGBl9ZzZWUnNm0dAqbyOW7diUFCQYFgSqNOpAeiNEkbp6VORm3scCkWTh7Oq3B/Zt8rd6OmFgmANK6um0OluA9CbiUoGK6umEATuc/WsYVKKiIiIiIiIiP4yhaIh6tZtA53OB49uL1VUdAdFRZlGdXW6+w/PZaCoKAO5uccM5+TyBvDwUBmOs7MPw8npHygoiCnjk/WG/bKeNbV9WaLM0gHQ05k0aSwWLvzI7Ln/+7//IjDQH1qttsz3Z2Skw9fXBxkZ6QAAX18fxMT8arZuTMyv8PX1qXBsP/4YhXv37gIAtm4Nx9SpEyv83icxdOgAHD58sEraJiIiIiIiosqhULjAxuYFo7I2bU7AwyMNrVpFwdV1I1xcpsPBoQ+srFqY1L15cxZu3ZpfRuuC0X5ZDx4cwoMHh5CT8yPy8s6goOAiNBoVCgtvQqfLqYrLe2olyxKTk/9e5kul6gG9XmPpUKsMZ0pVAktkNnv3DsSmTetRWFgIKysro3M//ngUfn4BsLau+NTFAwf+ByenOn85rps3MzBv3hxERn4HABgxYhSGDRv+l9slIiIiIiKimkUurwM7u5dgZ/eSUbkoFj3ytQ42Nl4QBGtotSkASj/hTzSaJZWePg063R2zn2dj4402bU4YjlNS+qCo6A5kMjvDSxDsIZPZwdq6BRo2nGuoe/9+JPT6gkfq2kMQiv+Uyx1hZdX0ia+fyxKZlPrLLLXhWs+evbF6dRh+/fUMXn7Z11Cem5uDs2ejERa29onac3GpXylxlX4EqJ2dXaW0S0RERERERLWDICge+VqO5s13AQB0unykpPhBo0lAcXJKgJVVU6OnCtravgid7g70+jzo9bkQxTzD1zKZ8c+nGo3q4X5XpmxsOholpW7dWvwwKWbK2roV2raNNRwnJ/eGVquCTGb/MIFla0h2WVm5wtV17cNrE2Bv361GLkusKCal/iJLZTbr1q0LH5+uOH78mFFS6uTJ43ByqoNOnbpArb6FtWs/w6+/noNGU4BWrVrjgw9moWNHb5P2fH198Pnnm9C5sw9yc3OwYsVS/PzzKbi41MfAgYOM6sbFXcC//rUOV68mQBAEeHt3xpw581C/fn0MGzYQADBs2ECEhs5HRkY6fvvtPNav3wwAuHQpDhs2rEVi4hXUrVsPI0eOxqBBQwEAS5YsgJOTE9RqNU6fPoE6dZwxceJ7CAw0fSxpRZT3WTdv3sSnny7CpUtxUCpt0LNnb0yb9k8oFAokJl7FypXLkZh4BY6OTvjHP4bgnXcmPFUMREREREREVDnkcls0brwE164NeVgiwtV1rVHSpkWLvWbfK4oiRLHQqKxFi/3Q63Og1+dCr8+DKOZCr8+HXp8HubyuUV17e39YW7c1m+ySy+sZ1dXp7kCnu/0wT2DMyqql0XFOzsmyrhY2Nl5GCbeaiEmpcuj1ueWclUMms3n4iM2PHvmmMGkFDRoEG32TlNWuTGb/RPH16tUHGzasgU4XCrlcDqB4P6eePXtDJpPhk08+hoODI8LDv4Rer8emTeuwcuVy7Nixu9x2w8KW4fr1VKxfvxlZWfewZMkCw7mcnBwEB3+AN98ciY8//gS3b6uxdOkniIj4Eh98MAtbtuzAhAlB2LJlB1q3boOIiB2G96ampmD69Ml48823EBLyMeLjL2HlyuWoW9cFPXr4AwD27duLCRMmY9KkKfjmmz0IC1sKX98ecHBweKK/m8d91po1K2Bra4cvv/wa9+7dxUcfBaNFi1YYMmQYFi+ej44dvTFv3iJcv34NH30UDA+PdkbJPyIiIiIiIpKevX1P2Nh0RkFBjNFeUo8jCILJZBFbW68Kf66r65oK123R4gD0+gcPk1Z5DxNYxYkvQTBeQeXkFIjcXCfk5Z0o1Yquxs+SApiUKtfvvzcp85yDQx+0aPENADz8JhBgura12O3b6+Dk1N9wfPVqB7NrXNu3f/BE8fXo4Y+wsGWIjf0NnTv7ICcnB+fORWPs2IkQRRHdu/vBzy8ADRs2AgAMGfIGZs16v9w2c3JycOxYFD7/fBPc3T0AAGPGjMeqVZ8CADSaAgQFjcfw4SMhCAJcXZ+Dn18Afv89HgDg7FzX8KdSaWPU9sGD/4GbmzsmTZoCAGjevCVSU1Pw9dc7DUmp5593w8iRQQCA8eMnITJyF1JSVPD0rPhgUZHPysjIgLu7Bxo3boKmTZshLGwtHB2dAAA3b6aje/ceaNy4CVxdn8OaNRvRpInrE30+ERERERERVb7iiSHzkZERjEaN5lfLpI21dbMK123YMBSiKCI52R8FBbEAdKgts6QAJqUqRfE3gTUA8zviV9U3iZ2dPV55xRc//fQDOnf2wcmTP6FJE1d4eLQDAAwePBRRUUdw6VIcrl1LxZUrCdDrzS0x/FNa2jXodDq0betmKGvX7s8nH7i41Ee/fq9hz56vkJh4FampKUhKulqhpFFqaipeeKG9UZmnZ0ccOLDPcNy06Z/fvPb2xbOjioqK8KQe91kjR47G0qULceLEMXTt+gp69uwDN7fiJNyoUe8gPHwDDhzYj1de8UXfvv0rbc8tIiIiIiIi+mscHPzRtu05S4dRaUxXYNWOWVIAk1Llatcuo5yzcqMjD48UpKb2Q0HBJfyZ2eyAli3/C0EwruvmdqnSYuzdOxBr1oRhxoxg/PjjUfTq1RcAoNfrMWPGFGRnZ6Nnz97o1u3vKCwsxNy5syrU7qMblisUfz7dT62+hfHjR8HdvR18fLpi4MDB+PnnU4iPv/jYNs09DVCn00On+zNRVvpJgqVjqajHfVafPv3QpcuLOHnyJ/z88yl8/PFsjBwZhIkT38Pbb49BQEBvnDhxDKdPn8T7709GcPBcDBgw6InjICIiIiIiInqcp12W+KyTWTqA6qx4p/yyXsZL0+RyBzRqNB/FCSmgOLM5H3K5A2Qy2wq1+zRefrkb8vPzEBPzK86fP4fevQMBAKmpybhwIQZr1mzE6NFj8corvrhzp3iTtfKSPM2bt4BCocDvv182lCUmXjF8feLEMTg61sGKFWvwxhsj4OXVCenpNwzny8vkNm/eAvHxxgm5+Pg4NG/e4skuugIe91nh4Rtw9+5dDBo0FCtWrMH48ZNx/PiP0Gg0WLPmM1hZWWH48Lexbl04Bg4cjJ9++rHSYyQiIiIiIiIC/lyWaG3tXm2XJVYFJqUqUUlmE4BkmU1ra2v8/e/+WL9+NVq3fh7NmjUHADg4OEImk+GHH47g5s0MHDsWhW3bwgEAWq22nGtwQGDgq1izJgzx8ZcQE/Mrtm3bbDjv5FQHmZk38euvZ3Hjxh+IiNiO48d/NLRpY1OcgEtKuoq8vDyjtgcPHobExKsID9+A69ev4b//PYT9+yMxZMiwp75+lSoJ0dE/G73u38967Gddv56K1atXICkpEcnJKkRHn0bbtu5QKpWIi7uA1avDcP16KhISLiM29je4ubk/dYxEREREREREj1OyLNHBwd/SoUiGy/cqkaU2XOvduy8OHz6IadNmGMoaNmyEmTPnYPv2LxAevgHNmrXA++9/iMWL5yMx8Uq5eyTNmDELq1eHYcaMKXB0dMTQocOxYcMaAEBAQG/Exv6Gjz6aDUEQ0K7dC5g69QNs3RoOrVYLZ2dn9O3bD/PmhWDy5GlG7TZu3BgrVqzGxo1rsXt3BBo1aoypU2fg1VcHPvW179nzFfbs+cqobPXqDXjxxa7lftaHH4Zg5crlmDp1InQ6HV55pRs++KB4aeMnnyzDqlWfYvz4IMjlcgQE9MKYMeOeOkYiIiIiIiIiMiWIT7NhzzPs9u1slL7iwkIt7tzJgItLE1hZme5FVB0pFDIUFZW/aTk9Gyqr/wkCUL++o9k+TrUX+wWZw35B5rBfkDnsF2QO+wWVhX2DSpT0hcfh8j0iIiIiIiIiIpIck1JERERERERERCQ5JqWIiIiIiIiIiEhyTEoREREREREREZHkmJQiIiIiIiIiIiLJMSn1iFr2IEKqJtjviIiIiIiIqDZiUgqATFb816DTFVk4EqqNtFoNAEAuV1g4EiIiIiIiIiLp8KdgADKZHFZWNsjJyYJcLocgVP9cnV4vQKfjDJtnmSiK0Go1yMm5B1tbB0NylIiIiIiIiKg2YFIKgCAIqFOnHu7cuYm7dzMtHU6FyGQy6PV6S4dBlcDW1gFOTvUsHQYRERERERGRpJiUekihsELDhk1RVFRo6VAeSxCAunXtce9eLrgd0bNNLldwhhQRERERERHVSkxKPUIQBFhZWVs6jMcSBMDGxgZWVoVMShERERERERHRM4lTNIiIiIiIiIiISHJMShERERERERERkeSYlCIiIiIiIiIiIsnVuj2lBMHSEfx1JddQE66FKg/7BZnDfkHmsF+QOewXZA77BZnDfkFlYd+gEhXtA4IocqtsIiIiIiIiIiKSFpfvERERERERERGR5JiUIiIiIiIiIiIiyTEpRUREREREREREkmNSioiIiIiIiIiIJMekFBERERERERERSY5JKSIiIiIiIiIikhyTUkREREREREREJDkmpYiIiIiIiIiISHJMSlVTGo0GoaGh8PHxga+vL7Zt21Zm3cuXL2PYsGHw8vLC66+/jkuXLkkYKUkpMzMT06dPx0svvYTu3btj2bJl0Gg0ZutOnjwZ7u7uRq9jx45JHDFJ4ejRoyb/1tOnTzdb9+eff8Zrr70GLy8vjB49GmlpaRJHS1LYv3+/SZ9wd3eHh4eH2foDBw40qXv16lWJo6aqpNVq8dprr+HMmTOGsrS0NIwZMwbe3t7o378/Tp06VW4bhw4dQq9eveDl5YUpU6bg7t27VR02VTFz/eLChQsYPnw4OnXqhL59+yIyMrLcNnx8fEzGj9zc3KoOnaqQuX6xePFik3/niIiIMtvYvn07unfvjk6dOiE0NBT5+flShE5VrHTfmDNnjtn7jdGjR5t9//37903qdu3aVcpLoGpIYekAyLwVK1bg0qVL2LFjB9LT0zF79my4uroiMDDQqF5eXh4mTpyIAQMGYPny5di1axcmTZqEo0ePws7OzkLRU1UQRRHTp0+Hk5MTvvrqK9y/fx+hoaGQyWSYPXu2SX2VSoWwsDC8/PLLhrI6depIGTJJJCkpCf7+/li0aJGhTKlUmtRLT0/HlClTMG3aNHTv3h0bNmzAe++9h++++w6CIEgZMlWx/v37o3v37objoqIiBAUFwc/Pz6SuTqdDamoqIiIi0LJlS0N53bp1JYiUpKDRaDBz5kwkJiYaykRRxJQpU+Dm5oZ9+/YhKioKU6dOxeHDh+Hq6mrSRlxcHObOnYuFCxfCw8MDS5YsQUhICMLDw6W8FKpE5vqFWq3GhAkTMGLECCxfvhzx8fEICQlBgwYNzI4fmZmZyM7ORlRUFGxsbAzlvAd9dpnrF0DxfeXMmTMxePBgQ5mDg4PZNo4cOYL169cjLCwMLi4uCAkJQVhYGObNm1elsVPVMtc35s6di5kzZxqOb9y4gVGjRpWZlEpKSoKzszMOHTpkKJPJOE+mtmNSqhrKy8tDZGQktmzZgvbt26N9+/ZITEzEV199ZZKUOnz4MJRKJYKDgyEIAubOnYsTJ07gf//7H4YMGWKhK6CqkJycjAsXLuD06dOoX78+AGD69On49NNPTZJSWq0Wf/zxBzw9PdGgQQNLhEsSUqlUcHNze+y/dWRkJDp06ICxY8cCAJYtW4Zu3brh7Nmz/C1VDWNjY2P0A2J4eDhEUcSHH35oUvePP/5AYWEhOnbsaDaZSc+2pKQkzJw5E6IoGpVHR0cjLS0Nu3fvhp2dHdq0aYNffvkF+/btw7Rp00zaiYiIQL9+/TBo0CAAxb888/f3R1paGpo1aybFpVAlKqtfREVFoX79+vjnP/8JAGjZsiXOnDmDgwcPmk1KqVQqNGjQgH2ghiirXwDF/9bjxo2r0H3lzp07ERQUBH9/fwDAwoULMW7cOMyaNQu2traVHjdVvbL6hqOjIxwdHQ3Hc+bMQWBgIHr16mW2neTkZLRq1Yo/n5ARpiWroYSEBBQVFaFTp06Gsi5duiA2NhZ6vd6obmxsLLp06WKY5SAIAjp37owLFy5IGTJJoEGDBvjiiy8MCakSOTk5JnWTk5MhCAJvEmsJlUplNMOlLLGxsfDx8TEc29raon379hwvarisrCxs2bIFM2fOhLW1tcn5pKQkNGnShAmpGqok6bxnzx6j8tjYWLzwwgtGM1q6dOlS5nhQevxo0qQJXF1dERsbWyVxU9Uqq1+UbA1Qmrl7DaB4/GjVqlWVxEjSK6tf5OTkIDMzs0L3GjqdDhcvXjQaL7y9vVFYWIiEhITKDpkkUlbfeNQvv/yCc+fOGZLa5iQlJVWoH1HtwplS1ZBarUbdunWNfnioX78+NBoNsrKyUK9ePaO6zz//vNH7XVxcTKbc0rPPycnJaDmOXq9HREQE/va3v5nUTU5OhoODA4KDg3H27Fk0btwY06ZNQ48ePaQMmSQgiiJSUlJw6tQphIeHQ6fTITAwENOnTzdJQKjVajRs2NCozMXFBTdv3pQyZJLYrl270LBhQ5OZtiVUKhWsrKwwadIkXLp0Ca1atUJwcDA6duwocaRUFd566y2z5U86Hty6dYvjRw1SVr9o2rQpmjZtaji+c+cOvv/+e7Oz54Di8SM/Px+jRo1CSkoK2rVrh9DQUCaqnlFl9QuVSgVBELBp0yacOHECzs7OeOedd4yW8pV48OABNBqN0XihUCjg7OzM8eIZVlbfeNTmzZsxePBgNGnSpMw6KpUKRUVFGDp0KDIzM+Hj44OQkBCT/1+oduFMqWooPz/f5IfJkmOtVluhuqXrUc0TFhaGy5cvY8aMGSbnkpOTUVBQAF9fX3zxxRfo0aMHJk+ejIsXL1ogUqpK6enphnFgzZo1mD17Ng4ePIgVK1aY1OV4UfuIoojIyEi8/fbbZdZJSUnB/fv3MWzYMGzevBlt2rRBUFAQMjIyJIyUpPak40FBQQHHj1qmoKAA06ZNQ/369fHmm2+arZOcnIz79+9j8uTJ2LhxI2xsbDBmzJgyZ1bRs6lkBn7r1q2xefNmDBs2DB9//DGOHj1qUregoAAAOF7UMmlpaYiOjsaoUaPKrZecnIycnByEhIRg9erVuHXrFt59913odDqJIqXqiDOlqiGlUmkyaJccP7pHSHl1S9ejmiUsLAw7duzA6tWr4ebmZnL+vffew6hRowwbm3t4eCA+Ph579+6Fp6en1OFSFXruuedw5swZ1KlTB4IgoF27dtDr9Zg1axZCQkIgl8sNdcsaL5ycnKQOmyRy8eJFZGZm4tVXXy2zzqJFi1BQUGDYsHbBggWIiYnBgQMH8O6770oVKklMqVQiKyvLqKy8+4eyxg/uD1Mz5ebm4r333kNqaiq+/vrrMv+dt27disLCQtjb2wMAPvvsM/To0QPHjh3DgAEDpAyZqtCgQYPg7+8PZ2dnAMX3lampqdi1axd69+5tVLdkKTjHi9rlyJEjaNeunckKntK+//57CIJg+L/m888/h6+vL2JjY9G5c2cpQqVqiDOlqqFGjRrh3r17KCoqMpSp1WrY2NiY/PDYqFEj3L5926js9u3bnAJZgy1atAhffvklwsLC0LdvX7N1ZDKZyZP2WrdujczMTClCJIk5OzsbPT2vTZs20Gg0uH//vlG9ssYLbjZZc508eRI+Pj7lPnlToVAYPUGp5LfhHC9qtie9f+D4UXvk5ORg3LhxSExMxI4dO8rd/8Xa2tqQkAKKExJNmzbl+FHDCIJgSEiVKOv/CWdnZyiVSqPxoqioCFlZWRwvarCTJ0+iZ8+ej61na2tr9MsPFxcXODs7c8yo5ZiUqobatWsHhUJhtNno+fPn4enpafLITC8vL/z222+GJyGIooiYmBh4eXlJGTJJZP369di9ezdWrVpV7syHOXPmICQkxKgsISEBrVu3ruoQSWInT55E165dkZ+fbyj7/fff4ezsbLT/HFA8Xpw/f95wnJ+fj8uXL3O8qMHi4uIe+5vHUaNGYf369YZjvV6PK1eucLyo4by8vBAfH29YagMU32uUNR6UHj8yMjKQkZHB8aOG0ev1mDp1Kv744w/8+9//Rtu2bcusK4oievXqhf379xvK8vLycO3aNY4fNczatWsxZswYo7Ky7itlMhk8PT2NxosLFy5AoVDAw8OjqkMlCxBFERcvXnzs/UZOTg5efPFFREdHG8oyMzNx7949jhm1HJNS1ZCtrS0GDRqEBQsWIC4uDlFRUdi2bRtGjx4NoHjWVMlNZGBgIB48eIAlS5YgKSkJS5YsQX5+Pvr162fJS6AqoFKpsHHjRkyYMAFdunSBWq02vADjfhEQEICDBw/i22+/xbVr17B+/XqcP3++3H1l6NnUqVMnKJVKfPTRR0hOTsbx48exYsUKjB8/HjqdDmq12jCF/vXXX0dMTAw2b96MxMREhISEoGnTpujatauFr4KqSmJioslU+tL9IiAgANu3b8cPP/yA5ORkfPLJJ8jOzja7gS3VHC+99BKaNGmCkJAQJCYmYvPmzYiLi8PQoUMBFC+1UavVhn0+RowYgQMHDiAyMhIJCQkIDg6Gn58fn/Jaw3zzzTc4c+YMFi9eDCcnJ8N9RslSz0f7hSAI8PPzw7p163DmzBkkJiYiODgYjRs35oNVahh/f3+cO3cOW7duxfXr1/H111/j22+/xdixYwEU7yNVcj8KFG+KvXXrVkRFRSEuLg4LFizAG2+8weV7NdSNGzeQm5trduneo33DwcEBXbp0wbJlyxAXF4f4+HjMmDED3bt3h7u7u9RhU3UiUrWUl5cnBgcHi97e3qKvr6/45ZdfGs65ubmJ+/btMxzHxsaKgwYNEj09PcWhQ4eK8fHxFoiYqlp4eLjo5uZm9iWKpv1i7969Yp8+fcQOHTqIgwcPFs+ePWup0KmKXb16VRwzZozo7e0tduvWTVy3bp2o1+vFtLQ00c3NTYyOjjbU/emnn8Q+ffqIHTt2FIOCgsTr169bMHKqap6enuKJEyeMykr3C71eL/7rX/8S/fz8xA4dOogjR44Ur1y5YolwqYqVHg9SU1PFkSNHih06dBBfffVV8fTp04Zz0dHRopubm5iWlmYo27dvn9ijRw/R29tbnDJlinj37l1J46eq8Wi/GDt2rNn7jLffflsURdN+UVBQIC5btkzs1q2b6OXlJU6aNElMT0+32LVQ5Sk9Xhw9elQcMGCA6OnpKQYGBopHjhwxnNu3b5/hfrREeHi4+PLLL4tdunQRQ0JCxIKCAslip6pVum9cuHBBdHNzEzUajUnd0n0jKytLnDNnjti1a1exU6dO4ocffihmZWVJEjdVX4IoPlz3RUREREREREREJBEu3yMiIiIiIiIiIskxKUVERERERERERJJjUoqIiIiIiIiIiCTHpBQREREREREREUmOSSkiIiIiIiIiIpIck1JERERERERERCQ5JqWIiIiIiIiIiEhyTEoREREREREREZHkFJYOgIiIiKgmCggIwI0bN8ye27lzJ7p27VolnztnzhwAwPLly6ukfSIiIqLKwqQUERERURUJDQ1F//79Tcrr1KljgWiIiIiIqhcmpYiIiIiqiKOjIxo0aGDpMIiIiIiqJe4pRURERGQBAQEB2L59OwYMGABvb29MnDgRarXacF6lUmHcuHHo3LkzunfvjvXr10Ov1xvOHzhwAIGBgfDy8sLw4cNx+fJlw7mcnBzMmDEDXl5e8PPzw8GDByW9NiIiIqKKYFKKiIiIyELWrVuH8ePHY8+ePcjPz8e0adMAAHfv3sVbb72Fhg0bIjIyEvPnz0dERAR27twJADh58iTmzp2LoKAgfPfdd+jQoQMmTZoErVYLADh69Cjat2+PQ4cOoV+/fggNDUV2drbFrpOIiIjIHEEURdHSQRARERHVNAEBAVCr1VAojHdLcHV1xffff4+AgAD06tULoaGhAIC0tDT06tULBw8eRHR0NLZt24aoqCjD+3ft2oUNGzbg1KlTmDp1KhwcHAybmWu1WqxevRpjx47FypUrkZqait27dwMAsrOz4ePjg71798LLy0vCvwEiIiKi8nFPKSIiIqIqMn36dPTp08eo7NEkVefOnQ1fN2vWDM7OzlCpVFCpVGjfvr1R3U6dOkGtVuPBgwdISUnB8OHDDeesra0xe/Zso7ZKODo6AgA0Gk3lXRgRERFRJWBSioiIiKiKuLi4oEWLFmWeLz2LSqfTQSaTQalUmtQt2U9Kp9OZvK80uVxuUsbJ8URERFTdcE8pIiIiIgtJSEgwfH3t2jVkZ2fD3d0drVq1Qnx8PAoLCw3nf/vtN9SrVw/Ozs5o0aKF0Xt1Oh0CAgJw/vx5SeMnIiIi+iuYlCIiIiKqItnZ2VCr1SavvLw8AMDOnTvxww8/ICEhAaGhoejWrRtatmyJAQMGQKvVYt68eVCpVIiKisK6deswYsQICIKAUaNG4bvvvsN//vMfXLt2DcuWLYMoimjfvr2Fr5iIiIio4rh8j4iIiKiKLF26FEuXLjUpf//99wEAgwcPxqpVq5Ceno4ePXpg4cKFAAAHBwd88cUXWLJkCQYNGoR69eohKCgIkyZNAgC8+OKLmD9/PjZs2AC1Wo0OHTpg06ZNsLGxke7iiIiIiP4iPn2PiIiIyAICAgIwdepUDBkyxNKhEBEREVkEl+8REREREREREZHkmJQiIiIiIiIiIiLJcfkeERERERERERFJjjOliIiIiIiIiIhIckxKERERERERERGR5JiUIiIiIiIiIiIiyTEpRUREREREREREkmNSioiIiIiIiIiIJMekFBERERERERERSY5JKSIiIiIiIiIikhyTUkREREREREREJDkmpYiIiIiIiIiISHL/D9Hs8FE/k9H0AAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 1200x600 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAJOCAYAAABm7rQwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAADEHklEQVR4nOzdd3gVZfrG8e+clkISWigJiApIEQKhKEgRKdJFUHGxsBZcXFf92V0UxIYFcO26omtvKHZBQRAUEUFFqYIKYiO00NNOmZnfH0NOOCkQMOSk3J/rypVkZs6cd8KQ5Nx53uc1bNu2ERERERERERERKUeuaA9ARERERERERESqH4VSIiIiIiIiIiJS7hRKiYiIiIiIiIhIuVMoJSIiIiIiIiIi5U6hlIiIiIiIiIiIlDuFUiIiIiIiIiIiUu4USomIiIiIiIiISLlTKCUiIiIiIiIiIuVOoZSIiIiIiIiIiJQ7hVIiIiJSJYwePZqWLVsyatSoEo+57rrraNmyJePGjfvLz7d06VJatmzJ0qVLj8pjHnroIVq2bMndd9/9V4YpIiIiUmEplBIREZEqw+VysXz5crZs2VJkX05ODgsWLIjCqA6fZVm89957tGjRgvfff5/c3NxoD0lERESkzCmUEhERkSrjxBNPJCYmhtmzZxfZt2DBAuLi4mjQoEEURnZ4Fi1axJYtW7jjjjvIzs5m5syZ0R6SiIiISJlTKCUiIiJVRnx8PL169So2lProo48YMGAAHo8nYrvf7+eJJ55g4MCBpKWl0b9/f55++mksy4o4bvr06QwYMIB27dpx4YUXkpGRUeQ5MjIyuP766zn55JNp3749F110ET/88MNhX8fbb79NixYt6NSpE126dOGNN94o9rjPP/+cUaNGkZ6eTo8ePZg4cSJ79+4N7//ll1+46qqrOPnkkznppJO4/PLL2bBhA1DyVMLRo0czevTo8Od9+vTh3nvv5aKLLqJdu3aMHz8egHXr1nHVVVfRtWtX2rRpQ8+ePZk0aRJ5eXnhxwYCAR5++GH69u1Lu3btGDp0KO+++y4Ar776Ki1btmTjxo0Rz//+++/TunVrNm/efNhfNxEREalcFEqJiIhIlTJ48OAiU/iysrJYuHAhQ4cOjTjWtm3++c9/8r///Y+RI0fy1FNPMXDgQB5++GFuv/328HGvvPIKt99+O7169eLJJ5+kffv23HbbbRHn2rlzJ6NGjWLNmjXcdttt/Oc//8GyLC644IJwEFQau3fvZv78+QwfPhyAESNGsGrVKtasWRNx3IIFC7j88supW7cuDz/8MDfeeCPz5s3juuuuA2Dr1q387W9/49dff+WOO+5g6tSpZGZmctFFF7F79+5SjwecACktLY0nn3ySc845h23btnHBBReQm5vL/fffzzPPPMOQIUN4+eWXeemll8KPu/HGG3n++ecZOXIk06ZNo0ePHowbN46ZM2dyxhlnEBMTw/vvvx/xXO+99x6nnHIKKSkphzVGERERqXw8hz5EREREpPI47bTTiIuLY/bs2Vx88cUAzJ07l7p169KpU6eIYxcuXMjixYt58MEHGTJkCADdu3cnNjaWRx55hL///e80b96cJ598ksGDB3PrrbcC0KNHD7Kyspg+fXr4XC+++CK7d+/m9ddfp1GjRgCceuqpDB48mEceeYRHH320VOP/8MMPsSyLM888E4D+/ftz1113MX369Iim54899hitW7fm8ccfxzAMAHw+H4888giZmZm88MILBAIBnn/+eerVqwdAq1atOO+881ixYgWxsbGl/pqmpqZy4403hj9ftGgRrVu35pFHHiEhIQGAbt268eWXX7J06VLGjh3LTz/9xJw5c7j11lu56KKLADjllFPYtGkTS5cuZejQoZx++ul88MEHXHPNNRiGwZYtW1iyZAlTp04t9dhERESk8lKllIiIiFQpsbGx9OnTJ2IK36xZsxg0aFA4vMn39ddf4/F4GDhwYMT2YcOGhff/8ssv7Nixg969e0ccM2jQoIjPv/rqK1q3bk2DBg0IhUKEQiFcLhennnoqixcvLvX43377bbp06YLP52Pv3r0Eg0H69OnDzJkzycrKAiAvL48ffviBfv36RVzT4MGDmTNnDsnJySxbtoz09PRwIAXQsGFDFixYQK9evUo9HoDWrVtHfN6jRw9eeeUVYmJiWL9+PZ9++in//e9/2blzJ4FAAIBly5YBTqh2oMceeywcrp1zzjls2rSJb7/9FnCqpGrUqMHpp59+WOMTERGRykmVUiIiIlLlDBo0iKuuuootW7YQExPDV199xbXXXlvkuD179lC7dm3cbnfE9vwgZ9++fezZsweA2rVrF3tMvt27d/Pbb7/Rpk2bYsdUmhX0fvjhB9auXQvASSedVGT/Bx98wPnnn8+ePXuwbZu6deuWeK7du3fTuHHjQz5nacTHx0d8blkWDz74IK+++io5OTmkpKTQrl07YmJiIp4fOOgYu3btSuPGjXnvvfc46aSTeO+99xg8eHDEeURERKTqUiglIiIiVc6pp55KjRo1mD17NvHx8TRu3Ji2bdsWOa5mzZrs2rUL0zQjgqlt27YBThCVH0bt2LEj4rGF+zIlJiZy8sknc/PNNxc7Jp/Pd8hxv/POO8THx/Pkk0/ickUWtE+cOJE33niD888/n4SEBAzDYOfOnRHH+P1+lixZQvv27UlMTCyyH5yKrsaNG4crrAo3dM/OzqZGjRoHHefTTz/NCy+8wJ133kn//v1JTEwEnMqnfElJSYDTa6thw4bh7Rs2bGD37t106tQJwzAYMWIEL7/8Mueddx4bN25k8uTJh/oyiYiISBWh6XsiIiJS5fh8Pvr168ecOXP4+OOPw/2iCjv55JMJhUJFVuv74IMPAOjUqRPHHXccKSkpRY5ZsGBBkXNt3LiR448/nrS0tPDb+++/z1tvvVWkGquwQCDAhx9+SJ8+fTjllFPo0qVLxNvw4cNZt24dy5cvp0aNGrRu3brIGBYuXMjYsWPZtm0bnTt3ZsWKFRHB1I4dO7jsssv4/PPPw72gDmwIv2fPnlI1ZV+2bBnNmzfn7LPPDgdSW7du5aeffgqHXPn9u+bPnx/x2AceeIB77rkn/PlZZ53F3r17mTx5Ms2aNaN9+/aHfH4RERGpGlQpJSIiIlXS4MGDufzyy3G5XEyYMKHYY0499VS6dOnChAkT2Lp1K61ateLrr7/mmWeeYcSIETRv3hxwVpG74YYbmDBhAgMHDmT58uW8/vrrEee6+OKLef/997n44ou59NJLqV27Nh999BFvvvkmt9xyyyHHO2/ePHbv3l1khcB8Z555Jo888gjTp08nPT2d//u//+OKK67g+uuvZ/jw4WRmZvLggw/Sr18/WrRowcUXX8x7773HZZddxuWXX47X6+W///0vDRs25IwzziAhIYGUlBSeeOKJcOXVtGnTiIuLO+RY27Vrx5NPPsnTTz9Neno6v/32G9OmTSMQCISnKbZq1YqBAwcydepU8vLyaN26NQsXLmTBggU8/vjj4XOlpqbSrVs3Fi1aFNFMXURERKo+hVIiIiJSJXXr1o2kpCRSUlJo1qxZscfkBzGPPvooL7zwAjt37qRx48Zcf/31XHLJJeHjhg4disvl4sknn+T999+nRYsW3HXXXVx//fXhYxo0aMD06dP5z3/+wx133IHf7+e4447jnnvuiZjWVpJ33nmHmjVr0qNHj2L3p6amctJJJ/Hxxx9zyy230Lt3b5566ikef/xxrrzySurUqcMZZ5zB1VdfDUBKSgqvvfYaU6dOZdy4cfh8Prp06cJDDz1EzZo1AXj00Ue59957uf7660lOTuaiiy7il19+YePGjQcd6+WXX86uXbt46aWXeOKJJ0hJSeHMM88Mfz337t1LUlISU6dO5fHHH+fFF19k165dNGvWjEcffZR+/fpFnO+0007jq6++Cq84KCIiItWDYdu2He1BiIiIiEj1ddlllxETE8MTTzwR7aGIiIhIOVKllIiIiIhExRNPPMHGjRtZtGgRr732WrSHIyIiIuVMoZSIiIiIRMX8+fP5/fffufnmm+nYsWO0hyMiIiLlTNP3RERERERERESk3LmiPQAREREREREREal+FEqJiIiIiIiIiEi5UyglIiIiIiIiIiLlTqGUiIiIiIiIiIiUO4VSIiIiIiIiIiJS7jzRHkBFsmPHPir7WoSGAXXrJlaJa5GyoXtCCtM9IcXRfSGF6Z6QwnRPSGG6J6Qw3ROSL/9eOBSFUgewbarMf5yqdC1SNnRPSGG6J6Q4ui+kMN0TUpjuCSlM94QUpntCSkvT90REREREREREpNwplBIRERERERERkXKnUEpERERERERERMqdekodBsuyMM1QtIdxUIYBeXl5BIMBzeGt5NxuDy6XcmMRERERERGpmhRKlYJt2+zdu5Pc3KxoD6VUdu50YVlWtIchZSAuLoGkpDoYhhHtoYiIiIiIiIiUKYVSpZAfSCUk1Mbni6nwAYHbbWCaKpOqzGzbJhDwk5W1C4CaNetGeUQiIiIiIiIiZUuh1CFYlhkOpBISkqI9nFLxeFyEQqqUqux8vhgAsrJ2kZhYW1P5REREREREpErRq9xDME0TKAgIRMpT/n1X0XuZiYiIiIiIiBwuhVKlVNGn7EnVpPtOREREREREqiqFUiIiIiIiIiIiUu4USlVR99xzBz16dC7x7bvvvj3sc1511ViefXZaqY4955wz+OijDw/7OUrro48+pEePzsyc+d5Rew4REREREREROXrU6Lw8mSbeJYtxbd2C1aAhwa7dwO0+Kk91zTU38s9/XgXAp5/OZfr0V3jmmRfD+5OSah72Oe+9dyoej7dUxz7zzEvEx8cd9nOU1rx5c2jUqDGzZ3/E0KHDj9rziIiIiIiIiMjRoVCqnPhmfkDChJtxZ2SEt5mpqWRNmkJg6LAyf76EhAQSEhLCH7tcLurWTf5L5zycIKt27dp/6bkOZteunSxb9g233DKRe+65g4yMTaSmNjpqzyciIiIiIiIiZU/T98qBb+YHJI0ZjeuAQArAtXkzSWNG45v5QbmPafPmDHr06MwLL/yPgQN78+CDk7Ftm5deeo6RI4dx2mldOfPMgTz33NPhxxw4fe+ee+7gscceZOLEW+jbtztnnTWE2bNnhY89cPreVVeN5cUXn+X666+iT5/ujBp1FkuXfhU+ds+e3dx6602cfnpPRo48k/fee4sePTqXOPb58+eRkJBA//6DSE6uF/G8ALm5uUyZcg+DB/dl8OC+TJ58D36/H3ACrYkTb6F//14MGzaAadOewLbt8Ndj8+aCf6Nnn53GVVeNBZzpgldccSm33HIjAwb04pNPPiY7O4t7772ToUNP57TTunL++WezcOFn4ceX9FyTJ0/i3/++LmLMDz00hbvvvq1U/3YiIiIiIiIiVYFCqSNl25Cdfei3vXtJuPUmsG0Kr6Nm2DYACeNvhr17D32u/ceXpZUrV/Dssy8zcuR5zJ49izfffJ1//3sCr7/+DpdcchnPPfc0P/64rtjHvv32m7Rs2YqXXnqDXr36MHXqvWRlZRV77EsvPUe/fgN4+eU3OOGEFkyePAnLsgC4/fZb2b17F08++SzXX38Tzz//zEHH/Omnn3DKKT1wuVx0734qs2fPwj7ga3P//XezcuUK7r//Pzz00BOsWrWcZ575LwC33HIjO3Zk8vjj07jrrvv46KMPeOedN0v1tVq1aiXHH9+UadNe4OSTT+GRR/7DH3/8xkMPPc7LL79J+/YdmDz5boLB4EGfq1+/AXzzzVKys52vlWVZfPbZfPr2HVCqcYiIiIiIiIhUBZq+dyRsm1pD++P9ZulfPpVh27g3Z1CveeNDHhs8uSu7P5wDRuF468ide+55NGrkPPf27du49dbb6dz5ZACGDz+H559/ho0bN9CyZasij23evAUXXHARAJdddjkzZrzOxo0bSEtrX+TYU07pweDBZwBw0UVjuPji89i5cwc5OTl8++3XvPHGezRq1JgTTmjBJZeM5YEH7it2vFu3bmHVqhX87W8XANCrV2/ee+8tVq5cTvv2Hdi7dy+fffYpDz30BO3apQNw00238vPPP7J+/c+sXr2SN998Pzzd78YbbyE3N7dUXyvDMLjookuJiYkFID29I6NGXUDTps0BOO+8C/nww/fYuXMH+/btK/G5OnToRGJiEl9++QX9+w9ixYrvCQaDnHxy11KNQ0REREREpDratMlgx46SXw8nJ9ukppZ9MYccPQqljlQZBkPRlJKSGv64Y8fOrFmzmqeeepzfftvITz/9yI4dO8IVTYU1bnxM+OMaNZz+VaFQqNhjjzmmyQHH1ggfu2HDzyQl1QwHYwBt27YrcbyffvoJPp+PLl1OAQgHPB9/PJP27TuwadMfmKZJq1atw49p374D7dt3YP78eSQl1YzoP9Wz52kAEdP2SlK7dp1wIAUwcOAQvvjiMz744F1+++3XcEWZZVn8/vtvJT4XQJ8+p7NgwTz69x/E/Pnz6NWrNx6P/juKiIiIiIgUx++H/v3j2b695Alf9etbLFuWTUxMOQ5M/hK9Cj4ShuFULOXkHPJQ75LF1Drv7EMet/v1t53V+A4mPr7MwzCfzxf++MMP3+PRRx/kjDPOpFevPlx55bX83//9s8THer1FV+KzS5hiWFzgYts2brenyGNKOgc4q+75/X4GDOgV3maaJgsWzOO66246aLBzsH1GMV9X0zQjPj/wawUwadLtrFq1koEDBzN8+DnUrZvMP/95ySGfC6BfvwFcffXlZGdnsXDhfG677e6DHi8iIiIiIlKd+XzQqJFNZqaNbRd9/WYYTpVUoZdtUsEplDpShgH7K34OJnhaH8zUVFybN4d7SB3INgyslFSCp/UBt/tojLTU3nvvbS655DLOP//vAOzbt4+dO3ccNCT6q4477nj27dsbsYLejz+uLfbY33//jZ9++pFrr72Rjh0LGqFv3PgLt99+K59//hndu/fA7Xbz888/0759OgBffPEZzz//DBMm3MXevXvYunULDRo0BGDGjOl899033HDDLQDkHBA0ZmRsKnHc2dlZzJ07m6effoHWrdsA8NVXiwAnVGvc+JgSn+u++/5DmzZtqVevHq+++hK27VR8iYiIiIiISPEMA8aN8zNqVHyx+23bYNw4f1WZ1FRtqNH50eZ2kzVpCuAEUAfK/zxr0uSoB1IANWvW5Ntvv+b3339j3bq13H77LYRCIYLBwFF7ziZNjuXkk0/hvvvuYv36n/nmmyXhFf4KmzdvDklJNRk27CyaNm0efuvbtz/HHdeU2bNnUqNGAgMHDuGRR6byww+rWbfuB6ZNe5JOnU6madNmdOp0EvfffzcbNqznu+++5ZVXXqBz5y7UqVOH+vUb8NprL7Fp05989NGH4ZCpOD5fDLGxcXz22Xw2b85g6dKvePDBqQAEg8GDPle+vn37M336q/Tu3Rd3Bfj3FxERERGprjZtMli50lXiW0aGko6KoHdvk/R0E8OILJwwDJtmzUyOPdYicPRevspRoFCqHASGDmPvsy9jpaREbLdSUtn77MsEhg6L0sgiXXPNjWRnZ3PxxeczfvxNNG9+Aqee2puffvrxqD7vrbfeTlxcHGPHXswDD9zP4MFnFDs18NNPP6F//0FFptEBjBhxNt9++zXbt2/jmmtuoHnzFlx33ZXceOP/0bFjJ/7xjysAuO22u4mNjePyyy/mzjsnMGzYCM46ayQul4tbbrmNtWvXMHr0uSxYMI+///3SEsfs9XqZOPEuPvvsUy68cCSPPfYQF110KXXrJvPTT+sO+lz5+vbtTyDgp2/f/n/1SygiIiIiIkcov1dRv341Snzr3z8evz/aI62e9uyB775zoov8aqnC0/ds22DDBjennJJAly6RM5pef93D9OkevvzSzR9/GJTQBlmixLCP5tysSiYzcx+FvxrBYIAdOzZTt24KXu9fnJxqmniXLMa1dQtWg4ZOD6mjUCHj8bgIhYpvTl7R5OXl8e23S+natXu4D9P8+fN48slHeOutD6M8uqPrm2+WMHnyPcyY8UGxPa2gbO4/w4Dk5MRi72+pnnRPSHF0X0hhuiekMN0TUlhVuSdsGwYMiGfFCleJvYrat7eYMydHU8MOoSzuiawsWLrUzRdfOEHSqlUuEhLgxx+zcLudf6/27WuwdauBbRsYhk1CAjRsaPHnny7S0kxmzixYYb1jxxr8+WdBPY7H4/SeOvZYi3btLG6/vSBt3LkTatUCl8p3/rL8e+FQ1FOqPLndBLv3jPYoKhSfz8d9993F8OHnMGTIMHbu3MHzzz9N7979oj20oyYzM5OVK5fz8svPMXTomSUGUiIiIiIiFc2mTQY7dhT8/lq7NuzaVfAKPjnZecFfmahXUcXw6qteXnnFy/LlLkwz8otdr57Fli0GjRrZGAY8/HBe+N/Ltg2eeSaHPn1MbBuyswseZ9vQr1+IjRtd/P67iz//NAgGDX7/3eD33134/ZFlU6efXoNt2wwaN7Zp0sTimGMsmjRxAqxmzSzati374o/C/6cKq4z/pw6HQimJKpfLxb33/ocnnniY6dNfoUaNBPr3HxSeblcVZWXt47777qJNm7aMGnVhtIcjIiIiIlIq+dPctm8vXEZSMF2qfn2LZcuyiYkp37EdTF4e7N1rkJXlvN+3z8Dvh379Clbb/vVXF3XrWvvDgYKAwOWyadvWondvs5gzy5HIy4Nly9wsWuRm7NgAtWs72zdtMli2zJlJ1KSJRY8eIbp3N+nRwyQlJTKUye8ttXy5m/R0M/zvYxiQkFBwnGHAlCkFlVCWBVu2OIHU778bEWuXhUKwbZuB32+wYYPBhg2R9/lJJ5nMmlWwMNa118YQF8f+8MoJrpo0sahZs/Rfi5L/TxWoiP+nypJCKYm69u3TefrpF6I9jHJz3HHHM3fuwmgPQ0RERETksPh80KiRTWamXeI0t9RUm2JawB4Ry4KcnMiQYckSNxkZTrBUOGgyDHjssbzwsRdeGMdnn7kJBIqONTbW5vffs8Kfz5/vYceOosGAZRmsXu0iJ6dg8fUff3SRkOBcq6qnDi0QgO+/d/Pll87bN9+4yctzvnBt21oMGeJUK515ZogmTSy6dzc55piDVwYZBowf72f8+BjGjy99FZvLBampNqmpJl27Ru7zeOCXX7LIyDD44w9XuJoqP8Bq376gSioUgjfe8Bap6AJISrIZNCgUcS9+/rmb+vVtjjnGirify/v/VEWkUEpEREREREQO6XCmuRWuTsoPjvbtc87zt78VTJu6884Y1q517T+GAwIng/r1LVavLpiPdc89PpYuLf5lbFyczWOPHTgeIgKphASbpCTnLSEBTLOgxe+IEUHS001efdVLRoaxPyCwcbudEOPAippx42L48ksPNWvanHiiSZs2FieeaHHiiSYtW1oRx1Z38+e7ufTSOHJyik7H69HDJDm5IHxq2dKiZcvST4/r1ctk0aKcQx94GLxeOPZYm2OPPXhlnGnC/ff7+eOPyOAqM9O5j4PBgmNDIRg1Ki4cYNWt60wJzJ8e2LdviOXLiy+Dqg5TRxVKiYiIiIiIyCHZNpx4okXz5iYbNhRuCm6Tnl4wzW3AgHjWri1+UacGDayIUOqbb1x8/XXxL02zsiJfjbdvb+H1hvYHTE5VSmKi85aU5Iwx/wX8lCl52DbhEOpgzavPPtsZT8eO5gGhm8Grr+bQsWNkQGFZTrPsPXsMvvrKw1dfRV7bqlUFIdo337ioV8+mSRO7yjbPtixYs8bFokVuvvzSw8iRMHy4s69ZM4ucHIM6dSy6dXOm4vXoYXLCCValDlpiYuCii4JFtmdnwx9/uPB4CsK2PXsMTjzR4o8/XOzebbBjh4sdO5zqMSgIRFetiuyl5XbbpKVV/amjCqVEREREREQkLBSC334z2L7dRdeuBS+I+/SJZ82aklYPj6zoSEy0w++dwMgJhpKSbOrVi5yaddVVAXbvDpKYWBAyOe8LzpNv0iQ/pdWo0eE3hy6uV1Hh8OT993Px++Gnn1z88IOLH35w73/volWryEqff/wjjowMZ7pf69ZONZVTVeV8nHjoxckqHNuGdetcfPml0xfqq6887NpV8EWKiysIpY491ubzz7Np2dKqsqHcgWrUoMg9ULeuzaefOhVde/bA77+7wtMD//jDRfv2TsVY4QpE06z6VVKgUEpERERERKTa+uEHF2vWuFi/3sXPPztvv/ziIhg0qFvXYu3agqqfhg1t1q61OeYYm127nKl2tm1gGDZNm0ZWdLz5Zi6xsQevTso3cGDFqQQpba+imBhIS7NIS7OAgqqv3NyCY/LynEAiM9MmK8vgm2+cfkr5CjfOnjfPzfHHWxx3nB2eVlgR2Dbs3k24IXluLvTrF08wWPDFqVHDpmtXk549QwwfHhvx+Naty37FusqqZs0D75sCtk1EtVR1qZIChVIiIiIiIiJVlm3D9u1GOHDKyDC49dZAeP/EiTEsXFj0ZWFcnNNgOScH4vcXcDzySB5JSTaxsU6voPzKDts2uOeeyAAnvvi2U5XCX+lVFBdX8HFsLHz6aQ7BIGzY4ApXU+VXVrVpUxA4ZGfDBRfEYdsGcXE2rVoVrarKD4VKa9MmY/9qgsVLTnb+jQuzbadS7ssvPfun5DlNuufNc74m8fHQvbuJbUOPHibdu4f2T6t0Qr3k5FgyMw9vrNVd4X5t1aVKChRKiYiIiIiIVCnvvedhwQJPOIjasyfyle1VVwVISnI+7tzZJBiE5s0tWrSwOOEE561Ro6I9kOrXLwgwipvmJsXzep0pXa1aWZx1VsH2UEGBFTt3GnToYLF2rYvcXIPvv3eHew4B/O1vwfBqbsEgfPihhxNPtGjWzAmDCvP7oX//eLZvL7lUrX59i2XLsonZ32N71iwPc+Y4QdSff0Y+bs8em6ysgpUQ33gjt1oEJuWpuv6fUihVRd1zzx18/PHMEvc/+uhTdOzY+bDPa9s27777FmedNfKgx1111VjWrfuBDz6YQ3y8lp8QERERkernSCtVDiY726m6yQ+cfv7ZmXr30Uc54VXfFi1y8/rrBUmFYdgce6wdDpycaVfO844bFyjmWQ7NMGDCBD+33RbPhAnVo6KjrHkOeDV+zDE2s2fnYJrw668GP/zgZs2agsqqA6uq1q938c9/OiVZPp9NixYF1VQnnmjRrp1TVdWokTN1MLIhvcMwbOLjiQi0PvzQwzvvePePzaZjR3N/JZRJ585mRBWY/r3LXmmnjlY1hm3bh9/9rYrKzNxH4a9GMBhgx47N1K2bgtfrO6LzHo0fRgfj8bjYvXsvfr+TpH/66VymT3+FZ555MXxMUlJNvMVF6ofw/ffLuPrqy1m06NsSj9m+fRsjRw6jXr36XHzxZQwZMuzwL0KAsrn/nBLaxGLvb6medE9IcXRfSGG6J6Qw3ROHx++Hjh1rHFalSj7bhsxMg9q17XBw8dRTXp5+2lekgiXfp59mh/vUfPqpm+++c9OihUXz5k41TWxssQ/7S3RPlJ8DVxVcvtzF+PGx/PCDi+zsoq8zb7nFz3XXBSKmWJbk88+zwz2f5sxx8/XXbrp3Nzn5ZDNcFXU4dE9Ivvx74VBUKXWUHUnZZFlISEggYf93kYSEBFwuF3XrJv/l85Ymw/z0009o1uwE0tLa8/HHMxVKiYiIiEi14/MdulIlJcVm0yYjosn4zz+7Wb/exa5dRkRgYJqEA6m6dQum2eW/HXdcQePkvn1N+vatHlN/qosDq2bS0y1mzcrBsuCPP4yI1f8OrKrq3dvk+OMtNm4s7rWo00j7wKmdAwaYDBig+0bKl0Kpo6w0P4xSU218R1YEc8S2bt3Cgw9O5ttvv6Z27ToMHnwGF100BrfbTSgU4j//uZ+FCxcQCATo2LEzN954C6FQiP/7v38C0KNH5xKnAM6b9wnp6R3o2rUbb7/9Bps3Z5CSkhrev3btGh599EF++mkd9eo14LLLLqdfvwEALFmymKeffoLffvuVxo2bcPXV19G588k8++w0vv9+GY8//nT4POeccwaXXjqWwYPP4KqrxtKsWXMWL/4S0wzxyitvsn79z/z3v4/x00/rMAyD9PSOjBs3keTk5BKfKy2tHWecMYDx42+nV68+AIRCIYYNG8Bdd91H584nH7V/ExERERGpOgo3Li7Mtg1atzbp2rX4chTDsPnjD4PWrZ3Phw0L0alTDiecYFG3rkpQxFnZ8NhjbY49NsSgQUX3GwaMGhXgvvuKlsn973+5DBumAEqirxQLdEpJsrNLfstzZs6FfxgVF0iB88Po+usj54uWdM6yYts248ffTO3adXj++Ve59dbbmTt3Ni+//DwAb7/9Bt9//x0PPvgE//vfy+Tk5PDoow9Sv34D7rlnCgDvvz+btLT2Rc69adOfrFv3A927n0qHDp2pUaMGs2fPCu/ftWsn1113JSec0ILnn3+Vv//9Eu655w5+/vknfvllA//+93WcempvXnjhdfr1G8Att9zAjh2lW7rho48+ZOLEu7j33gewLJubb76Wk0/uyssvv8mDDz7On3/+ySuvONdY0nNlZWXRs2cvFiz4NHzeb75ZisfjoUOHTkf8NRcRERGR6sE0Yd06F9One5g710N8vE1+/6Z8brdNerpJ//4mMTE2J55oMnx4kBtv9PP007ksWJDNr79m0b9/QWhwzDE2XbuaCqTksFx7bZD0dBO327lv8u+9M85QICUVgyql/oLjjy95fmS/fiFeey0XcMomDaP4SimA//7Xx8CBueHPO3euwY4dRfPCbdv2/cURO5Yt+4YtWzbz9NMv4HK5aNLkOK688lruvfdOLr74MjZv3kxMTAwpKSkkJdVk/Pg72LNnD263m8REZ5mOkqYCzp07m6SkmrRv3wG32023bj2ZPXsWl1zyD8CpokpMrMm1194Ufu69e/fg9/tZsGAuaWntufjiywAYPfpi8vJyycrKKtV1devWIxyU7diRyUUXXcaoURdgGAapqY047bQ+rF27BoBZs94v8bn69RvA7bffit/vJyYmhgUL5tG7d1/cbneJzy0iIiIVU3n39pTqxbKcpuNJSTYNGjj30bvvevjXv+IO+rj85d579jT59dcs9GumHC2FK/by773q0kRbKj6FUuXAMJxpfH5/yfvL02+/bWTv3j0MGNArvM2yLPx+P3v27GbYsBHMmzeHYcMG0KFDJ049tTeDBw8t1bnnzfuEbt16hAOcXr1688knH7NixXLat0/n999/o0WLFrgOWF921KgLAXjxxf/RsmXriPP94x9XlPq6GjYsmCJYt24ygwYN5Y03XuXnn3/i1183sn79T+HQ6vfffyvxuRo1aozP52Xp0q/o1q0HCxd+xpQpD5V6HCIiIlIxRKu3p1RNluWsirZ8uZvly92sWOFi5Uo32dkGd96ZxxVXBAFo394iPt6mXTuT9u0t2rc3eewxHz/95MI0Ddxup5eP84frKF+UVAu9e5ukp5ssX+4mPd2kd29VSUnFoVDqL9i4seTKpcJ/7Vi7Novhw+NZvdqFZRm4XDZt21q8915OkWO//bYM5+oVwzRNmjQ5jvvv/0+RfTVqJFCzZi3eeutDFi9exOLFXzBt2uPMnTubJ5545qDnXb/+Z3799Rd+//1X5s6dHbFv9uyZtG+fjsdT8i13sH1GMT+xTTPym6nvgMZc27dv47LLRtOyZWs6d+7CsGEjWLx4EWvWrDrkc3k8Hk47rS+ff/4pXq+XGjVqFDtVUURERCq2itrbUyo+24bcXIjf3w7qxx9dDB4cz759Re+juDibvXsLtjdvbrFhQ2T1U506tipVJGoMA8aP9zN+fAzjx+vek4pFodRfUKNG6Y9NSIBbby0om7Qsg1tv9Re7zObhnPdIHHPMsWzduoVatWqHV+j75pslfPTRTCZMuJOPP56Jz+ejb9/+9OnTj9WrV/HPf17Crl07iw2H8n366SckJCTy+ONP43IVHPfii88xf/5crr32Rho3PoavvlqEbdvhc02ceAutWrWmceMm/PTTjxHn/Oc/L+Wcc/6G1+slJycnvD0nJ4ddu3aWOJaFCxeQmFiTKVMeDm976603wh8f7Ln69RvA6acP5JZbbiQuLp4+fU4/6HWLiIhIxVSaRtMKB8S2nRXMVqxws3y5ixUr3KxY4eass4JMnuxMdWjSxCInB2Jjbdq0caqf0tOdSqgTTrA48O+dhlH0D9SqVJFo69XLZNGinEMfKFLOFEqVo4ryw+jkk7vSsGFD7rrrNi6//EqysvYxZcq9dO58Mm63m+zsLP773+epWbMWqamNmDv3Y+rXb0DNmrWIi3Pmx69bt5bjj29KzAG17vPmfUL//gNp3vyEiOcbNeoCPv30ExYu/Iz+/Qfxv/89xZNPPsqwYSNYtWoFixZ9zujRFxMfX4MLLxzJ9Omv0KNHLxYsmMfGjRtIT+9IzZq1+N//nmL+/Hk0b34Czz33NC5XyZPvk5JqsnXrFr799mtSUlJZsGAen38+n1atTgRg+PCzS3wugHbt0omNjeWjj2by5JP/K+t/AhERESkHgQDUq+c09V21ypk6VcAmNhYeecTHK6/Y1K3rvF13XSA8lS8jw8C2nSqXuIO3CCpX6pNVNvx+GD06jpUrXezcWXSK5+rVBb9rxsXBwoU5HHechdd7+M+lShURkeIplCpHFeWHkdvt5v77H+Thh6cyduxFxMXF07t3P6666hoAzjrrXLZt28bdd09k3769tGzZmvvv/w9ut5umTZtz0klduOKKS7njjnvo1asPAKtXr2Lz5k0MHXpmkedr3boNLVu25uOPZ3H66QOZOvVhHnnkP7z11nRSUxtx++2TOOGElgBMmjSFp556jKeffpLjjmvK5MkPkZxcj7p1k/nb385nypR7cLtd/O1vF5CZub3Ea+zT53RWrPieCRP+jWEYtG59IldddS3PPjuNQCBAo0aNS3wucKYL9u7djy+/XEirVq1LfB4RERGpOAIB+P57N4sXu/nySzfffOMmFIJnnsnl4osLV0sZ5OXBV18V/DrsctncdFMg/Pntt8fw/vtOAhEfb1OnjvNWt67z/sEH88Jh1apVLvbtM8LH1Kljc5BuAUdMfbJKz7ZhyxYj3P9pxQo3NWvaPPWUs0x2TIzTpHznThder82JJ1q0a2eSnm6Rnm7SsqUVcb4TTrCKe5pSU6WKiEhRhm3b+jPKfpmZ+yj81QgGA+zYsZm6dVPweitHwwGPx0Uo9Nd+aArceecEGjc+hjFjLo/aGMri/jMMSE5OLPb+lupJ94QUR/eFFFaZ7okPP/Tw4otevvnGTW5u5F/9kpMt3nwzl+uvjw1XS7lcNiecYHH33X527TLYudOpPMrNNbj99oKVaS67LJaPP/YQDBb9S6LLZZORkUX+2i3/+EdsOMDKV6tWQUD15ps54bYNn33mZvNmIxxu1aljk5xsk5h46AVwbBsGDIhnxQpXiX2y2re3mDMnp8z/AHq074myqgB78kkvX37pYflyV5HwrnZtm3XrssJfm/nz3dSpY9O6tVXtQ7wjUZm+T0j50D0h+fLvhUNRpZRIIatXr+LHH9fyxRef8fLLb0Z7OCIiIrLfgZVQI0cGadzYecWzZYvBwoXOr7XJyRbdupl062bSvbtJixZWkd5SlmVw551+Tjvt4K0U/ve/PGwbsrJgx46C8GrHDoPsbIMDFhOmfn2b5s1NduxwsWuXk3js3m2we7fBr7/a4YbZAK+84uWDD4rOAfN4nIDqq6+ySdz/e/w773j46ScXyckFAdaoUUGWL48tdsyVtU/W4VaAbdtmsHKli+XL3WRkGDz4YEGY+OmnHr74wrkf3G6bli2dyqd27Zz3B+rTR72dRESiSaGUSCFLly5m+vRXGTv2SlJSUqM9HBERkWqruOl4+ZVQ9evbXHBBEIDTTw/hdudFhFCFHWlvT8OAxERITLQ57riS/+x/zz0FoUgo5ARS+SHW3r1EBFhpaRZZWSF27iw4JjvbIBQy2LEjctGbmTM9zJxZuiZGhuH0yZoyJYZHH3VWFYyJAa/X+fiBB/LC1VqzZnlYtcqFzwc+n73/OIiJcY4dNCgUDtJ+/dVg+3aDmBho2BCysoz9j3OOT0yMvL4jUZqVEt1upyJt1So3mzZFPuFtt/mpXdv5+O9/DzJ4cIh27UzatLEiAkEREalYFEqJFDJmzOVRnbInIiIisGSJm7/9La7IdLy6dS1OOcWkUaOCVgXHHWdz6aXBg56vPHt7ejzOVLPk5OJDrGuuCXDNNZHbcnNh1y6nsurAgOf000MkJ9sRAdbOnQaZmUahxu1OlVRuLnz3XfGLwTzwQF74408+8fD66yWHXatWZREf74z/6ad9/O9/B7YRiFw+esmSLJo2dY6dOtXHM8/48PnsiODK53NCr8cfzw0fO3Omh1mzPMTE2Hi9kJJisXx58WO3bYPNmw02b3a+OIZh07y5Rfv2TvXTgV+zM88MlXhdIiJSsSiUEhEREZGoCAZh+XIXixd7+PJLNz16mPzf/zmNxlu2NMnLKwihund3puS1bGkdcVVORW40HRcHcXFFeyadd16I884rGrJYFpx+ejw//OD0yXK7nZDm9tv9BAIGwaAzJS4QMPD7na917AEz/nr2DBEXZ+8/ziAQYP9xzvFxcQXjqFXL5thjLQIBCAZd5OUVPA6c4Cnfvn1OsAbFp36hkAE451692sXbbx+6CszttjnmGJsOHZxqt/R0i7Q0M1z1JSIilZcanR9Ajc6lolGjczkadE9IcXRfSGFH456wLFi2rCCE+vprNzk5BeHFKaeEeP/93PDnGzYYHH+8/ZenhlVV8+e7w32yAKZPzzmqPZIK3xO27YRdHk/B9L38Si4nEHNCMee9E2L16hUKh0nffOPi22/d4eAsEHBWw5s1q2hQdbSvTY6MfnZIYbonJJ8anZcx21bII+VP952IiFRmwaCzolp+LybbhvPPj2fPnoIgqk4dK9yUvHv3yNChWTO9ojmYI+2TVVYMI7JKCqBuXZu6dUv373bSSRYnnRT5u46zuqArvFKi222TlmaV+7WJiEj5UCh1CB6PF8NwsWfPDhISauF2ezAq+HImlmVgmvolrjKzbRvTDLFv324Mw4XHU7oGpyIiIn/Fpk1Oz6J8tWvDrl0FZUrJyUWnlx0oGIQVK5xKqEWLnEqo5GSbb7/NBsDthsGDQ+zbR5lMx6vuyrNPVnkpvFKiaVbO1QRFRKR0FEodgmEY1K3bkD17drJnT2a0h1MqLpcLy1KFTVXg88WSlFSnwgehIiJS+fn90L9/PNu3F06ICpaCq1/fYtmybGJiIo+YPt3Du+96Wbo0cjoewL59zpSu/OqZRx7JQ8pORe6TdaSiXQEmIiLlR6FUKXg8XurUqY9lmRU+7DEMqF27Brt2ZWsObyXncrlwudwKpEREpFz4fNCokU1mpo1tF/3ZYxg2KSk2q1Y5lVBjxwbCjbNXrHCzYIHza2Xt2jannBIKV0K1bq1KKDk8VbECTEREiqdQqpQMw8Dt9uAufpXaCsMwIDY2Fq83qFBKRERESq3wtKnCbNtg3ToXgwc7lVMnnWRyyilOBctZZwVp2tRSCCVlpipWgImISFEKpUREREQE24aePZ1pU/lNpgvz+41wJZTPV/DXr+IaVouIiIgcikIpERERkWrGtuHXXw1WrnSzYoWLlSvdrFrlZuJEf4nVUhddFODii4OqhBIREZEyo1BKREREpJr45ReDG2+MZeVKN3v3Fq2EWrHCxfnnByOqpdxum7Q0iylT1NtHREREypZCKREREZEqwjRhwwZXuPpp5UoXvXqZXH99AICaNWHRIufXv5gYmxNPtEhLM2nf3qJ9e5OWLa0ivaVM02DcOAVSIiIiUvYUSomIiIhUYjk5cM89MaxY4WL1ajc5OZHpkc9X8HHdujb//W8uLVpYtGpl4fUWf87evZ3eUsuXu0lPN+nd2zyKVyAiIiLVlUIpERERkQouGIQff3SxcqWLFSvc1Kplc8stTvVTXBy8+aaXPXucMCo+3qZtW5N27SzatTPp2DGyAfnZZ4cO+XyGARMm+LnttngmTFCVlIiIiBwdCqVEREREKqDp0z18+63TgPyHH1z4/QXJUJMmVjiUyp9ul5Rk066dRfPmFm73X3/+Xr1MfvgBMjNNbPvQx4uIiMhfYJp4lyzGtXULVoOGBLt2o0x+oFdwCqVEREREDtOmTQY7dpRcPpScbJOaeugkJy8PfvjB6f+0fbvBTTcFwvuefdbHihUFv4wmJtq0a+dUQLVv7wRF+RVMY8YEj/xiREREJKp8Mz8gYcLNuDMywtvM1FSyJk0hMHRYFEd29CmUEhERETkMfj/07x/P9u2uEo+pX99i2bJsYmIit69a5eLrr93hJuQ//ugiFHKSJY/H5uqrA8TGOseOHBmkZ88Q7ds7zciPO87GVfJTioiIVB9VqKrIN/MDksaMpnBZsmvzZpLGjGbvsy9X6WBKoZSIiIjIYfD5oFEjm8xMG9suWi1lGDYNG9p8/72bNWtcXHJJMBwmPfaYj/fei+wuXqeOFa5+8vsJh1Jjx6r6SUREpLAqVVVkmiRMuBlsm8K/URi2jW0YJEz4NzsHDam0oduhKJQSEREROQz5PZxGjYovdr9tG6xc6WLYMGd/794hmjZ1/vrZo4dJVpYRnobXrp1Jo0a2GomLiIiUQlSqikIh8PsxAn6MQGD/x4HwNvyB/fsKPsbvxyi0n4Afwx8IvzcCflyb/ogI1wozbBt3xia8SxYT7N6zbK+rglAoJSIiIlIMvx+2bDHYvNlFRoZBRkbBxxMm+ElPN1m1yoVpFpcoGTRs6FRAOQ3KnV+e//73IH//uyqgREREDtuhqoqAxOuuJGf9zxihIAQCBcFQIICRl1d0m3//+/wgqbhtllXcaMqVa+uWaA/hqFEoJSIiItVObi5s3nxg4ORi5MhguDn5U095mTgxtsTHjx4dLLFa6t//zuPCC0M0aKAl60REKp0q1KuoqjC2b8ezagUxMz84eFURYOzZQ8K9dx61sdguF8TEYPtiwOfDjonB9vmKbMPnw/bFFHx8wDb2P8aOicWd8Sdxzz1zyOe1GjQ8atcUbQqlRERE5Kgqq5XqSis72wmcMjJcpKWZ1K7tbP/gAw8PPeRj82aDnTuLdgxv29YkNdUEoE4dZzyxsTYpKTapqVbE++bNLY45xo6olnK7bdLSLK6/PqjpeCIilVCV6lVUGdk2rl834lm9Cs/qFXhWrcSzehXuLZsP6zSBU7pjntASO8YHvpiC974YiHHCoIggKWZ/gHTAx0SETQXb8JRxhGKa+GbPwrV5M4Zd9Hch2zCwUlKdcLSKUiglIiIiR81fWamuOPv2OY3G849dssTNm296yMhwhYOoPXsKEqHXX8+hb18naMrLgzVrCv7aHR9/YNhkh4MogMGDQ6xbt4/atTlowHRgtZRpGowb51cgJSJSCVX3FdDKXSCA+6cf8axeiWfViv1B1Cpc+/YWOdQ2DMymzbAapuD78otDnjrn5lsrT/8lt5usSVNIGjMa2zAigil7/y8UWZMmV+lqvaiGUn6/nzvvvJNPPvmE2NhYLr30Ui699NJij507dy4PPvggW7ZsoVWrVkyYMIE2bdoAsGfPHk4++eSI42vVqsXSpUuP+jWIiIhIyUqzUl1qqo3PV7Bt40aDRYs84Wl1Ti8n5+OsLCMiaPrjD4NXXvEVOW9iohM4HfjaomdPk9dfzwlXPNWsWXLglJBQuuvr3dskPd1k+XI36ekmvXubpXugiIhUHFoB7agysvbhXr3aqX5avcqpgPpxrdMsvBDb5yPUug2htHaE2qQRSmtP6MQ2zg9m06ROpzZVrqooMHQYe599uUiVnpWSStakyVU+DI1qKDVlyhRWr17Niy++SEZGBv/+979JTU1l4MCBEcf9/PPP3HDDDdx111107NiRF154gcsvv5y5c+cSFxfH+vXrqVWrFjNnzgw/xuUq+S+yIiIiUj5Ks1Ld1q0Gn3/u5rTTnEBn2TI3N9xQcj+nrVsLXjKkp1vcfLM/ouIpNdUiMbHo41JSbFJSyjY0MgwYP97P+PExjB+vKikRkcrI9/HMUq2AFvfEIwT69sdKScGuXefgpbTVlLF1K3yziLhFS3CvXuVUQW38pdhjraSaTvjUNo1Q23aE0tpjntACvN7iT16Fq4oCQ4exc9CQatnPLGqhVE5ODjNmzOCZZ56hTZs2tGnThp9//plXX321SCj15Zdf0rx5c4YPHw7A9ddfz6uvvsr69etJS0vjl19+4fjjj6devXpRuBIRERE50O7dsG6dm+OPt2jQwKZ3b5MmTSx+/734Pxht3uzav88JjE44waJ//xApKRapqXb4fWqqRcOGdkQV0wknWNx4Y9G/tJanXr1MFi3KieoYRESklLKy8K5cjue7ZXi/+xbPd9/izthUqocmTLoDJt0BgB0bi9UwBTO1EVZKKlZKKmZqKlbDVKxU53OrfoOqGypYFu5ffwn3ffKscnpAubZvA6BGocPN1EYR4VOobRpWk2MPO9ir0lVFbnflmXZYhqIWSq1bt45QKESHDh3C2zp16sRTTz2FZVkRlU61atVi/fr1LFu2jA4dOvDOO++QkJBAkyZNAFi/fj3HHXdceV+CiIhItZabC2vXuvjxRxdr17pZt87FunUutmxxfoY/8EAef/+70/T7H/8IcNttRaufrrzST79+Ji1bFiy33L69xSuv5JbbdYiISBUVCuH+cZ0TPn2/DO+yb3H/uBbDsiIOK1x1U+Lpjm+Ga98eXJmZGHl5uH/diPvXjSUeb7vdWPUb7A+pGmGmpGClNMJKScFKbYTZMAUrJRViS64OLhN/dUVBvx/Pj2sjwif3mtW4srOKHGq7XBgtW5LXug2htu3DQZSdnFxml1Odq4qqoqiFUtu3b6d27dr4DmgikZycjN/vZ/fu3dSpUye8ffDgwcyfP5/zzz8ft9uNy+Vi2rRp1KxZE4ANGzYQCoU455xz2Lp1K507d+aWW26hfv36hzWmqlB9mX8NVeFapGzonpDCdE9IcQ52X/j9sH69Ez41a2bRvr3zy/z337sZPrz4aXmNG1tYVsH5xowJMmOGlzVrIlequ/32gO7FCkrfK6Qw3RNSWIW6J2wb16Y/8Xy3DM933+L9bhmeFcsxcrKLHGqmNiLUsTOhjp0IduxMqG0atU/tcvBeRamp7P7qWyf48PtxbdmMKyMD15YM3BkZuDZnhD933m/GME3cmzNwb84Avi1x6FadOuGwykxt5IRYB1ZcpaZiJyYd0RfaN/MDaowvuqJg9j3Fryho7N2De9Wq/Q3I969+9+NajFCo6NclNpZQ6xOdaXf7p+GZJ7ahbpOGZO/YF9HXscxvEY+bUI+CqqKKcAtKpNLeroZtlyISPgree+89HnnkERYsWBDe9scff9CvXz8+//xzGjZsGN6+detWrr32WoYOHUr79u15/fXX+eKLL3j33XepW7cuffr0oU6dOtxyyy3Yts1DDz1Ebm4uM2bMwK20VEREpNSysuCTT2D16oK3n34Cc38rpptugilTnI8zM6FNG0hLg7Ztnbc2beDEE2H/340izJkDB87Qnz0bBgw4+tckIiJV0J498O23sHQpfP21837LlqLHJSbCSSdBly5w8snOW2pq0ePeeQfOOcf5OCJN2f/K+q234KyzSj8+04Rt2+DPP2HTpuLf//mnU3ZcGjVqQOPG0KiR8/7Aj/Pf16sHB/ZWzr+mwi/5869p2jTna/H9987b8uXwS/H9n6hdGzp0cN7S0533LVuCJ6ptqqUKiFoo9fHHHzNp0iS+/PLL8LYNGzYwePBgli5dSq1atcLbb7rpJuLj47nzzjsBsCyLQYMGcfbZZzN27Fhyc3MxDIPY/WWPO3bsoEePHrz66qt07Nix1GPaUSjNrYwMA+rWTawS1yJlQ/eEFKZ7QiwL/vzT2D/dzun9NGxYiLp1E1m1Kot27YouPVezpk2rViYjRoQYMyZ4RM9r29C/f3x4pbpPPsmpGH9dl2Lpe4UUpntCCiu3eyIYxP3Daqf6aZkzFc/9809FqppstxvzxLYEO3Um1KEToU6dncbZpVwEq9iqokaNyD5avYpsG2PPbqey6oBKq3Dl1eYMXBmbcO3eXbrTeb1YDVOct5RUvJ/OxcjOKraKyKbk6iKz8TGE0tphtt2/+l1aO6xGjUtV+qLvE5Iv/144lKjFmg0aNGDXrl2EQiE8+9PV7du3ExsbS1JSUsSxa9asYfTo0eHPXS4XrVq1ImP/N4u4uLiI4+vWrUutWrXYunXrYY3JtouGyJVVVboWKRu6J6Qw3RMV06ZNBjt2lPxLX3Kys8Lc4cjLgxdf9IZDqHXrXGRnFzzH4MFBzjjDKctv2NCme/cQTZo4IVTLlhatWzsNxvN/F/0r982BK9X91XNJ+dD3CilM94QUVqb3hG3j+u1XvN/vn4a37Fs8q1di5OUVOdRschzBjh0JdexMsENnQmntIL6YaeWlHJt/yDD8A0voVXRU7nkDu2ZtrJq1oXWbkg/LycG9JQPX5s1OSLV5M+7NznvX5k1OmLVtK0YwiPuP33H/8XspntlhHtOEYJdT9jcgd6bg2bXrFP+gw/ga6PuElFbUQqnWrVvj8XhYvnw5nTt3BmDZsmWkpaVFNDkHqF+/Phs2bIjYtnHjRtLS0sjKyqJ379489thjdO3aFXCm++3atYumTZuWz8WIiIiUAb/fqSTavr3kv+jWr2+xbFk2MTGR23ftIhw4rVvnon59mxtucFal83rh3ntjyM0tCKK8XpvmzZ3AqVs3M7zdMODdd49ek3GtVCciUkWYJt6liyFnD974mgS6HFmjaWPXTqcJeX4vqO+X4dqxo8hxVs1ahDp0dHpAdepMML0T9tFYfb0iroAWH4/ZtDlm0+YlHxMM4tq2NVxhFTP7I2JnTD/kqbPH347/rJFlOFiRwxO1UCouLo7hw4dzxx13cO+997Jt2zaee+457rvvPsCpmkpMTCQ2NpZzzz2XcePG0bZtWzp06MCMGTPIyMhgxIgRJCQk0KlTJ+677z7uvvtu3G4399xzDz179qRly5bRujwREZHD5vNBo0Y2mZk2tl20WsownCqp/DVC7rrLx6pVThC1dWtkkNW6tRkOpdxuuOSSIHFxNq1aWbRqZdG0qYXXe9QvSUREqiDfzA9ImFAwza0mTvPsrEnFN88O8/vxrF7prIa3P4TybCzaw8j2ep2qnQ77G5F37OQEMprzXTKvF6tRY2eaHWDXqVuqUMpq0PCQx4gcTVHrKQWQm5vLHXfcwSeffEJCQgJjxozh4osvBqBly5bcd999nLW/mdyMGTN47rnn2LJlC61bt2b8+PG0aeOUOO7Zs4f777+fBQsWEAgE6Nu3LxMmTAivzldamZmVf96rYUBycmKVuBYpG7onpDDdExXb/PluRo0qfkU7gOnTc+jTx6lsOvXUeNatK/ir9DHHWPtDJ5O2bS1GjCi6Uk5JdF9IYbonpDDdEwJOIJU0ZrTTD+mA7fb+wGjvsy87wZRl4d64Ac+yb8NT8TyrV2EEi/YlDDVt5gRQnTo7q+K1SaNISbAcHtOkTqc2B19RMCWVnctWH1GFW0n0fULy5d8LhzwumqFURVMV/uPom4AUpntCCtM9UbHt2wennVaDP/4wKNyC1DBsMjKywr87Tp/uIRQywr2fEg/9c79Eui+kMN0TUpjuCQkHHRkZJTbPthMTCXXsjGf597j27C5yjFW3rlP9lF8F1aFjyT2M5C8JB4gQEUwVCRDLkL5PSL7ShlJav1FERKQCGTs2jj/+KL6n1MSJ/ojPR40qfSWUiIjIX5KTg+/jmREr0xVmAMa+ffg+XwCAHRtLKK19eApesGNnrCbHahpeOQkMHcbeZ1+OmGoJYKWkknW0VhQUOUwKpURERKJk+3aDGTM8nHNOiPr1nT8njhgR5JdfXOTlwdatBpZl4HbbpKVZ/OtfQf0eLyIiZcc0MTIzcW/b4qzetm2b0yx721Zc27bh2rql4OOsfaU+be55F5I3Ziyh1m1QA8PoCgwdxs5BJawoKFIBKJQSEREpR6YJCxa4efVVL3PmONPvbDuPK690emycfXaIkSNDLFhQ0FvKNA3GjfMrkBIRqaxMs/xCAdvGyNqHa+vWAwKmYkKmbVsxdmRiWFbpT+31FtsTqjD/uecRapf+Fy5CylRFXFFQZD+FUiIiIuXg118NXn/dy/TpXjZvLpie17GjSZMmBU0X8l+j9O5tkp5usny5m/R0k969zfIesoiIlIHCK9VBKVeqKywQwLV9W0So5Nq2dX/QdMD27VsxcnNLfVrbMLCT62HVb4BVvz5Wg4YFH9dv4Lw1cN7bcfHU6dz2kM2zg127lf66RKRaUyglIiJylGVlwamn1iAvzyl1qlPHYuTIEOedF+TEE4v/C7VhwPjxfsaPj2H8eFVJiUg1Up5VRUfZgSvVHci1eTNJY0az99mXCHbrUShkKlTdtH3/xzt3HtZzWwmJJYZMdv36mPWd7XbduuAp/cvCrElTSBozGtswim2enTVpcqX99xKR8qdQSkREpIytXOli4UI3V13lTHFISIDBg0Ps2mVwwQVBBgwIlWql6169TBYtyjnKoxURqTjKrKroaLJtCAQwcnMwcnMxcnMgNy/icyM3F7KzSbj9Vmc6XaFTGLaNDSRdOrrYVexKfGqPB6te/XDlUjhsqtcgMnyqVx9q1CjDiy6g5tkiUpYUSomIiJSBXbvg7be9vPaal9Wrnb8Q9+9v0qKFUwn1xBN5+sOxiMhBHLqq6BDL1xcXFuXkYuTlRoZFubkYOfuP2b+P/MccsJ3cyMdFhE+H0YepJAeGUVbt2gUhU72i0+bCFU61a4Or+BVay1N+82zf0sXUzNnDnviaBLpU3oo2EYkehVIiIiJHyLLgiy/cvPaal48+8uD3Oy8xfD6bIUNCEVPu9Hu6iMhBmCYJE24+eFXRvy4j+OIp4PcXCYuMnFzIyy2TsOhw2G43dlw8xMVhx8Vjx8dhx8Zix8Xj2rMHzw+rD3mOvY9Nw/+388phtGUsv3l2ciLBzH1QtMWUiMghKZQSERE5Qh9/7OGSS+LCn7dpY3LBBUHOPjtI7dpRHJiISGVh27g3rCf2+WcipoIVZgDk5eH7fEHpTut2Y8fXgP0BkR0fh50fHMXFQewBn8fHFQRL4e1x2PEHhE3554mLg/j48GPxekscg/fLL6g1Ysghx2o1blyqaxIRqYoUSomIiJSC3w9z5niwbTjzzBAA/fqFOO44i9NOC3HBBUHatbPUkFxE5BCM7dvxffEZ3s8X4Fv4Ge5Nf5b6sTkXjSF4aq+CsOiA0Ki0YVF5CXbthpmaqpXqREQOQqGUiIjIQaxd6+K117zMmOFh504Xxx5rccYZIVwuiImBJUuyK0J7DxGRiisnB++Sxfj2h1CeNasidts+H6GWrfGuWnHIUwWGn+VMGasM3G6tVCcicggKpURERArZtw/efddpWv7ddwUvFho2tBgxIojfD3H7Z+0pkBIRKcQ08axcjnfhZ/g+X4D36yUYgUDEIcG27QieehqBXr0JdjkFYmKo06lNlasq0kp1IiIHp1BKRESkkIkTY3j1VR8AHo9N//7O9LzevU08+skpIlKE69eN4Uoo76LPce3aFbHfbNTYCaBOPY1Az9Ow69Urco6qWlWUv1Kdd8liXFu3YDVo6IRrlfBaRETKmn61FhGRam3rVoM33vBy+ukhWrd2Vm36299CfP21m/PPDzJyZIj69bWkkIjIgYxdO/EuWojvswX4Fi7A/duvEfutxCSC3Xs6QdRpvTGbNudQTfeqdFVR/kp1IiISQaGUiIhUO8EgzJvn4bXXvMyb58Y0DTIyDO6/3w9Aly4mixblqGm5iEg+vx/vN0vg6y+pOXsOnhXLI6uZPB6CnU8m2Ks3gVNPI9ShE0dSWqqqIhGR6kWhlIiIVFqbNhns2FFycpScbJOaWvCiaf16g9de8/LGG162by9oBnXSSSZdupjhzxVGiUi1Z1m4f1jjTMn7fD7epV9h5OYCkL+uXahVawKnnkawV2+Cp3THTkgsm+dWVZGISLWhUEpERColvx/694+PCJcKq1/fYtmybGJiwDRhxIh4tm51jk9Otjj33BDnnx+kRQurvIYtIlJhuTb96TQmX+j0hnJlZkbst+o3wDWgP/u6dCdwam+shilRGqmIiFQVCqVERKRS8vmgUSObzEwb2y5a2mQYNrZdMOPD7Ybzzw+yerXTK6p//xBeb5GHiYhUG8bePXi/XORUQn2+AM+G9RH77fgaBLp13z8lrzdW69Yk10vCn7mPYhbIExEROWwKpUREpFIyDBg3zs+oUfHF7rdtg+3bDT7/3E3fvs7UvHHjApqaJ1JdmWbV61N0uNcUDOJd9g3ezxfg+3wBnu+XYZgFU5dtl4tQh05Oc/JevQl2Osn5C8B++v4pIiJlTaGUiIhUWr17m6Snm6xc6cKyIl8tGYbN2WeHaNjQPmBbeY9QRCoC38wPiqzoZqamkjVpSqVd0a1U12TbuH/6MVwJ5V38Ja7srIjzhJo1J3jqaQR69SHYvQd2zVrleBUiIlLdKZQSEZFKyzDg3HODLF8eW2Tfs8/mMnSoWcyjRKQ68c38gKQxoyk838y1eTNJY0az99mXK10wdahryh0zFtfevXgXfoZ7y+aIY6y6dZ3m5Kc6q+RZxzQpz6GLiIhEUCglIiKVim3DL78YNGvmvBi79NIg99wTQ06OM2XP7bZJS7MYMkSBlEi1Z5okTLgZbJvChZKGbWMbBgkT/s3OQUP+2lQ+2wbLKnh/wMeGXWi7ZZe874CPC/YVOncwSMK/ryvxmgDi/zetYGixsQS7nOJUQvU6jVCbNHCVvECEiIhIeVIoJSIilYJpwgcfeHjkER9//OHiu++yqFnTeW31zDO5nH9+/P7jDMaN82uqnojgXbI4YnpbYYZt487YRJ0Tm2J4vE7wYx8YEBUEQoZdNDhywqOK2fE776yR5J0/muDJXSG2aDWpiIhIRaBQSkREKrRAAGbM8PLooz42bnT+up+QYLNypZuePZ1qqL59nd5Sy5e7SU836d1bVVIi1VpuLr7FXxD31BOlOty9a9dRHlDxbJfLSdYNw3nvcoHhwo74nIKPMSDgx7V37yHPHeg/kOCppx3tSxAREflLFEqJiEiFlJMDr77q5YknfGRkOGFU7do2Y8cGGDMmQK1aBccaBowf72f8+BjGj1eVlEh15Pr9N3zzPsE3bw6+RQsx8vJK/di9/3mUUMfOxQREYBuuAz43Ij4O7zMMcBkRx0TuK/SxYRzxygveL7+g1oghhzzOatDwiM4vIiJSnhRKiYhIhbR9u8HEiTGYpkGDBhb/+leA0aODJCQUf3yvXiaLFuWU7yBFJHqCQbxfL8E3dw6+Tz/B8+O6iN1maiMCfU4n5qMPMHbtKnaanW0YWCmp+M8f/dd6SpWjYNdumKmpuDZvPug1Bbt2i8LoREREDo9CKRERqRB27DD47DM3Z58dAuDYY22uuipA48Y2f/tbUC1RRARj61Z8C+YRM3cO3s/m49pXMI3NdrsJntSFQL/+BPoNwGx9IhgGgT79SBozGtswIkIce3+lUtakyZUmkALA7SZr0pSqdU0iIlJtKZQSEZGo2rzZ4Mknfbz8spfcXEhLy6FFCwuA8eMDUR6diESVZeH5fpkzLe/TT/Au/z5yd926BPqcTuD0AQRO64Ndq3aRUwSGDmPvsy+TMOHmiKbnVkoqWZMmExg67KhfRlmritckIiLVk0IpERGJil9/NXjsMR9vvOElEHD+ut+uncm+fVEemIhElbF7F77P5jvT8hbMw5WZGbE/2L7D/mqo/oTSO5aqIigwdBg7Bw3Bu2Qxrq1bsBo0dKa3VeJqoqp4TSIiUv0olBIRkXK1bZvB7bfH8O67HizLCaO6dg1x7bUBevc21aRcpLqxbdxrfwg3Kfd+sxTDLFhB00pMInhaH/z9+hPoczp2gwZH9jxuN8HuPcto0BVEVbwmERGpVhRKiYhIuapRw+azz9xYlkGfPk4Y1bWreegHikjVkZ2N74vPw9Py3Jv+jNgdatmKQN/+BE4fQPDkruD1RmmgIiIicjQplBIRkaPGtuGrr9y8846HKVP8uFxQowZMnernmGMs2re3oj1EESknro2/EDNvDr65c/AuXoQRKOgZZ8fGEuhxKoF+Awj0PR3r2OOiN1AREREpNwqlRESkzNk2fPqpm4cf9vH1186Pmn79Qgwc6FREDR0aiubwRKQ8+P14lywOT8vzbFgfsdtscmy4N1Sg+6kQFxelgYqIiEi0KJQSEZEyY5owa5aHhx/2sXq102w3JsbmvPOCtGmjqiiRqs61OWN/CPUJ3oWf4crOCu+zPR6CXbuFp+WZJ7RATeRERESqN4VSIiJSJrZuNRgxIo71650wKj7e5uKLg1xxRYAGDewoj05EDotp4l26GHL24I2vSaBLCau6mSaeb7/B9+knxMydg2fNqojdVr36ToPyfgMI9joNO6lmOV2AiIiIVAYKpURE5IjZdkGhQ/36NrGxUKuWzWWXBbjssgB16kR3fCJy+HwzPyBhws24MzIAqAmYqalkTZpCYOgwjB078C2Yh2/eHHwLPsW1a1f4sbZhEOrYyekN1a8/obT24HJF6UpERESkolMoJSIihy0rC55/3sebb3r4+OMcEhKccGratDxSUiwSEqI9QhE5Er6ZH5A0ZrSTOB/AlZFB0qUXYjZrjnvjLxhWwXRcq2YtAn36OtPy+pyOnZxc3sMWERGRSkqhlIiIlNrOnfDMMz6efdbH7t1OidT06V4uuywIwAknqG+USKVlmiRMuBlsm8KdnvI/z29WHjqxLYHTB+Dv259Q55PAo18pRURE5PDpNwgRETmkrVsNnnzSx4svesnJcV6eNmtmcc01fs4+WyvpiVRmxq6deL7/jpj33wlP2TuYPc+8SODMEeUwMhEREanqFEqJiMhB7dwJXbrUCIdRbduaXHttgCFDQsX2PRaRCiwnB8/KFXiXL8Pz/TK833+H+9eNh3UKw1QQLSIiImVDoZSIiBSxdasRXjGvTh3o3z/Epk0urrvOT9++plZxF6kMgkE8637A8/13BQHUj2sxTLPIoaGmzbAaNcb3xeeHPK3VoOHRGK2IiIhUQwqlRESqgU2bDHbsKEiSateGXbsKVsRKTrZJTbVZtcrFQw/5mD3bw6JF2TRt6gRTDz+cR1wcCqNEKirLwr1xQ0QA5Vm9EiMvr8ihZoOGhDp0ItShI8EOnQild8CuVRtMkzqd2uDavBmjUKNzcFbWs1JSCXbtVh5XJCIiItWAQikRkSrO74f+/ePZvr3wsuw1wh/VqmXRoYPFggUFPxYWLPDQtKnTwDw+vjxGKiKl5dqyGc93y/As/w7vd8vwrPge157dRY6zkmoSSu9YEEB16IiVklr8Sd1usiZNIWnMaGzDiAim7P2JdNakyWjeroiIiJQVhVIiIlWczweNGtlkZtrYdnGlTja7d7tYsMCFy2UzYkSI//u/AK1bayU9kYrA2L0Lz/Lv8S7/LhxEubdsLnKcHRNDKK09wQ4dw5VQ5vHNwFU4kC5ZYOgw9j77MgkTbo5oem6lpJI1aTKBocPK5JpEREREQKGUiEiVZxgwbpyfUaNKKncy8HhszjsvyFVXBTj++KLTdkSknOTm4lm10mlEvj+A8vyyochhtsuF2erEiAAq1OpE8Hr/8hACQ4exc9AQfEsXUzNnD3viaxLo0k0VUiIiIlLmFEqJiFQDvXubpKebrFzpwrIKqqUMwyY52Wbu3BxSUxVGiRw208S7ZDGurVuwGjR0+i2VNrwJhXCvW+tUQO3vBeVZu6bYRuTmccc7AVR6J2caXlo7qFGjmJOWEbebYPeekJxIMHMf6NuDiIiIHAUKpUREqjjLgpkzPWRmEhFIAdi2wWOP5SqQEjkCvpkfFJnmZqamkjVpStFpbraN69eNeL9fhuf775z3q1Zg5OYWOa9Vrz7Bjp0IpR/QiLxO3aN9OSIiIiLlTqGUiEgVZVkwa5aHBx7wsXatU7nhctnYthNGud02aWkWvXsXrcoQkYPzzfyApDGjodAqda7Nm0kaM5qsBx/FqlsPz/JlBY3Id+0qch4rIdGZepd+QCPy1EZa6lJERESqBYVSIiJVTHFhVGKizeWXBzjxRJNLL3V6S5mmwbhxfr32FTlcpknChJvBtin838ewbWwg8bqrizzM9vkIpbU7IIDqhNms+WE1IhcRERGpShRKiYhUQVOm+PjxRzeJiTZjxwa4/PIAtWo5RR3p6SbLl7tJTzdVJSVyBLxLFkdM2SssP6gymxxLoHtPQukdCXXsRKh1G2c5TBEREREBFEqJiFR6lgUff+yhT58QcXFO0cWttwZYudIVDqPyGQZMmODnttvimTBBVVIih8OVsQnfx7OIe/G5Uh2ffetE/GeNPMqjEhEREam8FEqJiFRSlgUffeRM0/vhBzd3353H5ZcHARg0KMSgQcU/rlcvkx9+gMxMs3A7HBE5kG3j/nEdMR/PxPfxTLzLvz+sh1sNGh6lgYmIiIhUDQqlREQqmcJhFEBCgq2ASaQsmCaeb752gqjZs/Bs/CW8yzYMQid1wT9gMHHTHse1fTtGMf/xbMPASkkl2LVbeY5cREREpNJRKCUiUol89JGHqVN9rFlTEEbl94yqXTvKgxOprHJz8X3xGb6PZxEz5yNcmZnhXXZMDIFTTyMwaCj+/oOw69cHwDy+KUljRmMbRkQwZe+fE5s1aTK43eV6GSIiIiKVjUIpEZFK5I03PKxZ41YYJfIXGbt24ps7h5iPZ+FbMA8jJye8z6pZi8DpA/APGkqgd19ISCjy+MDQYex99mUSJtwc0fTcSkkla9JkAkOHlct1iIiIiFRmCqVERCoo23YamLdvb9KokVOJceONAVq3thRGiRwB159/4Js9i5iPZ+FdvAjDLFh90kxtRGDQEPyDhhI8pTt4vYc8X2DoMHYOGoJ3yWJcW7dgNWjoTNlThZSIiIhIqSiUEhGpYPLDqAce8LF6tZuLLgowdaofgLQ0i7S0QJRHKFJJ2DbuH9bs7w/1Ed6VyyN2h1q3wT9oCIHBQwmlteeIlqN0uwl271k24xURERGpZhRKiYhUEIXDKHB6RjVsqA7mIqUWCuH9Zim+j2YS8/Es3L//Gt5lu1wET+7q9IcaOBjr+KbRG6eIiIiIKJQSEakI5s51c999MeEwqkYNp2fUP/+paXoih5STg+/zBU5F1NzZuHbsCO+yY2MJnNbH6Q91+kDs5OQoDlREREREDqRQSkSkAli61M3q1e5wGHX55QHq1In2qEQqLmPnDnyfzHYalX/2KUZubnifVasWgf6DnCDqtD5Qo0YURyoiIiIiJVEoJSJSzmwbZs/20KCBRceOFgBXXBHE44GxYxVGiZTE9duvxMye5fSH+upLDMsK7zOPaeL0hxo0lGCXU8CjX3FEREREKjr9xiYiUk7yw6gHHvCxapWb7t1DvPuuU91Rt67NuHFqYC5VnGke3kp1to179SpiPnb6Q3nWrIrYHWqThn//inlm27Qja1QuIiIiIlGjUEpE5CizbZgzx83UqTGsWlXQM6pzZ5NQSAUdUj34Zn5AwoSbcWdkhLeZqalkTZpCYOiwggNDIbxLFuObPctpVP7H7+FdtstF8JTuBAYNwT9wCFaTY8vzEkRERESkjOmlkIjIUbRwoZs774wMoy67LMA//xmkbl2tqifVg2/mBySNGe0ktAdwbd5M0pjR7H3yGYiNK2hUvmtX+Bg7Lo7AaX2dqXmnD8SuW7e8hy8iIiIiR4lCKRGRoygjw2DVKjfx8Tb/+IfCKKmGTJOECTeDbVN4cp1h29hA0hWXReyz6tTBP2AwgUFDCZx6GsTHl994RURERKTcKJQSESkjtg2ffOLGNA0GDw4BcM45IbZu9XPhhQqjpHryLlkcMWWvsPwwyqzfAP+IcwgMHkrwpC6a1yoiIiJSDeg3PhGRvyg/jJo6NYaVK900bmzRr18In895XX3NNWpgLtWXa+uWUh2Xfee9+M8eeZRHIyIiIiIViUIpEZEjVDiMAoiPtxkxIkggAD5flAcoEm05OXi/XlKqQ62GDY/yYERERESkolEoJSJSyKZNBjt2lLy0fHKyzaZNBrfeGsuKFQVh1JgxAa64IkhysqbpSTWXlUXcC88S/+SjuDK3A2BDkZ5SALZhYKWkEuzarVyHKCIiIiLRp1BKROQAfj/07x/P9u2uEo+pX9/imWdyWbHCrTBK5ADG3j3EPfs0cdOewLVzJwBmk2MJ9O5L7EvPO8HUASvw2YYTU2VNmgxudzSGLCIiIiJRpFBKROQAPh80amSTmWlj20XrOgzDJjXVpmtXiwcfzGPgwJDCKKn2jF07iXv6v8T9bxquPbsBCDVtRs61N+I/+1zwegn06kPChJsjmp5bKalkTZpMYOiwKI1cRERERKJJoZSIyAEMA8aN8zNqVPFL0Nu2wbhxfgwDLrwwWM6jE6lYjMxM4p96nNjnnsGVtQ+AUIuW5Fx3E/4zz4pYQS8wdBg7Bw3Bu2Qxrq1bsBo0dKbsqUJKREREpNpSKCUicgDbhsREm7p1rf19pQqqpQzDpm1bi969zegNUKQCMLZuJf7JR4l78VmMnBwAQie2JfuGmwkMGQauEqa/ut0Eu/csx5GKiIiISEWmUEpE5ACvvOLlhhtii91n2wbjxztVUiLVkStjE3GPP0zcKy9i5OUBEGzfgZzrbyYwYFDJYZSIiIiISDEUSolItbVnD3zwgZdGjSz69HGqn/r3D5GYaNO/f4jly138+qsL0zRwu23S0lQlJdWT6/ffiH/0IWKnv4IRCAAQ7HwyOTfcTKDP6SipFREREZEjoVBKRKqVYBDmz3fz5ptePvnEg99v0KNHiD59cgFo0MDmhx+yiIlxjsvvLWWaBb2kRKoL1y8biH/kP8TOmI4RCgEQ6NaDnOtvJtizl8IoEREREflLFEqJSLXw/fcu3nzTy3vvedixo2CKUevWJn37hrDtgtfXMTHO+969TdLTTZYvd5OebqpKSqoN908/Ev/QVGLefQvDsgAInNqbnBtuJnhK9yiPTkRERESqCoVSIlItTJoUwxdfON/y6tWzOOusEOeeG6RtW6vEYg/DgPHj/YwfH6NeUlI9rFxJ4m134PvwPQzbBsDfrz85199MqPPJUR6ciIiIiFQ1CqVEpErZuxc+/NDL2297+O9/82jQwHlhfeGFQerVszn33CCnnmoeuFL9QfXqZbJoUc5RHLFI9HlWLif+wSnw0Uz2FwriHzSUnOtvItS+Q1THJiIiIiJVl0IpEan0gkH47DM3M2Z4mT3bQ16eU9L09tse/vWvIAAjRoQYMSIUzWGKVDieb78m/sEpxMz7xNlgGPiHjSD72hsx27SN7uBEREREpMpTKCUildb27QaPPOLjnXc8ZGYW9Ilq2dJk5MgQw4crhBIpjverL4n/zxR8CxcAYLtc+M8eSeydt7OvXmP2z9wTERERETmqFEqJSKUSCIDP53zs89m8+KIXv98gOdnpEzVyZJB27UruEyVSbdk23i8+J/7BKfgWL3I2eTzknXseOf93PXazZsQmJ0LmvigPVERERESqC4VSIlLhZWXBzJkeZszwkpNj8PHHTo+nmjXhttv8HH+8xWmnmXi9UR6oSEVk2/jmzyX+P1Pwfvu1s8nrJe+80eT833VYTY4FQDmuiIiIiJQ3hVIiUiGFQrBwoZs33/Ty8ccecnMLXjL/8YfBMcc484vGjg1Ga4giFZtt45v9EfEPTcG7/HtnU2wsuRdeRO5V12KlNoryAEVERESkulMoJSIVzvTpHu6+O4bt2wv6RDVrZnHuuUHOPjsYDqREpBiWhW/m+9R4cCqeH1YDYMfHk3vRGHL+9X/YDRpEeYAiIiIiIg6FUiISdZs3G/h8ULeuEzbVqAHbt7uoU8di+PAQ554bpEMH9YkSOSjTJOa9t4l/+AE8P64DwEpIJG/MWHIuvxI7OTnKAxQRERERieQ69CFHj9/v59Zbb6Vz58706NGD5557rsRj586dy6BBg+jQoQPnnXcea9asidj/wgsv0LNnTzp06MCtt95Kbm7u0R6+iPwFWVnw5pseRo6MIz29Bs8/X9AQqn//EC+9lMPKldncf7+fjh0VSImUKBgkZvqr1O7emaQrLsPz4zqspJpk3ziOnctWkT3+dgVSIiIiIlIhRbVSasqUKaxevZoXX3yRjIwM/v3vf5OamsrAgQMjjvv555+54YYbuOuuu+jYsSMvvPACl19+OXPnziUuLo45c+bw+OOPM3XqVOrWrcstt9zC1KlTmThxYpSuTKT62LTJYMeOkhOj5GSb1FSnAso04Ysv3MyY4WXWLA85OQWP++WXgow8JgYGDjSP3qBFKgPTxLtkMa6tW7AaNCTYtRu43QX7/X5i33iN+EcfxP37bwBYtWuT+8+ryB0zFjupZpQGLiIiIiJSOlELpXJycpgxYwbPPPMMbdq0oU2bNvz888+8+uqrRUKpL7/8kubNmzN8+HAArr/+el599VXWr19PWloaL730EhdddBG9e/cG4M4772TMmDHcdNNNxMXFlfeliVQbfj/07x8f0fupsPr1LZYty8brhVNPjefnnwteVB9/vMXIkUHOOSfIccepT5RIPt/MD0iYcDPujIzwNjM1laxJUwj060/sqy8S/9jDuDM2AWAl1yPnX/9H7sVjICEhWsMWERERETksUQul1q1bRygUokOHDuFtnTp14qmnnsKyLFyughe5tWrVYv369SxbtowOHTrwzjvvkJCQQJMmTTBNk1WrVnHVVVeFj09PTycYDLJu3bqI84tI2fL5oFEjm8xMG9suWi1lGE6VlM8HhgGdOlls3+5i+PAgI0cG6dxZ0/JECvPN/ICkMaPBjgxqXZs3k3TphVhJNXHv3QOA2TCF3KuuIffCiyE+PgqjFRERERE5clELpbZv307t2rXx+XzhbcnJyfj9fnbv3k2dOnXC2wcPHsz8+fM5//zzcbvduFwupk2bRs2aNdm1axd+v5/69euHj/d4PNSqVYstW7aU6zWJVDeGAePG+Rk1qvgXw7ZtcO65wXDwNHGin6lT84iJKcdBilQmpknChJvBtimc1xr7Qyr33j2YqY3IueYG8s67EGJjy3+cIiIiIiJlIGqhVG5ubkQgBYQ/DwQCEdt37drF9u3bmThxIu3bt+f111/nlltu4d133w0fW9y5Cp/nUKpCxUb+NVSFa5GycbTviT59TNq3N1m50lWkWio+3qZt24JqqHr1NEWvItD3iYrLu3RxxJS9kmQ98gTB0/oUCa7+Ct0XUpjuCSlM94QUpntCCtM9IflKew9ELZSKiYkpEhrlfx5b6K++DzzwAC1atOCCCy4A4O6772bQoEG8/fbbnHPOORGPPfBch9tPqm7dxMM6viKrStciZeNo3RM//wxbtxaZaQTAO+8YDBigKUUVlb5PVECbfi3VYTWDOZB8dP79dF9IYbonpDDdE1KY7gkpTPeElFbUQqkGDRqwa9cuQqEQHo8zjO3btxMbG0tSUlLEsWvWrGH06NHhz10uF61atSIjI4NatWoRExNDZmYmzZo1AyAUCrF7927q1at3WGPasWNfsS+sKxPDcL4BVIVrkbJxtO+JGjUgLq4GHo+BaTpT9txum7Q0i44dc8jMLPvnlL9G3ycqFmP3LnwzPyTmnRl4v/i8VNVPe+JrEszcV7bj0H0hheiekMJ0T0hhuiekMN0Tki//XjiUqIVSrVu3xuPxsHz5cjp37gzAsmXLSEtLi2hyDlC/fn02bNgQsW3jxo3hY9PS0li2bBldunQBYPny5Xg8Hlq1anVYY7Lt4qs9KqOqdC1SNsrqntiyxeDpp72MGxfA5wOvF156KZcNGwwuvtipijJNg3Hj/OHnlYpJ3yeiKCeHmLmziXl7Br5PP8EIBsO7bK8PgoFiwynbMLBSUgl06QZH6d9O94UUpntCCtM9IYXpnpDCdE9IaUUtlIqLi2P48OHccccd3HvvvWzbto3nnnuO++67D3CqphITE4mNjeXcc89l3LhxtG3blg4dOjBjxgwyMjIYMWIEAOeffz4TJ06kRYsW1K9fnzvuuINzzz33sKfviUjJcnLgySd9PP64j5wcg4YNbcaOdV5It2xp0aIFpKebLF/uJj3dpHdvM8ojFqlggkF8Cxc4QdTHs3BlZ4V3hVq3Ie/skfiHn41n5QqSxozGpqC5OTiBFEDWpMngdpf36EVEREREylzUQimAW265hTvuuIOLLrqIhIQErr76avr37w9Ajx49uO+++zjrrLMYPHgw2dnZTJs2jS1bttC6dWtefPFF6tatC8CQIUPYtGkTEydOJBAI0L9/f2666aZoXppIlWFZ8PbbHu65J4aMDKeK8aSTTE46KTJ0MgwYP97P+PExjB/vV3NDEQDLwvP1UmLfeZOYD9/DtWNHeJfZ5FjyzhqJf8Q5mK1PDG8PNDmWvc++TMKEmyOanlspqWRNmkxg6LByvQQRERERkaPFsG0V1eXLzKz8814NA5KTE6vEtUjZ+Cv3xNKlbiZOjOH7752qjGOOsbjtNj9nnhlS6FSJ6fvEUWbbuNesJvadGcS8+xbuTX+Gd1nJ9cgbfhb+EecQ6nzywZclMU28Sxbj2roFq0FDgl27HdUKKd0XUpjuCSlM94QUpntCCtM9Ifny74VDiWqllIhUbA884OP7793UqGFz7bUBLr88QKHFMUVkP9fGX4h99y1i3n0Lz4/rwtuthEQCQ4eRN+Icgj17gaeUP3rdboLdex6l0YqIiIiIRJ9CKREJ27fPaUiYvwDmnXf6+d//LP797wANGuhPHSKFGVu3Evv+28S8+xbeZd+Gt9sxMQT6DSDvrJEE+vUH9TgUERERESlCoZSIYJrw2mte7rvPx5lnhrjvPmflvBNPtHjwQX+URydSsRh7dhMz60Ni3nkL76LPMSwLANvlItizF3lnn0tg8FDspJpRHqmIiIiISMWmUEqkmvviCze33RbDDz84vWoWLXLj90NMTJQHJlKR5ObimzeH2Ldn4Js3ByMQCO8KdjrJWTlv2FnY9etHcZAiIiIiIpWLQimRamrDBoM774xh9mwvADVr2tx4o59LLgni80V5cCIVQSiEd+FnxL4zA99HM3Fl7SvY1bIV/rPPJW/42VjHHR/FQYqIiIiIVF4KpUSqoQ8/9HD55bGEQgZut80llwS58UY/depEe2QiUWbbeL75mth33iTmg3dxZWaGd5nHNME/4hzyRpyDeWKbg6+cJyIiIiIih6RQSqQaOuUUk7g46NIlxB13+GnRwor2kESiyv3DGmLfmUHMu2/h/uP38HYrORn/sBHkjRhJ6KSTweWK4ihFRERERKoWhVIiVZxtw6xZ8PbbMUye7DQtT062Wbgwm0aNtKKeVF+u334l9t23iHlnBp51a8PbrRoJBIacQd5Z5xDseRp4vdEbpIiIiIhIFaZQSqQKW7vWxe23x/DZZwA+BgwI0aePCaBASqoW08S7ZDGurVuwGjQk2LUbuN1FDjO2bSPmg3eIfXsG3mXfhLfbPh+BfgPIO+scAqcPhLi48hy9iIiIiEi1pFBKpAravt1g8mQfr7zixbIMfD4YOzZA585mtIcmUuZ8Mz8gYcLNuDMywtvM1FSyJk0hMHQYxt49+D6aSezbb+L94nMMy5muartcBHv0wn/WOfiHnIFds1aUrkBEREREpHpSKCVShQQCMG2aj4cf9rFvn9OEeejQII884iUpyY+t4iipYnwzPyBpzGgK39yuzZtJuvRCQh0741mzCsPvD+8LduyE/6yR+M88C6tBw/IesoiIiIiI7KdQSqSKeeUVL/v2GbRvb3LXXX66dTNJTvZywCJiIlWDaZIw4WawbQqvg2fsD6m8330LQKhFS/xnjSRv+NlYTZuV80BFRERERKQ4CqVEKrlVq1y0amXh9YLPB/fdl8e2bQbnnhvSQmFSpXmXLI6YsleSvQ8+hv+Cv4NROLoSEREREZFo0ktWkUpqyxaDq6+OpV+/eF58sWB1sD59TEaNUiAlVZ9r65bSHRgfr0BKRERERKQCUqWUSCWTkwNPPunj8cd95OQ4L7R/+UUJlFQ/rvU/l+o49Y0SEREREamYFEqJVBKWBW+/7eGee2LIyHBCqJNOMrn77jw6drSiPDqR8mPs3EHCuBuIfe8dAGwo0lMKwDYMrJRUgl27lev4RERERESkdFReIVJJ3HZbDFdeGUdGhotjjrF4+ulcZs7MUSAl1Yrv41nU6dmF2PfewXa7yTtjOBgGdqHpefmfZ02aDG53FEYqIiIiIiKHolBKpJI477wgSUk248f7+fLLbIYPD6lNjlQbxu5dJF45lpoXnYdr+zZCLVux++NP2ffsS+x99mWslJSI462UVPY++zKBocOiNGIRERERETkUTd8TqYD27YNHHvFhWTBxYgCAtm0tli/PIiEhyoMTKWfe+XNJvPYq3Fs2Y7tc5P7r/8i++VaIjQUgMHQYOwcNwbtkMa6tW7AaNHSm7KlCSkRERESkQlMoJVJONm0y2LGj5NKm5GSbBg1sXnvNy333+cjMdOHx2Fx8cZAmTWwABVJSrRj79lLj9vHEvfIiAKGmzdj32FOETupS9GC3m2D3nuU8QhERERER+SsUSomUA78f+vePZ/v2kmfM1qpl0bChzbp1TnVHs2YWd9yRxzHH2OU1TJEKw/vF5yRe8y/cf/4BQM7YK8i+9XaIj4/yyEREREREpKwolBIpBz4fNGpkk5lpY9vFrhPG7t0udu+GmjVtbrzRzyWXBPH5ynukIlGWnU3C3ROJe+4ZAMwmx7Hv0ScJdusR5YGJiIiIiEhZU6NzkXJgGDBunL+EQArAwOWyueyyAEuXZnH55QqkpPrxLPmKOr27hQOp3IvGsPOzxQqkRERERESqKFVKiZSTHj1MWrY0+eknV0Q45XbbNGli8/LLubRoYUVxhCJRkptLjfvuJm7aExi2jdmoMfseepzgaX2iPTIRERERETmKFEqJHCXbtxt8/bWbb791s2yZixUr3OTmFq2UMk2D++5TICXVk2fZNyRe/U88638GIPf80WTfdS92Us0oj0xERERERI42hVIiZcDvh1WrXDRtalGnjrPtjTc83HVXbMRxSUk2tg1ZWWDbBm63TVqaRe/eZhRGLRJFfj81pt5H3OMPY1gWZoOGZD34KIHTB0Z7ZCIiIiIiUk4USokcJtuGP/80WLbMzbJlTiXUqlUuAgGD//43l7PPDgFw0kkWJ55o0qmTSefOJp07WzRrZvHZZ25GjXJWEDNNg3Hj/BgltZoSqYI8K5c71VFrfwAg7+xzybp3CnbtOlEemYiIiIiIlCeFUiKH4dtvXVxySRxbtxZdIyA52SIrqyBd6tLF5LPPcooc17u3SXq6yfLlbtLTTVVJSfURDBL/0FTiH34AIxTCSk5m39RHCAw5I9ojExERERGRKFAoJXIA24aNG439faCctzPOCHHNNQEAGje22brVhcdj07atRadOBZVQxx5rl6riyTBg/Hg/48fHMH68qqSkenD/sIbEq/+Jd9UKAPxnDGff5Aexk5OjPDIREREREYkWhVJS7WVnw7Rpvv0hlIudOyOroOrXt8MfN2xoM2tWNm3aWMTHH/lz9uplsmhR0SoqkSonFCLuiUeoMeVejGAQq3ZtsiY/iH/42dEemYiIiIiIRJlCKak2LAt++snFsmVuXC6b885zej/FxMCjj/rIyTH2f27Trp0VroDq1Clyet1JJ2mVPJHScP/8E4lXX473u2UA+AcOZt/UR7AbNIjyyEREREREpCJQKCUV0qZNBjt2lDyvLTnZJjXVLnE/wM6d8N13TiPyb7918/33bvbtc855wglmOJTyeODqqwMkJdl06mTSpo1FTEzZXYtItWOaxD39X2rcdxdGXh5WUk2y7pmM/9zz0HxVERERERHJp1BKKhy/H/r3j2f79qLNxPPVr2+xbFl2ODwKheD33w2aNi0Iqs48M54ff3RHPC4+3qZDB6cCyrLAtf8pbrghUObXIVIduX7ZQNI1/8K79CsAAr37su+hx7FSG0V5ZCIiIiIiUtEolJIKx+eDRo1sMjNtbLtoVYVh2NSrZzNvnofvvnOm4y1f7sa2YcOGLDz77+rOnU1MEzp1KpiK16qVFd4vImXIsoh9/hkS7r4dIycHq0YC2XfdS96FF6k6SkREREREiqWX51LhGAaMG+dn1KjiO4nbtsGaNW4uuSQuYntSkh1RLfXAA37c7uLOICJlyfX7byRedxW+Lz4HINDjVPY9/ARWk2OjPDIREREREanIFEpJhdS7t0l6usmqVS5Ms6DKwjDyq6dsWre2wo3IO3e2aN7cCk/HAxRIiRxttk3sKy9SY+KtuLKzsOPjybrtLvIuuYyI/4wiIiIiIiLFUCglFZJhwJVX+vnHPyKrpWzbYMKEPC65JEhiYpQGJyK4MjaReP3V+ObPAyDY5RT2PvIkVtNmUR6ZiIiIiIhUFgqlpELascPgoYfyl8CzAQO32yYtzeLqq4NqUSMSLbZNzJuvkzD+37j27sGOiSH71tvJHXuFyhNFREREROSwKJSSCicz0+Dss+NYu9ZNzZoWe/Y404BM02DcOL8CKZEoMbZuJfGma4iZ/REAwY6d2PfYNMwTWkR5ZCIiIiIiUhmp6YdUKNu2GZx1lhNINWhgMWtWLunpJgDp6Sa9e5tRHqFI9RTz3tvUOfVkYmZ/hO31kjX+dnbPnKtASkREREREjphCKakwtm51Aql169w0bGjx3ns5tGhhMX68nxYtTMaPV5WUSHkzMjNJvOwiksZegmvXLoJp7dk1dyG519wAHhXbioiIiIjIkdMrCqkwZs708NNPblJSLN59N4emTW0AevUyWbQoJ8qjE6l+fLM+JPGma3Flbsf2eMi59kZyrrsJvN5oD01ERERERKoAhVJSYYwZEyQQgIEDQxx/vB3t4YhUW8buXSTcchOxb78JQKj1iex77ClC7dKjOzAREREREalSFEpJVG3ZYpCYaFOjhvP5FVcEozsgkWrON28OCdddjXvrFmyXi9yrryP7xnEQE3PoB4uIiIiIiBwGhVISNX/+aTBiRDyNG1u88kpuOJgSkaPINPEuXQw5e/DG1yTQpRu43Rh791Bj4q3EvfYyAKHmJzjVUZ1OivKARURERESkqjrsUOrf//43Q4YMoXv37rjd7qMxJqkG/vjDCaR+/93ptb9nj0GNGpqyJ3I0+WZ+QMKEm3FnZABQEzBTU8k7/+/Evv4K7k1/YhsGuZdfSfYtt0FcXHQHLCIiIiIiVdphh1IJCQmMHz+eYDBI//79GTx4MF26dMHQsmhSSr//7gRSf/zh4rjjnKbmqakKpESOJt/MD0gaMxrsyP9rrowMajxwPwDmccez79H/EuzaLRpDFBERERGRasawbfuw0wDbtvnmm2+YPXs2n3zyCQCDBg1iyJAhpKenl/UYy01m5r7Cr9cqHcOA5OTECnstv/5qcNZZ8fz5p4umTZ1AKiWlAg60Cqno94SUA9OkTqc2uDIyKOnPB1aNGuxY8SMkJZXr0KTi0PcKKUz3hBSme0IK0z0hhemekHz598KhuI7s5AYnn3wyEydOZPbs2Zxzzjm8+eabnHfeefTt25dp06bh9/uP5NRShW3c6FRI/fmni2bNLN57T4GUSHnwLlmM+yCBFIArOxvvqhXlNiYREREREZEjanSenZ3NggULmD17NosWLaJBgwZccsklDB48mO3bt/PAAw/w9ddf8+yzz5b1eKUSy842yMkxOOEEk3feyaVBAwVSIuXB9fvvpTtu65ajPBIREREREZEChx1KXXHFFSxevJikpCQGDRrESy+9RLt27cL7W7Rowd69exk/fnyZDlQqv7ZtLd5+O4d69WwFUiLlwPXLBuJeeJbYl58v1fFWg4ZHeUQiIiIiIiIFDjuUSk5OZtq0aQdtbt65c2dmzJjxlwcnld/PP7vYudOgSxcTcIIpETmKTBPf/LnEPvcMMZ/ODW+23W4wzWKn8NmGgZWSqgbnIiIiIiJSrg67p9Tdd9/Nhg0bmDVrVnjblVdeyeuvvx7+vF69ejRr1qxsRiiV1o8/uhg+PI5Ro+L4/vsjal8mIqVk7NpJ3BOPUqdLB2pecC4xn87FNgz8fU9nz2sz2Pv082AY2IX+mJD/edakyeB2R2PoIiIiIiJSTR12UvDQQw/x1FNPER8fH97WpUsXnnzySZ544okyHZxUXmvXuhgxIo7t210cf7xFkyaaridyNHhWLifh2iup274VCXdOwP37r1g1a5FzxdXsXPI9e19/m0C/AQTOGM7eZ1/GSkmJeLyVksreZ18mMHRYlK5ARERERESqq8Oevvf222/z8MMP07lz5/C2v//977Rs2ZKbbrqJK6+8skwHKJXPmjUuzjknjh07XKSlmbz1Vg61a0d7VCJViN9PzIfvEffs03iXfRPeHGzbjrwxY8kbcQ4c8IeDfIGhw9g5aAi+pYupmbOHPfE1CXTppgopERERERGJisMOpXJzc0lISCiyvXbt2uzbt69MBiWV16pVLkaOjGPnThft25vMmJFDrVrRHpVI1eDa9CexLz5H3Csv4MrMBMD2evGfMZzcS8cSOulkKKHXX5jbTbB7T0hOJJi5D1TEKCIiIiIiUXLYoVTPnj255557mDx5MqmpqQBs3bqVyZMn06NHjzIfoFQe69cbnHNOPLt2GXToYPLmmznUrBntUYlUcraNd9FC4p59Gt/sWRiWs1iAmZJK3kWXknvhxdj160d5kCIiIiIiIofvsEOpiRMn8q9//Yu+fftSc3/isGfPHrp27crEiRPLfIBSeRxzjE3nziY7dxq88UYOSUnRHpFI5WXs20vMm68T9/z/8Pz0Y3h7oMep5F7yDwKDhoDnsL+Fi4iIiIiIVBiH/YqmTp06TJ8+nXXr1vHrr7/i8Xg47rjjaN68+dEYn1QiMTHw7LO5BIOQmBjt0YhUTu4f1xH33NPEvDkdV3YWAFaNBPznjiL3kn9gtmod5RGKiIiIiIiUjSP6M3soFKJ27dok7S+FsW2bjRs3snbtWgYPHlymA5SKbdkyF3PmeLjllgCGAbGxzpuIHIZQCN/Hs4h7/hl8ixYWbD6hBbmX/gP/uedhJ6r0UEREREREqpbDDqXmzZvHbbfdxu7du4vsq1evnkKpauSbb1z87W/xZGUZpKTYXHJJMNpDEqlUjG3biHvlBWJfeh53xiYAbJeLwMAh5F76D4I9ex26cbmIiIiIiEglddih1H/+8x9OP/10Lr74Ys477zyefvppdu/ezd13382//vWvozFGqYCWLnUzalQc2dkG3buHOPdcBVIipWLbeL752pmi9+F7GEHn/46VnEzuhReT9/dLsBofE+VBioiIiIiIHH2HHUr98ccfTJs2jSZNmtC2bVu2b99Ov379cLlcTJkyhbPOOutojFMqkCVLnEAqJ8egZ88QL7+cS3x8tEclUsHl5BD77lvEPvcM3lUrwpuDnU5ypugNG+E0ZhMREREREakmDjuUSkpKIjc3F4Djjz+edevW0a9fP5o2bcqff/5Z5gOUimXxYjfnn+8EUqeeGuKllxRIiRyMa+MvxL3wLLGvv4xr/7RnOzaWvBHnkHfpPwi17xDdAYqIiIiIiETJYYdSvXr14s477+Suu+6iS5cuTJkyhd69ezNnzhzq169/NMYoFcTOnXDhhU4gddppIV58MZe4uGiPSqQCsix88+cS+9wz+D6di2HbAJhNjiP34jHknX8hdp26UR6kiIiIiIhIdB12KDV+/HjuueceVq9ezZlnnsmcOXM455xziI+PZ+rUqUdjjFJB1KkDU6bk8e67Xp59Nler7IkUYuzaSezrrxL3/DO4f/s1vD3Qpx+5l/6DQN/+4HZHb4AiIiIiIiIViGHb+/+EX0ozZ86ke/fu1K5dO7wtKyuLmJgYvF5vmQ+wPGVm7uPwvhoVj2FAcnJimV6LaUa+jrZtLQhWmRyNe6LaME28Sxbj2roFq0FDgl27FRsqeVatIPa5Z4h9+02MvDwArJq1yBt1AXmXjMFs2ry8R35QuiekOLovpDDdE1KY7gkpTPeEFKZ7QvLl3wuHctiVUnfeeSdvvPFGRCiVkJBwuKeRSmL+fDd33RXD9Om5NGzofFdRICXVgW/mByRMuBl3RkZ4m5maStakKQSGDoNAgJgP3yPu2afxfvt1+JhQmzRyL/0HeWeNhBo1ojF0ERH5//buOzqqOv//+OtmJr0QQi/7FctSRAQERSURQRZRwQVFrAGkCNKURUoAFZSOggqKVAVFWVgsFBGFnwUL6IIEwcUNYIkGYigJqTPJzP39ETNLmiaazE0mz8c5nMPcuTO+7vLm7uTF594BAADVQrlLqU6dOmnr1q0aMWKEAgICKiMTqoidO20aNChYTqehJUsCNHOmw+pIgFcEbN2siCGxKvrPO34nTihiSKwct/RWwJ7P5XcqRZJk2u1y9P67sgcPV95VnWhuAQAAAKAMyl1KnT59Wi+88IJefPFFRUVFKbDIV5jv2rWrwsLBOu+9Z9PgwfmF1C235OqxxyikUEO4XAqbNlEyTRWtlgzTlCkpaOvm/F0bNlLOgPuVEztI7gYNvR4VAAAAAKqzcpdS/fv3V//+/SsjC6qI7dvtGjo0SLm5hm69NVdLl+aomt8uDCgz/z2fFbpkr6iCoirjkcnKHjdB/OUAAAAAgD+m3KVU3759KyMHqoht2+waNixIeXmG+vTJ1Qsv5Mhe7ikBqi+/5JNl2s99yV8ppAAAAADgTyh33RAbGyvjN+6Xsnbt2j8VCNbJy5Pmzg1QXp6h227L1ZIlFFKoedz1G5RtPy7XAwAAAIA/5Q/d6Px8eXl5SkxM1EcffaQHH3ywwoLB++x2acOGbK1c6a8pU5wlffM94NOM06cVvHrFb+5jGobcjRor9+prvZQKAAAAAHxTuUup0aNHl7j9jTfe0HvvvachQ4b86VDwrp9/NtSkSf63jDVqZOrRR50WJwK8L+C97QofN0Z+Kb/I9POT3G7JMGSc9w185q+rRDNmzhOtLQAAAAD8OX4V9UZXXnmlPv/884p6O3jJv/5lV6dOoXrzTa7TQ81kpJ9T2MOjVOu+O+WX8ovyWrRU6o4PdG71q3I3alRoX3ejxjq36hU5e91qUVoAAAAA8B3lbiKSSvhWqszMTK1atUpNmjSpkFDwjg0b7Bo7Nkhut6FPP7Wpb988qyMBXuX/yccKf2ikbIk/yjQMZY8Yrcy4R6WgIKlte5256Rb57/lMfskn5W7QMP+SPVZIAQAAAECFKHcp1a1bNxmGIdM0PTc8N01TjRo10uzZsys8ICrH+vV2PfRQkEzT0IABTs2f77A6EuA92dkKnTVdIcuXSpJc/9dM6YuXKveazoX3s9mU2znGgoAAAAAA4PvKXUrt2rWr0GPDMOTv76+6dev+5rfyoep47TW7xo3LL6QGDXJq7lyH/CrsQk6garPv/7fCRw+X/WiCJCk79n5lzpgpMyzc4mQAAAAAULOUu4po0qSJPvzwQ3311Vdq0qSJGjdurBkzZmj9+vWVkQ8V7JVX/PXww8EyTUNDhjg1bx6FFGoIp1Mhc2cq8pa/yX40Qa4GDZX22kZlPP0shRQAAAAAWKDcdcSiRYu0dOlShYSEeLZdddVVeuGFF/T8889XaDhUvG+/zf8jf+ABp2bPdojFbagJbP/5RpE33aDQhfNluFzK6Xu7zn68R87uN1odDQAAAABqrHJfvrdp0yY988wz6tixo2fbgAED1KJFC02YMEGjRo2q0ICoWE8+6dA117h08815FFLwfS6XgpcuUejcJ2U4nXLXrq2M+Yvk+PttVicDAAAAgBqv3CulsrOzFRYWVmx77dq1lZ6eXiGhULHefdcmx6/3MTcM6ZZbKKTg+/y+O67IPjcr7IlHZTidcnTvobMf76WQAgAAAIAqotylVExMjGbNmqWkpCTPtuTkZM2bN0/R0dEVGg5/3rJl/howIETDhgUpL8/qNIAXmKaCXl6lqK6d5b/3c7lDw5S+cLHOrdsod4OGVqcDAAAAAPyq3JfvPfbYYxo5cqS6deumyMhISVJqaqquvvpqPf744xWdD2Xw88+GTp/+39Kn2rWls2f9tGGDXcuXB0qSWrVyy2azKiHgHX4nkhQ+brQC/t9OSZLz2milP/uC3Bc0szYYAAAAAKCYcpdSUVFRWr9+vb799lt99913stvtatasmS655JLKyIff4XBIPXqEKCWl6KK3UM/vQkJMjRvn5JI9+C7TVOAbGxU2+RH5paXKDAxU5tTHlf3ASPH1kgAAAABQNZW7lHI6nXrmmWfUpEkT3XvvvZKk2267Tddee60eeugh+fv7V3hIlC4gQGrSxNSpU6ZMs6TWyVTz5m4FBno9GuAVxunTCp84ToFb3pIk5bZrr/Qly+Vq3sLaYAAAAACA31TuJQQzZ87URx99pJYtW3q2jRw5Uh9++KHmzZtXrvdyOByaMmWKOnbsqOjoaK1evbrE/WJjY9WiRYtiv+Li4iRJaWlpxZ7r1KlTeQ+tWjIMafJkRymFlCQZmjzZwSop+KSA97Yr6rpOCtzylky7XZkT4pS6bSeFFAAAAABUA+VeKfXee+/ppZdeUqtWrTzbunfvrgYNGmj48OGaNm1amd9r/vz5OnTokNasWaOkpCRNmjRJjRs3Vs+ePQvtt3jxYuXm5noex8fH6+GHH9Y999wjSTp69KgiIyO1detWzz5+NeiSna5dXWrXzqWvv/aTy/W/9slmM9WmjVtdu7osTAdUPCP9nEIfjVPwa69IkvJatFT6kmXKa9ve4mQAAAAAgLIqdyllmqYcDkeJ288vjn5PVlaWNm7cqBUrVqh169Zq3bq1EhIStG7dumKlVMEN1SXJ5XJp0aJFGjp0qNq0aSNJOn78uC688ELVq1evvIfjEwpWS911V0ih7S4Xq6Tge/w/+VjhD42ULfFHmYah7BGjlRn3qBQUZHU0AAAAAEA5lHs50Y033qhHH31U//73v5WVlaWsrCzt379f06dPV/fu3cv8PkeOHFFeXp7at//fyoYOHTooPj5ebre71Ne98cYbSktL07Bhwzzbjh49qmbNmpX3UHxKwWopm82UlL9Kql07F6uk4DuysxU6bZIib+slW+KPcv1fM6W99Y4yZ8yikAIAAACAaqjcK6Xi4uI0depUDRw4UG63W6Zpym63q0+fPho1alSZ3yclJUW1a9dWQECAZ1vdunXlcDiUmpqqqKioYq8xTVMrV67UgAEDFBr6v2+XO3bsmPLy8tSvXz8lJyerY8eOiouLU/369ct1bNV5RZFhSHFxDt15Z/5qKZfLUFycgy8eg2euq/N82/f/W2Gjhst+NEGSlD3gfmXNmCkzLFzV+LAs4wszgYrHXKAoZgJFMRMoiplAUcwECpR1BspdSgUHB2vhwoU6d+6cfvjhB7lcLn3//ffasmWLunfvrsOHD5fpfbKzswsVUpI8j51OZ4mv2bt3r06ePKn+/fsX2n78+HFFRUUpLi5Opmlq0aJFGjFihDZu3CibzVbmY6tTJ7zM+1ZFd9whPfWU9OWX0pVXSnfcEcLJAB7Vcr6dTmnmTGn2bMnlkho1klauVPDNNyvY6mw+oFrOBCodc4GimAkUxUygKGYCRTETKKtyl1IFEhIS9NZbb+ndd99VRkaGLr74Yk2ZMqXMrw8MDCxWPhU8DirlUpwdO3bouuuuK3SPKUnatm2bDMPwvO65555TdHS04uPjdcUVV5Q50+nT6TLNMu9eJU2ebNO0aSGaPDlLp09z6R7yG+o6dcKr3Xzb/vONwkcNl/3reEmSo+/typj3tMzaUdKpdIvTVW/VdSZQuZgLFMVMoChmAkUxEyiKmUCBgln4PeUqpX7++We99dZbevvtt5WYmKiIiAhlZGTo6aef1s0331yugA0aNNDZs2eVl5cnuz0/RkpKioKCghQREVHia3bv3q3Ro0cX2x4cXHjNRJ06dRQZGank5ORyZTJNVfu/ONdd59I330inTrmq/bGgYlWb+Xa5FLx0iULnPinD6ZS7dm1lzF8kx99vy3++OhxDNVFtZgJexVygKGYCRTETKIqZQFHMBMqqTHcc2rRpk2JjY9W9e3dt2LBBnTt31urVq/Xpp5/Kz89PzZs3L/d/uFWrVrLb7Tpw4IBn2759+9SmTRv5lXAjpDNnzigxMVEdOnQotD0jI0NXXnml9uzZ49mWnJyss2fP6qKLLip3LgDW8fvuuCL73KywJx6V4XTK8bcbdfbjvf8rpAAAAAAAPqNMK6WmTp2qCy64QPPmzdOtt95aIf/h4OBg9enTR9OnT9fs2bP1yy+/aPXq1ZozZ46k/FVT4eHhnkvyEhISFBgYqKZNmxZ6n7CwMHXo0EFz5szRk08+KZvNplmzZikmJkYtWrSokKwAKplpKmjNaoVNnyYjK1Pu0DBlzpyrnHtiuUsiAAAAAPioMq2Umj17tpo2baq4uDhdc801iouL065du+RwOP7UfzwuLk6tW7fWwIEDNWPGDI0ZM0Y9evSQJEVHR+udd97x7Hv69GlFRETIKOEH1Hnz5unSSy/VAw88oNjYWDVp0kRPPfXUn8oGwDv8TiSp1t23K3ziOBlZmXJeG62zH36mnHsHUEgBAAAAgA8zTLPsV3qeOXNG27dv1zvvvKP9+/crKChIOTk5mjZtmvr37y9/f//KzFrpTp2q/jdjMwypbt1wnzgWVIwqOxOmqcA3Nips8iPyS0uVGRiozKmPK/uBkVIJl/Ci4lTZmYClmAsUxUygKGYCRTETKIqZQIGCWfg95frJLyoqSvfee6/WrVunDz74QKNGjVKrVq305JNPKiYmxnPpHQD8FuP0aUUMHaiIB4fKLy1Vue3a6+yuT5Q9YjSFFAAAAADUEH/4p7+GDRtq6NCheuONN/Tuu+/qvvvu0+7duysyGwAfFPDedkVd10mBW96Sabcrc0KcUrftlKs594ADAAAAgJqkTDc6/z3NmjXT6NGjNXr06Ip4OwA+yEg/p9BH4xT82iuSpLwWLZW+ZJny2ra3OBkAAAAAwAoVUkoBwG/x/+RjhT80UrbEH2UahrJHjFZm3KPSr9+uCQAAAACoeSilAFQMl0v+ez6TX/JJuRs0VO7V10pOp0JnTVfI8qX5u/xfM6UvXqrcazpbHBYAAAAAYDVKKQB/WsDWzQqbNlG2pCTPNnfdejLtdtlOnpAkZcfer8wZM2WG/f43MAAAAAAAfB+lFIA/JWDrZkUMiVXR73w1TqXIT5KrVqQylq6Qs/uN1gQEAAAAAFRJfPc6gD/O5VLYtImSacoo8pQhyZSk4GA5u3b3fjYAAAAAQJVGKQXgD/Pf85lsSUnFCqkChiTbyRPy3/OZN2MBAAAAAKoBSikAf5hf8skK3Q8AAAAAUHNQSgH4Q/x+/klBL68q077uBg0rOQ0AAAAAoLqhlAJQPrm5Cn7+OUV1vlIBez6TqV/vHVUC0zDkatxEuVdf682EAAAAAIBqgFIKQJnZ93yu2t1jFDZjmoysTOVedbUynpgjGYZMo/CdpQoeZ8ycJ9lsVsQFAAAAAFRhdqsDAKj6jFOnFPbEowpav06S5I6KUsbjM+W48x7Jz0/upn9R2LSJsiUleV7jbtRYGTPnydnrVqtiAwAAAACqMEopAKVzuxX0yssKnTVdfqmpkqTs2EHKnPq4zKg6nt2cvW7VmZtukf+ez+SXfFLuBg3zL9ljhRQAAAAAoBSUUgBKZP86XmETHpb//n2SpNzLLlfG/IXK63hVyS+w2ZTbOcaLCQEAAAAA1RmlFIBCjHNpCpk7U8GrV8hwu+UOC1dW3DRl3z9MsnPKAAAAAABUDH7CBJDPNBX45r8U+tgU2X5JliTl9L1dmTNmy92wkcXhAAAAAAC+hlIKgGxHExQ2abwCdn8oScq76GJlzH1audd3szQXAAAAAMB3UUoBNVlWlkKefUohS56VkZsrMyhIWQ8/oqxRD0mBgVanAwAAAAD4MEopoIYKeP9dhcVNkO3HHyRJju49lDF7gdzNLrQ4GQAAAACgJqCUAmoYv58SFTZ1kgK3b5UkuRo3Ucas+XLe3EsyDIvTAQAAAABqCkopoKZwOhW89HmFLpwnIytLpt2u7OGjlDl+khQWZnU6AAAAAEANQykF1AQffaTI4SNk//aIJMl59bXKmLdQrlaXWhwMAAAAAFBTUUoBPsz45ReFPfGotOF12SW569ZVxuMz5eh/N5fqAQAAAAAsRSkF+CKXS0FrX1Lo7Cfkl5YqGYayBw5WZtyjMmtHWZ0OAAAAAABKKcDX2OO/UtjEcfL/ar8kKe/ydrKvWKbMi1rJNC0OBwAAAADAr/ysDgCgYhhpqQqbPF6RPa6X/1f75Q6PUPqcBUp97wPpqqusjgcAAAAAQCGslAKqO9NU4KYNCnt8qvxSfpEk5dx2hzJmzJbZoAG3jgIAAAAAVEmUUkA1Zvvvtwqb9A8FfLpbkpR3yV+VMW+hcmO6WJwMAAAAAIDfRikFVEdZWQpdOF/BSxfLyM2VGRyszH9MVPaI0VJgoNXpAAAAAAD4XZRSQDUT8O47Cps6UbbEHyVJjh49lTFrvtwXNLM2GAAAAAAA5UApBVQTfj/+oLBpkxT47juSJFfTvyhj1nw5b7rF4mQAAAAAAJQfpRRQ1TmdCl66WKEL58vIzpZptyt75FhljpsghYZanQ4AAAAAgD+EUgqowvw/+Vhhk/4he8J/JUnOzjHKmPu0XC1aWpwMAAAAAIA/h1IKqIKM5GSFTZ+qoE0bJEnuuvWUMWOWHP3ulAzD4nQAAAAAAPx5lFKAt7lc8t/zmfyST8rdoKFyr75Wstk8zwW9vEqhc56U37k0mYahnEFDlDnlMZm1Ii2NDQAAAABARaKUArwoYOtmhU2bKFtSkmebq3FjZcycL3eTJgqbME7+Bw9IknLbtVfG/EXKa3eFRWkBAAAAAKg8lFKAlwRs3ayIIbGSaRba7nfihCIG3ydJMiS5I2opc+rjyhlw//9WUAEAAAAA4GMopQBvcLkUNm2iZJoqekco47ySKqdff2VMny2zfn3v5gMAAAAAwMsopQAv8N/zWaFL9kqTc+9ACikAAAAAQI3gZ3UAoCbwSz5ZofsBAAAAAFDdUUoBXuBu0LBC9wMAAAAAoLqjlAK8IPfqa+Vq0FBmKc+bhiFX4ybKvfpar+YCAAAAAMAqlFKAF/il/CIp/ybnRYsp08i/9XnGzHl82x4AAAAAoMaglAIqmZGcrFq395YtOVmuuvXkrt+g0PPuRo11btUrcva61aKEAAAAAAB4H9++B1QiIyVFkf16y57wX7maNFXq29vlbtJU/ns+k1/ySbkbNMy/ZI8VUgAAAACAGoZSCqgkxunTiux3q+zfHpGrUWOlvrFV7v+7QJKU2znG4nQAAAAAAFiLy/eASmCcPaNad/xd9v8clqtBQ6W9uVXuCy+yOhYAAAAAAFUGpRRQwYzUs6p1Rx/5Hzood736Sntjq1wXXWJ1LAAAAAAAqhRKKaACGefSVOvOvvI/eEDuunWVummLXH9tbnUsAAAAAACqHEopoIIY6edU687b5P/VfrmjopT6ry1ytWxldSwAAAAAAKokSimgImRkqNbd/eS/70u5IyOVunGzXJe2tjoVAAAAAABVFqUU8GdlZqrWff3l/8UeuSNqKW3j23K1udzqVAAAAAAAVGmUUsCfkZWlWgPuUsBnn8gdHqG0DW8qr217q1MBAAAAAFDlUUoBf1ROjmoNvFsBuz+SOzRMaes3Ke+KjlanAgAAAACgWqCUAv4Ih0MR99+rgI8+kBkSqrTXNynvyk5WpwIAAAAAoNqglALKy+lUxJBYBe56X2ZwsNJe26i8q6+xOhUAAAAAANUKpRRQHrm5ihg2SIHvvSszKEhpr25Q7rXRVqcCAAAAAKDaoZQCyiovTxEjhihw+1aZgYFKW/O6cmO6WJ0KAAAAAIBqiVIKKIu8PIWPGqbALW/JDAjQuZfXKbfrDVanAgAAAACg2qKUAn6Py6XwMSMU9OYmmf7+OrfqFTlv6GF1KgAAAAAAqjVKKeC3uN0Kf3iUgjZtkGm369yKNXLeeJPVqQAAAAAAqPYopYDSuN0KGz9WQf98TabNpnPLVst5cy+rUwEAAAAA4BMopYCSmKbCJv5DwevWyvTzU/rSlXL27mN1KgAAAAAAfAalFFCUaSos7hEFr10t0zCUvmSZHH1utzoVAAAAAAA+hVIKOJ9pKvSxOAWvXpFfSD37ghz97rQ6FQAAAAAAPodSCihgmgqd8ahClr0gScpYuFiOu+61OBQAAAAAAL6JUgqQ8gup2U8o5IXnJEnpC55Rzr0DLA4FAAAAAIDvopQCJIXMn62QZ5+WJKXPeUo5AwdbnAgAAAAAAN9GKYUaL+TpeQp9ep4kKePJOcoZ8oDFiQAAAAAA8H2UUqjRgp99WqHzZkmSMh6fqezhoyxOBAAAAABAzUAphRor+PnnFDZrhiQpY9p0ZY8aa3EiAAAAAABqDkop1EjBy55X2IxpkqTMSVOVPfYfFicCAAAAAKBmoZRCjRO0apnCHo2TJGWOn6Ss8ZMsTgQAAAAAQM1DKYUaJejlVQqPmyBJynpovLImTrE4EQAAAAAANROlFGqMoFfXKHziOElS1qiHlDnlMckwLE4FAAAAAEDNRCmFGiFw/TqFjc+/kXnW8JHKfOwJCikAAAAAACxEKQWfF7hxvcIfGinDNJU95AFlPjGHQgoAAAAAAItRSsGnBb75L4WPGZFfSA0coozZCyikAAAAAACoAiil4LMCNr+p8JHDZLjdyr5voDLmPU0hBQAAAABAFUEpBZ8U8M5WRYwYIsPlUs5d9yrjqWclP8YdAAAAAICqgp/S4XMCdmxXxLCBMvLylNPvTqUvWkIhBQAAAABAFcNP6vApAbveU8SQWBm5ucrpe7vSn1sq2WxWxwIAAAAAAEVQSsFn+H+wSxGD7pXhdMrRu4/Sn18h2e1WxwIAAAAAACWglIJP8P/4Q9UaeLcMh0OOm3vr3IurKKQAAAAAAKjCLC2lHA6HpkyZoo4dOyo6OlqrV68ucb/Y2Fi1aNGi2K+4uDjPPi+//LJiYmLUvn17TZkyRdnZ2d46DFjM/7NPVCv2Thk5OXLceJPOLX9J8ve3OhYAAAAAAPgNli4lmT9/vg4dOqQ1a9YoKSlJkyZNUuPGjdWzZ89C+y1evFi5ubmex/Hx8Xr44Yd1zz33SJJ27NihJUuWaMGCBapTp47i4uK0YMECPfbYY149Hniffc/nqnXPHTKys+W44W86t3KtFBBgdSwAAAAAAPA7LCulsrKytHHjRq1YsUKtW7dW69atlZCQoHXr1hUrpSIjIz2/d7lcWrRokYYOHao2bdpIktauXauBAweqa9eukqQZM2ZoyJAhmjBhgoKDg712TPAu+5d7Vevu22VkZcrZpavOvbROCgy0OhYAAAAAACgDyy7fO3LkiPLy8tS+fXvPtg4dOig+Pl5ut7vU173xxhtKS0vTsGHDJOWXVF9//bU6duzo2addu3bKzc3VkSNHKu8AYCn7/n+r1p23yS8zQ86YLkpbu14KCrI6FgAAAAAAKCPLVkqlpKSodu3aCjjvUqu6devK4XAoNTVVUVFRxV5jmqZWrlypAQMGKDQ0VJJ07tw5ORwO1a9f37Of3W5XZGSkTp48Wa5MhvEHD6YKKTgGXziW0tjiv1Kt/n3ll5Gu3Gujde6V9TJCWBFXmpowEygfZgIlYS5QFDOBopgJFMVMoChmAgXKOgOWlVLZ2dmFCilJnsdOp7PE1+zdu1cnT55U//79PdtycnIKvfb89yrtfUpTp054ufavynzmWFwuafdu6cQJqVEjKSxMuqOPdC5Nio6W//btqhsWZnXKasFnZgIVhplASZgLFMVMoChmAkUxEyiKmUBZWVZKBQYGFiuNCh4HlXIZ1o4dO3TdddcVusdU4K/3ECrpvcp7P6nTp9NlmuV6SZVjGPknAF84loCtmxU6daJsSUmebaZhyDBN5V55lc698k+ZOaaUk25hyqrPl2YCFYOZQEmYCxTFTKAoZgJFMRMoiplAgYJZ+D2WlVINGjTQ2bNnlZeXJ7s9P0ZKSoqCgoIUERFR4mt2796t0aNHF9oWGRmpwMBAnTp1ShdffLEkKS8vT6mpqapXr165MpmmfOYvTnU/loCtmxU+JLbYQRimKVNS9qChcoeGS9X4GL2tus8EKh4zgZIwFyiKmUBRzASKYiZQFDOBsrLsRuetWrWS3W7XgQMHPNv27dunNm3ayM+veKwzZ84oMTFRHTp0KLTdz89Pbdq00b59+zzbDhw4ILvdrpYtW1ZaflQil0th0yZKpqkSL0M1DIXOmpF/aR8AAAAAAKiWLCulgoOD1adPH02fPl0HDx7Uzp07tXr1ag0YMEBS/qqpgvtFSVJCQoICAwPVtGnTYu91zz33aNWqVdq5c6cOHjyo6dOnq3///uW+fA9Vg/+ez2RLSiq5kFL+ailb0s/y3/OZV3MBAAAAAICKY9nle5IUFxen6dOna+DAgQoLC9OYMWPUo0cPSVJ0dLTmzJmj2267TZJ0+vRpRUREyCjhFu633HKLfv75Zz322GNyOp3q0aOHJkyY4NVjQcXxSy7btyaWdT8AAAAAAFD1GKbJlZ4FTp2q/jdjMwypbt3wan0s/p/uVmTfW353v9Q3tym3c4wXElVvvjATqFjMBErCXKAoZgJFMRMoiplAUcwEChTMwu+x7PI9oDS5V18rV+PGpd7D3DQMuRo3Ue7V13o1FwAAAAAAqDiUUqh6bDZlPDm3xKfMXy/fzJg5T7LZvJkKAAAAAABUIEopVFmG/ldCFXA3aqxzq16Rs9et1oQCAAAAAAAVwtIbnQMlcrsV+tQ8SVLWw48o97rr5Zd8Uu4GDfMv2WOFFAAAAAAA1R6lFKqcgO3bZP/PYbnDwpU9YpTM2lFWRwIAAAAAABWMy/dQtZimQp7OXyWVPWw4hRQAAAAAAD6KUgpVSsCO7fI/dFBmSKiyh4+yOg4AAAAAAKgklFKoOs5fJTXkAZlRdSwOBAAAAAAAKgulFKqMgF3vyT/+K5khIcp6cIzVcQAAAAAAQCWilELVYJoKeWquJCl70FCZdetaHAgAAAAAAFQmSilUCf4f7JL//n0yg4OVNXKs1XEAAAAAAEAlo5SC9UxToQWrpAYMllm/vsWBAAAAAABAZaOUguX8P/5Q/v/+QmZgoLJHP2R1HAAAAAAA4AWUUrDW+aukYgfJ3aChxYEAAAAAAIA3UErBUv6f7pb/3s9lBgQoe8w4q+MAAAAAAAAvoZSCpUKenidJyrl3gNyNGlucBgAAAAAAeAulFCzj//mnCvh0t0x/f2WxSgoAAAAAgBqFUgqWCXnq11VSd8fK3fQvFqcBAAAAAADeRCkFS9j37lHA7g9l2u3KGssqKQAAAAAAahpKKVgidOGvq6TuvEfu/7vA4jQAAAAAAMDbKKXgdfZ9Xyrgg10ybTZlPTTe6jgAAAAAAMAClFLwuoJv3HPccZfczS60OA0AAAAAALACpRS8yn5gvwJ3vifTz09ZD7NKCgAAAACAmopSCl7lWSV1e3+5LrrE4jQAAAAAAMAqlFLwGvvX8QrcsV2mYShr3ASr4wAAAAAAAAtRSsFrQp6eL0ly9L1drkv+anEaAAAAAABgJUopeIXt8CEFvrPl11VSE62OAwAAAAAALEYpBa8IXfjrKqlb+8rVoqXFaQAAAAAAgNUopVDpbP/5RoFb3pIkZf2DVVIAAAAAAIBSCl4QsujXVVK9/i5Xq0stTgMAAAAAAKoCSilUKtt/v1Xg229KkjJZJQUAAAAAAH5FKYVKFbJogQzTlOOmXnJd1sbqOAAAAAAAoIqglEKlsR1LUOCb/5IkZY1nlRQAAAAAAPgfSilUmpBFT8lwu+Xo0VN5l7ezOg4AAAAAAKhCKKVQKfyOH1Pgpg2SpKzxkyxOAwAAAAAAqhpKKVSKkGefluFyyXHD35TXvoPVcQAAAAAAQBVDKYUK5/fD9wra8LokVkkBAAAAAICSUUqhwoU8t1CGyyXn9d2U1/Eqq+MAAAAAAIAqiFIKFcov8UcFvf6qJClz/GSL0wAAAAAAgKqKUgoVKuS5RTLy8uSM6aK8TldbHQcAAAAAAFRRlFKoMH4//6Sg19ZKkrIeYZUUAAAAAAAoHaUUKkzI4kUycnPlvDZaudd0tjoOAAAAAACowiilUCH8TiQp6NU1kvjGPQAAAAAA8PsopVAhgp9/VobTqdxO1yg3+jqr4wAAAAAAgCqOUgp/ml/ySQWvfUmSlDl+kmQYFicCAAAAAABVHaUU/rTg55+TkZOj3A5XKrdLV6vjAAAAAACAaoBSCn+KkZKi4DWrJEmZEyazSgoAAAAAAJQJpRT+lJAXnpORna3c9lcot2t3q+MAAAAAAIBqglIKf5hx6pSCX1ohScp6hFVSAAAAAACg7Cil8IeFLHteRlaWci9vJ2f3G62OAwAAAAAAqhFKKfwhxpnTClq5TJKUxTfuAQAAAACAcqKUwh8SvPwF+WVmKK91Gzl73mx1HAAAAAAAUM1QSqHcjNSzCl6Rv0oqk1VSAAAAAADgD6CUQrkFL18qv/Rzymt1qZw397I6DgAAAAAAqIYopVAuxrk0BS9fKunXVVJ+jBAAAAAAACg/GgWUS/DKZfI7l6a8Fi3l7PV3q+MAAAAAAIBqilIKZWakn1Pwi0skSVnjJrBKCgAAAAAA/GG0CiizoNUr5JeaqrxL/irH32+zOg4AAAAAAKjGKKVQNhkZClm6WNKvq6RsNosDAQAAAACA6oxSCmUS/NJK+Z05o7wLL5Kjbz+r4wAAAAAAgGqOUgq/LzNTIUufk/TrKim73eJAAAAAAACguqOUwu8KXvuS/E6dkuuCZnLc3t/qOAAAAAAAwAdQSuG3ZWUpZMkz+b99+BHJ39/aPAAAAAAAwCdQSuE3Bb/6svxSfpHrL/+nnP53Wx0HAAAAAAD4CEoplC4nR8GLn5EkZT00nlVSAAAAAACgwlBKoVRB69bIlnxSriZNlXPXvVbHAQAAAAAAPoRSCiVzOBTy3CJJUtbYf0gBARYHAgAAAAAAvoRSCiUKev1V2U4kydWosXLuibU6DgAAAAAA8DGUUijO6VTIcwslSVljx0mBgRYHAgAAAAAAvoZSCsUE/fM12X5KlKtBQ+XcO9DqOAAAAAAAwAdRSqGw3FyFPPu0JCl79ENSUJDFgQAAAAAAgC+ilEIhQRvXy/bjD3LXq6/s2PutjgMAAAAAAHwUpRT+Jy9PIYsWSJKyRj0khYRYHAgAAAAAAPgqSil4BG7aINsP38tdt66yBw62Og4AAAAAAPBhlFLId/4qqQfHSqGhFgcCAAAAAAC+jFIKkqTAtzbJfvyY3FFRyr5/qNVxAAAAAACAj6OUguRyeVZJZY8YLYWFWRwIAAAAAAD4OkopKHDzm7In/FfuyEhlD3nA6jgAAAAAAKAGoJSq6dxuhSycL0nKHj5KZniExYEAAAAAAEBNQClVwwVs2yz7t0fkjqil7KHDrY4DAAAAAABqCEqpmsztVuhT8yRJ2Q88KLNWpLV5AAAAAABAjUEpVYMFbN8m+38Oyx0WruwHHrQ6DgAAAAAAqEEopWoq01TI07+ukho2XGZkbYsDAQAAAACAmoRSqoYK2LFd/ocOyh0apuzho6yOAwAAAAAAahhKqZrovFVSOUMekBlVx+JAAAAAAACgpqGUqoECdr0n//ivZIaEKGvEaKvjAAAAAACAGsjSUsrhcGjKlCnq2LGjoqOjtXr16lL3/fbbb3X33Xfr8ssvV+/evbVnzx7Pc2lpaWrRokWhX506dfLGIVQ/pqmQp+ZKkrLvHyazbl2LAwEAAAAAgJrIbuV/fP78+Tp06JDWrFmjpKQkTZo0SY0bN1bPnj0L7Zeenq7BgwerW7dumjt3rt5++22NHj1aO3bsUJ06dXT06FFFRkZq69atntf4+bEIrCT+H+yS//59MoODlfXgGKvjAAAAAACAGsqyUiorK0sbN27UihUr1Lp1a7Vu3VoJCQlat25dsVLqzTffVEhIiKZPny6bzaaxY8fqo48+0qFDh9SlSxcdP35cF154oerVq2fR0VQTpqnQglVSAwbLrF/f4kAAAAAAAKCmsqyUOnLkiPLy8tS+fXvPtg4dOujFF1+U2+0utNLpiy++0A033CCbzebZtmnTJs/vjx49qmbNmnkld3Xm//GH8v/3FzKDgpQ9+iGr4wAAAAAAgBrMsmvcUlJSVLt2bQUEBHi21a1bVw6HQ6mpqYX2TUxMVFRUlB599FF17txZ/fv31759+zzPHzt2TCdPnlS/fv0UExOjcePG6ZdffvHWoVQP56+Sih0kd4OGFgcCAAAAAAA1mWUrpbKzswsVUpI8j51OZ6HtWVlZWr58uQYMGKAVK1Zo27ZtGjJkiLZv365GjRrp+PHjioqKUlxcnEzT1KJFizRixAht3Lix0Oqq32MYf/64rFZwDEWPxf/T3fLf+7nMwEDljB3nE8eKsiltJlBzMRMoCXOBopgJFMVMoChmAkUxEyhQ1hmwrJQKDAwsVj4VPA4KCiq03WazqVWrVho7dqwk6dJLL9Wnn36qt99+WyNGjNC2bdtkGIbndc8995yio6MVHx+vK664osyZ6tQJ/zOHVKUUO5Znn5IkGUOHKuqy5hYkgtV8ab5RMZgJlIS5QFHMBIpiJlAUM4GimAmUlWWlVIMGDXT27Fnl5eXJbs+PkZKSoqCgIEVERBTat169errooosKbWvWrJlOnDghSQoODi70XJ06dRQZGank5ORyZTp9Ol2mWd4jqVoMI/8EcP6x2D/7VJEffijT319nh42S+1S6tSHhVSXNBGo2ZgIlYS5QFDOBopgJFMVMoChmAgUKZuH3WFZKtWrVSna7XQcOHFDHjh0lSfv27VObNm0K3eRcktq1a6cvv/yy0Lbjx4+rV69eysjIUNeuXbV48WJdffXVkqTk5GSdPXu2WJH1e0xTPvMX5/xjCXlqniQp554BcjVuKvnIMaJ8fGm+UTGYCZSEuUBRzASKYiZQFDOBopgJlJVlNzoPDg5Wnz59NH36dB08eFA7d+7U6tWrNWDAAEn5q6ZycnIkSXfddZe+/fZbLV68WD/88IOeffZZJSYm6u9//7vCwsLUoUMHzZkzRwcPHtThw4c1btw4xcTEqEWLFlYdXpVh37tHAbs/lGm3K2vsOKvjAAAAAAAASLKwlJKkuLg4tW7dWgMHDtSMGTM0ZswY9ejRQ5IUHR2td955R5LUpEkTrVy5Uh988IF69eqlDz74QMuXL1eDBg0kSfPmzdOll16qBx54QLGxsWrSpImeeuopy46rKgld+Osqqbvulfsv/2dxGgAAAAAAgHyGabKorsCpU9X/ulfDkOrWDdepU+my/ftL1b7pBpk2m87s+UruC5pZHQ8WOH8mqvt8o2IwEygJc4GimAkUxUygKGYCRTETKFAwC7/H0pVSqFwhT/+6Sqr/3RRSAAAAAACgSqGU8lH2A/sVuPM9mTabsh4ab3UcAAAAAACAQiilfFTwr9+457i9v9wXXWxxGgAAAAAAgMLsVgdABXK55L/3M+mbeAXu2C7TMJT18CNWpwIAAAAAACiGUspHBGzdrLBpE2VLSvrfxqAg2Y78R65L/mpdMAAAAAAAgBJw+Z4PCNi6WRFDYuV3fiElSdnZihgSq4Ctm60JBgAAAAAAUApKqerO5VLYtImSacoo8lTB47BpkySXy9vJAAAAAAAASkUpVc357/lMtqSkYoVUAcM0ZUv6Wf57PvNqLgAAAAAAgN9CKVXN+SWfrND9AAAAAAAAvIFSqppzN2hYofsBAAAAAAB4A6VUNZd79bVyNW4s0yj5Aj7TMORq3ES5V1/r5WQAAAAAAAClo5Sq7mw2ZcycL0nFiqmCxxkz50k2m9ejAQAAAAAAlIZSygc4e92qc6tekbtRo0Lb3Y0a69yqV+TsdatFyQAAAAAAAEpmtzoAKoaz1606c9MtCtj7mWplpSktpJacna5lhRQAAAAAAKiSKKV8ic2m3M4xUt1w5Z5Kl0yrAwEAAAAAAJSMy/cAAAAAAADgdZRSAAAAAAAA8DpKKQAAAAAAAHgdpRQAAAAAAAC8jlIKAAAAAAAAXkcpBQAAAAAAAK+jlAIAAAAAAIDXUUoBAAAAAADA6yilAAAAAAAA4HWUUgAAAAAAAPA6SikAAAAAAAB4HaUUAAAAAAAAvI5SCgAAAAAAAF5HKQUAAAAAAACvo5QCAAAAAACA19mtDlCVGIbVCf68gmPwhWNBxWAmUBQzgZIwFyiKmUBRzASKYiZQFDOBAmWdAcM0TbNyowAAAAAAAACFcfkeAAAAAAAAvI5SCgAAAAAAAF5HKQUAAAAAAACvo5QCAAAAAACA11FKAQAAAAAAwOsopQAAAAAAAOB1lFIAAAAAAADwOkopAAAAAAAAeB2lVDXkcDg0ZcoUdezYUdHR0Vq9enWp+37zzTe644471LZtW91+++06dOiQF5PCW5KTkzV27FhdddVViomJ0Zw5c+RwOErc98EHH1SLFi0K/frggw+8nBiV7f333y/25zx27NgS9/3ss8/Uq1cvtW3bVgMGDFBiYqKX08Ib3njjjWIz0aJFC7Vs2bLE/W+99dZi+/73v//1cmpUFqfTqV69emnv3r2ebYmJiRo0aJDatWunm2++WZ988slvvsfWrVvVvXt3tW3bVqNGjdKZM2cqOzYqUUkzceDAAd11111q3769brzxRm3cuPE336Njx47FzhuZmZmVHR2VpKSZmDlzZrE/41dffbXU93j55ZcVExOj9u3ba8qUKcrOzvZGdFSionMxefLkEj9fDBgwoMTXp6WlFdu3U6dO3jwEVDF2qwOg/ObPn69Dhw5pzZo1SkpK0qRJk9S4cWP17Nmz0H5ZWVl64IEH1Lt3b82dO1evv/66hg8frvfff18hISEWpUdFM01TY8eOVUREhNatW6e0tDRNmTJFfn5+mjRpUrH9jx07pgULFuiaa67xbKtVq5Y3I8MLjh49qq5du+rJJ5/0bAsMDCy2X1JSkkaNGqUxY8YoJiZGzz//vEaOHKnNmzfLMAxvRkYlu/nmmxUTE+N5nJeXp4EDB+r6668vtq/L5dL333+vV199Vc2aNfNsr127theSorI5HA6NHz9eCQkJnm2maWrUqFFq3ry5Nm3apJ07d2r06NF655131Lhx42LvcfDgQU2dOlUzZsxQy5YtNWvWLMXFxWnZsmXePBRUkJJmIiUlRcOGDdPdd9+tuXPn6vDhw4qLi1O9evVKPG8kJycrPT1dO3fuVFBQkGc7nzmrp5JmQsr/HDl+/Hj17dvXsy0sLKzE99ixY4eWLFmiBQsWqE6dOoqLi9OCBQv02GOPVWp2VJ6S5mLq1KkaP3685/HPP/+s2NjYUkupo0ePKjIyUlu3bvVs8/NjrUxNRilVzWRlZWnjxo1asWKFWrdurdatWyshIUHr1q0rVkq98847CgwM1MSJE2UYhqZOnaqPP/5Y7777rm677TaLjgAV7fjx4zpw4IA+/fRT1a1bV5I0duxYzZs3r1gp5XQ69dNPP6lNmzaqV6+eFXHhJceOHVPz5s1/989548aNuuyyyzR48GBJ0pw5c9S5c2d98cUX/KuVjwkKCir0g+KyZctkmqYeeeSRYvv+9NNPys3N1eWXX15imYnq6+jRoxo/frxM0yy0fc+ePUpMTNT69esVEhKiiy++WJ9//rk2bdqkMWPGFHufV199VTfddJP69OkjKf8fzLp27arExET95S9/8cahoIKUNhM7d+5U3bp19Y9//EOS1KxZM+3du1dbtmwpsZQ6duyY6tWrx5+/DyhtJqT8P+chQ4aU6XPk2rVrNXDgQHXt2lWSNGPGDA0ZMkQTJkxQcHBwhedG5SptLsLDwxUeHu55PHnyZPXs2VPdu3cv8X2OHz+uCy+8kJ9F4EElWc0cOXJEeXl5at++vWdbhw4dFB8fL7fbXWjf+Ph4dejQwbPawTAMXXHFFTpw4IA3I6OS1atXTytXrvQUUgUyMjKK7Xv8+HEZhsEHxhrg2LFjhVa4lCY+Pl4dO3b0PA4ODlbr1q05T/i41NRUrVixQuPHj1dAQECx548ePapGjRpRSPmggsL5n//8Z6Ht8fHxuvTSSwutaunQoUOp54Ki545GjRqpcePGio+Pr5TcqDylzUTB7QCKKunzhZR/3rjwwgsrJSO8q7SZyMjIUHJycpk+X7hcLn399deFzhPt2rVTbm6ujhw5UtGR4QWlzcX5Pv/8c3355ZeeMrskR48eLdMMoeZgpVQ1k5KSotq1axf6IaJu3bpyOBxKTU1VVFRUoX0vueSSQq+vU6dOsWW4qN4iIiIKXZLjdrv16quv6uqrry627/HjxxUWFqaJEyfqiy++UMOGDTVmzBh16dLFm5FRyUzT1HfffadPPvlEy5Ytk8vlUs+ePTV27NhiBURKSorq169faFudOnV08uRJb0aGl73++uuqX79+sRW2BY4dOyZ/f38NHz5chw4d0oUXXqiJEyfq8ssv93JSVLR77rmnxO3lPRf88ssvnDt8RGkz0bRpUzVt2tTz+PTp09q2bVuJK+ek/PNGdna2YmNj9d1336lVq1aaMmUKRVU1VNpMHDt2TIZh6MUXX9THH3+syMhI3X///YUu5Stw7tw5ORyOQucJu92uyMhIzhPVVGlzcb7ly5erb9++atSoUan7HDt2THl5eerXr5+Sk5PVsWNHxcXFFfv/FNQcrJSqZrKzs4v9UFnw2Ol0lmnfovvBtyxYsEDffPONxo0bV+y548ePKycnR9HR0Vq5cqW6dOmiBx98UF9//bUFSVFZkpKSPH//n3nmGU2aNElbtmzR/Pnzi+3LeaLmMU1TGzdu1H333VfqPt99953S0tJ0xx13aPny5br44os1cOBAnThxwotJ4U3lPRfk5ORw7qhBcnJyNGbMGNWtW1d33nlnifscP35caWlpevDBB/XCCy8oKChIgwYNKnVlFaqfghX3F110kZYvX6477rhDjz76qN5///1i++bk5EgS54kaJDExUXv27FFsbOxv7nf8+HFlZGQoLi5OixYt0i+//KIRI0bI5XJ5KSmqGlZKVTOBgYHFTuQFj8+/V8hv7Vt0P/iOBQsWaM2aNVq0aJGaN29e7PmRI0cqNjbWc2Pzli1b6vDhw9qwYYPatGnj7bioJE2aNNHevXtVq1YtGYahVq1aye12a8KECYqLi5PNZvPsW9p5IiIiwtux4SVff/21kpOTdcstt5S6z5NPPqmcnBzPzWunT5+u/fv36+2339aIESO8FRVeFBgYqNTU1ELbfuszQ2nnDu4T43syMzM1cuRIff/993rttddK/TNetWqVcnNzFRoaKkl66qmn1KVLF33wwQfq3bu3NyOjkvTp00ddu3ZVZGSkpPzPkd9//71ef/11/e1vfyu0b8Hl35wnao4dO3aoVatWxa7UKWrbtm0yDMPz/y/PPfecoqOjFR8fryuuuMIbUVHFsFKqmmnQoIHOnj2rvLw8z7aUlBQFBQUV+yGyQYMGOnXqVKFtp06dYmmkj3ryySf10ksvacGCBbrxxhtL3MfPz6/YN+1ddNFFSk5O9kZEeFFkZGShb8+7+OKL5XA4lJaWVmi/0s4T3HzSd+3evVsdO3b8zW/dtNvthb5NqeBfxjlX+K7yfmbg3FEzZGRkaMiQIUpISNCaNWt+8z4wAQEBnkJKyi8lmjZtynnDhxiG4SmkCpT2/w2RkZEKDAwsdJ7Iy8tTamoq5wkftXv3bt1www2/u19wcHChf/CoU6eOIiMjOVfUYJRS1UyrVq1kt9sL3Xh03759atOmTbGv0mzbtq2++uorzzckmKap/fv3q23btt6MDC9YsmSJ1q9fr4ULF/7m6ofJkycrLi6u0LYjR47ooosuquyI8KLdu3erU6dOys7O9mz7z3/+o8jIyEL3nZPyzxP79u3zPM7OztY333zDecKHHTx48Hf/JTI2NlZLlizxPHa73fr22285V/iwtm3b6vDhw55LbqT8zxelnQuKnjtOnDihEydOcO7wIW63W6NHj9ZPP/2kV155RX/9619L3dc0TXXv3l1vvPGGZ1tWVpZ++OEHzhs+5Nlnn9WgQYMKbSvtc6Sfn5/atGlT6Dxx4MAB2e12tWzZsrKjwstM09TXX3/9u58vMjIydOWVV2rPnj2ebcnJyTp79iznihqMUqqaCQ4OVp8+fTR9+nQdPHhQO3fu1OrVqzVgwABJ+aumCj5Q9uzZU+fOndOsWbN09OhRzZo1S9nZ2brpppusPARUsGPHjumFF17QsGHD1KFDB6WkpHh+SYVnolu3btqyZYveeust/fDDD1qyZIn27dv3m/eWQfXTvn17BQYGatq0aTp+/Lg++ugjzZ8/X0OHDpXL5VJKSopnOf3tt9+u/fv3a/ny5UpISFBcXJyaNm2qTp06WXwUqCwJCQnFltYXnYtu3brp5Zdf1q5du3T8+HE98cQTSk9PL/FmtvANV111lRo1aqS4uDglJCRo+fLlOnjwoPr16ycp/5KblJQUzz0/7r77br399tvauHGjjhw5ookTJ+r666/n2119yL/+9S/t3btXM2fOVEREhOezRcFlnufPhGEYuv7667V48WLt3btXCQkJmjhxoho2bMiXqfiQrl276ssvv9SqVav0448/6rXXXtNbb72lwYMHS8q/j1TB508p/8bYq1at0s6dO3Xw4EFNnz5d/fv35/I9H/Tzzz8rMzOzxEv3zp+LsLAwdejQQXPmzNHBgwd1+PBhjRs3TjExMWrRooW3Y6OqMFHtZGVlmRMnTjTbtWtnRkdHmy+99JLnuebNm5ubNm3yPI6Pjzf79OljtmnTxuzXr595+PBhCxKjMi1btsxs3rx5ib9Ms/hMbNiwwezRo4d52WWXmX379jW/+OILq6KjEv33v/81Bw0aZLZr187s3LmzuXjxYtPtdpuJiYlm8+bNzT179nj2/fDDD80ePXqYl19+uTlw4EDzxx9/tDA5KlubNm3Mjz/+uNC2onPhdrvNpUuXmtdff7152WWXmffee6/57bffWhEXlajoueD777837733XvOyyy4zb7nlFvPTTz/1PLdnzx6zefPmZmJiomfbpk2bzC5dupjt2rUzR40aZZ45c8ar+VHxzp+JwYMHl/jZ4r777jNNs/hM5OTkmHPmzDE7d+5stm3b1hw+fLiZlJRk2bGgYhQ9T7z//vtm7969zTZt2pg9e/Y0d+zY4Xlu06ZNns+fBZYtW2Zec801ZocOHcy4uDgzJyfHa9lReYrOxYEDB8zmzZubDoej2L5F5yI1NdWcPHmy2alTJ7N9+/bmI488YqampnolN6omwzR/vbYLAAAAAAAA8BIu3wMAAAAAAIDXUUoBAAAAAADA6yilAAAAAAAA4HWUUgAAAAAAAPA6SikAAAAAAAB4HaUUAAAAAAAAvI5SCgAAAAAAAF5HKQUAAAAAAACvs1sdAAAAoCbo1q2bfv755xKfW7t2rTp16lQp/93JkydLkubOnVsp7w8AAPBHUUoBAAB4yZQpU3TzzTcX216rVi0L0gAAAFiLUgoAAMBLwsPDVa9ePatjAAAAVAncUwoAAKAK6Natm15++WX17t1b7dq10wMPPKCUlBTP88eOHdOQIUN0xRVXKCYmRkuWLJHb7fY8//bbb6tnz55q27at7rrrLn3zzTee5zIyMjRu3Di1bdtW119/vbZs2eLVYwMAACgJpRQAAEAVsXjxYg0dOlT//Oc/lZ2drTFjxkiSzpw5o3vuuUf169fXxo0b9fjjj+vVV1/V2rVrJUm7d+/W1KlTNXDgQG3evFmXXXaZhg8fLqfTKUl6//331bp1a23dulU33XSTpkyZovT0dMuOEwAAQJIM0zRNq0MAAAD4um7duiklJUV2e+G7JzRu3Fjbtm1Tt27d1L17d02ZMkWSlJiYqO7du2vLli3as2ePVq9erZ07d3pe//rrr+v555/XJ598otGjRyssLMxzM3On06lFixZp8ODBevrpp/X9999r/fr1kqT09HR17NhRGzZsUNu2bb34vwAAAEBh3FMKAADAS8aOHasePXoU2nZ+SXXFFVd4fv+Xv/xFkZGROnbsmI4dO6bWrVsX2rd9+/ZKSUnRuXPn9N133+muu+7yPBcQEKBJkyYVeq8C4eHhkiSHw1FxBwYAAPAHUEoBAAB4SZ06dXTBBReU+nzRVVQul0t+fn4KDAwstm/B/aRcLlex1xVls9mKbWOxPAAAsBr3lAIAAKgijhw54vn9Dz/8oPT0dLVo0UIXXnihDh8+rNzcXM/zX331laKiohQZGakLLrig0GtdLpe6deumffv2eTU/AABAeVBKAQAAeEl6erpSUlKK/crKypIkrV27Vrt27dKRI0c0ZcoUde7cWc2aNVPv3r3ldDr12GOP6dixY9q5c6cWL16su+++W4ZhKDY2Vps3b9abb76pH374QXPmzJFpmmrdurXFRwwAAFA6Lt8DAADwktmzZ2v27NnFtj/00EOSpL59+2rhwoVKSkpSly5dNGPGDElSWFiYVq5cqVmzZqlPnz6KiorSwIEDNXz4cEnSlVdeqccff1zPP/+8UlJSdNlll+nFF19UUFCQ9w4OAACgnPj2PQAAgCqgW7duGj16tG677TarowAAAHgFl+8BAAAAAADA6yilAAAAAAAA4HVcvgcAAAAAAACvY6UUAAAAAAAAvI5SCgAAAAAAAF5HKQUAAAAAAACvo5QCAAAAAACA11FKAQAAAAAAwOsopQAAAAAAAOB1lFIAAAAAAADwOkopAAAAAAAAeB2lFAAAAAAAALzu/wMAWaKOoBYSSgAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 1200x600 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAJOCAYAAABm7rQwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAADL00lEQVR4nOzdeZxN9R/H8fe52+yLMVnbkwhZQwwiOyEhEilKCy2UvVIpUVq1SCRSShQJbSoiRFFUKvq1GMQszHrnLuf3x5jR5E4GM3NmeT0fj3lkzv3eez+Hz7mat+/3ewzTNE0BAAAAAAAAxchmdQEAAAAAAAAofwilAAAAAAAAUOwIpQAAAAAAAFDsCKUAAAAAAABQ7AilAAAAAAAAUOwIpQAAAAAAAFDsCKUAAAAAAABQ7AilAAAAAAAAUOwIpQAAAAAAAFDsCKUAAEC5NWjQIF100UXq379/vmPuvvtuXXTRRRo3btxpv9+mTZt00UUXadOmTYX6nEGDBmnQoEGnXR8AAEBxIpQCAADlms1m07Zt27R///7jHktPT9dnn31mQVUAAABlH6EUAAAo1y6++GIFBQVp9erVxz322WefKSQkRJUrV7agMgAAgLKNUAoAAJRroaGhatOmTcBQauXKlerUqZMcDkee4263W88//7w6d+6sevXqqWPHjnr55Zfl9/vzjFu0aJE6deqkSy65RNddd53i4+OPe4/4+HiNGjVKTZs2Vf369XX99dfrhx9+KNyTPGr9+vW69tpr1bhxYzVr1kyjR4/Wvn37ch/3+/166qmn1K5dO9WtW1ft2rXTjBkz5PF4csesWLFCPXr00CWXXKLmzZvrnnvu0YEDB4qkXgAAULYRSgEAgHKva9euxy3hS01N1dq1a9W9e/c8Y03T1C233KJXXnlFffv21UsvvaTOnTvr6aef1gMPPJA77vXXX9cDDzygNm3a6IUXXlD9+vV133335XmtxMRE9e/fXzt37tR9992nGTNmyO/3a+DAgdq9e3ehnuN7772nG2+8UVWrVtWTTz6p8ePH69tvv9U111yjhIQESdLs2bP15ptv6vbbb9fcuXM1YMAAzZkzRy+++KIkaevWrRozZow6duyo2bNna/z48dq4caNGjx5dqLUCAIDywXHiIQAAAGXb5ZdfrpCQEK1evVpDhgyRJH388ceqWLGiGjdunGfs2rVrtWHDBj355JPq1q2bJKlly5YKDg7WM888o8GDB6tGjRp64YUX1LVrV02YMEGSFBcXp9TUVC1atCj3tV577TUlJyfrzTffVPXq1SVJrVu3VteuXfXMM8/o2WefLZTz8/v9euKJJxQXF6cZM2bkHm/UqJG6du2qOXPmaMyYMdq8ebPq1q2rq6++WpLUtGlThYSEKCIiQlJ2KBUcHKybb75ZLpdLkhQdHa3vv/9epmnKMIxCqRcAAJQPzJQCAADlXnBwsNq1a5dnCd8HH3ygLl26HBe0bN68WQ6HQ507d85zvEePHrmP79mzRwkJCWrbtm2eMV26dMnz/VdffaXatWurcuXK8nq98nq9stlsat26tTZs2FBo5/fbb7/p4MGDx836Ovvss9WwYUNt3rxZktSsWbPcJX6vvPKKfv31V1133XXq2bOnJOnSSy9VRkaGunfvrhkzZmjLli2Ki4vTiBEjCKQAAMBJI5QCAABQdmCUs4QvKSlJX331Ve5MqH86fPiwKlSoILvdnuf4GWecIUlKSUnR4cOHJUkVKlQIOCZHcnKytm3bpjp16uT5WrhwoVJSUpSRkVEo55acnCxJio2NPe6x2NhYpaSkSJKGDRum+++/X5mZmXriiSfUrVs3de/eXRs3bpQkNWzYUC+//LLOOussvfrqqxo4cKBat26tBQsWFEqdAACgfGH5HgAAgLKXzYWFhWn16tUKDQ3VmWeeqbp16x43LioqSklJSfL5fHmCqb///ltSdhCVE0bl7NWUIyccyhEREaGmTZtqzJgxAWvKWSJ3uqKjoyVJhw4dOu6xgwcP5tZrs9k0cOBADRw4UAkJCfriiy/00ksvaeTIkVq/fr1cLpdatWqlVq1aKSMjQxs3btT8+fM1ZcoU1a9fX5dcckmh1AsAAMoHZkoBAAAoOwBq3769PvzwQ61atSrgLCkpe58lr9d73N36li9fLklq3Lixzj33XFWtWvW4MZ999tlxr/Xbb7/pvPPOU7169XK/li1bpnfeeee42Vin6rzzztMZZ5yhFStW5Dn+559/atu2bWrUqJEkqX///poyZYokqWLFiurdu7cGDhyoI0eOKDU1VdOmTdPVV18t0zQVEhKitm3bauzYsZIU8M6CAAAA/4WZUgAAAEd17dpVw4cPl81m06RJkwKOad26tZo1a6ZJkybpwIEDqlWrljZv3qzZs2frqquuUo0aNSRJ99xzj0aPHq1Jkyapc+fO2rZtm9588808rzVkyBAtW7ZMQ4YM0Y033qgKFSpo5cqVevvttzV+/PiTqn3//v2aN2/eccdr1qypFi1aaNSoURo/frxGjx6tHj16KCkpSTNnzlRUVJRuuOEGSdl7Rs2dO1exsbFq2LChDhw4oFdffVVNmzZVTEyMmjdvrldffVXjxo1Tjx495PF49Morryg6OlrNmzc/qXoBAAAIpQAAAI5q0aKFIiMjVbVqVV1wwQUBxxiGoVmzZunZZ5/VvHnzlJiYqDPPPFOjRo3KDXckqXv37rLZbHrhhRe0bNky1axZUw899JBGjRqVO6Zy5cpatGiRZsyYocmTJ8vtduvcc8/VI488oj59+pxU7X/88YemTp163PE+ffqoRYsW6t27t8LCwjRr1izdfvvtCg8PV6tWrTRq1Kjcva7uvPNOuVwuLVmyRM8//7wiIiLUrl07jR49WpLUpk0bPfHEE5o7d27u5uaNGzfW/Pnzc5cIAgAAFJRhmqZpdREAAAAAAAAoX9hTCgAAAAAAAMWOUAoAAAAAAADFjlAKAAAAAAAAxY5QCgAAAAAAAMWOUAoAAAAAAADFjlAKAAAAAAAAxY5QCgAAAAAAAMWOUAoAAAAAAADFzmF1AcUtISFFpml1FafHMKSKFSPKxLmg8NAXCIS+QCD0BQKhLxAIfYFA6Avkh95AjpxeOJFyF0qZpsrMxVGWzgWFh75AIPQFAqEvEAh9gUDoCwRCXyA/9AYKiuV7AAAAAAAAKHaEUgAAAAAAACh2hFIAAAAAAAAoduVuTykAAAAAAHA8v98vn897ys83DCkzM1MeTxZ7SpVxdrtDNtvpz3MilAIAAAAAoBwzTVNHjiQqIyP1tF8rMdEmv99fCFWhpAsJCVdkZIwMwzjl1yCUAgAAAACgHMsJpMLDK8jlCjqtkMFuN+TzMU2qLDNNU1lZbqWmJkmSoqIqnvJrEUoBAAAAAFBO+f2+3EAqPDzytF/P4bDJ62WmVFnncgVJklJTkxQRUeGUl/Kx0TkAAAAAAOWUz+eTdCxkAAoqp2dOZx8yQikAAAAAAMq501myh/KpMHqGUAoAAAAAAADFjlAKAAAAAACUGo88MllxcU3y/frmmy0n/ZojRtysOXNmFWhsnz5XauXK90/6PU7km2+2KC6uSaG/bknGRucAAAAAAOD0+Hxybtwgx6EDMmIry9O8hWS3F8lb3XnnPbrllhGSpE8//ViLFr2u2bNfy308MjLqpF/z0Ucfl8PhLNDY2bPnKzQ05KTfA8cjlAIAAAAAAKfMtWK5wieNkT0+PveYr1o1pU6ZrqzuPQr9/cLDwxUeHp77a5vNpooVY0/rNU8myKpQocJpvReOYfkeAAAAAAA4Ja4VyxU5dJBs/wikJMm2b58ihw6Sa8XyYq9p3754xcU10bx5r6hz57Z68slpMk1T8+fPVd++PXT55c3Vs2dnzZ37cu5z/rl875FHJuu5557U/feP1xVXtFTv3t20evUHuWP/uXxvxIib9dprczRq1Ai1a9dS/fv31qZNX+WOPXw4WRMm3KsOHVqpb9+eeu+9d055iZ7f79cbb8xX37491a5dS40cOVy7d/+a+/inn36kAQN6q127Frruur5au/bz3McWL16kq6/urnbtWmjo0EHavn3bKdVQ2AilAAAAAADAMaYppaWd+OvIEYVPuFcyTf37PmyGaUqSwieOkY4cOfFrHR1fmL77brvmzFmgvn0HaPXqD/T2229q7NhJevPNpbrhhmGaO/dl7dr1U8DnLlnyti66qJbmz39Lbdq00+OPP6rU1NSAY+fPn6v27TtpwYK3dOGFNTVt2hT5/X5J0gMPTFBycpJeeGGORo26V6++OvuUz+fVV2frzTdf1513jtLcua+rSpWqGj16pDIyMpSUlKiHH75fgwbdoDfeWKKuXXto8uSJOnLksH7++Se98MIzGj16nBYufEf16zfQ/fePza3RSizfK218Pjk3bZDSD8sZGqWsZkW3ThcAAAAAUM6YpqK7d5Tz602n/VKGacq+L15n1DjzhGM9TZsr+f0PJePf8dap69dvgKpXz37vgwf/1oQJD6hJk6aSpF69+ujVV2frt99266KLah333Bo1amrgwOslScOGDdfixW/qt992q169+seNveyyOHXteqUk6frrh2rIkAFKTExQenq6tmzZrLfeek/Vq5+pCy+sqRtuuFlPPDH1pM/FNE0tWfK2hg+/XXFxbSRJY8dOUr9+PfXhhyt18cV15PV6dcYZlVSlSlUNGHCdatS4UC5XkPbt2yfDMFSlShVVrVpNN910m1q0aCW/3y+bzdq5SoRSpci/1+lGqWjX6QIAAAAAyqFCDIasVLVqtdxfN2rURDt37tBLL83U77//pp9/3qWEhIR8ZwudeeZZub8OC8vev8rr9QYce9ZZZ/9jbFju2N27f1FkZFRuMCZJdeteckrnkpSUqCNHDuvii+vmHnM4HKpV62L9/vv/1LNnb7VoEae7775dZ599juLi2ujKK3spODhYzZpdpvPPr6HBg/urZs2LFBfXRj16XCWHw/pIyPoKUCA563T/PaUxZ53ukTkLCKYAAAAAAKfHMLJnLKWnn3Coc+MGRQ+4+oTjkt9ckn03vv8SGlroYZjL5cr99fvvv6dnn31SV17ZU23atNPtt9+lO+64Jd/nOp3H34nPzGeJYaBwxzRN2e2O456T32uciMsVFPC43++T3++TYRiaPv1p/fDDDn355VqtXfuZ3n33Hb3wwmxdeOFFevnledq27RutX79WK1e+r/feW6I5cxbojDMqnVI9hYU9pUoDn0/hk8b89zrdSWMln6/4awMAAAAAlC2GIYWFnfDLc3k7+apVk5lPmGQahnzVqstzebsTv14Rz856770luuGGYbrjjtHq3LmboqKilZiYcMohUUGce+55Skk5ovj4vbnHdu368ZReKzw8XDExFbVz5/e5x7xer3bt+klnn32Ofv/9f5o582ldfHFd3XzzbVqw4G1VrlxZmzZ9pR07vtOCBa+qUaMmGjlylN54Y4mystz67rttp3uKp42ZUqWAc+OGPLfW/DfDNGWP3yvnxg3ytGxVjJUBAAAAAMotu12pU6YrcuggmYaRO2lCUm5QlTplWonYBzkqKkpbtmxWXFwbpaen6+WXn5fX65XHk1Vk73n22eeoadPLNHXqQ7rzznuUlJSQe4e//7Jx44Y837tcLjVq1ETXXHOt5syZpdjYM3TmmWdp4cLXlJXlVrt2HeX3+/Tee+8oPDxcHTt20W+/7dG+ffGqWbOWgoKC9OqrsxUTU1FNmjTVtm3fKCMjQxdccGFRnXqBEUqVArYD+wt1HAAAAAAAhSGrew8dmbMgz/7HkuSvWk2pU6aVmG1m7rzzHj366IMaMuRaVahQQVdc0UHBwSH6+eddRfq+EyY8oOnTp+jmm4fojDPOUNeuV+qNN+b/53PuueeOPN+fcUYlvfvuSvXvf53S0tI0ffojSktLVd269fXcc7NUoUIFSdIjjzyuF198TvPnv6oKFSpo+PARatq0uSRp/Pj7NW/eK3rqqemqXLmK7rvvIZ177nlFc9InwTCLcq5aCXToUEpR3GmySDnXr1P0Vd1OOC753Q+YKVWOGYYUGxtRKnscRYe+QCD0BQKhLxAIfYFA6IuyxePJUkLCPlWsWFVOp+vET8iPzyfnxg1yHDogb2zl7D2kSsAMKStlZmZqy5ZNat68Ze6+U2vWfKIXXnhG77zzvsXVnb7/6p2cz4kTYaZUKeBp3kK+atVk27cvz3TIHKZhyF+12ok3jgMAAAAAoCjY7fK0bCXTYZPXG/iOduWNy+XS1KkPqVevPurWrYcSExP06qsvq23b9laXVmKw0XlpcHSdrqTjNpDLiahKyjpdAAAAAAAg2Ww2PfroDH399SYNGtRPEybcq2bNWuimm261urQSg5lSpUR+63Rls+nIC7NLzDpdAAAAAACQrX79Bnr55XlWl1FiMVOqFMnq3kOJW3fq8HsfSPPny1epsgy/X/b9bHAOAAAAAABKF0Kp0uboOl0NGqT0SZMlSaHPPSkjNcXaugAAAAAAAE4CoVQp5u57jbwX1JAtIUEhs1+yuhwAAAAAAIACI5QqzRwOpY+ZIEkKef5ZGclJFhcEAAAAAABQMJaGUm63WxMmTFCTJk0UFxenuXPn5jv2yy+/VI8ePdSwYUMNGTJEe/bsKcZKSy53z97y1r5YtiOHFfLSTKvLAQAAAAAAKBBLQ6np06drx44deu211/TAAw9o5syZWr169XHjfvnlFw0fPlxXXHGFlixZoosvvljXX3+90tLSLKi6hLHZlDZ2kiQpZNaLMg4dsrggAAAAAACAE7MslEpPT9fixYs1ceJE1alTRx06dNCwYcO0cOHC48a++eabatiwoe68806df/75uvfeexUREaH333/fgspLnqwu3eSp31C2tFSFznza6nIAAAAAACgyt902TA8+OCngYx99tEqdO7dVVlZWvs/fty9ecXFNtG9fvCQpLq6JvvlmS8Cx33yzRXFxTQpc25o1nygpKVGSNGfOLI0YcXOBn3sy+vS5UitXlv5MxLJQ6qeffpLX61XDhg1zjzVu3Fjbt2+X3+/PM/bPP//UJZdckvu9YRiqWbOmtm3bVlzllmyGobTxR2dLzX1ZtgP7LS4IAAAAAFAe7N1r6LvvbLlf27fb8nwfH28U+nu2b99JX331pTwez3GPrVnzsS6/vJ1cLleBX2/ZstWqV6/+ade1f/8+3X//OGVmZkqSBgwYpEcfffy0X7csc1j1xgcPHlSFChXyNEpsbKzcbreSk5MVExOT5/iBAwfyPH///v2KiooqtnpLOk/b9vI0bS7n5o0KffoJpU59wuqSAAAAAABlmNstdewYqoMH85/vUqmSX1u3pikoqPDet23b9nrmmSe0ZcsmXXZZXO7xtLRUbd68UY8//sxJvV7FirGFUpdpmnm+Dw0NLZTXLcssC6UyMjKOSy5zvv/3NLsuXbrotttuU/fu3dWqVSu9//77+v7779WsWbOTfl+j8EPaYpdzDnnOxTCUPuE+RfXqpuD5ryrj9jvkP+tsS+qDNQL2Bco9+gKB0BcIhL5AIPQFAqEvypbT+XN0uaTq1U0dOmTKNI9/IcMwVa2aqZOYtFQgFSpUUJMmzfTFF5/lCaXWrftCkZFRatiwsQ4e/PtocPW13O5MnXfe+brrrnt1ySUNjnu9uLgmevbZl9SoUROlpaVq+vRHtWHDl6pYMVY9evTKM/a777bpxRef088//yTDMNSgQSONG3e/YmNj1bdvD0lS3749NGHCA9q3L17ffrtVM2e+LEnaseM7Pf/8M/rll12qUCFGAwcOVq9efSRJjzwyWZGRkTp48KDWr1+rqKho3Xzzbercudsp/R7913vt379f06Y9rB07vlNQULCuuKKDRo4cJYfDoV9++VkzZjymX37ZpYiISPXs2Vs33HDTf76XYRzfRwXtK8tCqaCgoOPCp5zvg4OD8xxv3bq1br/9do0cOVI+n0/NmjVTz549lZqaetLvW7FixKkXXcIcdy49u0pXXCHj008V8/xT0iuvWFMYLFWWehyFh75AIPQFAqEvEAh9gUDoi7IhMzNTiYk22e2GHI5jM57+675idruU82P7xIke9e0bHHCcaRq6916PnM4Tv25Y2MnV3alTZz377JMyjEmy2+2SpM8++0Tt23eUy+XQww/fr4iICL3yyjyZpqnnn39WM2Y8poUL35bdbjt6Hrbcc8759YwZj+nPP3/Xiy/OVnJykh566AFJksNhU2pqisaMuUsDBlynBx+cooMHD2rKlMlauHCeRo8eo7lzF+jGGwdp7twFOv/8C7RgwTwZRvbv62+/7dGdd96q/v2v1aRJD2jHju/1+ONTFRsbq8svbyfDMLRkydsaPvw23X77SL399pt6/PGpuvzyyxUeHvhas9ny/pnlONF7PfPM4woNDdX8+W8qKSlJ48ffq/POO199+vTTI488oPr1G+ihhx7R77//T+PH36s6deqoRYu4497H7zdks9lUoULYcTlOQVkWSlWuXFlJSUnyer1yOLLLOHjwoIKDgxUZGXnc+FtvvVVDhw5VSkqKKlasqDvvvFPVq1c/6fdNSEjRv2bUlTqGkf0XQKBzcdwzXtGffipz3jwl3XS7/BfUsKZIFLv/6guUX/QFAqEvEAh9gUDoCwRCX5QtHk+W/H6/fD5TXu+x/Z3POiv/0LF9e6/eeCNDktS6tV+GERRwppQkzZzpUIcOx/Z+atAgTAkJxwcpf/+dclJ1x8W10WOPPaKtW7eqUaMmSk3NXrp3ww03y+PxKS6ujS6/vJ0qVaosSbrqqr6699475fX65fNln6fP5889Z5/Pr+TkI/r004/17LMvqUaNiyRJQ4YM05NPTpPX61daWoauv36Y+vcfKMMwVKlSVbVp004//rhTXq9fERHZWwxFRETJ4XDJ7zdlmtm/r++9t1QXXniRbrrpdklS9epna8+ePVqw4DXFxV0u0zRVo0ZNDRgwWJJ0443D9dZbb+qXX37Nd78rvz/vn1mOE71XfHy8Lrqols44o4qqVj1Tjz/+tCIiIuX1+o9uAt9GsbGVValSVT399AuqWrVawPfx+Uz5/X4lJaXJ6cy7v1fO58SJWBZK1a5dWw6HQ9u2bVOTJtk72W/dulX16tWTzZa3QVesWKHt27dr4sSJqlixojIzM7Vp0yY99thjJ/2+pqky88EZ6Fw8jZvK3bGzgj5ardDHH1PKi8yWKm/KUo+j8NAXCIS+QCD0BQKhLxAIfVE2nO6foWFkL+Nzu/N/vCiEhoapRYs4ff75p2rUqInWrftcVatWU61atSVJV13VR5988qF27PhOv//+P+3a9dNxN1X7tz///F0+n08XXlgz91jt2hfn/rpixVh16dJdb721UL/88rP+97/f9OuvPxdok/T//e9/uvjiOnmO1at3iZYtW5L7/ZlnnpX767CwcEmS1+s94Wuf7HsNHDhYjz76oNau/UzNmrXQFVd0VM2atSRJgwbdoFmznteyZUvVokWcOnXqesI9t07ns8Cyu++FhISoV69emjx5sr777jt98sknmjt3rgYPzk4FDx48mLtj/bnnnqtFixbpo48+0v/+9z+NHj1aVatWVevWra0qv0RLHztRkhS0dLHsP/1ocTUAAAAAgNLmt99S8v2aOzcjz9gff0zVJZf4ZLNlJxM2m6lLLvFpz54Uvflm3rFbtqQFfM1T0aFDZ61b94VM09SaNR+rfftOkiS/36+7775dixYtVOXKVXTttYM1adKDBX7df25Y7nA4c3998ODfuv76a/TNN1t00UW1dccdo9S//3UFes1AdwP0+Y7N2pIkp9N53Jh/b55eGO/VsWMXLVmyQrfcMkIZGem6776xevnlFyRJ1103RG+99Z4GDhys+Pi9uvPOW/X++++ddA0FZVkoJUnjx49XnTp1dP311+vBBx/UyJEj1bFjR0lSXFycVq5cKUmqW7euJk+erMcee0y9e/eWJM2aNeu4GVXI5q1XX+4re8kwTYVNf9TqcgAAAAAApUxYWP5f/94+KDxcmjDBLb8/e1qU329owgS3wsOlkJCCve6puOyylsrISNc332zR1q1fq0OHzpKk//1vj7Zt+0ZPP/2CBg++US1axCkh4ZCk/w55zj77HDkcDv344w+5x375ZVfur9eu/UwREVGaPv1p9es3QPXrN1R8/N7cx43/mBZ29tnnaOfOHXmO7dz5nc4++5yTO+kCONF7zZr1vBITE9WrVx9Nn/60hg27VV98sUZut1tPP/2EnE6n+ve/Ts89N0s9elylzz9fU+g15rBs+Z6UPVtq2rRpmjZt2nGP7dq1K8/3V199ta6++uriKq3USxszQa4VyxS0Ypkc322TN8AdBgAAAAAAKAxt2/rUoIFP27bZ1aCBT23b+or8PV0ul1q3bquZM5/S+efX0FlH70AfHh4hm82mTz/9UHFxbfTjjzs1d+4sSTruhmv/FBYWrs6du+nppx/X+PEPyO3O1Ny5L+c+HhkZpQMH9mvLls2qWrWaPvvsE33xxRrVqpW9xC84ODuB+/XXnxUVFZ3nta+6qq8WL16kWbOeV5cu3bVz5/daunSx7r57zCmf/+7dv2rjxg15jtWuffEJ3+uPP/6np56arlGjxspms2njxvW68MKLFBQUpO++26a//z6gW265Xenp6dq+/Vu1anX5Kdd4Ikw1KqN8F9WS++p+kqTQaY9YXA0AAAAAoCwzDGniRLdq1vRr4kR3ke0l9W8dOnTSL7/8rA4dOuUeq1SpskaPHqeFC+dr0KB+WrBgnu688x7Z7fY8M58Cufvue1W37iW6++7b9cgjk3X11dfkPtauXQd16tRFkyaN1bBhg/XNN1s0YsRd+v3335SVlaXo6Gh16tRF998/XitWvJfndatUqaLp05/Spk0bdP31/fXaa3M0YsTd6tatxymf+1tvLdQ999yR5+vnn3ed8L3uuWe8YmJiNGLEzRo+/AbFxsbqrrvulSQ99NBUZWZmaNiw63X33SNUv35DDRky9JRrPBHDPJUFiqXYoUOl/w4RhiHFxkac8Fxse3YrpmUTGT6fkj74WN5LmxVfkSh2Be0LlC/0BQKhLxAIfYFA6AsEQl+ULR5PlhIS9qlixapyOo/fi+hkORy2gHdqQ9nzX72T8zlxIsyUKsP851+gzAHZm66FPcZsKQAAAAAAUHIQSpVx6aPGyHS55Fr3uZxfrrW6HAAAAAAAAEmEUmWe/8yzlDloiCQpbOrDYn4tAAAAAAAoCQilyoH0u+6RGRws59eb5FrzsdXlAAAAAAAAEEqVB/7KVZRx482SpNCpU5gtBQAAAAAALEcoVU6kj7xb/rBwOb/bJtfKFVaXAwAAAAAoQUyTO+bh5BRGzzgKoQ6UAmbFisoYfpvCnpyusGlTlNW5q2S3W10WAAAAAMBCDodThmHT4cMJCg+Plt3ukGEYp/x6fr8hn4/VOWWZaZry+bxKSUmWYdjkcDhP+bUIpcqRjFtHKGTOy3L89KOCli2Vu3dfq0sCAAAAAFjIMAxVrFhFhw8n6vDhQ6f9ejabTX4/s67KA5crWJGRMacVYhJKlSNmVLQybr9DYY8+pNDpj8rd4yrJQQsAAAAAQHnmcDgVE1NJfr/vtAIlw5AqVAhTUlIaWxmXcTabTTab/bQCKYlQqtxJH3aLQmY9L8ee3QpavEjuAddZXRIAAAAAwGKGYchud5zWLi+GIQUHB8vp9BBKoUDY6Ly8CQ9X+h2jJUlhTzwmud0WFwQAAAAAAMojQqlyKGPIUPkqV5H9zz8UvHC+1eUAAAAAAIByiFCqPAoJUfrd90qSQp96XMrIsLggAAAAAABQ3hBKlVOZAwfLd9bZsh/Yr5B5c6wuBwAAAAAAlDOEUuVVUJDSR4+VJIU+O0NKTbW4IAAAAAAAUJ4QSpVjmf0GyHv+BbIlJCj0lZesLgcAAAAAAJQjhFLlmcOh9DETJEkhzz8r43CytfUAAAAAAIByg1CqnHP3ulre2hfLdjhZIS/OtLocAAAAAABQThBKlXc2m9LGTJQkhcx6QUZCgsUFAQAAAACA8oBQCsrq2l2eSxrIlpaq0JlPW10OAAAAAAAoBwilIBmG0sdPkiSFzH1ZtgP7LS4IAAAAAACUdYRSkCRltesgz6XNZGRkKPTpJ6wuBwAAAAAAlHGEUshmGEobf58kKXj+q7L9+YfFBQEAAAAAgLKMUAq5PHGtldWqjQyPR6FPPW51OQAAAAAAoAwjlEIeaWOz95YKfvN12fbstrgaAAAAAABQVhFKIQ9v02Zyt+8ow+dT2BOPWV0OAAAAAAAoowilcJz0sRMlSUFL3pZ9108WVwMAAAAAAMoiQikcx1u/odzdesgwTYVNf9TqcgAAAAAAQBlEKIWA0sZOlGkYCnr/PTm+3251OQAAAAAAoIwhlEJAvlq15e7dV5IUOu0Ri6sBAAAAAABlDaEU8pV+7ziZdruCPlotx5bNVpcDAAAAAADKEEIp5Mt3fg1l9h8oSQqbOsXiagAAAAAAQFlCKIX/lD5qjEynU651n8v55VqrywEAAAAAAGUEoRT+k/+ss5U5aIgkKeyxKZJpWlsQAAAAAAAoEwilcELpd90jMzhYzs0b5fzsE6vLAQAAAAAAZQChFE7IX6WqMm64SdLRvaWYLQUAAAAAAE4ToRQKJH3k3TJDw+Tc/q1cqz6wuhwAAAAAAFDKEUqhQMzYWKUPv1WSFDZtiuT3W1wRAAAAAAAozQilUGAZt46UPzJKjh9/UNCypVaXAwAAAAAASjFCKRSYGV1BGbffIUkKnf6o5PVaXBEAAAAAACitCKVwUjJuukX+ihXl2P2rghYvsrocAAAAAABQShFK4aSY4RFKHzlKkhT2xGNSVpbFFQEAAAAAgNKIUAonLWPIUPkqV5H9zz8UvHC+1eUAAAAAAIBSiFAKJy80VOl33ZP9y6celzIyLC4IAAAAAACUNoRSOCWZ110v35lnyb5/n0Jem2N1OQAAAAAAoJQhlMKpCQpS+uixkqTQZ5+UUlMtLggAAAAAAJQmhFI4ZZn9Bsh73vmyHTqkkDmzrC4HAAAAAACUIoRSOHVOp9LvHS9JCp35jIzDydbWAwAAAAAASg1CKZwW91V95L2olmyHkxXy0vNWlwMAAAAAAEoJQimcHrtdaWMmSpJCXnpeRkKCxQUBAAAAAIDSgFAKpy2r25Xy1KsvW1qqQmc+bXU5AAAAAACgFCCUwumz2ZQ+fpIkKWTuy7Id2G9xQQAAAAAAoKQjlEKhyLqiozxNmsrIyFDIMzOsLgcAAAAAAJRwhFIoHIahtPH3SZJC5r8q219/WlwQAAAAAAAoyQilUGg8rdooK661jKwshT71uNXlAAAAAACAEoxQCoUqbWz23lLBbyyQbc9ui6sBAAAAAAAlFaEUCpW3WXO5r+ggw+dT2IxpVpcDAAAAAABKKEIpFLr0cdmzpYLeeUv2XT9ZXA0AAAAAACiJCKVQ6Lz1G8rd9UoZpqnQx6daXQ4AAAAAACiBCKVQJNLGTJBpGApe/q4c32+3uhwAAAAAAFDCEEqhSPguriP3VVdLkkKnPWJxNQAAAAAAoKQhlEKRSb93vEy7XUEfrZZjy2arywEAAAAAACUIoRSKjO+CC5V5zbWSpLDHmC0FAAAAAACOIZRCkUofNUam0ynX2s/kXL/O6nIAAAAAAEAJQSiFIuU/+xxlXne9JCnssSmSaVpcEQAAAAAAKAkIpVDk0u++V2ZwsJybvpLzs0+tLgcAAAAAAJQAhFIocv4qVZUxZJgkKeyxh5ktBQAAAAAACKVQPNJH3i0zNEzObd/KtXql1eUAAAAAAACLEUqhWJhnnKH0m2+VdHRvKb/f4ooAAAAAAICVCKVQbDJuGyl/ZJQcP+5U0LKlVpcDAAAAAAAsRCiFYmNGV1DGrSMkSaHTH5W8XosrAgAAAAAAVrE0lHK73ZowYYKaNGmiuLg4zZ07N9+xH3/8sbp06aKGDRtqwIAB2rlzZzFWisKScfOt8sfEyLH7VwW985bV5QAAAAAAAItYGkpNnz5dO3bs0GuvvaYHHnhAM2fO1OrVq48b98svv2j06NEaPny4li1bptq1a2v48OHKyMiwoGqcDjMiUukj7pYkhT3xmJSVZXFFAAAAAADACpaFUunp6Vq8eLEmTpyoOnXqqEOHDho2bJgWLlx43Nj169erRo0a6tWrl84++2yNGjVKBw8e1K+//mpB5ThdGTfeJF+lyrL/8buC31hgdTkAAAAAAMACloVSP/30k7xerxo2bJh7rHHjxtq+fbv8/7ozW3R0tH799Vdt3bpVfr9fS5cuVXh4uM4+++ziLhuFITRU6Xffk/3LJ6dLzHgDAAAAAKDccVj1xgcPHlSFChXkcrlyj8XGxsrtdis5OVkxMTG5x7t27ao1a9bo2muvld1ul81m06xZsxQVFWVF6SgEmdcNUejMZ2Tf+5dC5s9VxvDbrS4JAAAAAAAUI8tCqYyMjDyBlKTc77P+tc9QUlKSDh48qPvvv1/169fXm2++qfHjx+vdd99VxYoVT+p9DeP06i4Jcs6hVJ9LcJDSR49VxKiRCn1mhnw1LpRx5LDMylXkad5CstutrrDUKRN9gUJHXyAQ+gKB0BcIhL5AIPQF8kNvIEdBe8AwTdMs2lICW7VqlaZMmaL169fnHtu9e7e6du2qTZs2KTo6Ovf4vffeq9DQUD344IOSJL/fry5duujqq6/WzTffXNylo7B4PNJZZ0kHDuQ9fuaZ0jPPSL17W1MXAAAAAAAocpbNlKpcubKSkpLk9XrlcGSXcfDgQQUHBysyMjLP2J07d2rQoEG539tsNtWqVUvx8fEn/b4JCSmyJoYrPIYhVawYUerPxbViuSIOHNC/A1Rz716pTx+lzF2grO49LKmtNCorfYHCRV8gEPoCgdAXCIS+QCD0BfJDbyBHTi+ciGWhVO3ateVwOLRt2zY1adJEkrR161bVq1dPNlve/dcrVaqk3bt35zn222+/qV69eif9vqapMnNxlOpz8fkUNnFMwIcM05RpGAqbOFbuzt1YyneSSnVfoMjQFwiEvkAg9AUCoS8QCH2B/NAbKCjL7r4XEhKiXr16afLkyfruu+/0ySefaO7cuRo8eLCk7FlTmZmZkqR+/frp7bff1nvvvafff/9dTzzxhOLj43XVVVdZVT5Ok3PjBtnj44+bJZXDME3Z4/fKuXFDsdYFAAAAAACKh2UzpSRp/Pjxmjx5sq6//nqFh4dr5MiR6tixoyQpLi5OU6dOVe/evdW1a1elpaVp1qxZ2r9/v2rXrq3XXnvtpDc5R8lhO7C/UMcBAAAAAIDSxdJQKiQkRNOmTdO0adOOe2zXrl15vu/bt6/69u1bXKWhiPkrVynUcQAAAAAAoHSxbPkeyjdP8xbyVasmM5/7RJqSfJUry9O8RfEWBgAAAAAAigWhFKxhtyt1ynRJOi6YMqXsvaYy3bLv/rXYSwMAAAAAAEWPUAqWyereQ0fmLJC/atU8x/1VqspX/UzZDycrulcX2XfusKhCAAAAAABQVCzdUwrI6t5DiV26yblxg2wH9stfuYo8zVvISE5WVL9ecn6/XdG9u+nw2+/JW7+h1eUCAAAAAIBCwkwpWM9ul6dlK7l795WnZSvJbpdZsaIOL31fnsZNZEtKUlTvK+X4epPVlQIAAAAAgEJCKIUSy4yK1uHFy5TVvIVsKUcU3beXnBu+tLosAAAAAABQCAilUKKZ4RE6/OYSZbVuKyM9TVEDrpbzs0+tLgsAAAAAAJwmQimUfGFhOvz6W3K37ygjI0NRg66R66NVVlcFAAAAAABOA6EUSofgYB2Z94bcXa+UkZWlyCED5Xp/mdVVAQAAAACAU0QohdLD5dKR2fOUedXVMrxeRd48REFL3ra6KgAAAAAAcAoIpVC6OJ1KeeEVZfYfKMPnU8RtNyn4jQVWVwUAAAAAAE4SoRRKH7tdKU8/r4zrh8owTUXcdbuC5862uioAAAAAAHASCKVQOtlsSp3+pNKH3yZJihg3WiEvzrS4KAAAAAAAUFCEUii9DENpD01V+p2jJUnhD0xQ6FOPW1wUAAAAAAAoCEIplG6GobQJ9ytt7ERJUtjUhxX62MOSaVpcGAAAAAAA+C+EUij9DEPpo8cq9f6HJUlhTz6usMmTCKYAAAAAACjBCKVQZmSMuFMpj06XJIW++JzCx98j+f0WVwUAAAAAAAIhlEKZkjnsFqXMeFamYShk7myFj75D8vmsLgsAAAAAAPwLoRTKnMxBQ5Ty3EsybTaFLJyviBHDJa/X6rIAAAAAAMA/EEqhTHL3G6CUWXNlOhwKXvK2IoffKGVlWV0WAAAAAAA4ilAKZZa7Z28dmbNApsuloPffU+TQQVJmptVlAQAAAAAAEUqhjMvq0k2H578pMzhYQR+uUtTg/lJ6utVlAQAAAABQ7hFKoczztOugwwsXywwNlevzNYoa2FdKTbW6LAAAAAAAyjVCKZQLnlZtlPzWe/KHR8i1fp2i+/WSceSw1WUBAAAAAFBuEUqh3PA2a67D7yyTPypazi2bFdWnh4ykRKvLAgAAAACgXCKUQrnibdREyUtXyF+xopzbvlX0Vd1lHDxodVkAAAAAAJQ7hFIod3z1LlHyuyvlq1RZjh92KPqqrrLt32d1WQAAAAAAlCuEUiiXfLVq6/CylfJVqy7Hz7sU1bOLbH/9aXVZAAAAAACUG4RSKLd8F1yo5GWr5Dv7HDl+26Ponl1k+99vVpcFAAAAAEC5QCiFcs1/zrlKXrZK3vMvkP3PPxTds4vsv/5idVkAAAAAAJR5hFIo9/zVz9ThZavkvaiW7Pvis4OpH3+wuiwAAAAAAMo0QilAkr9yFSW/u1LeOvVkO/i3oq/qKsf3260uCwAAAACAMotQCjjKjI1V8tL35WnYSLbEREX1vlKOrV9bXRYAAAAAAGUSoRTwD2aFGB1evEyeS5vJdjhZUX17ybHxK6vLAgAAAACgzCGUAv7FjIxS8lvvKiuutWypKYruf5Wcaz+3uiwAAAAAAMoUQikgkPBwHV64WFltr5CRnq6ogX3l+vQjq6sCAAAAAKDMIJQC8hMSosPzF8nduasMt1uRgwfItXKF1VUBAAAAAFAmEEoB/yUoSEfmLFBmj6tkeDyKHDpIQe8tsboqAAAAAABKPUIp4EScTqW8NEeZffvL8PkUcctQBS1aaHVVAAAAAACUaoRSQEE4HEp57iVlXHe9DL9fkXfcquD5r1pdFQAAAAAApRahFFBQNptSn3hGGUNvliRF3HOnQma/aHFRAAAAAACUToRSwMmw2ZT66ONKv/1OSVL4xLEKefYpi4sCAAAAAKD0IZQCTpZhKO3+h5Q2eqwkKXzKAwp9fKpkmhYXBgAAAABA6UEoBZwKw1D62IlKnfiAJCns8akKmzKZYAoAAAAAgAIilAJOQ8ado5X68FRJUuhzTyls0liCKQAAAAAACsBhdQFAaZcx/HaZriBFjB2l0NkvyXBnKXX6k5Jpyrlxg2wH9stfuYo8zVtIdrvV5QIAAAAAUCIQSgGFIPOGYTKDgxVx1+0KmT9X9t2/yL5nt+z74nPH+KpVU+qU6crq3sPCSgEAAAAAKBlYvgcUEveA65Ty4isybTa51q+T7R+BlCTZ9u1T5NBBcq1YblGFAAAAAACUHIRSQCFy9+wtMypapiTjX48ZR/eaCp80VvL5ir02AAAAAABKEkIpoBA5N26QLSnxuEAqh2GassfvlXPjhmKtCwAAAACAkoZQCihEtgP7C3UcAAAAAABlFaEUUIj8lasUaJwZGVnElQAAAAAAULIRSgGFyNO8hXzVqsk08lvAly1i5C0Knjtb8niKqTIAAAAAAEoWQimgMNntSp0yXZKOC6ZMw5ApyVe5smwJCYoYN1oVWjeTa+UK6egm6AAAAAAAlBeEUkAhy+reQ0fmLJC/atU8x/1Vq+nI3NeV+M0PSpn6hPwVK8qx+1dFDblW0T06y7Fls0UVAwAAAABQ/AilgCKQ1b2HErfuVPK7H+jIS3OU/O4HSty6Q1nde0hOpzKH3qzEzduVdtc9MoOD5dz0lSp0ba+IYdfL9tseq8sHAAAAAKDIEUoBRcVul6dlK7l795WnZSvJbs/zsBkRqfQJ9ytx47fKGHCdTMNQ8PJ3FRN3qcImjZWRkGBR4QAAAAAAFD1CKcBi/mrVlfrMC0pas15Zba+Q4fEo9OUXFdOsgUKefUrKyLC6RAAAAAAACh2hFFBC+OrU1eG33lXy2+/JU/cS2Y4cVviUBxTTorGC3n5T8vutLhEAAAAAgEJDKAWUMJ7L2yn5k7U68txL8lWrLvvevxQ5Yrii27eW84vPrC4PAAAAAIBCQSgFlEQ2m9zXXKvEr75R6qTJ8kdEyrnjO0X37amo/r1l/2Gn1RUCAAAAAHBaCKWAkiwkRBl3jFLi5u1Kv+kWmQ6HXGs+UYV2LRV+1+2y7Yu3ukIAAAAAAE4JoRRQCpgVKyrtkelK/PJrua/sJcPvV8gbCxTTvKFCpz4kI+WI1SUCAAAAAHBSCKWAUsR//gU6Mme+kj74WJ5Lm8nIyFDYU08oplkDBc+dLXk8VpcIAAAAAECBEEoBpZD30mZKXvGRDr+6UN7zL5Dt0CGFjx0t1a0r1wfvS6ZpdYkAAAAAAPwnQimgtDIMZXW7UknrNivlsRnyx8ZKP/+syCEDFd2jsxxbNltdIQAAAAAA+SKUAko7p1OZN96kpM3bpIkTZYaEyLnpK1Xo2l6RQwfLtme31RUCAAAAAHAcQimgjDAjIqUpU5S08RtlXDtIpmEo6P33FNOqqcImjpGRkGB1iQAAAAAA5CKUAsoYf7XqSn36eSV9tkFZ7drL8HgUOvslxTStr5Bnn5IyMqwuEQAAAAAAQimgrPJdXEeHFy1V8uJl8tS9RLaUIwqf8oBiWjRW0FtvSH6/1SUCAAAAAMoxQimgjPO0aavkT9bqyHMvyVf9TNn3/qXIkbcoun1rOb/4zOryAAAAAADlFKEUUB7YbHJfc60SN2xV6qQH5Y+IlHPHd4ru21NR11wl+84dVlcIAAAAAChnCKWA8iQkRBl33K3EzduVfvOtMp1OuT77VBXatVT4nbfJti/e6goBAAAAAOWEpaGU2+3WhAkT1KRJE8XFxWnu3LkBxw0aNEgXXXTRcV/jx48v5oqBssGsWFFpU6Yp8cuvldnjKhmmqZA3X1dM84YKffQhGSlHrC4RAAAAAFDGOax88+nTp2vHjh167bXXFB8fr7Fjx6patWrq3LlznnHPPfecPB5P7vfbt2/XXXfdpWuvvba4SwbKFP955yvlldeUseV2hU+eJOfmjQp7+gmFvD5PaaPHKXPwDZLTaXWZAAAAAIAyyLKZUunp6Vq8eLEmTpyoOnXqqEOHDho2bJgWLlx43Njo6GidccYZOuOMMxQTE6OnnnpKw4YNU7169SyoHCh7vE2aKvn9D3V43hvyXlBDtkOHFDH+HlVo3UyuD96XTPPYYJ9PzvXrFLR0sZzr10k+n3WFAwAAAABKLctCqZ9++kler1cNGzbMPda4cWNt375d/v+4Vf3SpUt1+PBh3XTTTcVRJlB+GIayunZX0tpNSnlshvyxsXLs/lVRNwxU9JWd5Ph6k1wrliumcR1FX9VNkbcMVfRV3RTTuI5cK5ZbXT0AAAAAoJSxLJQ6ePCgKlSoIJfLlXssNjZWbrdbycnJAZ9jmqZeeeUVDR48WGFhYcVUKVDOOJ3KvPEmJW7aprS775EZEiLn5o2q0K2DIm+8Trb4vJuh2/btU+TQQQRTAAAAAICTYtmeUhkZGXkCKUm532dlZQV8zqZNm7R//37169fvlN/XME75qSVGzjmUhXNB4Sn0voiMVMaE++W+YZhCH31YQYsWKtBLG6Yp0zAUft9YJXXtJtnthVQACgOfFwiEvkAg9AUCoS8QCH2B/NAbyFHQHrAslAoKCjoufMr5Pjg4OOBzPvzwQ7Vu3VrR0dGn/L4VK0ac8nNLmrJ0Lig8hd4XsRdJw4dJi47f7y2HYZqy792r2B+3SZdfXrjvj0LB5wUCoS8QCH2BQOgLBEJfID/0BgrKslCqcuXKSkpKktfrlcORXcbBgwcVHBysyMjIgM9Zt26dRowYcVrvm5CQkmfP5tLIMLIv8rJwLig8RdkXrp/3KPBVmdeRn/coq27jwn1znBY+LxAIfYFA6AsEQl8gEPoC+aE3kCOnF07EslCqdu3acjgc2rZtm5o0aSJJ2rp1q+rVqyeb7fitrhITE/Xnn3+qcePT+4HXNFVmLo6ydC4oPEXRF/5KVQo0zrZnj0y/yXzdEojPCwRCXyAQ+gKB0BcIhL5AfugNFJRlG52HhISoV69emjx5sr777jt98sknmjt3rgYPHiwpe9ZUZmZm7vhffvlFQUFBOvPMM60qGSi3PM1byFetmsx8wqacv2/Cpz2i6O4d5di0sfiKAwAAAACUSpaFUpI0fvx41alTR9dff70efPBBjRw5Uh07dpQkxcXFaeXKlbljExISFBkZKYMZGEDxs9uVOmW6JB0XTJmGIRmGMrv3yL5T39ebVOHKjooc3F/2XT9ZUS0AAAAAoBQwTLN8Tao7dKj0r201DCk2NqJMnAsKT3H0hWvFcoVPGiN7fHzuMV+16kqdMk1Z3XvItn+fQh9/TMFvzJfh88m02ZQ54Dqlj5kgf9VqRVMU/hOfFwiEvkAg9AUCoS8QCH2B/NAbyJHTCydi6UwpAKVLVvceSty6U8nvfqAjL81R8rsfKHHrDmV17yFJ8lepqtQZzyhp7Sa5u14pw+9XyML5imneUGGPPCjjcLK1JwAAAAAAKDEIpQCcHLtdnpat5O7dV56WrSS7/bghvgtr6si8hUpa8bE8TZvLyMhQ6DMzFNO0vkJemim53RYUDgAAAAAoSQilABQZb9NmSn7/Qx2ev0jemhfJlpSk8PsnKKZFYwUtXiT5/VaXCAAAAACwCKEUgKJlGMrq3FVJn3+llKdmylelqux//qHI229WhStaybnmE+4XCwAAAADlEKEUgOLhcChz4GAlbvxWqZMmyx8RKcfO7xXdv7ei+vSQY/u3VlcIAAAAAChGhFIAildoqDLuGKXEr7crffjtMl0uudZ9oQod2ihi+A2y/bbH6goBAAAAAMWAUAqAJcyYikp7eKoSN2xVZp9rZBqGgt9dopi4SxU24V4Zhw5ZXSIAAAAAoAgRSgGwlP/sc5TywmwlfbJOWW2vkOHxKPSVWYppWl+hM6ZJaWlWlwgAAAAAKAKEUgBKBF+9S3T4rXeV/M5yeeo3lC01RWHTHlFMswYKnjdH8nisLhEAAAAAUIgIpQCUKJ7Wlyv5w8905OVX5TvnXNn/PqCIMXerQutmcr2/jDv1AQAAAEAZQSgFoOSx2eTudbUS129RyqPT5a9YUY7dvypq6CBFd20v58YNVlcIAAAAADhNhFIASi6XS5nDblHi5u1KGzVGZmionFu/VnSPzoq8rp/sP/1odYUAAAAAgFNEKAWgxDMjIpU+bpISN21TxvVDZdrtCvpotSpcfpnC77xNtvi9VpcIAAAAADhJhFIASg1/5SpKffwpJa3bLHf3njL8foW8+bpimjdU2EP3y0hOsrpEAAAAAEABEUoBKHV8NS7UkbkLlLTyE2U1byEjM1OhM59WTNP6CnnhOSkz0+oSAQAAAAAnQCgFoNTyNmmqw8tW6fDrb8lbq7ZsyckKnzxRMS0aK+itNySfz+oSAQAAAAD5IJQCULoZhrI6dlHSZxt05JkX5KtWXfa//lTkyFtU4YpWcn36kWSaVlcJAAAAAPgXQikAZYPdLveA65T41TdKve8h+SOj5Phhh6IG9FHU1VfK8e1WqysEAAAAAPwDoRSAsiUkRBkj71Li19uVftsdMoOC5PpyrSp0aquIm4bItme31RUCAAAAAEQoBaCMMivEKG3yFCVu2KrMfgNkGoaCly1VTNylCh83WsbBg8cG+3xyrl+noKWL5Vy/jr2oAAAAAKAYEEoBKNP8Z52tlJmzlLRmvdxXdJDh9Spk7mzFNK2v0MenyvXO24ppXEfRV3VT5C1DFX1VN8U0riPXiuVWlw4AAAAAZRqhFIBywVenro68uUTJS1fI06ChbGmpCnt8qiJvGyZbfHyesbZ9+xQ5dBDBFAAAAAAUIUIpAOWKJ661kj/8XEdmzZVpt8uQZPxrjHH0bn3hk8aylA8AAAAAigihFIDyxzDkr1RZxn8EToZpyh6/V86NG4qxMAAAAAAoPwilAJRLtgP7CzTO+dmnkt9fxNUAAAAAQPlDKAWgXPJXrlKgcWHPPqmY5g0VMvMZGYcOFXFVAAAAAFB+EEoBKJc8zVvIV62aTOPfO0plMyX5w8LkD4+Q/X+/Kfyh+1SxQS1F3DI0e0nf0X2nAAAAAACnxnGqT9y9e7cqVaqkiIgIrVu3TmvWrNHFF1+svn37FmZ9OGrvXkMJCcd+eK5QQUpKOpYpxsaaqlaNH5KBArPblTpluiKHDpJpGLmbm0vKDapSnpulrLZXKPi9JQp+bY6c275V8NLFCl66WN5atZVx/Y1y9+0vMzLKqrMAAAAAgFLLMM2T/+f+t956Sw899JBeffVVhYeHq1+/fmrevLl++ukn9e3bV3feeWdR1FooDh1KKXUTHNxuqVGjMB08mP/EtkqV/Nq6NU1BQcVYGEoUw5BiYyNKZY9bybViucInjZE9Pj73mK9adaVOmaas7j3yjHVs+0bB819V8NLFMtLTJUlmaKgyr+qjzOtvlLdBo2KtvSDoCwRCXyAQ+gKB0BcIhL5AfugN5MjphRM5peV7r7zyiqZNm6amTZtqyZIlql27tl555RU99dRTWrx48am8JP6DyyVVr27KMAJf1YaRPUvK5SrmwoAyIKt7DyVu3ankdz/QkZfmKPndD5S4dcdxgZQkeRs0UuqTzynhu11KmfqEvLVqy0hPV8jC+arQ8XJFd2ij4Ndfk9LSLDgTAAAAAChdTimUOnDggBo3bixJ+uyzz9S+fXtJUpUqVZTGD2OFzjCkcePcMs189r4xDY0b51Y+W+MAOBG7XZ6WreTu3Veelq0ku/0/h5uRUcocerOSvtiopOUfKvPqfjJdLjm3f6uIUSNV8ZKLFD5utOw//lBMJwAAAAAApc8phVLnn3++3n//fb3zzjuKj49X+/bt5fF4NHfuXNWqVauwa4Sktm19atDAJ7s972wpu91UgwY+tW3rs6gyoBwzDHmbX6aUF19RwvZdSn1ginznnidbyhGFzJ2tmDbNFX1lJwW985aUmWl1tQAAAABQopxSKDV27FjNmTNHkyZN0rXXXqsLLrhAU6dO1ccff6yJEycWdo3QsdlSPl/e6VA+n6EhQ7KYJQVYzKxYURm336HEjd8qefEyubv1kGm3y7npK0XedpMqNqilsMmTZN/zq9WlAgAAAECJcEobnUuS3+9XSkqKoqKy7zp16NAhRUVFyel0FmqBha00b7hmmlKnTqHavt32r6V8pjp29Onmm7PUqpWPgKqcYlPBkse2f5+CF85X8IJ5ssfvzT2e1bqtMoYMVVanLlIRf2bSFwiEvkAg9AUCoS8QCH2B/NAbyFGkG51L0pdffimv1ytJeueddzRhwgQ9//zzysrKOtWXxAkE2luqYUOfJEMffeRQnz6h6tAhVEf/WABYzF+lqtJHj1Xilu91eMFbcrfvKNMw5Fr7maJuvE4xjeoo9LEpsu39y+pSAQAAAKDYnVIo9fzzz+vOO+/UX3/9pc2bN+v+++9X1apV9fHHH2vq1KmFXSP+IWdvKUlq0MCn1avT9dVXqbrxxiyFhpq68EK/HI5j45OSLCoUwDEOh7I6ddGRN95R4tffKe2ue+SPPUP2A/sV9uR0xTSuq8hB18j1yYeSj/3hAAAAAJQPpxRKvf3223ruuedUv359LVu2TJdeeqkefPBBPfbYY1q5cmVh14h/MAxp0iS3atfO/q9hSBdcYOqxx9zavj1V99/vzh27a5dN9eqF69Zbg7Vt2ylPigNQiPxnn6P0CfcrYduPOjJ7nrLiWsvw+xX04SpFXdtXMc0aKOSZGTL+/tvqUgEAAACgSJ1SUnH48GGdf/75Mk1Tn3/+udq2bStJCg8Pl49/5S9ybdr49MMP2f/9p6goqWrVYwt3P/rIoawsQ0uWONWxY5i6dw/R++87WN4HlAQul9w9e+vw0hVKXL9F6cNvlz86WvY/flf4Iw+qYoNairhpiJxfrhUL8gEAAACURacUStWqVUtz5szRzJkzlZiYqA4dOujAgQN68skn1aBBg0IuEadq5MgsffRRmvr08cjpNLV5s0NDh4aoadMwPf+8U+npVlcIQJJ8F9ZU2sNTlbB9l44895I8jS+V4fUqeNlSRffurgotmyjkpZkykhKtLhUAAAAACs0phVKTJ0/Wli1b9Nprr2nUqFGqXr26XnnlFe3du1cPPPBAYdeI09CggV8vvJCprVvTNGqUWxUr+vXXXzY9/7xLNlb0ASVLSIjc11yr5FWfKvHTL5Vx/VD5w8Ll+PUXhd8/QRXr11LEiOFybNnM7CkAAAAApZ5hmoXzk01WVpZcLldhvFSRKgu3pjyd22xmZkpLlzrk8xkaNMgjSfL7pXvuCdKVV3p1+eU+GcYJXgQlErdfLZuM1BQFLVmskHlz5Nj5fe5xb516yrj+Rrn79JMZnv+tVukLBEJfIBD6AoHQFwiEvkB+6A3kyOmFE4471VDqhx9+0Jw5c7Rnzx75fD6dd955GjhwoJo2bXoqL1dsysLFUdgX+kcf2XXddaGSpIsu8ummmzzq08ej0NDTf20UH/4CKONMU45vtihk3hwFLVsqIzNTkuQPC5f76n7KuP5G+epdkvc5Pp9cmzYoKv2wDodGKatZC8lut6B4lDR8XiAQ+gKB0BcIhL5AfugN5ChoKHVKC7g+/vhj9evXT6Zpqnfv3urdu7cMw9CNN96oTz755FReEhaqVcuvm27KUliYqV277LrnnmA1bBiuRx5xKT6eaVNAiWAY8ja+VCnPvaSE7T8p9eGp8ta4ULa0VIXMn6uYK+IU3aWdghYtlDIy5FqxXDGN6yiqVzfp2msV1aubYhrXkWvFcqvPBAAAAAAkneJMqe7du6tPnz4aMmRInuPz5s3Tu+++q2XLlhVWfYWuLCS2RZU+HzkivfGGU6+84tIff2TnlQ6HqS++SNeFF/oL741QJPhXiXLINOXc8KWCX5ujoA/el+E5uiQ3NFTG0TsZ/DNWNo+uzT0yZ4Gyuvco7mpRgvB5gUDoCwRCXyAQ+gL5oTeQo0hnSv35559q27btccfbtm2r33777VReEiVAZKR0yy0ebdqUpnnzMtSihVe1a/tVo8axQOr77206+nMvAKsZhjwtWynl5XlK+PZHpU6aLN9ZZ8uWni5DeQMpSTKO/p9B+KSxks9X7OUCAAAAwD+dUih1wQUXaO3atccd/+KLL1S9evXTLgrWstulrl29eu+9DC1blp678XlKitSzZ6guvTRMzz7rUlKStXUCOMasVEkZd4xSytPP/+c4wzRlj98r58YNxVQZAAAAAATmOJUnjRw5UiNHjtT27dtVv359SdK2bdv04Ycfavr06YVaIKwVHn7s17/8YlNIiKn4eJumTAnSjBku9evn0U03eVSzJsv7gJLAdvDvgo07sL+IKwEAAACA/3ZKM6Xatm2r2bNny+12680339TSpUtlmqbeeOMNde3atbBrRAnRqJFf33yTpueey1Dduj5lZBh67TWX4uLCdM01Idq165TaCUAh8leuUqBxIS/OlOPbrUVcDQAAAADk75Q2Os+P2+3W33//rbPOOquwXrLQlYUN10rC5nGmKW3caNesWU6tWuWQYUibN6fp7LNL+W9uKVYS+gIlgM+nmMZ1ZNu3L3cPqX/KOZKz35S7S3eljZ0o38V1iq1EWI/PCwRCXyAQ+gKB0BfID72BHEW60Xl+Nm/erI4dOxbmS6KEMgzpsst8mjcvU5s2pemppzLzBFIjRwbroYdc+uuvf2+1DKBI2e1KnZK9jDrnbns5TMOQDEOp055U5jXXyrTZFLRqhSq0baGIW26Ufc+vVlQMAAAAoJxivRVO27nnmhowwJv7/f/+Z+jttx2aOTNIl14apmHDgrV5s42kHCgmWd176MicBfJXrZrnuL9qNR2Zs0CZNwxTynMvKWntJmX2uEqGaSp46Tuq0PJShd89Qra//rSocgAAAADlySltdA78l7POMjV/foZeftmldescWr7cqeXLnWrY0Kebb87SlVd65XJJe/caSkjIfyZVbKypatVIsoBTkdW9hxK7dJNr0wZFpR/W4dAoZTVrkX17zaN8NS9SyiuvKeP7UQp9bIqCPv5QIQvnK3jxImUMvkHpd94js3JlC88CAAAAQFlGKIVCZ7dLnTr51KlThnbutGn2bKeWLHHq22/tuvXWEKWnZ6pfP486dgzVwYP5T9arVMmvrVvTFBRUjMUDZYndLk/LVlJshDyHUo5tKPUv3nr1dWThYjk2b1LYYw/L9eVahb4ySyFvLFDG0OFKH3GnzAoxxVs7AAAAgDKvwKHU119/fcIxu3btOq1iUPbUqePX00+7NXFilubPd+rddx3q3dsjl0uqXt3UoUOmTPP42VKGkT1LyuWyoGignPI2babDS1fIufZzhU19SM6tWxT63FMKnjdHGbeOUMbw22RGRFpdJgAAAIAyosB336tVq1bBXtAw9OOPP55WUUWpLNwFoDTf0cA0s+uXpDVr7OrfPzTfsYsWpatdO18xVVb6lea+QNE55b4wTbk+Wq2wqQ/L8cMOSZI/JkbpI0cp48abpJCQoikYxYLPCwRCXyAQ+gKB0BfID72BHAW9+16BZ0r99NNPp1UQIB0LpCSpSROfoqL8OnzY0LEb1EuSqehoU8nJ3LkPsIxhKKtTF2V16KSg5e8qdNojcuz+VeEPTlLISzOVfve9yrzuejGdEQAAAMCp4u57sExkpDRrVqbyBlKSZCg52aZNm45tyJyRId19d5DmzXNq+3absrKKtVSg/LLZ5O51tZLWbdaRZ16Q76yzZT+wXxHjRivmskYKevN1yes98esAAAAAwL8QSsFSbdv61KCBT3Z79txOm83UBRf4NH68W927H/tB9/vvbVq40KUxY4LVoUOYLrggXJ07h2rcuCAtWuTQX38xqwooUg6H3AOuU+JX3yjlsRnyVa4i+59/KPLO21ShdTMFvbdE8vutrhIAAABAKUIoBUsZhjRunFs+X3ao5PcbeuQRt+6+O0utWh3bT+qMM0zdfbdbbdp4FR1tyu029M03ds2d69Idd4RoxYpjK1EPHDC0fLlDf/xhsI4ZKGwulzJvvEmJm7Yp9YEp8sfEyPHrL4q8+QZVuKKVXB+uEhceAAAAgIIo8J5SQFHJmS21bZtdDRr41Lbt8Zubn3eeqfHjs9fsmab022+Gtm2z69tv7dq2zaYmTY4954sv7BoxInsT5thYv+rX96tBA58aNvSpQQO/KlXiB2bgtIWGKuP2O5Q5eIhCZr2gkBdnyrHze0UNukaexpcqbfx98rS+3OoqAQAAAJRgzJSC5QxDmjjRrZo1fZo40Z1nM/T8xp9/vqnevb16+GG33n8/Q02aHFs2FBQk1a/vk8Nh6tAhmz791KEZM4J03XWhqls3XGvWHNurKjFROnKkqM4MKPvMiEil3zNOiVu+U/odo2SGhsq59WtF9+mhqN7d5fh6k9UlAgAAACihDNMsX+ssysKtKbnNZsFkZko7d9ryzKj65RebvvsuTZUrZ//GTZ/u0hNPBKlGjexZVI0aZc/aqlvXr+Bgi0/gJNEXCKS4+8I4cEChz85QyGtzZRy9I4G7QyeljbtPvnqXFH0BKBA+LxAIfYFA6AsEQl8gP/QGcuT0womwfA9lVnCw1LixX40b+yV5JEmpqVJ4+LExf/2VPVnw11/t+vVXu955xylJcjhM1a7t1xtvZOQGWAW1d6+hhIT8p3vFxpqqVo1PaJRNZuXKSntkujJuHanQJ6cr+M3XFfTxhwr6+ENl9rhK6WMnyndhTavLBAAAAFACMFOqFCJ9LlyHDhnats12dDaVXd9+a9OhQzaFhpravTtV9qOr/UaPDtJPP9mP7k3lU6NGPp13nplnuaHbLTVqFKaDB/NfGVupkl9bt6YpKKhwz4O+QCBW94V9z68KnT5VQe++I8M0Zdpscvftr7TRY+U/97ziLwiSrO8LlEz0BQKhLxAIfYH80BvIwUwpoIBiY021b+9T+/bZm6WbZvZsp99/t+UGUpK0YYNDu3fb9PXXxw5GRZmqX9+nJk18Gjs2Sy6XVL26qUOHTJnm8bOlDCN7lpTLVeSnBZQIvvNrKOWlOUq/Y5TCpj2ioFUrFPzWGwpa8rYyB16v9FH3yl+1mtVlAgAAALAAG50D/2IY0plnmmrZMu9dABcsSNfMmRkaNixLjRv7FBRk6vBhQ2vXOrRqlUOGkf3ccePcAQMpSTJNQ+PGnXgzd6Cs8V1cR0dee0NJH36mrMvbyfB6FfLaHMU0a6Cw+yfIOHTI6hIBAAAAFDNmSgEFVKOGqRo1vOrXzytJ8nikn37KXvbnch2bm9qypU+GcfxMKcMwVa+eX23b5g27gPLE27CxDr/9npxfrVfYow/Juekrhb40U8EL5ilj+K3KuHWkzKhoq8sEAAAAUAyYKQWcIqdTqlfPr8GDPerf35t73OeTBg/2HDfeNA3t2mXTU0+xdg/wXNZSyctXK3nREnnqN5QtLVVhTz6umCaXKOSZGdl3JQAAAABQphFKAYUsNFSaPt2tBg18stuzZ1AZhimXy5TbbSgy8tisquRkad06u3xMnkJ5ZBjytOug5I8+1+FXF8pbq7Zsh5MV/siDqti0vkJmPS9lZh7/PJ9PzvXrFLR0sZzr14kLCAAAACidCKWAIpCzt5TPl72EzzQNzZ+foVWr0tS797FZVO+/79TVV4eqQYMwTZoUpK1bbdylAuWPYSir25VK+myDjrwwW75zz5Pt0EGF3zdeMc0bKnj+q9nrZSW5VixXTOM6ir6qmyJvGaroq7oppnEduVYst/gkAAAAAJwsQimgiLRt61ODBtkzOBo08KltW58aN/YrJubYmPR0KTra1IEDNr38sktduoSpadMwPfqoSz/8wOWJcsZul7vPNUpcv0UpM56Vr1p12eP3KuKeOxXTsonCJo5R5NBBssXH53mabd8+RQ4dRDAFAAAAlDL81AsUEcOQJk50q2ZNnyZODHzHveHDPdqxI1ULFqSrd2+PQkNN/f67TU8/HaR27UKVkMBt+lAOOZ3KHDREiRu/VeqUx+SPPUP2//2m0NkvSaapf18VxtHpheGTxrKUDwAAAChFCKWAItSmjU9ffpmuNm3y/0HZ5ZI6dfLppZcytXNnql5+OUOdO3vUvr1PFSseW8s3blyQXnzRqX37CKpQTgQHK+Pm25Swebsyrrteko4LpHIYpil7/F45N24ovvoAAAAAnBZLQym3260JEyaoSZMmiouL09y5c/Mdu2vXLg0YMECXXHKJrrzySm3cuLEYKwWKR1iY1KuXV/PnZ2rBgozc4/v2GXr1VaceeCBYDRqEqVevEL32mlOJiRYWCxSX8HB54loXaKjtwP4iLgYAAABAYbE0lJo+fbp27Nih1157TQ888IBmzpyp1atXHzcuJSVFN954o2rUqKH3339fHTp00IgRI5SQkGBB1UDx+Odyv7AwU48+6lbTpl6ZpqENGxy6995g1a0brmuvDdG6dXbrCgWKgb9ylQKNC3vofoU9dL8cmzdJfn8RVwUAAADgdFgWSqWnp2vx4sWaOHGi6tSpow4dOmjYsGFauHDhcWPfffddhYaGavLkyTrnnHN0xx136JxzztGOHTssqBwofpGR0tChHq1YkaGtW1N1331u1a3rk9dr6JNPHNq791iClZoqZWZaWCxQBDzNW8hXrZrMQJuzSTKPftnj9yp05tOq0L2DKtarqfBRI+X6eDUXBQAAAFACWRZK/fTTT/J6vWrYsGHuscaNG2v79u3y/+tftzdv3qwrrrhCdvux2SBLlixRmzZtiq1eoKQ46yxTI0dmac2adK1fn6Z77nGra1dv7uPz5zt18cXhGjEiWGvW2OXxWFgsUFjsdqVOmS5JxwVTpmFIhqGUF17WkdnzlNm7j/yRUbId/Fshr7+mqIH9FFvrPEXeOEhBb78pI4l1rwAAAEBJYFkodfDgQVWoUEEulyv3WGxsrNxut5KTk/OM/fPPPxUTE6P77rtPLVu2VL9+/bR169ZirhgoeS680K8xY7IUGXns2IYNDqWmGnr7baf69w/VJZeEacyYIH31lZ3VTCjVsrr30JE5C+SvWjXPcX/VajoyZ4HcffrL3bO3Ul6aq4Qfdiv57feUceNN8lWrLiM9TUErlilyxHBVvPgCRfXurpDZL8r25x8WnQ0AAAAAh1VvnJGRkSeQkpT7fVZWVp7j6enpevnllzV48GDNnj1bH3zwgYYOHapVq1ap6r9+ODmRfFZ+lCo551AWzgWFJ6cfFizI0KZNdr37rkPLlzt06JBN8+a5NG+eS+ef79f69WlyWHblo7iVtc8Lz5U9lNS1m5wbN8g4sF9m5SryNG8h2e1578wX5JK3bTt527ZT2mNPyP7dNgWtXCHX6pVy/LBTri/XyvXlWoVPHCtv3Uvk7tpNWZ27yVe3Xtn5zfoPZa0vUDjoCwRCXyAQ+gL5oTeQo6A9YJimaZ54WOFbtWqVpkyZovXr1+ce2717t7p27apNmzYpOjo693jnzp11xhlnaMGCBbnHevXqpc6dO+uWW24pzrKBUsXrldaskd58U1q6VOrQQXrnnWOPP/+8dMUVUq1a1tUIFLs9e6Rly7K/1q3LuyH6OedIPXtmf7VqJTmd1tUJAAAAlHGWzZeoXLmykpKS5PV65Tg6bePgwYMKDg5W5D/XIkk644wzdP755+c5du6552rfvn0n/b4JCSmyJoYrPIYhVawYUSbOBYUnv75o1Cj76+GHpeRkQ4cOZT+4e7ehESPCJUl16vjUu7dXV13l0VlnBW6qvXsNHTqUf9x9xhmmqlWjIUsaPi8CiDxDGjRMGjRMRkKCXB+vlmvVB3J99qmM33+Xnn1WevZZ+aOjldWhk7K6dFdW2yuk8HCrKy809AUCoS8QCH2BQOgL5IfeQI6cXjgRy0Kp2rVry+FwaNu2bWrSpIkkaevWrapXr55strxbXTVo0EBff/11nmN79uxR9+7dT/p9TVNl5uIoS+eCwpNfXwQFSZUrm7mPZWQY6tjRqzVr7Nq5M/vr4YeD1KSJT717e9Srl1exsdmD3W6pQ4dQHTyY/zZ0lSr5tXVrmoKCiuKscLr4vAjMjKmozGsGKvOagVJ6ulxrP5dr9QcK+nClbAkJCl78loIXvyUzKEhZrS9XVuducnfsIrNyZatLLxT0BQKhLxAIfYFA6Avkh95AQVm20XlISIh69eqlyZMn67vvvtMnn3yiuXPnavDgwZKyZ01lHr2Fd//+/bVr1y4999xz+v333/XMM8/ozz//VM+ePa0qHyj16tTx6/XXM7RzZ6pmzMhUXJxXhmFqyxa7JkwI1qZNx+526XJJ1aubMozAf7MYRvYsqX9tEweULqGhyurcValPP6+EHb8qafmHSr91pHznnifD7VbQxx8qYvQdqnhJTUV3ba+Q556W/ddfrK4aAAAAKLUs21NKyt7sfPLkyfroo48UHh6uoUOHasiQIZKkiy66SFOnTlXv3r0lZc+ieuSRR/TLL7/oggsu0MSJE3XppZee9HseOlT6pxEahhQbG1EmzgWFpzD64sABQ8uWOfThhw4tXJih4ODs488849Lq1XZt3Zr/5MpFi9LVrp3v1N4YRYbPi0JgmrLv+klBqz+Qa9UKOb/9Js/D3gtrZs+g6tJN3kZNJJtl/95TYPQFAqEvEAh9gUDoC+SH3kCOnF444TgrQykrlIWLgwsdgRRVX5im1KJFmHbvzvlB25T+cZ8zu91UvXp+ffhhOnfZKIH4vCh8tn3xcq1eqaDVH8j55VoZHk/uY75KlZXVqauyunRVVlwb5Sa7JQx9gUDoCwRCXyAQ+gL5oTeQo6ChVMn/51wAljIMae7cDN11l1uVKvn1z0BKknw+Q+PGuQmkUG74q1ZT5g3DdPitd5Xw4x4deflVZV51tfwRkbL/fUAhC15V1LV9VbH2+YocOlhB77wlIznpv1/U55Nz/ToFLV0s5/p1ko9ZhwAAACj7mClVCpE+I5Di6Au/X2rdOlS//GKTaRqSTFWoYOqnn9JkGNmP9+kTovr1/WrVyqtmzXwKCyuaWlAwfF4Uo6ys7GBp9QdyrV4p+7743IdMh0Oey+Lk7tJVWZ27yX/mWbmPuVYsV/ikMbLHHxvvq1ZNqVOmK6t7jyIplb5AIPQFAqEvEAh9gfzQG8jB8r18lIWLgwsdgRRXX6xZY1f//qG53z//fIb69vVKkr77zqb27Y+lUE6nqcaNfWrVKvurUSMfm6EXMz4vLGKacmz/Vq5VKxS0eqUcP/6Q52FPvfrK6tJN/tAwhT84STLNPHMQzaNTD4/MWVAkwRR9gUDoCwRCXyAQ+gL5oTeQg1AqH2Xh4uBCRyDF1RemKXXqFKpt2+xq0MCXZy+pw4eljz926Msv7Vq3zqE//8y7QnjUKLfGjcuSJHm92TXb7f9+BxQmPi9KBttvexS0emX2RumbN8rw+3Mfy7tL2zGmYchftZoSt+4o9AuFvkAg9AUCoS8QCH2B/NAbyMGeUgCKhGFIEye6VbOmTxMn5t1LKipK6tPHq6efdmvLljRt2pSqGTMy1auXR7GxfsXFHdsn55NP7KpdO1xDhgRrzhynfv7Zxl9cKLP8552vjFtH6PDy1UrY8auOPPOCsi5tLilwICVJhmnKHr9Xzo0biq9QAAAAoBjlf393AMhHmzY+ffll+n+OMQzpvPNMnXeeR4MGefSPiSGSpK++cig52dDKlU6tXOmUJFWunB1ctWrlVdeuXkVHF9EJABYyY2PlHnCdFBQk19cbTzjetn9fMVQFAAAAFD9mSgEoFjZb9leO++5za9WqNE2c6Fbr1l4FB5s6cMCmJUucuuuuECUmHps/smePoYMHub0fyhZ/5SoFGhf24H0KeWnmie/gBwAAAJQyzJQCYAmHQ2rc2K/GjbN0551SZqa0datd69bZ9eOPNp133rG1fA8/HKQPPnCqdu3sDdPj4rxq0cKnyEgLTwA4TZ7mLeSrVk22fftkBFi7akqSYci+f5/C75+gsKkPK7N3X2XeeJO89eoXe70AAABAYSOUAlAiBAdLLVv61LKl77jHjhzJniX14492/fijXS+/7JLNZqpBA78uv9yrsWOz8uxtBZQKdrtSp0xX5NBBMg0jTzCVe/e9F2bLlpamkLmz5fhhh0IWzlfIwvnyNGmqjBtvkvvKXlJQkEUnAAAAAJwe7r5XCnFHAwRS1vsiIcHQ+vXZM6nWrXNoz57stYBNmvi0cuWx/a1ef92piy7yqUEDv5zO/37NvXsNJSTkn2bFxpqqVq10/2aW9b4oC1wrlit80hjZ4+Nzj/mqVVfqlGnK6t4j+4BpyrFpo0JefVlB7y+T4fVKkvyxscq4bogyB98g/5lnFfg96QsEQl8gEPoCgdAXyA+9gRwFvfseoVQpxIWOQMpbX+zda2jdOrvCw6Xu3bN/QD98WLroonD5/YbCw01ddln2Ur9WrXy6+GJ/nj2t3G6pUaMwHTyY/9Z6lSr5tXVrWqmeiFLe+qLU8vnk3LhBtgP75a9cRZ7mLSS7PeBQ48ABhbw+T8HzX5V9X3aQZdpsyurYRRk33iRPm7Y60dRB+gKB0BcIhL5AIPQF8kNvIAehVD7KwsXBhY5A6Avpzz8NPfBAkNavdygpKe8P5RUr+nXXXVkaPtwjSTJNqVOnUG3fbpNpHv8DvGGYql/frw8/TC/VSwPpizLM65Vr9UqFvDpbrnVfHDt8QQ1l3jBMmddcKzMqOuBT6QsEQl8gEPoCgdAXyA+9gRwFDaW4+x6AMuOss0zNnZupH39M1aefpmny5Ey1b+9VaKiphASbgoOPjf3tN0ORkWbAQEqSTNPQuHHuUh1IoYxzOJTVvYcOL3lfiV9+rYyhN8sfHiHH7l8VPmmcKtavpfDRd8q+c4fVlQIAAAABEUoBKHNsNqlePb9uu82jN97I0C+/pGrFijR17erNHfP55w6tXRv4Xg92u6kGDXxq2/b4TdeBkshX8yKlTn1Cid/9pJRpT8pbq7aM9HSFLHhVMW1bKPrKTgp69x0pK8vqUgEAAIBchFIAyjynU2ra1K8zzjg2h/jSS3264w63atQ4Pnjy+Qxdd52HWVIodczwCGXeMExJX2xU8nsrldnjKpkOh5ybvlLk8BtVseHFCn3sYdni91pdKgAAAEAoBaB8qlfPr0mTsrR+fbrq1fPJZssJrEwZhqlevTy5Y//+22BNPEoXw5CnRZxSXnlNid/sVNq94+WrXEW2g38r7MnHVaFRXenqq+Vc94VobgAAAFiFUApAuWYY0sSJbvn9OdOiDE2Y4FZk5LExAwaE6LLLwvTccy79/TfTp1C6+KtUVfq945X4zU4dfuU1ZbWIk+HzSUuXKqr3larQqqmC58ySkXLE6lIBAABQzhBKASj32rb1qUGD7GV8DRr4dMcdx2ZJxccb2r3bpj17bHr44SA1aBCmG24I1qef2uVjyymUJk6nsnpcpcPvrVTS2o3SrbfKHxYux8+7FDH+XsVcUkvhY+6W/ccfrK4UAAAA5QShFIByL2e2VM2aPk2cmPeOe9WqmdqxI1VPPZWpxo198noNffCBUwMGhKpx4zC9+27gzdKBksxX+2LphReU9P1PSpn6uLw1L5ItLVUh8+Yopk1zRfXsoqBlSyWP58QvBgAAAJwiQikAkNSmjU9ffpmuNm2On/4UHi4NHOjRqlXp+uKLNN18c5YqVDAVH29TaOix/XhSU7m5GUoXMyJSmUOHK2ndZiUveV/u7j1l2u1yfbVekTcNUUyjOgqd/qhs+/dZXSoAAADKIEIpADgJtWv7NWWKW9u3p+qVVzJ0xRXHQqznnnOpQYMwTZ4cpF9+4eMVpYhhyNOqjY7MXaDErTuUNmqM/GdUkv3AfoU98ZhiGtVRxLDr5dzwJRujAwAAoNDwUxMAnILgYKlHD68c/1i99/nnDh06ZNMLL7jUsmWYrrwyRIsWOZSebl2dwMnyV6uu9HGTlPDtDzoya648zS6T4fUqePm7iu7VVRXaNFfw3NkyUlOsLhUAAAClHKEUABSSDz5I14IF6erUySubzdSmTQ7dcUeI6tUL10MPuawuDzg5LpfcV/VR8vsfKvGzDcoYfKPM0FA5fvpREeNGZ2+MPm607Lt+yv81fD45169T0NLFcq5fJ+4OAAAAgH8ilAKAQuJwSJ06+bRgQYa+/TZNEya4dfbZfqWkGEpJObZ7umlKKUwyQSniq1NXqU88rYTvdin1kWny1rhQttQUhcydrZhWTRXVu7tc7y+TvN7c57hWLFdM4zqKvqqbIm8ZquiruimmcR25Viy38EwAAABQkhimWb42hzh0KKXUb4dhGFJsbESZOBcUHvqiZPL7pS+/tKt6db8uuCD7D+brr23q0ydUPXp4NXCgR82a+fLc8a8w0RcI5LT7wjTlXPu5QubOluvDlTL8fkmSr2o1ZQ6+Qb4qVRUxaqRkmvpna5tHG/3InAXK6t7j9E8EhYrPCwRCXyAQ+gL5oTeQI6cXToR7mQNAEbLZpNat8y5Z+vhjhzIyDL31llNvveVUjRo+DRzoUb9+Xp1xBn97oxQwDHnatJWnTVvZ/vpTwfNfVcjr82TfF6+waY8op4v/nbUapinTMBQ+aawSu3ST7PbirhwAAAAlCMv3AKCYjR+fpZUr0zRwYJZCQ039+qtdDz4YrPr1w3TjjcFKSrK6QqDg/GeepfQJ9yvh2x915IXZ8l5UW4aOD6RyGKYpe/xeOTduKM4yAQAAUAIRSgFAMTMMqUkTv556yq3vv0/VjBmZatTIJ6/X0PbtdkVFHRublmZdncBJCQqSu881Sr/7ngINt+3fX8QFAQAAoKRj+R4AWCgiQho0yKNBgzzaudOmAwcM2Y7+c0FWltS8eZjq1fNr4ECPOnb0yum0tl7gRPyVqxRoXNgDE+TYtlVZXbrL07R59p0CAAAAUK7wf4AAUELUqeNXnTrHvv/6a7sOHLDpwAGbPvnEodhYv/r392jgQE/upulASeNp3kK+atVk27dPRoAdTnOO2P8+oNBZLyh01gvyx8Qoq2MXubt0V1abtlJoaPEWDQAAAEtw971SiDsaIBD6omzas8fQG2849eabTh08eGzF9WWXefXAA241auQ/7jl79xpKSDi2o0+FCmFKSjq2DjA21lS1ajRJeVbUnxeuFcsVOXRQ9nv94w1y7773wmwpJFRBq1bI9dEq2f6xkZoZEqKsy6+Qu0s3ZXXsLDOmYuEXiID4ewSB0BcIhL5AfugN5Cjo3fcIpUohLnQEQl+UbR5P9l37Fi506tNP7fL7DX3+eZouvjg7lMrMlIKDJbdbatQoLE+A9W+VKvm1dWuagoKKq3qUNMXxeeFasVzhk8bIHh+fe8xXrbpSp0xTVvcexwZ6vXJu+kquVSsUtOoD2f/8I/ch02aT57KWyurSTe7O3eQ/+5yiKRaS+HsEgdEXCIS+QH7oDeQglMpHWbg4uNARCH1RfsTHG/r0U4cGDfLkHrv11mDt3m3Ttdd6tGCBUzt22GSax9//zDBM1a/v14cfpsvI7/ZoKPOK7fPC55Nz4wbZDuyXv3IVeZq3kOz2/Mebpuw7vs+eQbV6pZw7vsvzsLdOPbm7dJO7S3f56tYTTVy4+HsEgdAXCIS+QH7oDeQglMpHWbg4uNARCH1RfmVmSnXqhCslJfsH9KAgU253/j+sL1qUrnbtfMVVHkqg0vJ5YfvjdwWt/kCuVR/I+dV6Gf5jy1V9Z52dvcSvS3d5ml3GRumFoLT0BYoXfYFA6Avkh95ADkKpfJSFi4MLHYHQF+XboUOGFi/OXt7388+BZ6LY7abq1WOWFErn54WRkCDXx6sVtOoDuT7/VEZGRu5j/goVjm2Ufnk7Nko/RaWxL1D06AsEQl8gP/QGchBK5aMsXBxc6AiEvoAkmab09dc2Pf54kL744viZI8ySglQGPi/S0+X64rNjG6UnJuY+ZIaEKKtNO7m7dldWh84yK7JRekGV+r5AkaAvEAh9gfzQG8hR0FAq/51wAQCljmFITZv69fbbGapXzyfDyP6/AbvdVIMGPmVkGLrllmBt387HP0qx0FBldemmlGdfVMKOX5X83kqlD79NvrPPkZGRoaDVHyjyjltVsc4FiurVVSGznpft9/9ZXTUAAAD+hZlSpRDpMwKhL/Bva9bY1b//sWVMixala8aMIH39dfbyvssu8+rWW7PUsaNPNjKqcqXMfl6Ypuw7d2TPoFr1ARuln6Qy2xc4LfQFAqEvkB96AzlYvpePsnBxcKEjEPoC/2aaUqdOodq2za4GDXz68MN0ff+9TS+95NJ77znk9Wb/QH7++X7dfHOWrrnGo7Awi4tGsSgvnxcF2ii9c7fsuwKyUXq56QucHPoCgdAXyA+9gRyEUvkoCxcHFzoCoS8QyNq1dt13X6gefjhdrVsf20sqPt7QnDlOzZ/v0uHD2eHU5Zd79fbbGfm9FMqQ8vh5ccKN0jt0PrZR+n+lsz6fnBs3yHZgv/yVq2QHWvbANxcobcpjX+DE6AsEQl8gP/QGchBK5aMsXBxc6AiEvkAgJ+qL1FRp0SKnZs1yadIkt3r29EqSDh+W/vzTprp1/cc/CaVeuf+8+K+N0oODlXV5u+yAqkNnmbGxuY+5VixX+KQxssfH5x7zVaum1CnTldW9R7GeQlEo932BgOgLBEJfID/0BnIQSuWjLFwcXOgIhL5AIAXtC9/RSVQ5Ez6ee86lhx8OUuvW2ftOtW3LvlNlCZ8X/+D1yrl5o1yrViho1Qey//F77kOmzSZPs8uU1aWbzKAghY+7RzJN/XMnKvPovlRH5iwo9cEUfYFA6AsEQl8gP/QGchQ0lGIDBQDAcauPDhwwZLebWrvWobVrHapZ06dbbvGoTx+PgoOtqREoEg6HPC3i5GkRp7SHph63Ubrrq/VyfbVekmRKeQIpSTJMU6ZhKHzSWCV26VZmlvIBAAAUB/7dGwBwnClT3Nq0KU233JKl8HBTP/9s16hRwWrUKExPPeWyujygaBiGfHXrKf3e8Upe86UStnyv1CmPyVO3XvbD+T3NNGWP3yvnxg3FVysAAEAZQCgFAAjo7LNNPfSQW9u2perBBzN15pl+HTpk088/81cHygf/2eco4+bblDHirgKND35truzffyfWKwAAABQMP1kAAP5TZKR0660ebd6cptmzM3THHVm5j/38s00DBoToiy/s/ByOMstfuUqBxgW/t0QxV8Qppl5NRYy8RUHvviMjMaGIqwMAACi92FMKAFAgDody786XY9Yspz791KFPP3Xo4ot9uuWWLF11lVdBQRYVCRQBT/MW8lWrJtu+fTICpK+mDJlRUfI0bSbX+nWy/31A9rfeUPBbb8g0DHkbNVbW5Vcoq117eRs1Yd8pAACAo5gpBQA4ZSNGZGnYsCyFhpr64Qe77rgjRE2ahOnpp11KTLS6OqCQ2O1KnTJd0rG77eUwDUMypJSnZurIwsU6tOt3Jb+zXOm33SFv7YtlmKacW7cobMY0VejWQRVrn6eIm4Yo6M3XZdu/z4qzAQAAKDEM0yxfCy7Kwq0puc0mAqEvEEhx9UVysjR/vkuvvOLU/v3Z/95x1ll+ff11mmz880eJw+fFqXGtWK7wSWNkj4/PPearVl2pU6Ypq3uPgM+xxe+V6/M1cq75RK4vPpPtcHKex70X11VW2+xZVJ6mzWXlNEP6AoHQFwiEvkB+6A3kyOmFE44jlCp9uNARCH2BQIq7L7KypGXLHHrxRZc6d/ZqzJjs/af8fmnLFpsuvdQvI79bmKHY8HlxGnw+OTdukO3AfvkrV5GneYuCL8fzeuX4Zqtcaz6W6/NP5fj2mzzLAc3QMGW1aq2stu2V1a69/OeeV0QnERh9gUDoCwRCXyA/9AZyEErloyxcHFzoCIS+QCBW9YVpSh6P5HJlf//RR3Zdd12o6tfP3neqRw+vnM7iqwd58XlRMhgJCXJ9sUauNZ/I9dmnsh38O8/j3vMvkOfoLKqsFq2ksLCirYe+QAD0BQKhL5AfegM5ChpKsdE5AKDQGcaxQEqSfv/dpuBgU9u323XrrSF6+GG/hg3L0qBBHkVFWVcnYCWzYkW5e/eVu3dfye+XY+f32cv8PvtUzs0b5dizW449uxUy52WZLpc8zVtmB1Tt2st3US0x7RAAAJR2zJQqhUifEQh9gUBKUl8kJBiaN8+pOXOcOnQoe6OpsDBTAwd6NGmSW8HB1tZXnpSkvkBgRsoROdetPTqL6hPZ//wjz+O+atWP7UXV+nKZUdGn/570BQKgLxAIfYH80BvIwfK9fJSFi4MLHYHQFwikJPZFZqa0dKlDL73k0k8/2VW3rk+ffprOpI9iVBL7Av/BNGX/9Re5PvtErjWfyLnhSxmZmccettvlbXxp7iwq7yUNdCp3GKAvEAh9gUDoC+SH3kAOQql8lIWLgwsdgdAXCKQk94VpSp9/bpfdLrVu7ZMkpaZKN9wQosGDPerSxSvHPxaZ791rKCEh/+QqNtZUtWol7CRLqJLcFyiAjAw5v1qfG1I5fvk5z8P+ihWVdfkV2TOpLr9CZqVKJ35Nn0+uTRsUlX5Yh0OjlNXsJDZwR5nG5wUCoS+QH3oDOQil8lEWLg4udARCXyCQ0tYXL7/s1KRJ2ev4zj7br5tvztK113rkdEqNGoXp4MH8Z39UquTX1q1pCgoqrmpLr9LWF/hvtj//kOuzT7NnUa39XLbUlDyPey5pkL3Mr117eRpfqn/fZcC1YrnCJ42RPT4+95ivWjWlTpmurO49iuUcUHLxeYFA6Avkh95ADkKpfJSFi4MLHYHQFwiktPXF338bmjvXqXnznEpMzA6gIiJMXXedR2vX2vXDDzaZ5vGzpQzDVP36fn34IcsAC6K09QVOgscj55bN2QHVmk/k/H57nof9EZHytL48dz8qx7ZvFTl0kGSa+uelYx69kI7MWUAwVc7xeYFA6Avkh95ADkKpfJSFi4MLHYHQFwiktPZFRob09ttOzZrl1K+/Zi8hcjpNeTz5J06LFqWrXTtfcZVYqpXWvsDJM/7+W67Ps2dRuT7/VLbExDyPmw6H5PUq0JVlGob8VaspcesOlvKVY3xeIBD6AvmhN5CjoKGU44QjAAAoZiEh0vXXezRokEeffGLXSy+5FB1t6q+/bPr+e5t8vmM/QtvtpurV86ttWwIp4N/MSpXk7jdA7n4DJJ9Pju+2Hb2j36dyfL1Jhteb73MN05Q9fq+cGzfI07JVMVYNAADKC0IpAECJZbNJHTv61LFjhtxuaf16u/r3D80zxucz1LKlV6mpUsSJ/zEGKL/sdnkbNpa3YWOljx6roNfnKXLUHSd8WvDslySfL3s/qrCwYigUAACUFyd/v2AAACwQFCS1betTgwY+2Wx554M//3yQLr44XNdfH6x333UoNdWiIoFSxH/eBQUaF7zyfUX36aHYC89SdJcrFPbQ/XJ9vFrG4eSiLRAAAJR5hFIAgFLDMKRx49zy+48t37v66izVqOGT221o1Sqnhg8P0WefMREYOBFP8xbyVauWu6n5v5mS/NHRyry6r3zVz5Th9cq59WuFznxaUQP7qWLNcxTdLk5hE8fI9f4yGQcPFu8JAACAUo//awcAlCo5s6W2bbOrQQOfXnjBLUn64Qebli1z6OOPHbriimP75Dz/vFPbt9vVs6dX7dp5FRJiVeVACWO3K3XKdEUOHSTTMGT8Y0fanKAq5cmZuXffs/35h5xfrZdz4wY5v1ovx+5f5dzxnZw7vpNmvyRJ8l5YU57mLeW5rIU8l7WUv/qZxX9eAACg1ODue6UQdzRAIPQFAimrffHFF3ZNnBikRx5xq02b/97gvHXrUP30U/adw8LCTHXu7FXPnh61betTUFBxVFvylNW+wKlxrViu8EljZI+Pzz3mq1ZdqVOm5QZSgRgHDsi5aYNcX62X86sNcvyw47gxvrPPkad5dkDluayFfOddkN2AKDX4vEAg9AXyQ28gR0HvvkcoVQpxoSMQ+gKBlPe+ME3p229tWrbMqeXLHdq799iq9YgIU/36eTR1qtvCCq1R3vsCAfh8cm3aoKj0wzocGqWsZi0ku/2kXsJISpRz86ajs6nWy7F9mwxf3tDYV6lydkB1NKjy1aqdfUcDlFh8XiAQ+gL5oTeQg1AqH2Xh4uBCRyD0BQKhL47x+6WtW48FVPv329S3r0fPP58pKTvAWr/ermbNfHI6LS62iNEXCKTQ+yI1Vc4tm+XcmD2TyvnNFhnuvCGwPzo6O6A6uuTPW6++5GB3iZKEzwsEQl8gP/QGchBK5aMsXBxc6AiEvkAg9EVgfr+0ebNdkZGmLr7YL0n6/nubrrgiTDExfnXr5lXPnl61aOErkz8f0xcIpMj7IjNTzm+3Zs+k+mq9nF9vlpGelmeIGRomT9NmR5f7tZSnQSMpOLgIikFB8XmBQOgL5IfeQI6ChlJl8H+1AQD4bzab1Lx53mVFf/1lU2ysX4cO2bRggUsLFrgUG+tX9+5e9erlVbNmvpNdzQTgn4KDc8MmSZLHI8f327NnUW1cL+fGr2Q7nCzX52vk+nyNJMkMCpKnUZPsjdObt5SnSVMpPLzg7+nzyblxg2wH9stfuYo8zU9+WSIAACg6zJQqhUifEQh9gUDoi5Pj9UobNti1bJlDH3zgUGLisb1u3n47XZdf/t+bqpcW9AUCsbwv/H7Zf/whd7mf66v1sh38O88Q026Xt36Do8v9WsrTrLnM6AoBXy7wBu7VlDpl+n9u4I68LO8LlEj0BfJDbyAHy/fyURYuDi50BEJfIBD64tR5PNK6dXYtX+7Qxo0OrVuXlrvX1LPPunTwoKGePT1q3Nhf6m4mRl8gkBLXF6Yp+55f/9/enYdHVZ79A/+ecyb7QkJCNrYkQABDSAgou5AIiIKKW0utiIVWa1V6+WrZgi1WLIr1tX1dfm64Wxdqi4BtFUTKJtAGQggYCAlrEkJWyDrLOc/vj5OZyTBnIEgyWfh+rmuuZM48c+Y5cs9x5s793EevpPpuB3x27YRy6qTrEEmCOjQZ1rHjYBk7HtbR4yCio+G7YR1C588BhIB0wXgAOL/6AyamWqnTxQV1CowL8oSxQXZMSnnQHd4cfKOTEcYFGWFctA0hnFexFwJITw9yXMmvTx8Nt95qw223WZGW1jUSVIwLMtIV4kI+dRI+u3bqt+92wHS0wG2MLXEA5DOlkBoaYPR2FJIELTYOVdl5XMrXCl0hLsj7GBfkCWOD7FqblOI1eImIiC6hZaJJ04CVK5tw551WBAUJnD4t49VXfXHjjUG49togvPSSb8dNlKib0/r2g/nu2ah74f9QvTMbFXlHcW71+2j4+YOwJadASBJMRYWQPSSkAEASAkpJMfw/fBfymVJ93S4RERF1CDY6JyIiugyKAkyfrmL6dBWNjcDmzSZ88YUJX39twsmTMoqLnV+FVRU4fFjG0KFdo4KKqKsRUVGw3DILlltmoR6AVFONwD+9gMBX/++Szw35zWPAbx6DkGVokb2gxcRCi4mBFt38M8b5U42OhYiM1K+SQERERG2mQ5NSZrMZTz31FL7++mv4+/tj3rx5mDdvnuHYhx56CJs3b3bZ9tprryEjI8MbUyUiInITEADMmGHDjBk2NDQAmzaZMGiQ5nh8zx4Ft90WiEGDVNx6q34Vv8GDnY8XF0uorPScrYqMFIiLY+07UWuJsHBYpt7YqqSU2jMC8rkaSKoK5WwZlLNlQO5F9m0yQYuK1hNVUTEtElexUB3JrFiInj3RrlloXlGQiIi6kQ5NSq1atQp5eXl47733UFJSgkWLFiEuLg7Tp093G1tYWIjnn38eY8eOdWzr0aOHN6dLRETkUWAgcOutrsuACgpk+PkJFBQoeOEFBS+84IchQ/QE1c03W3H33YEoL/dceREVpSE7ux5+fu09e6LuwzpmHNS4OMilpZAMGpq49JQCIFVUQCkrhXymFHJZmf7zzBnIZc0/z5RCLj8LyWaDUlIMpaT4oq8vfH2hRcfoN3vCKia2OaEV66jAEj3CLjt5xSsKEhFRd9NhSamGhgasWbMGb775JpKTk5GcnIyCggJ89NFHbkkpi8WC06dPIyUlBb169eqgGRMREV2e++6z4vbbrfjXv0xYt84HmzcryM/Xb6tW+WHwYBUVFQJCuH8xlSS9SsqXLaqILo+ioG7FKoTOnwMhSS6JKfvV9+pWPOeoLhLR0bBFRwPD0zzv02aDXH7WmbA6U6onrZqTWIo9iVVRAcligXLqpNuVAi8k/P1bJK4Mlg5G69VYIjgEkCSXKwq2JJeWInT+HF5RkIiIuqQOS0rl5+fDZrNhxIgRjm0jR47Ea6+9Bk3TILdYs19UVARJktC3b9+OmCoREdEPFhIC3H23DXffbcO5c8A//2nCF1/4oKhIxlNPmTF7dqDh84SQsHixmb2oiH4Ay8xbcX71B25VRVpsHOpWPHf5yRuTCVpsHLTYuEu8sAXyWddqK8WRxDqj386UQq6uhtTUBOXEcSgnjsPnIrsUgUFQo6OhFJ8GhHBr4C4JASFJCF62CFU3zeBSPiIi6lI6LClVXl6O8PBw+Lb4E3BkZCTMZjNqamrQs2dPx/aioiIEBwdj4cKF2LNnD2JiYvDoo49i0qRJHTF1IiKiH6RHD2D2bBtmz7bBYgF8fIC0NBUHDshQ1ZZfNQV69hQ4f15CdTUQHt5hUybqsiwzb0XVTTO823/J1xdan77Q+lziD6lNTc0JKnviqmUF1hnnUsLz5yA11MN0rOiiu7NfUdBnxzZYr5/cdsdDRETUzjosKdXY2OiSkALguG+xWFy2FxUVoampCRMmTMADDzyAjRs34qGHHsKnn36KlJSUy3rd7vAXZ/sxdIdjobbDuCAjjIvOy94naskSM3784wurpSRUVUl44IEAyLLA7NlW/PnP5jZ7bcYFGemWcWFSYJsw0XG30xxagD9EfDzU+HioAKyextXXQy47A7/PPkHQC89dcrehc34M65QbYblhKqw3TIEWE3vFU+2WcUFXjHFBnjA2yK61MSAJYdAB0gv++c9/YsWKFdixY4djW2FhIW6++Wbs3r0bYWFhju2apqG2ttalsfkvf/lL9OrVC08//bQ3p01ERNSmhABGjwb27gVUVS/iGDAAmDkT+Oor4OBBYOlS4Jln9PF1dcAvfwlMm6bfYmI6dv5E5AVbtgA/5IrTw4cDN92k38aN08sziYiIOpEOq5SKjo5GdXU1bDYbTCZ9GuXl5fD390doaKjLWFmW3a60l5iYiKNHj17261ZW1l7YH7LLkSQgIiKkWxwLtR3GBRlhXHQNTzyhOKqlVBV4+ukGZGaqWLIEKC6WoChARYX+D/jVVwo++igQH32kPzclRUVmpg2ZmSquvVZt1XdOxgUZYVx0YkPTEN6KKwrWvvkOfLdshs83G2HatxdSbi6Qmws89xy04BBYJ01urqKaCi2ud6temnFBRhgX5Aljg+zssXApHZaUGjp0KEwmE3JycjBq1CgAQHZ2NlJSUlyanAPA4sWLIUkSVq5c6diWn5+PpKSky35dIdwuWtJldadjobbDuCAjjIvObfJkFWlpKnJyFKSlqZg8WXX8e8XF6b/Y7w8YoOGxx8zYvNmE/fsVHDig3/78ZyA4WOC11xoxbZraqtdlXJARxkUnJLfuioLWa8fAeu0Y4DdLIVVWwnfLN/D9ZiN8t3wDuaICfl+uh9+X6wEAtqHXwJIxRU9SjR6LS13qk3FBRhgX5Aljg1pLvvSQ9hEQEIBZs2Zh+fLlyM3NxaZNm/D222/jvvvuA6BXTTU1NQEAMjMzsX79eqxduxYnTpzAyy+/jOzsbNx7770dNX0iIqI2I0lAVpYZSUkqsrIufsW9AQMEliyxYOPGBhw8WIdXXmnEnXdaERGhoa5OwoABmmPsl1+a8OSTfvj2WwXN/0sloi7KfkVBLda1T5QWG4fzqz9wu6KgiIiA+c4fofbVN1GZdxTVX32L+kVZsI66DkKWYfr+EAJf/T+E3XkLIgbHI/S+n8D/3dWQT5305mEREdFVrsN6SgF6s/Ply5fj66+/RnBwMObPn4/7778fADB48GCsXLkSd9xxBwBgzZo1eOutt1BSUoJBgwZhyZIluPbaay/7NSsqun4ZoSQBkZEh3eJYqO0wLsgI4+LqoWlAXp6MlBTNkdSaN88fGzbo6/kCAgTGjdOX+t1wgw3XXRfM0npywfNFF6GqV3xFQamqEr7//ha+mzfBd/MmyOVnXR63JQ12VFHZxo1HZO9IxgW54PmCPGFskJ09Fi45riOTUh2hO7w5+EYnI4wLMsK4uLp99ZWCf/7ThM2bTThzxrU4etAgYMuWWvY9JgeeL65SmgZTXq6+zO+bjTD9dw8kzVlxKQIDIWVmom7CZJgzp0KLT+jAyVJnwfMFecLYIDsmpTzoDm8OvtHJCOOCjDAuCNB7OuTny9i8WcHmzSbs2qVg1CgJ69Y542LZMj/ExGjIzFQxdKjW6sv4UvfB8wUBgFRTDZ+tW/Qk1eZNUMrOuDxuGzAQlhumwpI5BdaxE4CAgA6aKXUkni/IE8YG2TEp5UF3eHPwjU5GGBdkhHFBRurrAas1BOHhelzU1ABDhgRD0/RMlJ6c0q/od/31NoSFdeh0yUt4viA3QsB0KA/hu7bCum4DTHt2QVKdF1IQAQGwjJugN0vPnAI1cWAHTpa8iecL8oSxQXZMSnnQHd4cfKOTEcYFGWFckJEL4+L8eWDNGh98840JO3YoaGx0lknJssAjj1iwbJmlA2dM3sDzBRlpGRc4dw4+W/8N3836Uj+ltMRlrBqfoFdR3TAVlnETgcDADpo1tTeeL8gTxgbZtTYpZfLCXIiIiKgTCw0F5s+3Yv58K5qagF279GV+336r4PBhBf36OT9VHj8u4dln/ZCZacPkySqiotw/cRYXS6is9Lz+LzJSIC6On1SJuhoR2gOWmbfqV/oTAsr3h5qbpW+Ez+7voBw/hoDVbyBg9RsQfn6wjh3fvNRvKtSBg3DRdcFt0MCdiIi6HlZKdUHMPpMRxgUZYVyQkcuJi9OnJYSECPTood9fvdoHS5b4Ox4fPlx1LPUbOVKFpgHp6UEoL5c97BGIitKQnV0PP7+2OBpqKzxfkJHWxoVUV6tXUX2zEb6bN0IpPu3yuNqvPyyZU2C5YRos4ycCwcGOx3w3rEPwsoVQSpyVV2pcHOpWrNITYNTp8HxBnjA2yI7L9zzoDm8OvtHJCOOCjDAuyMiVxMWhQzLWrtWv6Jeb61rFEBIi8NlnDViyxB/798sQwr0qQpIEUlM1fPVVA5updzI8X5CRHxQXQkA5cthxRT+f3TshWZxLgIWvL6yjx8Fyw1QIkwnBTy4GhEDLU4JoPkGcX/0BE1OdEM8X5Aljg+yYlPKgO7w5+EYnI4wLMsK4ICNtFRdnz0rYskVf6rdli4Lz5yUcOVKHPXsUzJ7tuZfMJ580IDNT9fg4dQyeL8hIm8RFXR18d2yD7zdf61f0O3nC5WEBwChHLSQJWmwcqrLzuJSvk+H5gjxhbJAde0oRERFRu4qKEvjRj2z40Y9sUFWgsFBGcDCQkaEiLU1FTo4M16+aAtHR+ifU+nogKKhDpk1E3hYcDMuNN8Fy4016FVXhUfh+8zX8/voZfPbvM0xIAYAkBJSSYgQ+uwKWG2+CGp8IERFx8d5URETUpTApRURERFdMUYCkJA2A/n1x8WKzQbWUhLIyCbNnByIuTsO+ffWO75Y2G2DipxKi7k+SoA4chMaBg6D1ioLPL+df8ilBf34BQX9+AQCghYRCjU+AmpAIrfmn435MLCB77mdHRESdDz/+ERERUZuzV0sdOCBDVSXIskCfPgJjxqjYuVPByJGqIyElBHDddUGIi9MwfryK8eNVjBql8mryRN2cFh3TqnHWYSmQq6qglBRDrj0P+cB++BzY7zZO+PtD7R+vJ6ninckqNT4BWt9+gI9PWx8CERFdISaliIiIqM1dWC2laRJWrWp09JJqbHSOLSqScPq0jNOnZezZY8KLLwI+PgLp6XqC6sYbbRgxQuuIwyCidmQdMw5qXBzk0lJIBs1n7D2lajZu1csxGxuhnDwB5fgxKMcKm38WQT5+DMrJE5CammA6nA/T4Xz3fSkKtD599SRVQqKetLJXWfWPBwIC2ucgVRU+u3ZCLjsDLToG1jHj2B+LiKgFJqWIiIioXTh7SylIS1ORkeFsbt7y+19iosCePXXYuVPBjh0m7NihoKRExu7dJuzebUJjo4QRI8wAgIYGYN8+vdLK39/bR0REbUpRULdiFULnz4GQJJfElP3qe3UrnnMmcQICoA4eAnXwEPd92WyQT5+CcqzIkaxSjjf/fvwYpKYmKCeOQzlxHNiy2e3pamyc61LAFlVWIrTHDzo83w3rELxsIZSSEufrxMWhbsUqXlGQiKgZk1JERETULiQJyMoyIyvLD1lZZo+9iSUJiI8XiI+34Z57bBACOH5cws6dJmzfrmDqVJtj7O7dCn7840D4+QmMHKk6lvulpzNJRdQVWWbeivOrP3BL3mixcahb8VzrkzcmE7T4BGjxCbBe+JimQS4745Kwku2Jq2NFkGvPQyktgVJaAuzc7rZrLSLCYEmgXmklIiMNG6/7bliH0PlzcOHlx+TSUoTOn4Pzqz9gYoqICIAkxNV1ocbucGlKXmaTjDAuyAjjgox05bhYu9aEJ5/0Q1mZazNjf3+BUaNULFtmRno6l/r9EF05Lqj9eC0uOmqZmxCQqqr0qiqXKqvm5FVF+UWfrgUFuzdd79cfIY88ALmszPDKgvZliVXZeV12KR/PF+QJY4Ps7LFwKayUIiIioi5j1iwbbrvNhqIiCdu3m7Bzp4Lt2xWUl8vYvt0Ef3+zY+zmzQr27VMclVS+vh04cSK6OEWBdfxE77+uJEFERMAWEQHbyGvdH66rhXzsmDNZdcKZtJKLT0Our4Oclwvk5bb+JYWAUlIMn107O+aYiYg6ESaliIiIqEuRJGDAAIEBA6yYO9cKIYCjR2V8952CIUOcVVJ//asP/vpX/WpbAQEC115rX+5nQ1qaxiQVEV2SCA6BmjIcaspw9webmpobr19QZZWXC+Xs2UvuO3Dl07DceDPUa66B7Zph0GJiDZcCEhF1Z0xKERERUZcmScCgQRoGDXJdtpeZaYPFAuzcqaCiQsbWrSZs3WoC4IfgYIG8vDoEBrbuNYqLJVRWev6yGBkpEBfHdQpEVxV/f6hJg6EmDXbZ7LNjG8Jun3HJp/vu2QXfPbsc97XwcNiuGQbbNclQhybDdk0ybIOHAkFBbT51IqLOgkkpIiIi6pbuusuGu+7SG6cfPixjxw4FO3Yo2LlTQe/ewiUhdc89AVBVOCqpUlM1mJo/JZnNwLRpgSgvl41fCEBUlIbs7Hr4+bXzQRFRp2cdMw5qXBzk0lKXKwraCUmCCO+JxgcegpJ/CKZDB6EcLYBcXQ3fHdvgu2Oby1g1IRFqc7LK1pys0vrHA7LncxIRUVfBpBQRERF1a5IEDBmiYcgQDfPnW6FpcKl6amgAtm5VYLFI+PZbvZIqKEhg9Gh9ud/119vQu7dARYWAEO7VUpKkV0lxOSARAQAUBXUrViF0/hwISXJJTInm5Xm1f/yz69X3mppgKjgM5WAeTIcONt/yIFeUw1RUCFNRIfw2fOHcT2AQbEOvcVZWXZMM29BrIMLCvXaYRERtgVff64J4RQMywrggI4wLMsK4cKVpwPffy9i5U6+k+u47E6qrncmn6dOtuP9+K2bP9rzW75NPGpCZqXpjuu2GcUFGGBc/nO+GdQhethBKSYljmxrXG3UrnnNNSF2EdPYsTN87k1TKoYMwHcmHZDYbjld792lOUg1zJK3UAQMBH582OSbHvBgX5AFjg+xae/U9JqW6IL7RyQjjgowwLsgI4+LiNA04dEh2XNlv6lQV995rxY03BiI3V4amORNWkiQQHy+wdm0DYmO79n9MxgUZYVxcIVWFz66dkMvOQIuOgXXMOEBRrmyfNhuUokJnkuqQXl2lnD5lOFz4+sKWNKS5mqq5V9U1wyCion5YY3VVhe/unejRcA7nAnvAMroNjom6DZ4zyI5JKQ+6w5uDb3QywrggI4wLMsK4+GE2b1YuWi0VG6th6VIzfvxjmxdn1XYYF2SEcdF1SOdqoHz/vSNJZTqUB+X7Q5Dr6wzHa5GRsA1t7lVlXwKYNAQICPD4GsbVX3GoW7Gq1dVf1L3xnEF2rU1KsacUERERUStkZKhIS1Nx4IAMVZUgSQI9ewpERQkcPiyjtFR2uUjWv/+tYMkSP4wYoSE9XcWIESqSkzU2QyeidiF6hME2ZixsY8Y6N2oa5FMnHUkq06GDUA7lQSkqhFxRAd9tW+C7bYtzH7IMdcBAfdlfy8bqffvB98v1CJ0/BxdmGuTSUoTOn4Pzqz9gYoqILhsrpbogZp/JCOOCjDAuyAjj4oe7sFrK3kuqvh44cEDBkCEqwsL0x1580RcrV7pmoHx8BIYN05CWpuKBBywYMKDz/AMwLsgI46KbamiA6Ui+I0nlaKxeVWU4XAsOgWQxAxYLjBb8CUmCFhuHquw8LuW7yvGcQXaslCIiIiJqY/ZqqZwcBWlpKjIy9ObmQUHAmDGujc7nzrUgJUXF3r0KcnIU7Nsno7JSxr59CvbtUzBnjhWA/on9q68U7NmjOKqqYmPFD2r1QkTUKoGBsKWlw5aW7twmBOSyM819qlpUVhUchlxXe9HdSUJAKSmGz9YtsGbc0M6TJ6LuhEkpIiIiolaSJCAry4ysLD9kZZkvmjjq2ROYMkXFlCl6skoI4ORJyZGUGjJEc4z98ksffPKJ8+pYUVH2JX8aRoxQMXasymV/RNS+JAlaTCy0mFhYM6c4t1ssCHj9FQQ//btL7qLHT+6EbdhwPeGVPhLWtHSog4eweoqIPOLyvS6IJZFkhHFBRhgXZIRx0fl8+aUJmzfryarvv9d7VtlJkkBBQR1CQ/X7u3Yp8PERSE7W4O/fdnNgXJARxgUBgM+ObQi7fcYPeq4IDIR1eJpLokrrH//DrvxHnR7PGWTH5XtEREREXcSMGTbMmKFfta+hQe9PlZOjL/WrqZEcCSkA+MMffLFrlwk+PgLXXKNXUtmrqgYO1C6rIKG4WEJlpfOLYXg4UF0tO+5HRgrExfFbBdHVzjpmHNS4OMilpZAMMg32nlI1a/8BU24OfPbthSlnL0w5+yDX18F310747trpGK/17AlbWjqsjkTVSIioKG8eEhF1EqyU6oKYfSYjjAsywrggI4yLru0Xv/DHjh0KKipkt8cSEjTs3l3vuF9VpSeajAoSzGYgPT0I5eXu+7GLitKQnV3PpYNXMZ4vyM53wzr96nuAS2JKNJ9gDK++p6pQjhbAtC8bPvuyYdqXDdPBPEhWq9v+1T599UTViJGwjUiHLTUNIiTUbRx1bjxnkB0rpYiIiIi6oTffbIIQwKlTEnJyFOzdqzdR379fwaBBzj5VQgDXXx8EIYD0dL2iKi1NxYgRKsLDAV9foHdvgYoKASHcs1aSpFdJ+fp68+iIqLOyzLwV51d/gOBlC6GUlDi2a7FxqFvxnHtCCgAUBergIVAHD4F59k/1bWaz3kR9bzZ8cvbCtC8bSsERKKdPQTl9Cn4bvgCgJ7vUQUmuiarkFDBLTtS9sFKqC2L2mYwwLsgI44KMMC66J5sNOHdOQkSE/o9aXi4hNTUINpt7wikhQcPdd1uRnq5i9uxAj/v85JMGZGaqHh+n7o/nC3KjqvDdvRM9Gs7hXGAPWEaPu+JG5lLteZj258C0b68zUXX6lNs44eMDW/Iw2EaM1BNVaelQByWxkXonwnMG2bFSioiIiOgqYjLBkZACgF69BAoL65CXp/em0iuqFBw7JuPYMRk1NRIyMvTqqdxcGZrmTF7JssDw4RoyMpiQIqILKAqs4ycCkSGwVtQCbZB4ECGhsE64HtYJ16OxeZt09ix8crL1RNW+bJhy9kKuqoJPzj745OxDwDtvAQC0oGDYUtOaE1XpsI0YCa1P38tvpK6q8Nm1E3LZGWjRMbCOufJkGxFdGiuluiBmn8kI44KMMC7ICOPi6lZdDeTkKIiO1hulb96sGFZLRUdruOEGG8aOVTFpkoqYGAbL1YjnCzLSIXEhBOSTJ5p7U+nVVD65OZAaGtyGapGRehP15mV/1rSREJGRHnftu2Gd27JENS4OdStWGS9LJI94ziC71lZKMSnVBfGNTkYYF2SEcUFGGBfUkhDAlCmByMuTm3tL2YPCWWWwYkUTHnhAb0xcUwNUVkpITBS8ovtVgOcLMtJp4kJVoRw57JKoMh3Kg2SzuQ/t19+x5M82Ih3W4WlAcLCzgbsQaHlKu2gDd/Ko08QGdTgu3yMiIiKiS5IkICvL3KJaSsLbbzfA3x/47jsFO3eaMHascxnfP/9pwq9/HYCoKA1jx6oYM0bFuHEqBg/WIHu+kB8RUdtTFKhDr4E69BrgHv3KgGhqgikvF6acvfDZqy/7Mx0tgHLyBJSTJ4Av/gYAELIMdVAS5JMn3RJSgH6FQSFJCF62CFU3zeBSPqJ2wqQUERER0VXO3lsqJ0dBWpqKGTNUSBIwZYoKwOIy9uxZGX5+AmfPyvjiCxlffOEDAOjZU8Po0SqeesqM+Hj+eZyIOoi/P2yjroNt1HVoat4knavRG6m3SFQpJcUwHc6/6K4kIaCUFCP4N4/BNiIdWlg4RHi482d4TyAg4PL7V3kTe2VRJ8fle10QSyLJCOOCjDAuyAjjgoxs3argyScD8fTTDbj++os3OG9qAvbtU5orqRT8978KGhr0L2X5+bXo2VMf9/nnJhQXyxg71obUVA2+vu19FNTWeL4gI90hLuSyMwh49SUE/r+Xrmg/ws/vgmRVT2jh4RBh4c6fPXvqP1uMQ1BQuyezOqJXVneIDWob7CnlQXd4c/CNTkYYF2SEcUFGGBdk5EriwmoF9u+X8f33CubMsTq23357AHbs0AvzAwMFRo5UMXasfktPVxEQ0JZHQO2B5wsy0l3iwmfHNoTdPuOS4ywZN0D4+kKuroZUU63/rK4y7F3VWsLX15Gkcklghfd0rcZqUZUlwsMhgoJblczqqF5Z3SU26MqxpxQREREReYWPDzBqlIZRozSX7bfeakOPHgK7dimoqpKxbZsJ27bpHz8jIzUcPFjv+G5lswEmfjIlIi+yjhkHNS4OcmkpJIMMipAkaLFxOPeXv7oveRMCUn0dpOpqyDXV+s/qKpf79gSWXF0FqeUYqxWSxQLlbBlwtuyy5ixMJmcSq2VVVsskVlgYgrMWslcWdQn8Xz8RERERtYuf/cyKn/3MCk0DjhyRsXOngl279CV/qamayx/7J04MQliYwJgxKsaOtWH0aBU9enTc3InoKqAoqFuxCqHz50BIkktiyl5RVLfiOePEjSRBBIdABIdA69uv9a8pBNDQ4JrAsldf1VRDrqpyvV9TDamqSh9vsUCy2SBVlEOuKP/Bh23vleX/zlsw33YHRGRk5+6LRd0al+91QSyJJCOMCzLCuCAjjAsy4s24EAKoqwNCmqv6S0slpKYGXzAfgeRkDePGqZg2zXbJPlctFRdLqKz0/AUrMlIgLo7B3xo8X5CR7hYXxr2XeqNuxXPt1nvpsgkBNDZ6rMpyJLeqqqAUHIGp4HCrd60Fh0BNSNRviQOgJiRCS0iELWEARFTUZSWsults0A/H5XtERERE1ClJkjMhBQCxsQLZ2XX47jul+WZCUZGMvDwFeXkKrFY4klJmM/CPf5gwdqyKmBj3bzxmMzBtWiDKy2WPrx8VpSE7ux5+fm1+aETUBVlm3oqqm2Z07qvUSRIQGAgtMBCI642Lpelb2ytL7RUFuaIccl0t5AP74XNgv9sYERjklrCy/65Fx7DCiq4Yk1JERERE1OH69hXo29eGH/3IBsCMM2ckx1K/6dOdzYT37VPw4IN6h/SEBA1jx9oczdP79RPw9QV69xaoqBAQwv3LkiTpVVK8EiARuVAUWMdP7OhZtInW9sqqys4DrFYoJ09AOVYEpagQyrFC/fdjxyCfPgmpoR6mgwdgOnjAfT+BgVD7J7hWWCUmAqNSAd8QQPL8xwEiOy7f64JYEklGGBdkhHFBRhgXZKSrxMWWLQqeftoPeXmyW9KpTx8Nzz7bBJMJmD070OM+PvmkAZmZrV8OeDXrKnFB3sW46PwcV98DDHtlterqe2YzlFMn9URVkT1ZpSev5FMnIWmax6cKf3+o8QlQE1pUV9krrOJ6A/IVJKxUtXNXtREALt8jIiIiom5o8mQVkyc34Nw5YM8e53K/nBwZp0/LiIgQSE/XkJamIjdXhqY5E1eyLDBsmIaMDCakiKh7s8y8FedXf+DWK0uLjWt9ryw/P6gDB0EdOMjgBSxQTp90JqmaE1amokIoJ09AamqCKf97mPK/d3uq8POD2j9er66Kv6CXVe8+F00wGff/ikPdilWdp/8XXRZWSnVB/MsEGWFckBHGBRlhXJCRrh4XdXXAf/+rYPx4FT4+wObNisdqqd69NSQmanjxxSb066cfbG0t4OcHLuu7QFePC2ofjIsuxMtVRZIERPbwR1XOIcgtq6vsywNPHIdks3l8vvDxcSasEhL1pFXz76bcHIT+4n5ACLSsk72s6i/yGlZKEREREdFVIzhYr6Kyy8hQkZSkoqDAvsxPQJYBTZNQXCyjuFhGSIjz2/Rzz/lh9Wof9O0rkJioJ60GDNCQkKD/3q+fuKLVJkREHaIjemX5+EBrTihZL3zMZoNcfNp1OaC9j9WJ45AsFpiOFsB0tMBtt/Yz9oXdAiUhICAheNkiVN00g0v5uhgmpYiIiIio25Ek4Pe/N7eolpLwl780YPhwDUVFEk6ckBEe7hx/6pQEVZVw/LiE48dlbN7sur+DB+vQq5f+lejrrxWcOSM7ElcxMYIXoCIiag2TCVr/eGj942HNuMH1MVXVE1Ytq6vsCauiQkhWtxSXgwQBpaQYEUn9oPXpBy0mBlp0DNSYWGjR+u9aTAy0mFhoUdEsi+1EmJQiIiIiom4pI0NFWpqKnBwFaWkqMjLU5uUEAtdd59qg9913m1BWZkZhoYyiIv1WWCjh2DEZVVUSIiOdVVUffOCLr75yfowODBSIj9cTVImJGp54wgI/v7Y9luJiCZWVnjNfkZH6VQWJiLosRYHWrz+0fv1hnZTh8pDf558h9KGfX3IXcm0t5O8PAt8fvOg4LSICWnQstBh74iq6+X7z7/bklY/PFR3SZblKG7gzKUVERERE3ZIkAVlZZmRl+SEry3zRaiZJAmJiBGJiVIwf79oIXQi4PPfaa1WoKlBUJOPECQkNDRIOHVJw6JCCoCCBpUstjrGPPOKPI0f0qqqEBGfiKjFRQ1hY647DbAamTQtEebnn9YNRURqys+vbPBlGRNQZaDGxrRp3/sVXoMXFQS47A+VMKeQzpZDLypp/noFcdgaS1Qq5shJyZSVwKM/jvoQkQURENldcNVdZOaquYp2VV72iANOVpVau5gbuTEoRERERUbc1aZKK7dsbrmgfFyazFiywYMEC/XerVV/6p1dWyWhslFzG5+bKyM9XkJPj/tfuPn30RJJ9/J49MgICgIQEDcHBznG+vkDv3gIVFaK5P9aF89OrpLgahYi6K+uYcVDj4iCXlkIy6K4vJAlabBzMs++5eHWRpkGqrm5OUpVCOaMnquQzpZDPnIF89oz+s+wMJJsNUkU55IpymA4e8LhLIUkQkb2cFVf25JXjZ/Pvkb0Mk1e+G9YhdP4cXHjVALm0FKHz53T7Bu5MShERERER/UA+PkBiokBiooopU1S3x996qwkFBfpywGPHJMfywLIyvdF6ywTWwoX+OHRI/zIVHe2sqkpIEJg2zYqcHH/DOQghYfHii1eCERF1aYqCuhWrEDp/DoQkuSSm7Fffq1vx3KWXu8kyREQE1IgIqMnD3Bux22kapMpKveKqrDlhZa+2OnMGcllzBVbZGUiqCqn8LOTys4Dn3BWELEOL7OWssoqOgdYrCgGr33C7oiDQ3MBd6v4N3JmUIiIiIiJqJ0lJGpKSNLftdXVAVZXrV5DISIGICA2VlXrSqqxMxs6d9v3o/bEOHJChqs7nSZJA374CigIUFUmIixPwN85dERF1aZaZt+L86g/clrlpsXGoW/Fc21YTyTJEr15Qe/WCOizF8zhVhVRZqSeu7Akrl6qr5t/Lz0JSVShny6CcLQNyWzcNSegN3H127fT+VRS9hEkpIiIiIiIvCw4GgoNdl2r89a+NAICaGjiWA+oVVjJiYgSuv97W4mqCOiEknDwp4e67ndvHjbNh7dpGx/1PPjEhMBCIi9PQp49AVJSA7Lk9FRFRp2WZeSuqbprReRqCKwpEVBRsUVFASqrncaoKqaKiuerK2efK57ud8N3+70u+jFx2pg0n3bkwKUVERERE1ImEhQHp6RrS010rrISAS7WUJAn07CkwbJiG0lIJp0/LaGiQEBTkur+sLH/U1jqrq3x8BGJjBXr31jB6tOrSmL2wUEKvXgKhoe15hEREV0BRul7VkKJAREfDFh0NDE9zbPbZsa1VSSktOqYdJ9exmJQiIiIiIuoCJAlYvNjsqJYSQsIrrzQiM1Ntvq9XWTU1ORNQFgswdaoNp09LKC6WceaMBKtVr646eVJ2aagOANOmBaG2VkJIiJ606t1bYOBAICLCF8nJKqZOde+bdSWKiyVUVnpuhhUZqTdxJyLqjlrbwN06ZlwHzM47mJQiIiIiIuoiMjL03lI5OQrS0lRkZDiTRJIEhIcDgPOLja8v8NprTY77NhtQVqZXVZWUSAgLc46tr9erqAAJtbUS8vMV5OcD33wDAH6YOtWGqVOdywLHjg1CWJhAXJyevLInsfr00dC3r0BExMWTSWYzMG1aIMrLPa8ljIrSr1Do59fa/0JERF1IWzVw78KYlCIiIiIi6iIkCcjKMiMryw9ZWZd/xT2TCc0JJPeKp6AgID+/HvX1QEmJ7Kiuqqnxx5EjVgwb5nzO+fNAYaGeTMrOdv+yNHWqDR995ExgPfGEH3r1Ei7JK3syq6JCQAj3A5EkvUrK1/fyjpGIqCvxagP3TohJKSIiIiKiLmTSJBXbtze02/6DgoBBgzQMGgRIkorISH9UVDSh5cqSgABg48Z6nD4to7hYT161/Nm3r7Mf1vnzwPvvG2eWgoONE1KAvjxx8eLLT7wREXU1na6BuxcxKUVERERERJfFxwdITdWQmqoZPn5ha5SsLLOj8sqevDp/XkJdnYSICA01NRJU1TX75Osr8PHHPjh0SMbw4RqGD1cRFtZOB0RE1NG6YgP3NsCkFBERERERtamW1U2hocCvf21xG3P+PFBcLCMnR8avfx3g9rjFIuGLL3zwxRc+jm2/+pUFy5ebAej9sc6dky7Zu4qIiDovJqWIiIiIiMjrQkOB0FANQ4ZoeOcdFQcOyFBVCYoiMHSohmXLzMjLU7B/v4zcXAUnTsguywLz82VkZgahd2+9imr4cA2pqSpSUjRERzNRRUTUFTApRUREREREHUaSgMWLzZg9OxAAoKoSli0zIzNTRWams7l6TQ0gt7hQn73Rur4kUMY//+l8LDpaw9NPmzFrlg0AoGn667A/FRFR58KkFBERERERdaiMDBVpaSpychSkpanIyHC/OuCF/aRuu82GzMxal2qq3FwZBQUyyspkhIY6q6W+/NKERYv8XKqphg9X0bevYKKKiKgDMSlFREREREQdSpL0ZuhZWX7Iymr9FfdCQoCxY1WMHasCsAIA6uqAgwcVJCc7E1u5uTIqKmRs3ixj82bnV6DwcIGUFBW//70Z11xj3LSdiIjaD5NSRERERETU4SZNUrF9e8MV7yc4GBg92rXS6n/+x4Lp022OaqrcXAX5+TKqqyVs3WpCQECTY+zq1T748ksTUlL0qqrUVBUJCcJl6eClFBdLqKz0nFmLjBSIi2PfKyIiJqWIiIiIiKhbCwgARo7UMHKksxrKbNabpR84oCA+3pkg+u47Bdu3m7B9u/P5wcF6RdXw4RqeeMKMHj08v5bZDEybFojycs9ZrKgoDdnZ9fDzu6LDIiLq8piUIiIiIiKiq46fH5CaqiE11XXZ3sKFFmRm6lVV+/crOHRIRl2dhO++M+G//xV48kmzY+zLL/uguFh2XP0vKUmDry/Qu7dARYWAEO7VUpKkV0n5+rb7IRIRdXpMShERERERETVLStKTS/fco1+5z2YDCgpk5ObKOHtWdkkm/f3vPjhwQHHc9/MTSE7WEBmpQQjlwl0DAISQsHhx6/tmERF1Z0xKEREREREReWAyAUOHahg61L0R+oIFFmRnO/tU1dVJ2LtXAaDA11dAVQFVdWafJEmgb1+BHj0Ezp8HQkO9eCBERJ0Qk1JEREREREQ/wG232XDbbXpFlaYBx49LjmV/5eXAZ5+5rtETQsLJkxJuuikIANCrl4aBAzWMHati8WJLi3FgJRURXRWYlCIiIiIiIrpCsgwkJgokJtowa5YNQgBHjig4cECGqkqQJIGePQUGD9ZQWCijrExGebl+Cwx03VdaWhB69BAYMEBPWg0YoGHQIP33izVZJyLqapiUIiIiIiIiamOSBCxebMbs2XrGSQgJr7zSiMxMFQBQWwsUFsooKJDRs6fz6n9VVUBpqYzSUiA/370v1cyZVrz9dpPj/ubNCuLjNfTrJ2Ditzsi6mI69LRlNpvx1FNP4euvv4a/vz/mzZuHefPmXfQ5p0+fxi233ILXXnsNo0eP9tJMiYiIiIiILk9Ghoq0NBU5OQrS0lRkZKiOx0JCgLQ0DWlprr2qwsKA//63DkePyo6bPXl15oyM6GhnAuv8eTiSXj4+AvHxejWV/ZaWZtwL64coLpZQWelcUxgeDlRXy477kZH6VQWJiC5HhyalVq1ahby8PLz33nsoKSnBokWLEBcXh+nTp3t8zvLly9HQ0ODFWRIREREREV0+SQKysszIyvJDVlbrrrgny0C/fgL9+qmOqiq7ujrAbHbupLJSQnKyiqIiGY2NEgoKFBQUOKur7rvPgj/+0QwAqK8Hli3zc1kK2K+fgI/PpedkNgPTpgWivFy+4JEgx29RURqys+vh53fp/RER2XVYUqqhoQFr1qzBm2++ieTkZCQnJ6OgoAAfffSRx6TUunXrUF9f7+WZEhERERER/TCTJqnYvr1t/qgeHAwEBzurkRISBL79tgGaBpSUSCgo0Kuq7BVWI0c6k1pFRTI++si18brJ5KyuuvtuG265RW/afmGjdV9foHdvgYoKASHcM2uSpFdJ+fq6PUREdFEdlpTKz8+HzWbDiBEjHNtGjhyJ1157DZqmQZZds/DV1dV4/vnn8fbbb2PmzJneni4REREREVGnJMtAnz4Cffq4LhFsKSxM4IknzI6lgEVFMhoaJBw9quDoUQXXXed83vffy7jjjgAMGCAcjdZvuMGGnBzjMighJCxe3LpKMCKiljosKVVeXo7w8HD4tkinR0ZGwmw2o6amBj179nQZ/+yzz+L222/HoEGDvD1VIiIiIiKiLq1vX4GFCy2O+5oGlJZKjqqqMWOcSanCQhlVVTKqqoD//OfCZusCgDP7JMsCffsKBAcLlJZKiIoSUNz7sxMRGeqwpFRjY6NLQgqA477FYnHZvnPnTmRnZ2PDhg1X/LrdIXtvP4bucCzUdhgXZIRxQUYYF2SEcUFGGBfdl6I4q6smT3atrpo61YbNm+sdTdaPHtWrqw4fll16WgGApkk4cULCzJl6fymTSV/K16ePhj59BObMsToSXk1NgM2mL0Ok7onnDLJrbQx0WFLKz8/PLflkv+/v7+/Y1tTUhN/+9rf43e9+57L9h4qICLnifXQW3elYqO0wLsgI44KMMC7ICOOCjDAurj59+wIZGa7bNA1ITwfy8gBV1RNbiYlAdDRw6hRw+jRgs0k4eVLCyZN6O5a77vJBZKT+/LVrgdtvB3r2BPr1c79NmAD07u3d46T2wXMGtVaHJaWio6NRXV0Nm80Gk0mfRnl5Ofz9/REaGuoYl5ubi1OnTmHBggUuz//FL36BWbNm4fe///1lvW5lZS1EF79SqSTpb/LucCzUdhgXZIRxQUYYF2SEcUFGGBd0oaVLFfz4x4EA9MTUihUNjqsEqipQVibh9GkJxcUyTp+WkZhoRUWFHjxHjvgA8EdVFVBVBeTkuO579epG3Hqr3mx9yxYFL77oiz59BHr31hw/+/YViIvT2qzaqrhYQkWF55KOXr30yi9qHZ4zyM4eC5fSYUmpoUOHwmQyIScnB6NGjQIAZGdnIyUlxaXJ+fDhw/H111+7PHfatGlYsWIFxo8ff9mvKwS6zZujOx0LtR3GBRlhXJARxgUZYVyQEcYF2U2erCItTUVOjoK0NH3pnz02ZBmIjRWIjRW49lrN8Rz74z/7mRV33WVtTlhJOH1aRnGx82dCguYYe/iwjJ07PX9dfeedRsyYoSew8vJkbNmiuCSwoqMFLrh2lhuzGZg6NRDl5Z4HRkVpyM6uh59xj3fygOcMaq0OS0oFBARg1qxZWL58Of7whz/g7NmzePvtt7Fy5UoAetVUSEgI/P390b9/f7fnR0dHIyIiwtvTJiIiIiIiumpJErBsmRlPPhmIZcsu/4p7ISHAkCEahgwBAOMrBQLAtGk2REY2OhJW9kRWcbGMc+ckxMY6k147dyr4/e9dW734+OjJsT59NPz2t2akp+vjy8slVFdLiIvTEBQE9O4tUFEhIIT7gUiSXiV1QStkImpDHZaUAoAlS5Zg+fLlmDt3LoKDg/Hoo49i2rRpAIAJEyZg5cqVuOOOOzpyikRERERERNTCpEkqDh0CKirUdquGiY8XiI+3GT5WWwu0bDecmKjhzjutjqRVaakEq7VlbyuzY+zatSZkZelPDg8XCA3VDBNSACCEhAULzIaPEVHbkIS4uorqKiq6/tpWSQIiI0O6xbFQ22FckBHGBRlhXJARxgUZYVyQkc4eFzabvbeVXmU1daoNIc2tbV55xQd/+pMfzp27eImXouhLAEtKZJhMAuHhAj176j/tvz/yiAUDBuj/AezLEe2Ph4cL+Pi095F6VlwsobLS8zFGRrZPr6zOHhvkPfZYuJQOrZQiIiIiIiIiaksmk74sr3dv9+WBDz9sxcMPW1FbC0fS6ptvTFi92nWNnqpKGD3air//3Rc2m4Tycgnl5a77mjvXCkDPvKxda3JbQhga6kxgrVrVhNRUfQnhgQMy9uxRHEmulsmuoCBc9pLIC5nNwLRp7JVFXQOTUkRERERERHRVCQkBhg7VMHQocMMNKrKzFRw4IENVJSiKQEqKhtdeM+NPfzKjulpCVZV+s/9eXS2hb19nKVBAAJCQoKG6WsK5c/rSv/Pn9duJE65Nv//9b/ceWHa+vgKfftqI8eP1hNq2bQrWrjUZJrDCw4E+fTQEBFy4D/bKoq6DSSkiIiIiIiK6akkSsHixGbNnBwLQq6QWL9abuAcEAAEBl17qNn++FfPnW5ufD9TUSKiuhiOBNWCAszF7fLzAjBlWVFe7JrksFv0WHOx8rZwcBR984Dl79OmnDcjI0BNY69eb8OqrvggPFwgJMU5IAXrCzH58RB2NSSkiIiIiIiK6qmVkqEhLU5GToyAtTXUken4IRQEiIgT0i8W7J7NmzrRh5kzXJu5CAPX1QHW1hKgo53NGj7bhN7/Rk1z25FXLRFZEhHPssWMysrOVS8xNrwILDxd4+WUfDB6sISlJQ9++ArLn1X5E7YZJKSIiIiIiIrqqSRKQlWVGVpYfsrK8X0UkSUBwMFyqpADguus0XHedpVX7uO02KwYN0lBdDVRWysjJkbB+vXuvrMWLzdi82YTnnnM2lAoIEBg4UE9QDR6sYfZsK2Ji2Kmc2h+TUkRERERERHTVmzRJxfbtDR09jR+sf3+B/v2dFVhCADfe6N4rKyNDRUODhFmzrDhyRMbRozIaGyUcOKDgwAG90urmm22OpNQnn5iwebPJkbBKStKQkKCxJxW1CSaliIiIiIiIiLqZi/XKarmE0GYDTp6UcPiwgiNHZBw+LCMhwdkDa8cOE9au9XHZt8kkkJCgJ6iee87sWHIoWFxFl4lJKSIiIiIiIqJuqDW9skwmIDFRIDHRhptuct/HvfdaMXiwiiNHFBQU6EmrujoJBQUKCgtlvPpqk2PswoV+2L4dGDjQH0lJGgYN0qurBg7UEBx8ZcdSXCyhstLzusrIyEs3pKfOh0kpIiIiIiIiom6oLXpljR6tYvRoFYB+dUEhgNJSCYcPyygpkREQ4Bx76JCMo0eBo0d98K9/ue6nb18NO3fWw6+5ldXJkxJ69BDo0ePSczCbgWnTAlFe7rkbe1SUhuxs5/6pa2BSioiIiIiIiKibauteWZIExMUJxMWpAFwrr955pwllZcHYs6cJhw/LjuWAFRUyNA0uCaPHHvPHtm0mxMRoLv2q9J8qevZ0jvX1BXr3FqioEBDCPbMmSXqVFPtcdT1MShERERERERHRFYuKErjmGiAlxerSX6qyUsLZs67JpHPn9Ptnzsg4c0bG1q3OxyIjNRw6VO+4/69/mTBzphU5Of6GryuEs19WV3O1L0tkUoqIiIiIiIiI2k1EhEBEhGtiZdOmBpw/Dxw5Ijf3qtIbrR85IqN/f81l7NKlfiguti/dEwCcSRxJEkhN1Rz9sv7xDz3NERgomm/670FBQFCQuOLeVm2JyxKZlCIiIiIiIiKiDhAaCowapWHUKA2AzbHd5vwVqgqkpKjw9QWOH5fclu9dWCX1+ON+qKw0TvIMH65i0ybnUsaZMwNQVSUhIAAuCazAQKBfPw2LFlkcY//2NxOamuAyxv4zJESgd+/Lr2biskQmpYiIiIiIiIioEzG1yFQoCvD++/oV/hob9cqiI0dkCCFBkvRkUMurCo4cqaGyUqChAWhokFx+Bga6Jo6KivR+V0aGDVNdklLPPuuH48eNx8bHa9izx7nccMaMQBw7JjkSVy2TXjExGl54wQxA7881dqwNOTnGZVBdeVliazEpRURERERERESdXkAA8NRTZsyeHQhAT9r88Y+NLkmbDz9sNHyuEIDV6rrt008bUVfnTFzV1wONjfr98HDXBNb119swcKBsmOzq2dN1bFWV5DHZ1a+fBsDsuL9jh3FaRlEEUlI0l4Rbd8SkFBERERERERF1CRkZKtLSVOTkKEhLU1udtJEkuC2DS0nRjAcb+OMfzZce1GzNmgacPy+hsfHCBJYEPz/XBNa0aTaEhAi35JSqdv8qKYBJKSIiIiIiIiLqIiQJyMoyIyvLD1lZnTNp06ePgN6Q/dIWLrRACODGGwNx4IAMVZWumiopAPDc4p2IiIiIiIiIqJOZNEnF9u0NmDSpeyRtJAlYvNgMVdUzbFdLlRTApBQRERERERERUYeyL0sEcFnLErs6JqWIiIiIiIiIiDqQfVliUpLaaZcltgf2lCIiIiIiIiIi6mD2ZYlXE1ZKERERERERERGR1zEpRUREREREREREXsekFBEREREREREReR2TUkRERERERERE5HVMShERERERERERkdcxKUVERERERERERF7HpBQREREREREREXkdk1JEREREREREROR1TEoREREREREREZHXMSlFRERERERERERex6QUERERERERERF5HZNSRERERERERETkdUxKERERERERERGR1zEpRUREREREREREXsekFBEREREREREReR2TUkRERERERERE5HWmjp6At0lSR8/gytmPoTscC7UdxgUZYVyQEcYFGWFckBHGBRlhXJAnjA2ya20MSEII0b5TISIiIiIiIiIicsXle0RERERERERE5HVMShERERERERERkdcxKUVERERERERERF7HpBQREREREREREXkdk1JEREREREREROR1TEoREREREREREZHXMSlFRERERERERERex6QUERERERERERF5HZNSnZTZbMbSpUsxatQoTJgwAW+//bbHsYcOHcLdd9+N1NRU3HnnncjLy/PiTMmbysrKsGDBAlx33XWYOHEiVq5cCbPZbDj2oYcewuDBg11u3377rZdnTN6wceNGt3/rBQsWGI7duXMnZs6cidTUVNx33304deqUl2dL3vC3v/3NLSYGDx6MIUOGGI6/9dZb3cYeOXLEy7Om9mSxWDBz5kzs3r3bse3UqVO4//77kZaWhptvvhnbt2+/6D42bNiAKVOmIDU1FQ8//DCqqqrae9rUzoziIicnB7Nnz8aIESNw4403Ys2aNRfdx6hRo9zOH/X19e09dWpHRnGxYsUKt3/nDz/80OM+3n33XUycOBEjRozA0qVL0djY6I2pUzu7MDYWL15s+HnjvvvuM3z+uXPn3MaOHj3am4dAnZCpoydAxlatWoW8vDy89957KCkpwaJFixAXF4fp06e7jGtoaMADDzyAW265Bc8++yw+/vhjPPjgg9i4cSMCAwM7aPbUHoQQWLBgAUJDQ/HRRx/h3LlzWLp0KWRZxqJFi9zGFxYW4vnnn8fYsWMd23r06OHNKZOXHD16FBkZGXj66acd2/z8/NzGlZSU4OGHH8ajjz6KiRMn4pVXXsGvfvUrrFu3DpIkeXPK1M5uvvlmTJw40XHfZrNh7ty5mDx5sttYVVVx/PhxfPjhh4iPj3dsDw8P98JMyRvMZjMef/xxFBQUOLYJIfDwww8jKSkJn3/+OTZt2oRHHnkE//jHPxAXF+e2j9zcXGRlZeGpp57CkCFD8Mwzz2DJkiV4/fXXvXko1IaM4qK8vBy/+MUv8JOf/ATPPvssDh48iCVLlqBXr16G54+ysjLU1tZi06ZN8Pf3d2znZ9CuyyguAP1z5eOPP47bb7/dsS04ONhwH1999RVefvllPP/884iIiMCSJUvw/PPP47e//W27zp3al1FsZGVl4fHHH3fcLy4uxpw5czwmpY4ePYqwsDBs2LDBsU2WWSdztWNSqhNqaGjAmjVr8OabbyI5ORnJyckoKCjARx995JaU+sc//gE/Pz8sXLgQkiQhKysLW7duxb/+9S/ccccdHXQE1B6KioqQk5ODHTt2IDIyEgCwYMECPPfcc25JKYvFgtOnTyMlJQW9evXqiOmSFxUWFiIpKemS/9Zr1qzBsGHDMG/ePADAypUrMX78eOzZs4d/pepm/P39Xb4gvv766xBC4IknnnAbe/r0aVitVgwfPtwwmUld29GjR/H4449DCOGyfdeuXTh16hQ++eQTBAYGYsCAAfjuu+/w+eef49FHH3Xbz4cffoibbroJs2bNAqD/8SwjIwOnTp1C3759vXEo1IY8xcWmTZsQGRmJ//mf/wEAxMfHY/fu3Vi/fr1hUqqwsBC9evViDHQTnuIC0P+t58+f36rPle+//z7mzp2LjIwMAMBTTz2F+fPn4ze/+Q0CAgLafN7U/jzFRkhICEJCQhz3Fy9ejOnTp2PKlCmG+ykqKkJCQgK/n5ALpiU7ofz8fNhsNowYMcKxbeTIkdi/fz80TXMZu3//fowcOdJR5SBJEtLT05GTk+PNKZMX9OrVC2+99ZYjIWVXV1fnNraoqAiSJPFD4lWisLDQpcLFk/3792PUqFGO+wEBAUhOTub5opurqanBm2++iccffxy+vr5ujx89ehSxsbFMSHVT9qTzp59+6rJ9//79uOaaa1wqWkaOHOnxfHDh+SM2NhZxcXHYv39/u8yb2penuLC3BriQ0WcNQD9/JCQktMscyfs8xUVdXR3Kyspa9VlDVVUcOHDA5XyRlpYGq9WK/Pz8tp4yeYmn2Gjpu+++w3/+8x9HUtvI0aNHWxVHdHVhpVQnVF5ejvDwcJcvD5GRkTCbzaipqUHPnj1dxg4cONDl+REREW4lt9T1hYaGuizH0TQNH374IcaMGeM2tqioCMHBwVi4cCH27NmDmJgYPProo5g0aZI3p0xeIITAsWPHsH37drz++utQVRXTp0/HggUL3BIQ5eXliIqKctkWERGBM2fOeHPK5GUff/wxoqKi3Cpt7QoLC+Hj44MHH3wQeXl5SEhIwMKFCzF8+HAvz5Tawz333GO4/XLPB2fPnuX5oxvxFBd9+vRBnz59HPcrKyvx5ZdfGlbPAfr5o7GxEXPmzMGxY8cwdOhQLF26lImqLspTXBQWFkKSJLz22mvYunUrwsLC8LOf/cxlKZ/d+fPnYTabXc4XJpMJYWFhPF90YZ5io6U33ngDt99+O2JjYz2OKSwshM1mw1133YWysjKMGjUKS5Yscfv/C11dWCnVCTU2Nrp9mbTft1gsrRp74Tjqfp5//nkcOnQIjz32mNtjRUVFaGpqwoQJE/DWW29h0qRJeOihh3DgwIEOmCm1p5KSEsd54E9/+hMWLVqE9evXY9WqVW5jeb64+gghsGbNGtx7770exxw7dgznzp3D3XffjTfeeAMDBgzA3LlzUVpa6sWZkrdd7vmgqamJ54+rTFNTEx599FFERkbixz/+seGYoqIinDt3Dg899BBeffVV+Pv74/777/dYWUVdk70CPzExEW+88QbuvvtuPPnkk9i4caPb2KamJgDg+eIqc+rUKezatQtz5sy56LiioiLU1dVhyZIlePHFF3H27Fn88pe/hKqqXpopdUaslOqE/Pz83E7a9vste4RcbOyF46h7ef755/Hee+/hxRdfRFJSktvjv/rVrzBnzhxHY/MhQ4bg4MGD+Oyzz5CSkuLt6VI76t27N3bv3o0ePXpAkiQMHToUmqbhN7/5DZYsWQJFURxjPZ0vQkNDvT1t8pIDBw6grKwMM2bM8Djm6aefRlNTk6Nh7fLly7F371588cUX+OUvf+mtqZKX+fn5oaamxmXbxT4/eDp/sD9M91RfX49f/epXOH78OP7yl794/HdevXo1rFYrgoKCAAB//OMfMWnSJHz77be45ZZbvDllakezZs1CRkYGwsLCAOifK48fP46PP/4YU6dOdRlrXwrO88XV5auvvsLQoUPdVvBc6Msvv4QkSY7/1/zf//0fJkyYgP379yM9Pd0bU6VOiJVSnVB0dDSqq6ths9kc28rLy+Hv7+/25TE6OhoVFRUu2yoqKlgC2Y09/fTTeOedd/D888/jxhtvNBwjy7LblfYSExNRVlbmjSmSl4WFhblcPW/AgAEwm804d+6cyzhP5ws2m+y+tm3bhlGjRl30ypsmk8nlCkr2v4bzfNG9Xe7nB54/rh51dXWYP38+CgoK8N577120/4uvr68jIQXoCYk+ffrw/NHNSJLkSEjZefr/RFhYGPz8/FzOFzabDTU1NTxfdGPbtm3DDTfccMlxAQEBLn/8iIiIQFhYGM8ZVzkmpTqhoUOHwmQyuTQbzc7ORkpKitslM1NTU7Fv3z7HlRCEENi7dy9SU1O9OWXykpdffhmffPIJ/vd///eilQ+LFy/GkiVLXLbl5+cjMTGxvadIXrZt2zaMHj0ajY2Njm3ff/89wsLCXPrPAfr5Ijs723G/sbERhw4d4vmiG8vNzb3kXx7nzJmDl19+2XFf0zQcPnyY54tuLjU1FQcPHnQstQH0zxqezgcXnj9KS0tRWlrK80c3o2kaHnnkEZw+fRoffPABBg0a5HGsEAJTpkzB3/72N8e2hoYGnDhxguePbubPf/4z7r//fpdtnj5XyrKMlJQUl/NFTk4OTCYThgwZ0t5TpQ4ghMCBAwcu+Xmjrq4O1157LXbt2uXYVlZWhurqap4zrnJMSnVCAQEBmDVrFpYvX47c3Fxs2rQJb7/9Nu677z4AetWU/UPk9OnTcf78eTzzzDM4evQonnnmGTQ2NuKmm27qyEOgdlBYWIhXX30Vv/jFLzBy5EiUl5c7boBrXGRmZmL9+vVYu3YtTpw4gZdffhnZ2dkX7StDXdOIESPg5+eHZcuWoaioCP/+97+xatUq/PznP4eqqigvL3eU0N95553Yu3cv3njjDRQUFGDJkiXo06cPRo8e3cFHQe2loKDArZT+wrjIzMzEu+++i2+++QZFRUX4/e9/j9raWsMGttR9XHfddYiNjcWSJUtQUFCAN954A7m5ubjrrrsA6EttysvLHX0+fvKTn+CLL77AmjVrkJ+fj4ULF2Ly5Mm8yms389e//hW7d+/GihUrEBoa6vicYV/q2TIuJEnC5MmT8dJLL2H37t0oKCjAwoULERMTwwurdDMZGRn4z3/+g9WrV+PkyZP4y1/+grVr12LevHkA9D5S9s+jgN4Ue/Xq1di0aRNyc3OxfPly/OhHP+LyvW6quLgY9fX1hkv3WsZGcHAwRo4ciZUrVyI3NxcHDx7EY489hokTJ2Lw4MHenjZ1JoI6pYaGBrFw4UKRlpYmJkyYIN555x3HY0lJSeLzzz933N+/f7+YNWuWSElJEXfddZc4ePBgB8yY2tvrr78ukpKSDG9CuMfFZ599JqZNmyaGDRsmbr/9drFnz56Omjq1syNHjoj7779fpKWlifHjx4uXXnpJaJomTp06JZKSksSuXbscY7ds2SKmTZsmhg8fLubOnStOnjzZgTOn9paSkiK2bt3qsu3CuNA0Tfy///f/xOTJk8WwYcPET3/6U3H48OGOmC61swvPB8ePHxc//elPxbBhw8SMGTPEjh07HI/t2rVLJCUliVOnTjm2ff7552LSpEkiLS1NPPzww6Kqqsqr86f20TIu5s2bZ/g549577xVCuMdFU1OTWLlypRg/frxITU0VDz74oCgpKemwY6G2c+H5YuPGjeKWW24RKSkpYvr06eKrr75yPPb55587Po/avf7662Ls2LFi5MiRYsmSJaKpqclrc6f2dWFs5OTkiKSkJGE2m93GXhgbNTU1YvHixWL06NFixIgR4oknnhA1NTVemTd1XpIQzeu+iIiIiIiIiIiIvITL94iIiIiIiIiIyOuYlCIiIiIiIiIiIq9jUoqIiIiIiIiIiLyOSSkiIiIiIiIiIvI6JqWIiIiIiIiIiMjrmJQiIiIiIiIiIiKvY1KKiIiIiIiIiIi8jkkpIiIiIiIiIiLyOlNHT4CIiIioO8rMzERxcbHhY++//z5Gjx7dLq+7ePFiAMCzzz7bLvsnIiIiaitMShERERG1k6VLl+Lmm292296jR48OmA0RERFR58KkFBEREVE7CQkJQa9evTp6GkRERESdEntKEREREXWAzMxMvPvuu7jllluQlpaGBx54AOXl5Y7HCwsLMX/+fKSnp2PixIl4+eWXoWma4/EvvvgC06dPR2pqKmbPno1Dhw45Hqurq8Njjz2G1NRUTJ48GevXr/fqsRERERG1BpNSRERERB3kpZdews9//nN8+umnaGxsxKOPPgoAqKqqwj333IOoqCisWbMGv/vd7/Dhhx/i/fffBwBs27YNWVlZmDt3LtatW4dhw4bhwQcfhMViAQBs3LgRycnJ2LBhA2666SYsXboUtbW1HXacREREREYkIYTo6EkQERERdTeZmZkoLy+HyeTaLSEuLg5ffvklMjMzMWXKFCxduhQAcOrUKUyZMgXr16/Hrl278Pbbb2PTpk2O53/88cd45ZVXsH37djzyyCMIDg52NDO3WCx48cUXMW/ePLzwwgs4fvw4PvnkEwBAbW0tRo0ahc8++wypqale/C9AREREdHHsKUVERETUThYsWIBp06a5bGuZpEpPT3f83rdvX4SFhaGwsBCFhYVITk52GTtixAiUl5fj/PnzOHbsGGbPnu14zNfXF4sWLXLZl11ISAgAwGw2t92BEREREbUBJqWIiIiI2klERAT69+/v8fELq6hUVYUsy/Dz83Mba+8npaqq2/MupCiK2zYWxxMREVFnw55SRERERB0kPz/f8fuJEydQW1uLwYMHIyEhAQcPHoTVanU8vm/fPvTs2RNhYWHo37+/y3NVVUVmZiays7O9On8iIiKiK8GkFBEREVE7qa2tRXl5udutoaEBAPD+++/jm2++QX5+PpYuXYrx48cjPj4et9xyCywWC37729+isLAQmzZtwksvvYSf/OQnkCQJc+bMwbp16/D3v/8dJ06cwMqVKyGEQHJycgcfMREREVHrcfkeERERUTv5wx/+gD/84Q9u23/9618DAG6//Xb87//+L0pKSjBp0iQ89dRTAIDg4GC89dZbeOaZZzBr1iz07NkTc+fOxYMPPggAuPbaa/G73/0Or7zyCsrLyzFs2DC89tpr8Pf3997BEREREV0hXn2PiIiIqANkZmbikUcewR133NHRUyEiIiLqEFy+R0REREREREREXsekFBEREREREREReR2X7xERERERERERkdexUoqIiIiIiIiIiLyOSSkiIiIiIiIiIvI6JqWIiIiIiIiIiMjrmJQiIiIiIiIiIiKvY1KKiIiIiIiIiIi8jkkpIiIiIiIiIiLyOialiIiIiIiIiIjI65iUIiIiIiIiIiIir2NSioiIiIiIiIiIvO7/A24aLrMhDT6sAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 1200x600 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"<Figure size 640x480 with 0 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Test loss: 0.37507084012031555\n",
"Test accuracy: 0.8735714554786682\n",
"Classification Report: \n",
" precision recall f1-score support\n",
"\n",
" 0 0.84 0.93 0.88 4192\n",
" 1 0.92 0.82 0.87 4208\n",
"\n",
" accuracy 0.87 8400\n",
" macro avg 0.88 0.87 0.87 8400\n",
"weighted avg 0.88 0.87 0.87 8400\n"
]
}
],
"source": [
"# Initialize a Sequential model\n",
"model = Sequential()\n",
"# Add a Dense layer with 64 units, ReLU activation function and L2 regularization\n",
"model.add(Dense(64, input_dim=X_train.shape[1], activation='relu', kernel_regularizer=regularizers.l2(0.001)))\n",
"# Add a BatchNormalization layer to normalize the activations of the previous layer\n",
"model.add(BatchNormalization())\n",
"# Add a Dropout layer to prevent overfitting\n",
"model.add(Dropout(0.5))\n",
"# Add another Dense layer with 32 units, ReLU activation function and L2 regularization\n",
"model.add(Dense(32, activation='relu', kernel_regularizer=regularizers.l2(0.001)))\n",
"# Add another BatchNormalization layer\n",
"model.add(BatchNormalization())\n",
"# Add another Dropout layer\n",
"model.add(Dropout(0.5))\n",
"# Add another Dense layer with 16 units, ReLU activation function and L2 regularization\n",
"model.add(Dense(16, activation='relu', kernel_regularizer=regularizers.l2(0.001)))\n",
"# Add another BatchNormalization layer\n",
"model.add(BatchNormalization())\n",
"# Add another Dropout layer\n",
"model.add(Dropout(0.5))\n",
"# Add the output Dense layer with 1 unit and sigmoid activation function\n",
"model.add(Dense(1, activation='sigmoid'))\n",
"\n",
"# Define early stopping to stop training when the validation loss has not improved for 10 epochs\n",
"early_stopping = EarlyStopping(monitor='val_loss', patience=10)\n",
"\n",
"# Compile the model with Adam optimizer, binary cross-entropy loss function and accuracy as the evaluation metric\n",
"model.compile(loss='binary_crossentropy', optimizer=Adam(learning_rate=0.0001), metrics=['accuracy'])\n",
"\n",
"# Train the model on the training data for 20 epochs with a batch size of 32 and validate on the testing data\n",
"history = model.fit(X_train, y_train, epochs=20, batch_size=32, validation_data=(X_test, y_test),\n",
" callbacks=[early_stopping])\n",
"\n",
"# Evaluate the model on the testing data and store the loss and accuracy in 'scores'\n",
"scores = model.evaluate(X_test, y_test, verbose=0)\n",
"\n",
"# Make predictions on the testing data\n",
"y_pred = model.predict(X_test)\n",
"# Convert the predicted probabilities to binary outputs\n",
"y_pred_classes = (y_pred > 0.5).astype(\"int32\")\n",
"# Generate a classification report\n",
"report = classification_report(y_test, y_pred_classes)\n",
"\n",
"fig, ax = plt.subplots(figsize=(12, 6))\n",
"\n",
"# Plot training & validation accuracy values\n",
"ax.plot(history.history['accuracy'], 'ro-', label='Training Accuracy')\n",
"ax.plot(history.history['val_accuracy'], 'bv--', label='Test Accuracy')\n",
"\n",
"# Plot training & validation loss values\n",
"ax.plot(history.history['loss'], 'go-', label='Training Loss')\n",
"ax.plot(history.history['val_loss'], 'yv--', label='Validation Loss')\n",
"\n",
"ax.set_title('Learning Curve')\n",
"ax.set_ylabel('Values')\n",
"ax.set_xlabel('Epoch')\n",
"ax.legend()\n",
"\n",
"# Show the figure\n",
"plt.tight_layout()\n",
"plt.show()\n",
"\n",
"# Create a figure for the accuracy plot\n",
"fig1, ax1 = plt.subplots(figsize=(12, 6))\n",
"\n",
"# Plot training & validation accuracy values\n",
"ax1.plot(history.history['accuracy'], 'ro-', label='Training Accuracy')\n",
"ax1.plot(history.history['val_accuracy'], 'bv--', label='Test Accuracy')\n",
"ax1.set_title('Model Accuracy')\n",
"ax1.set_ylabel('Accuracy')\n",
"ax1.set_xlabel('Epoch')\n",
"ax1.legend()\n",
"\n",
"# Show the figure\n",
"plt.tight_layout()\n",
"plt.show()\n",
"\n",
"# Create a figure for the loss plot\n",
"fig2, ax2 = plt.subplots(figsize=(12, 6))\n",
"\n",
"# Plot training & validation loss values\n",
"ax2.plot(history.history['loss'], 'ro-', label='Training Loss')\n",
"ax2.plot(history.history['val_loss'], 'bv--', label='Validation Loss')\n",
"ax2.set_title('Model Loss')\n",
"ax2.set_ylabel('Loss')\n",
"ax2.set_xlabel('Epoch')\n",
"ax2.legend()\n",
"\n",
"# Show the figure\n",
"plt.tight_layout()\n",
"plt.show()\n",
"\n",
"# Show the figure\n",
"plt.tight_layout()\n",
"plt.show()\n",
"\n",
"# Print the testing loss and accuracy\n",
"print('Test loss:', scores[0])\n",
"print('Test accuracy:', scores[1])\n",
"# Print the classification report\n",
"print('Classification Report: \\n', report)"
]
},
{
"cell_type": "markdown",
"id": "4114f5c851874555",
"metadata": {
"collapsed": false
},
"source": [
"# Multi-Layer Perceptron (MLP) visualization\n",
"This code block is used to visualize the performance of a trained Multi-Layer Perceptron (MLP) model. It generates three types of visualizations:\n",
"\n",
"1. Weights and Biases Visualization: This visualization is used to understand the distribution of weights and biases in the model's layers. For each layer in the model, if the layer is a dense layer, it retrieves the weights and biases, and plots histograms of their values. The x-axis of the histogram represents the value of the weights/biases and the y-axis represents the frequency of these values.\n",
"\n",
"2. Confusion Matrix: A confusion matrix is a table that is often used to describe the performance of a classification model on a set of test data for which the true values are known. It gives a more detailed breakdown of correct and incorrect classifications for each class.\n",
"\n",
"3. ROC Curve: The Receiver Operating Characteristic (ROC) curve is a plot that illustrates the diagnostic ability of a binary classifier system as its discrimination threshold is varied. It is created by plotting the true positive rate (TPR) against the false positive rate (FPR).\n",
"\n",
"## Weights and Biases Evaluation\n",
"\n",
"The weights and biases of the MLP model layers were visualized to understand their distributions. The weights in all layers (dense, dense_1, dense_2, and dense_3) are not close to zero, indicating they are likely being updated during training and contributing to the model's learning. The weight distributions show a spread around zero, suggesting the model is capturing complex relationships in the data.\n",
"\n",
"The biases in dense and dense_2 introduce a slight positive bias to the activations in subsequent layers, potentially affecting the model's predictions. The biases in dense_1 and dense_3 are centered around zero, with a slight spread towards positive values, introducing a small positive shift in the activations of the next layer.\n",
"\n",
"The impact of these biases would depend on the network architecture and data. Overall, the model's weights and biases suggest that it is learning effectively from the training data."
]
},
{
"cell_type": "code",
"execution_count": 63,
"id": "41091791008ff727",
"metadata": {
"ExecuteTime": {
"end_time": "2024-03-21T13:53:04.696985Z",
"start_time": "2024-03-21T13:53:04.001254Z"
},
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAHBCAYAAABe2eulAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABiH0lEQVR4nO3de1hU5d7/8c8AG0SJUETS8Fdp4REHhMASN2Jm5zLUSis1NSxRe8p0h5SaZiZolmmaeUjT0szKnbo72GPtTmobBTLTLVqJJwQDT5wE1u8PYx5H0GFgGFDer+viupx137PW975nOWs+M2vWmAzDMAQAAAAAuCCX2i4AAAAAAOo6ghMAAAAA2EBwAgAAAAAbCE4AAAAAYAPBCQAAAABsIDgBAAAAgA0EJwAAAACwgeAEAAAAADYQnADUCfwWNwAAqMsITrgkffTRR2rTpo0OHDhQ26VUS1ZWlp5//nlFR0crJCREMTEx2rBhQ7l+X3/9tfr27atOnTrp73//u1566SXl5eU5vd4ePXroueeec/h99uzZo/79+1enNACoUzhOXfw4deDAAbVp00YfffTRRbdfleMOUFPcarsAoL4qKirSsGHDdPLkSY0ePVrNmjXT559/rqefflpFRUXq3bu3JOl///d/FRcXp969e2vMmDHau3evXn31VeXk5GjmzJlOrXnOnDny8vJy+Ho/++wzbd++3eHrBQBUXV04TtXUcQeoCoITUEu+/vpr7dq1S6tXr1anTp0kSV27dtWhQ4e0cOFCywFp2rRpuu222zRt2jRJ0k033aSSkhK9++67ys/Pl6enp9Nqbt++vdO2BQCoXXXhOMVxB3UJp+qhzistLdWbb76p7t27y2w2a8SIETp+/Hi5fv/97381fPhwde7cWZ07d1ZcXJwyMjIs7Vu2bFGbNm30448/asiQITKbzeratauSkpJUUlJi6ff999/rgQceUEhIiG688UY9+eST2rt3r9W2Nm7cqJiYGAUFBalr165VOnXOy8tLDz74oIKCgqyWt2rVSvv375ck7dy5U/v379cjjzxi1WfQoEHauHFjhQej3NxctW/fXu+8845l2eHDh9WmTRuNHTvWsqy0tFQRERF66623JEmFhYVKTExUVFSUOnbsqHvuuafc6RjnnzJx9OhRPf300woPD9eNN96oCRMmaNasWerRo4fV/c6cOaPExER17dpVwcHBGjJkiP744w9J0htvvKE5c+ZIktq0aaM33nhDUuUeBwCoCzhO2XecOldmZqaGDx+uTp06KSoqSrNnz7Ya6/nHnQMHDmjcuHGKjIxUhw4ddNNNN2ncuHHKycmx9NmxY4cGDRqk0NBQhYSEaPDgwUpJSbHa7n/+8x898sgjMpvNCg8P1z/+8Q/9+eeflvbS0lLL8axjx47q0aOHZs6cqTNnzlRu8nBZIjihzktKStLcuXPVt29fzZkzRz4+PuU++v/tt9/00EMP6dixY5o+fbqmTp2qjIwM9e/fX8eOHbPq++yzzyo0NFTz58/X3XffrYULF2r16tWSpIyMDI0YMUIdO3bUvHnzNHXqVP3222+KjY1VaWmpJOnTTz9VXFycWrVqpblz52rkyJH65z//qREjRth1gYObb75ZkydPlslksiw7c+aMvvnmG11//fWSpF9//VWS5OHhYTmwhIeHa+rUqSoqKqpwvT4+PgoODtYPP/xgWfbjjz9KOnugKJOamqrc3Fx1795dhmEoLi5OK1eu1GOPPaZ58+YpJCRETz/9tD755JMKt1NUVKRBgwZp27ZtGj9+vKZNm6Zdu3Zp8eLF5fpu2LBBe/bs0SuvvKKJEydqx44devrppyVJ/fr1U9++fSVJq1atUr9+/Sr1OABAXcFxyr7j1LneeOMN+fr6au7cuerTp4/mz5+v6dOnV9g3Pz9fAwcO1N69ezVx4kQtWrRIAwcO1Pr16zVr1ixJ0qlTpzRs2DA1btxYb7zxhmbNmqX8/HwNHTpUJ0+elCT99NNPGjx4sBo0aKDXXntN48eP19atWzVw4EAVFBRIkt5++229//77iouL0+LFi9W/f38tWrRI8+bNq/T84TJkAHXY8ePHjQ4dOhhJSUlWy4cOHWoEBgYaGRkZhmEYxjPPPGPcfPPNxsmTJy19cnJyjNDQUOOVV14xDMMwNm/ebAQGBhqzZs2yWlePHj2M4cOHG4ZhGOvWrTMCAwONI0eOWNpTU1ONV1991Th58qRRWlpq/P3vfzeGDh1qtY4ffvjBCAwMNDZt2lSt8U6dOtUIDAw0Pv/8c8MwDGPBggVGYGCg8fe//91ITEw0fvzxR2PBggVGUFCQ8cwzz1xwPW+99ZYRHBxsFBUVGYZhGM8++6xx//33W83Z66+/bkRHRxuGYRjfffedERgYaKxfv95qPc8++6zRtWtX48yZM4ZhGEZ0dLTxj3/8wzAMw1i9erURGBho/Pzzz5b+J0+eNCIiIizrLbtPVFSUpRbDMIxZs2YZgYGBlsdr9uzZRmBgoKXd1uMAAHUFx6mqHacyMjKMwMBAIzY2ttz6O3ToYOTk5BiGYX3c2blzp9G/f39j//79VvcZPny4cdtttxmGYRjbt283AgMDjeTkZEv7H3/8YSQmJhqHDx82DMMwHnzwQePuu+82iouLLX327dtntGvXzli+fLlhGIYxZMgQ47HHHrPazrvvvmt88sknlZ4rXH74xAl1WkpKis6cOaPo6Gir5XfccYfV7c2bNys8PFwNGjRQcXGxiouL5eXlpbCwMKtPXiQpJCTE6vZVV11lOX3BbDbLw8NDffv21dSpU/Xtt9+qbdu2evrpp+Xl5aV9+/bpyJEj6tGjh2U7xcXFuvHGG+Xl5aXvv/++SuM0DEOJiYlaunSphg4dql69ekmS5ZSAW2+9VWPHjlWXLl30+OOPa+TIkVq3bp1+++23CtcXFRWlvLw8paamWuZn0KBB8vT01E8//SRJ+ve//63u3btLOvuJlMlkUlRUlNW4evTooaysLO3Zs6fcNjZv3qyWLVuqY8eOlmVeXl7lHitJ6tSpk/72t79ZbgcEBEiSTpw4UWH9th4HAKgrOE5V7Th1oXnq1auXzpw5Yzl+natdu3Z67733dPXVV+v333/XN998o0WLFmnfvn2WT7duuOEGNWnSRE888YQmTJigL7/8Uk2bNtXYsWN11VVXKT8/X6mpqYqKipJhGJb5admypVq3bm2Zn4iICH3//fcaMGCAFi5cqPT0dD3yyCO67777qjR/uDxwcQjUaWXniDdu3NhquZ+fn9Xt3NxcbdiwocJLpDZp0sTqdoMGDaxuu7i4WE5dCAgI0PLly7VgwQJ9+OGHWrZsmby9vTVgwAD9z//8j3JzcyVJL774ol588cVy2zp69Kh9A9TZU96ee+45rV+/XkOHDtW4ceMsbY0aNZIkS8Ap061bN82cOVO//vqrrrvuunLrbNOmjZo3b64ffvhBjRs31tGjR3XzzTerc+fO2rp1q6KiovTLL7/oqaeeknR2/gzDUOfOnSus8ejRo2rXrp3VspycHPn6+pbrW9Gyhg0bWt12cTn7ns2FTruz9Tice9oIANQmjlNVO06VOX+eyuaiou+ISdKSJUs0f/585ebmqmnTpurYsaM8PT0tp+E1atRIK1as0Lx58/Svf/1Lq1atUoMGDXTffffp+eef14kTJ1RaWqq3335bb7/9drn1e3h4SJKGDRumRo0aac2aNZoxY4aSkpJ0ww036Pnnn1eXLl1szBguVwQn1GllB6Jjx46pVatWluVlB4YyV1xxhW6++WY99thj5dbh5mbfbt6pUyfNmTNHRUVFSk5O1qpVqzR//ny1bdvWck73uHHjFB4eXu6+V155pV3bOnnypGJjY5WSkqLx48dr0KBBVu3XXnutJJU7T7zsHb6yJ/iKREVF6ccff5Svr6+uu+46+fn5KSIiQh988IG+++47NWjQQBEREZLOzl/Dhg21bNmyCtd1zTXXlFvm7++v33//vdzy88/Vr6qLPQ7nv0MJALWF49S1kqp2nJLKB6Ts7GxJFb8J9+mnn+qVV17R2LFjFRMTYwlZTz31lH7++WdLv1atWlkuqJGWlqa1a9fq/fff1//7f/9PDz30kEwmkwYPHqy77rqr3DbKLmbh4uKihx9+WA8//LCOHTumb775RvPnz9eoUaP0/fffy93d/aLjwuWJU/VQp4WEhKhBgwb67LPPrJZv2rTJ6nZ4eLjS09PVrl07BQUFKSgoSB07dtQ777yjL7/8stLbe+eddxQdHa2ioiK5u7vrpptu0pQpUyRJhw4dUqtWreTr66sDBw5YthMUFCR/f3/NnDlTO3furPS2iouL9cQTT+jnn3/WrFmzyh2MJCksLEwNGzbU+vXrrZb/7//+r9zc3MqdznGu7t276+eff9a///1vy8GzS5cuOnDggFauXKmuXbtanvjDw8OVl5cnwzCsxvXf//5Xc+fOVXFxcbn1h4eH68CBA5YvBktSQUGBvv3220rPQZmyT6DK2HocAKCu4DhV9eOUdPaS5+dav369PD09ZTaby/VNTk6Wt7e3hg0bZglNp0+fVnJysuUMhs8++0xdunRRVlaWXF1dFRISokmTJsnb21uHDh2Sl5eX2rdvr3379lnNzw033KA33nhDW7ZskSQ99NBDeumllySdDXExMTF6+OGHdeLECZ06dapyE4jLDp84oU5r1KiRRowYoddee02enp7q0qWLvvnmm3IHpBEjRuihhx7S8OHD1b9/f3l4eGjVqlXauHGjZs+eXentdenSRTNmzFBcXJweeeQRubq6auXKlXJ3d1d0dLRcXV319NNPa8KECXJ1dVV0dLROnDihN998U5mZmerQoUOlt7VixQr95z//0YMPPqirrrqq3KVSg4OD1ahRI40ePVqvvPKKvL291atXL23btk0LFy7UwIEDy53ecf5YXFxc9PXXX+vVV1+VJHXo0EGNGjVScnKypk6daukbFRWlG2+8USNGjNCIESPUunVrpaWlafbs2erWrVuF27n77ru1YMECxcXF6amnnpK3t7eWLFmiY8eOqUWLFpWeB0ny9vaWJK1bt05ms9nm4wAAdQXHqaofpyTpiy++kL+/v26++WZ99913WrVqlZ566qkKv8/aqVMnvf/++3rllVcUHR2to0ePatGiRcrOzrZ8kta5c2eVlpYqLi5OsbGxatSokf71r3/p5MmTlu9lPfPMM4qNjdWYMWN07733qqSkRIsXL1ZqaqpGjBghSbrxxhu1ePFiNW3aVCEhIcrMzNSSJUsUHh5uc0y4fBGcUOcNHz5cDRs21NKlS7V06VKFhIToH//4hyZNmmTp07ZtW61YsUKzZs3SuHHjZBiGAgMDNXfuXN1yyy2V3lbbtm01f/58zZ07V88884xKSkrUsWNHLV682HIKRr9+/dSoUSMtXLhQq1atUsOGDdW5c2fNmDFDLVu2rPS2vvjiC0lnL8G9atWqcu27d++WJD322GOWULJ69Wo1a9ZMo0aN0uOPP37R9Xt6eioiIsLqEyc3NzeFhYVZXRhCOvuJz4IFC/T666/rrbfe0rFjx+Tv76/HHntMcXFxFa7fzc1NixYt0tSpUzVp0iS5ubnp3nvvlY+Pj80vA5+vV69eWrt2rZ577jn17dtXkyZNsvk4AEBdwXGqascpSUpISND69ev1zjvvyM/PT+PHj9fAgQMr7Hv//ffrwIEDWrNmjd577z35+/srKipKAwYM0AsvvKC9e/eqdevWWrhwoV5//XUlJCQoPz/f8mlS2XeTIiMjtWjRIs2ZM0ejR4/W3/72N3Xo0EFLlixRcHCwpLOn/7m7u2vNmjWaO3eurrjiCvXo0UNjxoyp9Pzh8mMyDDsu6A8Af9mzZ4/27dunXr16WV2soW/fvrrqqqssP2oLAABwOeATJ8DBSkpKbP7AoMlkkqurq5Mqqhl5eXl66qmnNGDAAN16660qKSnRhg0btGPHDj377LO1XR4A4ALqy3EKcDQ+cQIcrEePHjp48OBF+4SHh+vdd991UkU157PPPtOiRYu0d+9eGYah9u3b68knn1RkZGRtlwYAuID6dJwCHIngBDjY7t27y12W9XyNGjXiuzoAgFrBcQqoGoITAAAAANjA7zgBAAAAgA0EJwAAAACwgeAEAAAAADYQnAAAAADAhnr1O07Hjp1UbV8Kw2SSfH2vqBO1OAtjru1qal59G6/EmO0Zc9n9UDFH7kP1cb90JOavepi/6mMOq6ey81fV41K9Ck6GoTqzE9alWpyFMV/+6tt4JcaM6quJ+eQxqh7mr3qYv+pjDqunpuaPU/UAAAAAwAaCEwAAAADYQHACAAAAABsITgAAAABgA8EJAAAAAGwgOAEAAACADQQnAAAAALCB4AQAAAAANhCcAAAAAMAGghMAAAAA2EBwAgDUK5mZmRo9erTCw8PVrVs3TZs2TYWFhZKkjIwMDR48WMHBwbrzzjv13XffXXRd69atU8+ePWU2mxUXF6c///zTGUMAANQCghMAoN4wDEOjR49Wfn6+VqxYoVmzZmnTpk167bXXZBiG4uLi1LRpU61Zs0b33XefRo4cqUOHDlW4rrS0NCUkJGjkyJFatWqVTpw4ofj4eCePCADgLG61XQAAAM6yb98+paSk6Pvvv1fTpk0lSaNHj9b06dP197//XRkZGVq5cqUaNmyo1q1b68cff9SaNWs0atSocutavny57rjjDvXu3VuSlJiYqOjoaGVkZKhly5bOHBYAwAn4xAkAUG/4+flp4cKFltBU5tSpU0pNTVX79u3VsGFDy/LQ0FClpKRUuK7U1FSFhYVZbjdv3lwtWrRQampqjdQOAKhdBCcAQL3h7e2tbt26WW6XlpZq+fLl6tKli7KystSsWTOr/r6+vjpy5EiF6zp69Khd/QEAlzZO1QMqycXFJBcXk133cXV13HsTpaWGSksNh60PgJSUlKSdO3fqww8/1DvvvCN3d3erdnd3dxUVFVV434KCArv6X4jJvqeVSq3Lkeusy1xcTDI5cLBlq3Jzc5FRiadbw+B5+Vz1bf+rCcxh9VR2/qo6vwQnoBJcXEy60qeh3OwMQo0bN3JYDcUlpTqem8dBGnCQpKQkLV26VLNmzVJgYKA8PDyUm5tr1aeoqEgNGjSo8P4eHh7lQlJRUZE8PT3tqsPX9wq7+tfWOuuiklJDrna+oVUZPj6Ve+6uqe1f6urL/leTmMPqqan5IzgBleDiYpKbq4ueWrld6UdPOX371zfz0usPhcjFxURwAhxgypQpev/995WUlKTbbrtNkuTv76/09HSrftnZ2eVOxyvj7++v7Ozscv39/PzsquXYsZOV+nSjMkymsy8YHLnOusrV1UWNGzeq9eflnJzTKikpdfr266L6tP/VFOaweio7f2X97EVwAuyQfvSUfjl0orbLAFANc+bM0cqVK/Xqq6/q9ttvtyw3m81asGCBCgoKLJ8yJScnKzQ0tML1mM1mJScnKyYmRpJ0+PBhHT58WGaz2a56DEMOf4FUE+usq+rC83J9mevKqk/7X01hDqunpuaPi0MAAOqNvXv36s0339Tjjz+u0NBQZWVlWf7Cw8PVvHlzxcfHa8+ePVqwYIHS0tLUt29fSWdPw8vKylJJSYkkqX///lq7dq1Wr16tXbt2ady4cerevTuXIgeAyxTBCQBQb3z11VcqKSnRvHnzFBkZafXn6uqqN998U1lZWYqJidE///lPzZ07Vy1atJAkbd++XZGRkTp8+LAkKSQkRJMnT9bcuXPVv39/XXnllZo2bVptDg8AUIM4VQ8AUG/ExsYqNjb2gu3XXHONli9fXmFbRESEdu/ebbUsJibGcqoeAODyZvcnTkVFRXrxxRd144036uabb9arr74q46+TCHfu3Kl+/frJbDarT58+2rFjh9V9161bp549e8psNisuLk5//vmnpc0wDM2YMUNdunRReHi4EhMTVVr6f1+2zMnJ0ahRoxQSEqIePXpo7dq1VR0zAAAAANjF7uD00ksv6YcfftCiRYs0c+ZMffDBB1q1apXy8vIUGxursLAwffTRRwoJCdHw4cOVl5cnSUpLS1NCQoJGjhypVatW6cSJE4qPj7esd8mSJVq3bp3mzJmj2bNn69NPP9WSJUss7fHx8Tp58qRWrVqlJ598Us8//7zS0tIcMAUAAAAAcHF2naqXm5urNWvWaMmSJerUqZMkaciQIUpNTZWbm5s8PDw0btw4mUwmJSQk6N///rc+++wzxcTEaPny5brjjjvUu3dvSVJiYqKio6OVkZGhli1batmyZRo9erTCwsIkSc8++6xef/11DR06VPv379emTZv01VdfKSAgQIGBgUpJSdF7771nqQMAAAAAaopdnzglJyfLy8tL4eHhlmWxsbGaNm2aUlNTFRoaavkFb5PJpM6dOyslJUWSlJqaaglFktS8eXO1aNFCqampyszM1OHDh3XjjTda2kNDQ3Xw4EEdPXpUqampat68uQICAqzat2/fXqVBAwAAAIA97ApOGRkZuvrqq/XJJ5/o9ttv1y233KK5c+eqtLRUWVlZ5X4k0NfXV0eOHJEkHT169ILtWVlZkmTV3rRpU0mytFd038zMTHvKBwAAAIAqsetUvby8PP3xxx9auXKlpk2bpqysLE2YMEGenp7Kz8+Xu7u7VX93d3cVFRVJkgoKCi7YXlBQYLl9bpt09mIUttZdWX99GFarymqoC7U4S30cc02qi/NYHx9jxmz//QAAuJTZFZzc3Nx06tQpzZw5U1dffbUk6dChQ3r//fd1zTXXlAsyRUVFll9f9/DwqLDd09PTKiR5eHhY/i1Jnp6eF7xv2bory9f3Crv616S6VIuz1McxO1rjxo1qu4SLqo+PMWMGAKB+sCs4+fn5ycPDwxKaJOm6667T4cOHFR4eruzsbKv+2dnZllPs/P39K2z38/OTv7+/JCkrK8vyPaay0/fK2i90X3scO3ZSf105vdaYTGdfdNSFWpzlchizq6tLnQgtOTmnVVJSarujk10Oj7G9GLP99wMA4FJm13eczGazCgsL9dtvv1mW7du3T1dffbXMZrO2b99u+U0nwzC0bds2mc1my32Tk5Mt9zt8+LAOHz4ss9ksf39/tWjRwqo9OTlZLVq0ULNmzRQcHKyDBw9avi9V1h4cHGzXYA2jbvzVpVoYc+Xrrytqey4u18eYMdfsmAEAuNTZFZxatWql7t27Kz4+Xrt27dK3336rBQsWqH///rr99tt14sQJTZ06Venp6Zo6dary8/N1xx13SJL69++vtWvXavXq1dq1a5fGjRun7t27q2XLlpb2GTNmaMuWLdqyZYtmzpypgQMHSpJatmypyMhIjR07Vrt27dLq1au1bt06Pfzwww6eDgAAAAAoz65T9SRpxowZmjJlivr37y9PT089/PDDevTRR2UymfTWW29p4sSJ+uCDD9SmTRstWLBADRs2lCSFhIRo8uTJmj17to4fP66uXbtqypQplvUOHTpUx44d08iRI+Xq6qq+fftq8ODBlvbExEQlJCTogQcekJ+fn15++WV+wwkAAACAU9gdnK644golJiZW2NapUyd9/PHHF7xvTEyMYmJiKmxzdXVVfHy84uPjK2z39fXV/Pnz7S0XAAAAAKrNrlP1AAAAAKA+IjgBAAAAgA0EJwAAAACwgeAEAAAAADYQnAAAAADABoITAAAAANhAcAIAAAAAGwhOAAAAAGADwQkAAAAAbCA4AQAAAIANBCcAAAAAsIHgBAAAAAA2EJwAAAAAwAaCEwAAAADYQHACAAAAABsITgAAAABgA8EJAAAAAGwgOAEAAACADQQnAAAAALCB4AQAAAAANhCcAAAAAMAGghMAAAAA2OBW2wUAAFAbioqKFBMToxdeeEERERF67rnn9PHHH5frFxERoWXLlpVbfvz4cYWHh1st8/Hx0ZYtW2qsZgBA7SE4AQDqncLCQo0ZM0Z79uyxLEtISNCYMWMstw8ePKhHH31UAwcOrHAd6enp8vHx0bp16yzLXFw4kQMALlcEJwBAvZKenq4xY8bIMAyr5VdccYWuuOIKy+3nnntOt99+u3r27Fnhevbt26frrrtOfn5+NVovAKBu4K0xAEC9snXrVkVERGjVqlUX7PPjjz/qp59+0jPPPHPBPunp6br22mtroEIAQF3EJ04AgHplwIABNvssWLBA999/v5o3b37BPnv37lVxcbH69u2rzMxMhYWFKT4+Xs2aNbOrHpPJru6VWpcj1wnbmO+z2P+qjzmsnsrOX1Xnl+AEAMA5MjIytHnzZiUkJFy03759+9SkSRPFx8fLMAzNmjVLTzzxhFavXi1XV9dKb8/X9wrbnexUE+tExRo3blTbJdQ57H/VxxxWT03NH8EJAIBzfP7552rXrp2uv/76i/Zbv369TCaTGjRoIEmaPXu2IiMjlZqaqs6dO1d6e8eOndR5X7eqMpPp7AsGR66zrnJ1dakToSUn57RKSkpru4w6oT7tfzWFOayeys5fWT97EZwAADjHt99+q1tuucVmP09PT6vbvr6+8vHxUWZmpl3bMww5/AVSTawTF8ZcW2P/qz7msHpqav64OAQAAH8xDEM///yzzU+MTp06pRtvvFGbN2+2LMvMzFROTo5atWpV02UCAGoBwQkAgL8cPHhQp0+frvA0vYKCAmVlZUmSvLy8FBoaqmnTpiktLU2//PKLnn76aXXr1k1t2rRxdtkAACcgOAEA8Jdjx45Jkq688spybRs2bFBkZKTl9vTp09W+fXvFxsbq0Ucf1dVXX60ZM2Y4rVYAgHPxHScAQL21e/duq9tms7ncsjIxMTGKiYmx3L7yyis1bdq0Gq0PAFB38IkTAAAAANhAcAIAAAAAGwhOAAAAAGADwQkAAAAAbCA4AQAAAIANBCcAAAAAsIHgBAAAAAA2EJwAAAAAwAaCEwAAAADYQHACAAAAABsITgAAAABgA8EJAAAAAGwgOAEAAACADQQnAAAAALDB7uD05Zdfqk2bNlZ/o0ePliTt3LlT/fr1k9lsVp8+fbRjxw6r+65bt049e/aU2WxWXFyc/vzzT0ubYRiaMWOGunTpovDwcCUmJqq0tNTSnpOTo1GjRikkJEQ9evTQ2rVrqzpmAAAAALCL3cEpPT1d0dHR+u677yx/L730kvLy8hQbG6uwsDB99NFHCgkJ0fDhw5WXlydJSktLU0JCgkaOHKlVq1bpxIkTio+Pt6x3yZIlWrdunebMmaPZs2fr008/1ZIlSyzt8fHxOnnypFatWqUnn3xSzz//vNLS0hwwBQAAAABwcXYHp7179yowMFB+fn6WP29vb23YsEEeHh4aN26cWrdurYSEBDVq1EifffaZJGn58uW644471Lt3b7Vt21aJiYn65ptvlJGRIUlatmyZRo8erbCwMHXp0kXPPvusVqxYIUnav3+/Nm3apJdeekmBgYHq16+f7r33Xr333nsOnAoAAAAAqFiVgtO1115bbnlqaqpCQ0NlMpkkSSaTSZ07d1ZKSoqlPSwszNK/efPmatGihVJTU5WZmanDhw/rxhtvtLSHhobq4MGDOnr0qFJTU9W8eXMFBARYtW/fvt3e8gEAAADAbm72dDYMQ7/99pu+++47vfXWWyopKdHtt9+u0aNHKysrS9dff71Vf19fX+3Zs0eSdPToUTVr1qxc+5EjR5SVlSVJVu1NmzaVJEt7RffNzMy0p3z9lelqVVkNdaEWZ6mPY65JdXEe6+NjzJjtvx8AAJcyu4LToUOHlJ+fL3d3d7322ms6cOCAXnrpJRUUFFiWn8vd3V1FRUWSpIKCggu2FxQUWG6f2yZJRUVFNtddWb6+V9jVvybVpVqcpT6O2dEaN25U2yVcVH18jBkzAAD1g13B6eqrr9aWLVt05ZVXymQyqV27diotLdXYsWMVHh5eLsgUFRWpQYMGkiQPD48K2z09Pa1CkoeHh+XfkuTp6XnB+5atu7KOHTspw7DrLg5nMp190VEXanGWy2HMrq4udSK05OScVklJqe2OTnY5PMb2Ysz23w8AgEuZXcFJknx8fKxut27dWoWFhfLz81N2drZVW3Z2tuUUO39//wrb/fz85O/vL0nKysqyfI+p7PS9svYL3dcehqE68wKnLtXiLPVxzDWhLs9hfXyMGTMAAPWDXReH+PbbbxUREaH8/HzLsl9//VU+Pj6WizUYfx1NDcPQtm3bZDabJUlms1nJycmW+x0+fFiHDx+W2WyWv7+/WrRoYdWenJysFi1aqFmzZgoODtbBgwd15MgRq/bg4OAqDRoAAAAA7GFXcAoJCZGHh4eef/557du3T998840SExM1bNgw3X777Tpx4oSmTp2q9PR0TZ06Vfn5+brjjjskSf3799fatWu1evVq7dq1S+PGjVP37t3VsmVLS/uMGTO0ZcsWbdmyRTNnztTAgQMlSS1btlRkZKTGjh2rXbt2afXq1Vq3bp0efvhhB08HAAAAAJRn16l6Xl5eWrRokV5++WX16dNHjRo10kMPPaRhw4bJZDLprbfe0sSJE/XBBx+oTZs2WrBggRo2bCjpbOiaPHmyZs+erePHj6tr166aMmWKZd1Dhw7VsWPHNHLkSLm6uqpv374aPHiwpT0xMVEJCQl64IEH5Ofnp5dfflmdOnVyzCwAAAAAwEXY/R2nG264QUuWLKmwrVOnTvr4448veN+YmBjFxMRU2Obq6qr4+HjFx8dX2O7r66v58+fbWy4AAAAAVJvdP4ALAAAAAPUNwQkAAAAAbCA4AQAAAIANBCcAAAAAsIHgBAAAAAA2EJwAAAAAwAaCEwAAAADYQHACAAAAABsITgCAeqmoqEh33323tmzZYln20ksvqU2bNlZ/y5cvv+A63nnnHXXr1k0hISEaP3688vPznVE6AKAWuNV2AQAAOFthYaHGjBmjPXv2WC3fu3evxowZo/vvv9+yzMvLq8J1fP7555ozZ46SkpLk6+ur+Ph4JSUlacKECTVaOwCgdvCJEwCgXklPT9cDDzyg/fv3l2vbu3ev2rdvLz8/P8ufp6dnhetZtmyZBg0apOjoaHXq1Ekvvvii1qxZw6dOAHCZIjgBAOqVrVu3KiIiQqtWrbJafurUKWVmZuraa6+1uY6SkhL9/PPPCgsLsywLDg7WmTNntGvXLkeXDACoAzhVDwBQrwwYMKDC5Xv37pXJZNL8+fP173//Wz4+PnrsscesTtsrc+LECRUWFqpZs2aWZW5ubvLx8dGRI0fsqsdksq/+yqzLkeuEbcz3Wex/1cccVk9l56+q80twAgBA0r59+2QymdSqVSs98sgj+umnn/TCCy/Iy8tLt956q1XfgoICSZK7u7vVcnd3dxUVFdm1XV/fK6pXuJPWiYo1btyotkuoc9j/qo85rJ6amj+CEwAAknr37q3o6Gj5+PhIktq2bavff/9d77//frng5OHhIUnlQlJRUdEFvxN1IceOnZRhVL3uc5lMZ18wOHKddZWrq0udCC05OadVUlJa22XUCfVp/6spzGH1VHb+yvrZi+AEAIAkk8lkCU1lWrVqpc2bN5fr6+PjIw8PD2VnZ6t169aSpOLiYuXm5srPz8+u7RqGHP4CqSbWiQtjrq2x/1Ufc1g9NTV/XBwCAABJr7/+ugYPHmy1bNeuXWrVqlW5vi4uLgoKClJycrJlWUpKitzc3NS2bduaLhUAUAsITgAASIqOjtZPP/2kRYsWaf/+/Xrvvff0ySefaMiQIZLOfq8pKyvL0n/AgAFatGiRNm7cqLS0NE2aNEkPPPCA3afqAQAuDZyqBwCApE6dOun111/X7Nmz9frrr+vqq6/WzJkzFRISIknasGGD4uPjtXv3bknSXXfdpYMHD2rChAkqKipSr169NHbs2NocAgCgBhGcAAD1VlkIKtOzZ0/17Nmzwr4xMTGKiYmxWhYbG6vY2Ngaqw8AUHdwqh4AAAAA2EBwAgAAAAAbCE4AAAAAYAPBCQAAAABsIDgBAAAAgA0EJwAAAACwgeAEAAAAADYQnAAAAADABoITAAAAANhAcAIAAAAAGwhOAAAAAGADwQkAAAAAbCA4AQAAAIANBCcAAAAAsIHgBAAAAAA2EJwAAAAAwAaCEwAAAADYQHACAAAAABsITgAAAABgA8EJAAAAAGwgOAEAAACADQQnAAAAALCB4AQAAAAANhCcAAAAAMAGghMAAAAA2EBwAgAAAAAbCE4AAAAAYEOVg1NsbKyee+45y+2dO3eqX79+MpvN6tOnj3bs2GHVf926derZs6fMZrPi4uL0559/WtoMw9CMGTPUpUsXhYeHKzExUaWlpZb2nJwcjRo1SiEhIerRo4fWrl1b1bIBAAAAwG5VCk7r16/XN998Y7mdl5en2NhYhYWF6aOPPlJISIiGDx+uvLw8SVJaWpoSEhI0cuRIrVq1SidOnFB8fLzl/kuWLNG6des0Z84czZ49W59++qmWLFliaY+Pj9fJkye1atUqPfnkk3r++eeVlpZW1TEDAAAAgF3sDk65ublKTExUUFCQZdmGDRvk4eGhcePGqXXr1kpISFCjRo302WefSZKWL1+uO+64Q71791bbtm2VmJiob775RhkZGZKkZcuWafTo0QoLC1OXLl307LPPasWKFZKk/fv3a9OmTXrppZcUGBiofv366d5779V7773niPEDAAAAgE12B6fp06frvvvu0/XXX29ZlpqaqtDQUJlMJkmSyWRS586dlZKSYmkPCwuz9G/evLlatGih1NRUZWZm6vDhw7rxxhst7aGhoTp48KCOHj2q1NRUNW/eXAEBAVbt27dvt3uwAAAAAFAVbvZ0/vHHH/Wf//xHn376qSZNmmRZnpWVZRWkJMnX11d79uyRJB09elTNmjUr137kyBFlZWVJklV706ZNJcnSXtF9MzMz7SldkvRXrqtVZTXUhVqcpT6OuSbVxXmsj48xY7b/fgAAXMoqHZwKCws1ceJETZgwQQ0aNLBqy8/Pl7u7u9Uyd3d3FRUVSZIKCgou2F5QUGC5fW6bJBUVFdlctz18fa+w+z41pS7V4iz1ccyO1rhxo9ou4aLq42PMmAEAqB8qHZzmzJmjjh07qlu3buXaPDw8ygWZoqIiS8C6ULunp6dVSPLw8LD8W5I8PT1trtsex46dlGHYfTeHMpnOvuioC7U4y+UwZldXlzoRWnJyTqukpNR2Rye7HB5jezFm++8HAMClrNLBaf369crOzlZISIik/ws3n3/+ue6++25lZ2db9c/OzracYufv719hu5+fn/z9/SWdPd2v7HtMZafvlbVf6L72MgzVmRc4dakWZ6mPY64JdXkO6+NjzJgvXUVFRYqJidELL7ygiIgISVJKSopeeeUV7d69W82aNdOwYcPUr1+/C64jLCxMJ0+etFq2bds2NWpU+2+0AAAcq9LB6d1331VxcbHl9owZMyRJzz77rH766Se9/fbbMgxDJpNJhmFo27ZteuKJJyRJZrNZycnJiomJkSQdPnxYhw8fltlslr+/v1q0aKHk5GRLcEpOTlaLFi3UrFkzBQcH6+DBgzpy5IiuuuoqS3twcLBDJgAAUP8UFhZqzJgxlu/iSmfftHv88cfVv39/vfLKK/rll18UHx8vPz8/de/evdw6MjMzdfLkSW3cuNHqLIiGDRs6YwgAACerdHC6+uqrrW6XvZt2zTXXyNfXVzNnztTUqVP10EMPaeXKlcrPz9cdd9whSerfv78effRRBQcHKygoSFOnTlX37t3VsmVLS/uMGTMswWjmzJkaMmSIJKlly5aKjIzU2LFjlZCQoJ9//lnr1q3T8uXLqz96AEC9k56erjFjxsg472OzjRs3qmnTpnrmmWckSddee622bNmiTz/9tMLgtHfvXvn5+VmOZQCAy5tdV9W7EC8vL7311luaOHGiPvjgA7Vp00YLFiywvOsWEhKiyZMna/bs2Tp+/Li6du2qKVOmWO4/dOhQHTt2TCNHjpSrq6v69u2rwYMHW9oTExOVkJCgBx54QH5+fnr55ZfVqVMnR5QOAKhntm7dqoiICD399NNWZy9069ZN7dq1K9f/1KlTFa4nPT1d1113XU2VCQCoY6ocnF555RWr2506ddLHH398wf4xMTGWU/XO5+rqqvj4eMXHx1fY7uvrq/nz51e1VAAALAYMGFDh8oCAAKvfDDx27JjWr1+vUaNGVdh/7969ys/P16OPPqrffvtN7dq10/jx4+0OU468XHt9vEx+XcB8n8X+V33MYfVUdv6qOr8O+cQJAIDLSUFBgUaNGqWmTZvqwQcfrLDPvn37dPz4cT3zzDPy8vLS22+/rcGDB2v9+vXy8vKq9LZq4oqDXMXQeerCFVfrGva/6mMOq6em5o/gBADAOU6fPq0RI0bo999/13vvvSdPT88K+y1atEhnzpyxfOd3xowZioqK0qZNm3TPPfdUenuOvKR9fbpMPj8TUffUp/2vpjCH1VPZ+avqz2QQnAAA+MupU6c0bNgw7d+/X0uXLtW11157wb7u7u5WP9Du4eGhgIAAZWZm2rXNmri8++VyyfhLBXNtjf2v+pjD6qmp+XNx/CoBALj0lJaWauTIkTpw4IDeffdd3XDDDRfsaxiGevbsqY8++siyLC8vT3/88YdatWrljHIBAE7GJ04AAEj68MMPtWXLFs2bN0/e3t6WH2P/29/+Jh8fHxUVFen48eNq0qSJXF1d1b17d73xxhu6+uqr1aRJE73++uu66qqrFBUVVcsjAQDUBIITAACSPv/8c5WWlmr48OFWy8PDw/Xuu+9q+/btGjhwoL766isFBARo7NixcnNz05gxY3Tq1Cl16dJFCxYskKuray2NAABQkwhOAIB6a/fu3ZZ/L1q06KJ9IyIirPp7eHjoueee03PPPVdj9QEA6g6+4wQAAAAANvCJEwAAQBW5utbee9ClpYZKS7n0GuAsBCcAAAA7+Xl5qKTUkLd3xb/z5QzFJaU6nptHeAKchOAEAABgJ29PN7m6mPTUyu1KP3rK6du/vpmXXn8oRC4uJoIT4CQEJwAAgCpKP3pKvxw6UdtlAHACLg4BAAAAADYQnAAAAADABoITAAAAANhAcAIAAAAAGwhOAAAAAGADwQkAAAAAbCA4AQAAAIANBCcAAAAAsIHgBAAAAAA2EJwAAAAAwAaCEwAAAADYQHACAAAAABsITgAAAABgA8EJAAAAAGwgOAEAAACADW61XQAAAACqxtW19t4DLy01VFpq1Nr2AWcjOAEAAFxi/Lw8VFJqyNvbs9ZqKC4p1fHcPMIT6g2CEwAAwCXG29NNri4mPbVyu9KPnnL69q9v5qXXHwqRi4uJ4IR6g+AEAABwiUo/ekq/HDpR22UA9QIXhwAAAAAAGwhOAAAAAGADwQkAAAAAbCA4AQAAAIANBCcAAAAAsIHgBAAAAAA2EJwAAAAAwAaCEwAAAADYQHACAAAAABsITgAAAABgA8EJAFAvFRUV6e6779aWLVssyzIyMjR48GAFBwfrzjvv1HfffXfRdaxbt049e/aU2WxWXFyc/vzzz5ouGwBQSwhOAIB6p7CwUM8884z27NljWWYYhuLi4tS0aVOtWbNG9913n0aOHKlDhw5VuI60tDQlJCRo5MiRWrVqlU6cOKH4+HhnDQEA4GRutV0AAADOlJ6erjFjxsgwDKvlmzdvVkZGhlauXKmGDRuqdevW+vHHH7VmzRqNGjWq3HqWL1+uO+64Q71795YkJSYmKjo6WhkZGWrZsqUzhgIAcCI+cQIA1Ctbt25VRESEVq1aZbU8NTVV7du3V8OGDS3LQkNDlZKSUuF6UlNTFRYWZrndvHlztWjRQqmpqTVSNwCgdvGJEwCgXhkwYECFy7OystSsWTOrZb6+vjpy5EiF/Y8ePWpX/wsxmezqXql1OXKdgC3n73fsf1XHHFZPZeevqvNLcAIAQFJ+fr7c3d2tlrm7u6uoqKjC/gUFBXb1vxBf3yvsK7SW1glUpHHjRuWWsf9VH3NYPTU1f3YHpz/++EOTJ0/Wtm3bdOWVV+qRRx7RsGHDJJ29GtELL7yglJQUtWjRQuPHj1dkZKTlvj/88INefvllZWRkyGw2a+rUqVbngb/zzjtatGiRTp06pTvuuEMvvPCCPD09JZ39Iu+LL76oL774Qg0aNNCQIUM0ZMiQ6o4fAABJkoeHh3Jzc62WFRUVqUGDBhfsf35IKioqshy3KuvYsZM67+tWVWYynX3B4Mh11lWuri4VvmiHc+XknFZJSamk+rX/1RTmsHoqO39l/exl13ecSktLFRsbq8aNG+vjjz/Wiy++qHnz5unTTz+1eTWiQ4cOKS4uTjExMfrwww/VpEkTjRgxwvLl3M8//1xz5szR5MmTtXTpUqWmpiopKcmy7cTERO3YsUNLly7VxIkTNWfOHH322Wd2DxgAgIr4+/srOzvball2dna50/Fs9ffz87Nru4bh2L+aWGdd/EPdUR/3v5ret2u7hkv5r7LzVxV2Bafs7Gy1a9dOkyZN0rXXXquoqCjddNNNSk5OtlyNaPLkyWrdurWGDx+u4OBgrVmzRpK0evVqdezYUUOGDNENN9ygadOm6eDBg9q6daskadmyZRo0aJCio6PVqVMnvfjii1qzZo3y8/OVl5en1atXKyEhQR06dNCtt96qYcOGacWKFVUbNQAA5zGbzfrll19UUFBgWZacnCyz2XzB/snJyZbbhw8f1uHDhy/YHwBwabMrODVr1kyvvfaavLy8ZBiGkpOT9dNPPyk8PNzm1YjOv/qQp6enOnTooJSUFJWUlOjnn3+2ag8ODtaZM2e0a9cu7dq1S8XFxQoJCbFad2pqqkpLS6s6dgAALMLDw9W8eXPFx8drz549WrBggdLS0tS3b19JZ0/Dy8rKUklJiSSpf//+Wrt2rVavXq1du3Zp3Lhx6t69O5ciB4DLVJUvDtGjRw8dOnRI0dHRuu222/Tyyy9f9OpCF7ta0YkTJ1RYWGjV7ubmJh8fHx05ckQuLi5q3Lix1ZdwmzZtqsLCQuXm5qpJkyaVqrkuXKGkPl4tpT6OuSbVxXmsj48xY7b/fnWdq6ur3nzzTSUkJCgmJkbXXHON5s6dqxYtWkiStm/froEDB+qrr75SQECAQkJCNHnyZM2ePVvHjx9X165dNWXKlFoeBQCgplQ5OM2ePVvZ2dmaNGmSpk2bZvNqRBdrLzst4kLthmFU2CbJrqsX1aUrlNSlWpylPo7Z0er6F6Hr42PMmC9tu3fvtrp9zTXXaPny5RX2jYiIKNc/JiZGMTExNVYfAKDuqHJwCgoKknT2anfPPvus+vTpo/z8fKs+516N6EJXH/L29paHh4fl9vntnp6eKikpqbBN0gWvdlSRunCFkvp4tZTLYcx15epN5169qC65HB5jezFm++8HAMClzK7glJ2drZSUFPXs2dOy7Prrr9eZM2fk5+enffv2letfdvrdha4+1K5dO/n4+MjDw0PZ2dlq3bq1JKm4uFi5ubny8/OTYRjKyclRcXGx3NzOlpyVlaUGDRrI29u70vVX5yoajlaXanGW+jjmmlCX57A+PsaMGQCA+sGui0McOHBAI0eOVGZmpmXZjh071KRJE4WGhl70akTnX30oPz9fO3fulNlslouLi4KCgqzaU1JS5ObmprZt26pdu3Zyc3OzXGiibN1BQUFycbFrCAAAAABgN7tSR1BQkDp06KDx48crPT1d33zzjZKSkvTEE0/YvBpRnz59tG3bNi1YsEB79uxRfHy8AgICFBERIUkaMGCAFi1apI0bNyotLU2TJk3SAw88IE9PT3l6eqp3796aNGmS0tLStHHjRi1evFgDBw50/IwAAAAAwHnsOlWv7IpDU6ZM0YMPPihPT089+uijGjhwoEwm00WvRhQQEKA33nhDL7/8subOnauQkBDNnTtXpr8ut3TXXXfp4MGDmjBhgoqKitSrVy+NHTvWsu34+HhNmjRJgwYNkpeXl0aNGqVevXo5cCoAAAAAoGJ2XxzC399fc+bMqbDtYlcjkqSoqChFRUVdsD02NlaxsbEVtnl6emr69OmaPn26fQUDAAAAQDXxBSEAAAAAsIHgBAAAAAA2EJwAAAAAwAaCEwAAAADYQHACAAAAABsITgAAAABgA8EJAAAAAGwgOAEAAACADQQnAAAAALCB4AQAAAAANhCcAAAAAMAGghMAAAAA2EBwAgAAAAAbCE4AAAAAYAPBCQAAAABsIDgBAAAAgA0EJwAAAACwgeAEAAAAADYQnAAAAADABoITAAAAANhAcAIAAAAAGwhOAAAAAGADwQkAAAAAbCA4AQAAAIANBCcAAAAAsIHgBAAAAAA2EJwAAAAAwAa32i4AAIC64qOPPlJ8fHy55SaTSbt27Sq3/N5779Xu3butln366acKDAyssRoBALWD4AQAwF/uvPNOdevWzXK7uLhYgwYNUvfu3cv1LSkp0e+//67ly5fr2muvtSxv3LixEyoFADgbwQkAgL80aNBADRo0sNx+6623ZBiGnn322XJ9Dxw4oDNnzqhTp07y8PBwZpkAgFrAd5wAAKhAbm6u3n77bY0ZM0bu7u7l2tPT09W8eXNCEwDUEwQnAAAq8P7776tZs2a6/fbbK2zfu3ev/va3v2n48OHq2rWrHnnkEaWlpTm5SgCAs3CqHgAA5zEMQ6tXr9awYcMu2Oe3337T8ePH1a9fP40ePVoffPCBBg0apA0bNqh58+aV3pbJ5IiKrdflyHUCtpy/37H/VR1zWD2Vnb+qzi/BCQCA8/z888/KzMzUXXfddcE+U6ZMUUFBgby8vCRJkyZN0rZt27R27Vo98cQTld6Wr+8V1a7XGesEKtK4caNyy9j/qo85rJ6amj+CEwAA5/n2228VFhamK6+88oJ93NzcLKFJOnvJ8latWikzM9OubR07dlKGUeVSrZhMZ18wOHKddZWrq0uFL9rhXDk5p1VSUiqpfu1/NYU5rJ7Kzl9ZP3sRnAAAOE9aWpo6d+580T6PPvqoIiIiNHLkSElSaWmpdu/erYcfftiubRmGHP4CqSbWCVzI+fsa+1/1MYfVU1Pzx8UhAAA4z549e3T99ddbLSspKVFWVpaKiookST169NA777yjr776Svv27dPkyZN18uRJ3X///bVRMgCghvGJEwAA58nOzpa3t7fVssOHD+uWW27RsmXLFBERocGDB6uwsFAvvfSSsrOzZTabtWTJEqvT9wAAlw+CEwAA56nosuIBAQHavXu35bbJZNITTzxh14UgAACXLk7VAwAAAAAbCE4AAAAAYAPBCQAAAABsIDgBAAAAgA0EJwAAAACwgeAEAAAAADYQnAAAAADABoITAAAAANhgV3DKzMzU6NGjFR4erm7dumnatGkqLCyUJGVkZGjw4MEKDg7WnXfeqe+++87qvj/88IPuvvtumc1mDRw4UBkZGVbt77zzjrp166aQkBCNHz9e+fn5lrbCwkKNHz9eYWFhioyM1OLFi6s6XgAAAACwW6WDk2EYGj16tPLz87VixQrNmjVLmzZt0muvvSbDMBQXF6emTZtqzZo1uu+++zRy5EgdOnRIknTo0CHFxcUpJiZGH374oZo0aaIRI0bIMAxJ0ueff645c+Zo8uTJWrp0qVJTU5WUlGTZdmJionbs2KGlS5dq4sSJmjNnjj777DMHTwUAAAAAVMytsh337dunlJQUff/992ratKkkafTo0Zo+fbr+/ve/KyMjQytXrlTDhg3VunVr/fjjj1qzZo1GjRql1atXq2PHjhoyZIgkadq0aeratau2bt2qiIgILVu2TIMGDVJ0dLQk6cUXX9TQoUM1duxYGYah1atX6+2331aHDh3UoUMH7dmzRytWrNDtt99eA1MCAAAAANYq/YmTn5+fFi5caAlNZU6dOqXU1FS1b99eDRs2tCwPDQ1VSkqKJCk1NVVhYWGWNk9PT3Xo0EEpKSkqKSnRzz//bNUeHBysM2fOaNeuXdq1a5eKi4sVEhJite7U1FSVlpbaPWAAAAAAsFelP3Hy9vZWt27dLLdLS0u1fPlydenSRVlZWWrWrJlVf19fXx05ckSSLtp+4sQJFRYWWrW7ubnJx8dHR44ckYuLixo3bix3d3dLe9OmTVVYWKjc3Fw1adKk0oM1mSrdtcaU1VAXanGW+jjmmlQX57E+PsaM2f77AQBwKat0cDpfUlKSdu7cqQ8//FDvvPOOVbCRJHd3dxUVFUmS8vPzL9heUFBguV1Ru2EYFbZJsqy/snx9r7Crf02qS7U4S30cs6M1btyotku4qPr4GDNmAADqhyoFp6SkJC1dulSzZs1SYGCgPDw8lJuba9WnqKhIDRo0kCR5eHiUCzlFRUXy9vaWh4eH5fb57Z6eniopKamwTZJl/ZV17NhJ/XU9ilpjMp190VEXanGWy2HMrq4udSK05OScVklJ3TtF9XJ4jO3FmO2/HwAAlzK7g9OUKVP0/vvvKykpSbfddpskyd/fX+np6Vb9srOzLaff+fv7Kzs7u1x7u3bt5OPjIw8PD2VnZ6t169aSpOLiYuXm5srPz0+GYSgnJ0fFxcVycztbblZWlho0aCBvb2+7ajcM1ZkXOHWpFmepj2OuCXV5DuvjY8yYAQCoH+z6Hac5c+Zo5cqVevXVV3XXXXdZlpvNZv3yyy+W0+4kKTk5WWaz2dKenJxsacvPz9fOnTtlNpvl4uKioKAgq/aUlBS5ubmpbdu2ateundzc3CwXmihbd1BQkFxc+P1eAAAAADWv0slj7969evPNN/X4448rNDRUWVlZlr/w8HA1b95c8fHx2rNnjxYsWKC0tDT17dtXktSnTx9t27ZNCxYs0J49exQfH6+AgABFRERIkgYMGKBFixZp48aNSktL06RJk/TAAw/I09NTnp6e6t27tyZNmqS0tDRt3LhRixcv1sCBA2tmRgAAAADgPJU+Ve+rr75SSUmJ5s2bp3nz5lm17d69W2+++aYSEhIUExOja665RnPnzlWLFi0kSQEBAXrjjTf08ssva+7cuQoJCdHcuXNl+utSS3fddZcOHjyoCRMmqKioSL169dLYsWMt64+Pj9ekSZM0aNAgeXl5adSoUerVq5cjxg8AAAAANlU6OMXGxio2NvaC7ddcc42WL19+wfaoqChFRUVVaf2enp6aPn26pk+fXtlyAQAAAMBh+JIQAAAAANhAcAIAAAAAGwhOAAAAAGADwQkAAAAAbCA4AQAAAIANBCcAAAAAsIHgBAAAAAA2EJwAAAAAwAaCEwAAAADYQHACAAAAABsITgAAAABgA8EJAAAAAGwgOAEAAACADQQnAAAAALCB4AQAwDm+/PJLtWnTxupv9OjRFfb94YcfdPfdd8tsNmvgwIHKyMhwcrUAAGdxq+0CAACoS9LT0xUdHa0pU6ZYlnl4eJTrd+jQIcXFxWnUqFHq1q2b5s6dqxEjRuif//ynTCaTM0sGADgBwQkAgHPs3btXgYGB8vPzu2i/1atXq2PHjhoyZIgkadq0aeratau2bt2qiIgIZ5QKAHAiTtUDAOAce/fu1bXXXmuzX2pqqsLCwiy3PT091aFDB6WkpNRccQCAWkNwAgDgL4Zh6LffftN3332n2267TT179tSMGTNUVFRUrm9WVpaaNWtmtczX11dHjhxxVrkAACfiVD0AAP5y6NAh5efny93dXa+99poOHDigl156SQUFBXr++eet+pb1O5e7u3uFIetiHPl1qLJ18RUrOIur6/+9B1+237m5ucgwan7bJpOcsp0LMQxDpaWOLYD/w9VT2fmr6vwSnAAA+MvVV1+tLVu26Morr5TJZFK7du1UWlqqsWPHKj4+Xq6urpa+Hh4e5UJSUVGRvL297dqmr+8VDqm9ptcJnMvPy0MlpYa8vT3Ltfn4NHJKDSWlhlxdai9h1OT2+T9cPTU1fwQnAADO4ePjY3W7devWKiws1PHjx9WkSRPLcn9/f2VnZ1v1zc7OVrt27eza3rFjJx32rrnJdPYFgyPXWVe5urqocWPnvEBHed6ebnJ1MemplduVfvSU07ffvY2fxt7Wtta2f30zL73+UIhyck6rpKTUYeutT/+Ha0Jl56+sn70ITgAA/OXbb7/Vs88+q6+//lqenmffSf/111/l4+NjFZokyWw2Kzk52XI7Pz9fO3fu1MiRI+3apmE4/nSjmlgnUJH0o6f0y6ETTt9ua79Gtbr9c9XE/zX+D1dPTc0fF4cAAOAvISEh8vDw0PPPP699+/bpm2++UWJiooYNG6aSkhJlZWVZTs/r06ePtm3bpgULFmjPnj2Kj49XQEAAlyIHgMsUwQkAgL94eXlp0aJF+vPPP9WnTx8lJCTowQcf1LBhw3T48GFFRkZq+/btkqSAgAC98cYbWrNmjfr27avc3FzNnTuXH78FgMsUp+oBAHCOG264QUuWLCm3PCAgQLt377ZaFhUVpaioKGeVBgCoRXziBAAAAAA2EJwAAAAAwAaCEwAAAADYQHACAAAAABsITgAAAABgA8EJAAAAAGwgOAEAAACADQQnAAAAALCB4AQAAAAANhCcAAAAAMAGghMAAAAA2OBW2wUAAICqcXExycXFVG65q6tz3hctLTVUWmo4ZVsAUNsITgAAXIJcXEy60qeh3CoISY0bN3JKDcUlpTqem0d4AlAvEJwAALgEubiY5ObqoqdWblf60VNO3/71zbz0+kMhcnExEZwA1AsEJwAALmHpR0/pl0MnarsMALjscXEIAAAAALCB4AQAAAAANhCcAAAAAMAGghMAAAAA2EBwAgAAAAAbCE4AAAAAYEOVg1NRUZHuvvtubdmyxbIsIyNDgwcPVnBwsO6880599913Vvf54YcfdPfdd8tsNmvgwIHKyMiwan/nnXfUrVs3hYSEaPz48crPz7e0FRYWavz48QoLC1NkZKQWL15c1dIBAAAAwC5VCk6FhYV65plntGfPHssywzAUFxenpk2bas2aNbrvvvs0cuRIHTp0SJJ06NAhxcXFKSYmRh9++KGaNGmiESNGyDDO/mje559/rjlz5mjy5MlaunSpUlNTlZSUZFl/YmKiduzYoaVLl2rixImaM2eOPvvss+qMHQAAAAAqxe7glJ6ergceeED79++3Wr5582ZlZGRo8uTJat26tYYPH67g4GCtWbNGkrR69Wp17NhRQ4YM0Q033KBp06bp4MGD2rp1qyRp2bJlGjRokKKjo9WpUye9+OKLWrNmjfLz85WXl6fVq1crISFBHTp00K233qphw4ZpxYoVDpgCAAAAALg4u4PT1q1bFRERoVWrVlktT01NVfv27dWwYUPLstDQUKWkpFjaw8LCLG2enp7q0KGDUlJSVFJSop9//tmqPTg4WGfOnNGuXbu0a9cuFRcXKyQkxGrdqampKi0ttXcIAAAAAGAXN3vvMGDAgAqXZ2VlqVmzZlbLfH19deTIEZvtJ06cUGFhoVW7m5ubfHx8dOTIEbm4uKhx48Zyd3e3tDdt2lSFhYXKzc1VkyZNKlW7yVSpbjWqrIa6UIuz1Mcx16S6OI/18TFmzPbfDwCAS5ndwelC8vPzrYKNJLm7u6uoqMhme0FBgeV2Re2GYVTYJsmy/srw9b2i0n1rWl2qxVnq45gdrXHjRrVdwkXVx8eYMQMAUD84LDh5eHgoNzfXallRUZEaNGhgaT8/5BQVFcnb21seHh6W2+e3e3p6qqSkpMI2SZb1V8axYyf117Uoao3JdPZFR12oxVkuhzG7urrUidCSk3NaJSV17/TUy+Exthdjtv9+AABcyhwWnPz9/ZWenm61LDs723L6nb+/v7Kzs8u1t2vXTj4+PvLw8FB2drZat24tSSouLlZubq78/PxkGIZycnJUXFwsN7ezJWdlZalBgwby9vaudI2GoTrzAqcu1eIs9XHMNaEuz2F9fIwZMwAA9YPDfgDXbDbrl19+sZx2J0nJyckym82W9uTkZEtbfn6+du7cKbPZLBcXFwUFBVm1p6SkyM3NTW3btlW7du3k5uZmudBE2bqDgoLk4sJv+AIAUFtcXV3k5ub8P1dXjv+ofY7e/8v268qs18WFL5A6m8M+cQoPD1fz5s0VHx+vESNGaNOmTUpLS9O0adMkSX369NGiRYu0YMECRUdHa+7cuQoICFBERISksxedmDBhggIDA9WsWTNNmjRJDzzwgDw9PSVJvXv31qRJk/Tyyy/r6NGjWrx4sWXdAADAufy8PFRSasjb27O2SwGcrqb3/8p8PaC4pFTHc/NUWsopAM7isODk6uqqN998UwkJCYqJidE111yjuXPnqkWLFpKkgIAAvfHGG3r55Zc1d+5chYSEaO7cuTL9dbmlu+66SwcPHtSECRNUVFSkXr16aezYsZb1x8fHa9KkSRo0aJC8vLw0atQo9erVy1HlAwAAO3h7usnVxaSnVm5X+tFTTt9+9zZ+GntbW6dvF5Bqf/+/vpmXXn8oRC4uJoKTE1UrOO3evdvq9jXXXKPly5dfsH9UVJSioqIu2B4bG6vY2NgK2zw9PTV9+nRNnz69asUCAACHSz96Sr8cOuH07bb2q/0L9gC1tf+jdnCCMAAAAADYQHACAOAcmZmZGj16tMLDw9WtWzdNmzZNhYWFFfZ98skn1aZNG6u/TZs2ObliAIAzOOw7TgAAXOoMw9Do0aPl7e2tFStW6Pjx4xo/frxcXFz0j3/8o1z/vXv3KikpSTfddJNl2ZVXXunMkgEATkJwAgDgL/v27VNKSoq+//57NW3aVJI0evRoTZ8+vVxwKioq0oEDBxQUFCQ/P7/aKBcA4EScqgcAwF/8/Py0cOFCS2gqc+pU+atm7du3TyaTSS1btnRWeQCAWsQnTgAA/MXb21vdunWz3C4tLdXy5cvVpUuXcn337dsnLy8vjRs3Tlu3btVVV12lUaNGXfTqsRUx8RuWAKqB55D/UzYXtuakqnNGcAIA4AKSkpK0c+dOffjhh+Xa9u3bp4KCAkVGRio2NlZffvmlnnzySa1atUpBQUGV3oav7xWOLBlAPVKZH8qtj2rqeZXgBABABZKSkrR06VLNmjVLgYGB5dpHjBihRx991HIxiLZt2+qXX37RBx98YFdwOnbspIwq/H6lq6sLL5qAei4n57RKSkpru4w6w2Q6G5psPa+W9bMXwQkAgPNMmTJF77//vpKSknTbbbdV2MfFxaXcFfRatWql9PR0u7ZlGKpScAIAieePitTU8yoXhwAA4Bxz5szRypUr9eqrr+quu+66YL/nnntO8fHxVst27dqlVq1a1XSJAIBaQHACAOAve/fu1ZtvvqnHH39coaGhysrKsvxJUlZWlgoKCiRJPXr00KeffqpPPvlEf/zxh+bMmaPk5GQ98sgjtTkEAEAN4VQ9AAD+8tVXX6mkpETz5s3TvHnzrNp2796tyMhITZs2TTExMerVq5cmTpyoefPm6dChQ7rhhhu0cOFCBQQE1FL1AICaRHACAOAvsbGxio2NvWD77t27rW7369dP/fr1q+myAAB1AKfqAQAAAIANBCcAAAAAsIHgBAAAAAA2EJwAAAAAwAaCEwAAAADYQHACAAAAABsITgAAAABgA8EJAAAAAGwgOAEAAACADQQnAAAAALCB4AQAAAAANhCcAAAAAMAGghMAAAAA2EBwAgAAAAAbCE4AAAAAYAPBCQAAAABsIDgBAAAAgA0EJwAAAACwgeAEAAAAADa41XYBQGW5uJjk4mKqlW27uvIeAwAAQH1GcMIlwcXFpCt9GsqNAAMAAFDravMNbUkqLTVUWmo4dZsEJ1wSXFxMcnN10VMrtyv96Cmnb797Gz+Nva2t07cLAABQ19SFN7SLS0p1PDfPqeGJ4IRLSvrRU/rl0Amnb7e1XyOnbxMAAKAuqu03tK9v5qXXHwqRi4uJ4AQAAACgbqutN7RrC18YAQAAAAAbCE4AAAAAYAPBCQAAAABsIDgBAAAAgA0EJwAAAACwgeAEAAAAADYQnAAAAADABoITAAAAANhAcAIAAAAAGwhOAAAAAGDDJRWcCgsLNX78eIWFhSkyMlKLFy+u7ZIAAJcZe441O3fuVL9+/WQ2m9WnTx/t2LHDiZUCAJzpkgpOiYmJ2rFjh5YuXaqJEydqzpw5+uyzz2q7LADAZaSyx5q8vDzFxsYqLCxMH330kUJCQjR8+HDl5eXVQtUAgJp2yQSnvLw8rV69WgkJCerQoYNuvfVWDRs2TCtWrKjt0gAAlwl7jjUbNmyQh4eHxo0bp9atWyshIUGNGjXiDT0AuExdMsFp165dKi4uVkhIiGVZaGioUlNTVVpaWouVAc7j6uoiN7fa+XNxMdX28IEaZ8+xJjU1VaGhoTKZzv7fMJlM6ty5s1JSUpxZMgDASdxqu4DKysrKUuPGjeXu7m5Z1rRpUxUWFio3N1dNmjSxuQ4XF8kwqrZ9k8lkOThWR9kq3Nxc7K7FMP7v/rWhqtuvzpjLuLqezfgdWnjL0921aiuphtZ+XrW6/dD/56OSUkPe3p5O33aZ4pJSnT5VoNLS8g+iIx5jW+ra/u+MMV9s+85mGIakswO197m0Nuu2lz3HmqysLF1//fVW9/f19dWePXvs2mZ1jk1S/X1eZPtsvz5vv1XTRpL+7/WRs9X267Ky8Utnn0PLlB1vbD2vVvW4dMkEp/z8fKsDmSTL7aKiokqto0mTKxxeV1X5+DSy3eky44gxJ/Y1O6CSS3f7tcnN1UVXXtnwon3Yr+uHuvRc6mj2HGsu1Leyx6Qy1Z3P2n5eYvtsn+3Xntp8Q1Wq/fE3blzxMbimjlOXzKl6Hh4e5Q5GZbcbNGhQGyUBAC4z9hxrLtSXYxIAXJ4umeDk7++vnJwcFRcXW5ZlZWWpQYMG8vb2rsXKAACXC3uONf7+/srOzrZalp2drWbNmjmlVgCAc10ywaldu3Zyc3Oz+tJtcnKygoKC5OJyyQwDAFCH2XOsMZvN2r59+1/f/zr7PbBt27bJbK6/p/QCwOXskkkcnp6e6t27tyZNmqS0tDRt3LhRixcv1sCBA2u7NADAZcLWsSYrK0sFBQWSpNtvv10nTpzQ1KlTlZ6erqlTpyo/P1933HFHbQ4BAFBDTIbhjOtBOUZ+fr4mTZqkL774Ql5eXho6dKgGDx5c22UBAC4jFzvWtGnTRtOmTVNMTIwkKS0tTRMnTtTevXvVpk0bvfjii2rfvn0tVg8AqCmXVHACAAAAgNpwyZyqBwAAAAC1heAEAAAAADYQnAAAAADABoJTDTMMQzNmzFCXLl0UHh6uxMRElZaW2rzfyZMn1a1bN3300UdOqNKx7B1zSkqKHnroIYWEhOi2227T6tWrnVht1RUWFmr8+PEKCwtTZGSkFi9efMG+O3fuVL9+/WQ2m9WnTx/t2LHDiZU6hj3j/frrr3XfffcpJCRE99xzj7766isnVuo49oy5zIEDBxQSEqItW7Y4oULHs2fMu3fvVv/+/dWpUyfdc8892rx5sxMrrZ/sfX7NyMjQ4MGDFRwcrDvvvFPfffedVfu9996rNm3aWP3997//relhOJUjn6vXrVunnj17ymw2Ky4uTn/++WdNl18nOHIOw8LCyu1zp0+frukh1KqqHEv+85//6JZbbim3vD7ug46cv2rvfwZq1KJFi4yoqCjjp59+Mn788UcjMjLSWLhwoc37vfDCC0ZgYKCxZs0aJ1TpWPaM+ejRo0ZYWJgxc+ZM47fffjPWrVtnBAUFGZs2bXJu0VUwefJk45577jF27NhhfPHFF0ZISIjxr3/9q1y/06dPG127djVeeeUVIz093ZgyZYpx8803G6dPn66FqquusuP99ddfjQ4dOhhLly41fv/9d2P58uVGhw4djF9//bUWqq6eyo75XEOHDjUCAwONzZs3O6lKx6rsmE+cOGHcfPPNxvPPP2/8/vvvxuuvv26EhoYa2dnZtVB1/WHP82tpaalxzz33GGPGjDHS09ON+fPnG2az2Th48KBhGIZRXFxsBAUFGVu3bjWOHj1q+Ttz5owzh1TjHPVcnZqaanTq1Mn4+OOPjV9//dV45JFHjNjYWGcPp1Y4ag6PHDliBAYGGvv377fa50pLS509JKey91iya9cu4+abbzaio6OtltfXfdBR8+eI/Y/gVMOioqKsws8nn3xS7oE8308//WTceuutRteuXS/J4GTPmN977z3j9ttvt1r2wgsvGM8880yN1lhdp0+fNoKCgqxeHM+dO9d45JFHyvVdvXq10aNHD8t/zNLSUuPWW2+9pB5be8ablJRkDB061GrZkCFDjFdffbXG63Qke8ZcZu3atcZDDz10yQYne8a8dOlSo2fPnkZxcbFlWUxMjPH11187pdb6yp7n1x9++MEIDg62epNm0KBBxuzZsw3DMIzff//daNu2rVFQUFCzRdciRz5Xjx071vjHP/5h6X/o0CGjTZs2xv79+2t4FLXLkXP4/fffG127dnVO4XWEvceS999/3wgODjbuueeecv+36+M+6Mj5c8T+x6l6NSgzM1OHDx/WjTfeaFkWGhqqgwcP6ujRoxXep6ioSC+88IImTJggd3d3Z5XqMPaOuVu3bpo2bVq55adOnarROqtr165dKi4uVkhIiGVZaGioUlNTy502k5qaqtDQUJlMJkmSyWRS586dlZKS4sySq8We8d5///169tlny63j5MmTNV6nI9kzZknKyclRUlKSJk+e7MwyHcqeMW/dulW33HKLXF1dLcvWrFmjqKgop9Vb39j7/Jqamqr27durYcOGVv3LnnvS09PVvHlzeXh41HjttcWRz9WpqakKCwuz9G/evLlatGih1NTUmh9ILXLkHKanp+u6665zWu11gb3Hkn//+9+aPn16hb9TWh/3QUfOnyP2P4JTDcrKypIkNWvWzLKsadOmkqQjR45UeJ/58+erffv2ioyMrPkCa4C9Yw4ICFBwcLDl9rFjx7R+/XrddNNNNVtoNWVlZalx48ZW4bZp06YqLCxUbm5uub7nzock+fr6XnAfqIvsGW/r1q3Vtm1by+09e/boxx9/rPOP6fnsGbMkvfLKK7r//vt1ww03OLFKx7JnzBkZGWrSpIleeOEFde3aVQ888ICSk5OdXHH9Yu/zq63nnr179+pvf/ubhg8frq5du+qRRx5RWlpaTZVfKxz5XH306NFL/rm8Khw5h3v37lV+fr4effRRRUZG6vHHH9dvv/1W42OoTfYeS95880316tWrwnXVx33QkfPniP3Pza7eKKegoECZmZkVtuXl5UmS1YNd9u+ioqJy/dPT07Vy5Ur985//rIFKHceRYz5/vaNGjVLTpk314IMPOqjampGfn1/uE8ELjfNCfW3NR11iz3jP9eeff2rUqFHq3LlzhV/SrMvsGfMPP/yg5ORkrVu3zmn11QR7xpyXl6cFCxZo4MCBevvtt7V+/XoNHTpU//rXv9S8eXOn1Xy5ceTzq63nnt9++03Hjx9Xv379NHr0aH3wwQcaNGiQNmzYcNk8ho58ri4oKLjkn8urwpFzuG/fPh0/flzPPPOMvLy89Pbbb2vw4MFav369vLy8anAUtaeqx8+K1Md90JHz54j9j+BUTampqRo4cGCFbWPHjpV09oEtOxWi7EH29PS06msYhp5//nmNHj3a8g5iXeWoMZ/r9OnTGjFihH7//Xe99957F+1bF3h4eJT7D1t2u0GDBpXqe36/usye8ZbJzs7WY489JsMwNHv2bLm4XFofcFd2zAUFBZowYYImTpx4ST2mFbHncXZ1dVW7du00evRoSVL79u31/fffa+3atXriiSecU/BlyJHPrx4eHuXekT33uWfKlCkqKCiwvGCYNGmStm3bdlk9ho58rr5Qe10/XlWXI+dw0aJFOnPmjBo1aiRJmjFjhqKiorRp0ybdc889NTWEWlWV46e967qc90FHzp8j9j+CUzVFRERo9+7dFbZlZmYqKSlJWVlZCggIkPR/p1r4+flZ9T106JC2b9+u3bt3a/r06ZLOpuyJEydqw4YNWrhwYQ2Owj6OGnOZU6dOadiwYdq/f7+WLl2qa6+9tkbqdiR/f3/l5OSouLhYbm5n/xtlZWWpQYMG8vb2Ltc3Ozvball2dna5j9vrMnvGK53dD8pe/C1btkxNmjRxar2OUNkxp6WlKSMjwxIgyjz++OPq3bv3JfWdJ3seZz8/P7Vq1cpq2bXXXqvDhw87rd7LkSOfX/39/ZWenm617NznHjc3N6t3WU0mk1q1anXBT7wuRY58rr5Q+4WObZcLR86hu7u71acHHh4eCggIuKz2ufPZe/y0ta76tg86cv4csf9dWm8BX2L8/f3VokULq/P+k5OT1aJFi3Ivmv39/fXFF1/ok08+sfw1a9ZMo0eP1tSpU51depXZM2ZJKi0t1ciRI3XgwAG9++67l8z3Q9q1ayc3NzerCzwkJycrKCio3CcrZrNZ27dvl2EYks5+urht2zaZzWZnllwt9ow3Ly9Pw4YNk4uLi5YvXy5/f38nV+sYlR1zp06dyv3flaSXXnpJTz31lJOrrh57Hufg4OByL/D37dunq6++2hml1kv2Pr+azWb98ssvKigosOpf9tzz6KOPas6cOZa20tJS7d69u1wgvpQ58rnabDZbzf3hw4d1+PDhS+q5vCocNYeGYahnz55Wv0+Zl5enP/7447La585nz/zZUh/3QUfNn8P2v2pdkw82vfXWW0ZkZKSxefNmY/PmzUZkZKSxePFiS/uxY8eMU6dOVXjf6OjoS+qS1WXsGfOqVauMtm3bGps2bbK6pn5OTk4tVV95L7zwgnHXXXcZqampxpdffml07tzZ+Pzzzw3DOPv7VPn5+YZhGMbJkyeNLl26GFOmTDH27NljTJkyxejatesl9ztOlR3vq6++anTq1MlITU21ekxPnDhRm+VXSWXHfL5L9XLkhlH5MR84cMAIDg42Zs+ebfz+++/Ga6+9ZgQHBxtHjhypzfIve/Y8vxYXFxt33nmn8T//8z/Gf//7X+Ott94ygoODLb/jtHjxYiM0NNTYuHGjsXfvXmPixInGzTffbJw8ebJWxlZTHPVcvW3bNqNDhw7GBx98YPkNneHDh9fauJzJUXM4ZcoUo3v37sbmzZuN//73v0ZcXJxx9913W/2sweWoKseSNWvWlLucdn3dBx01f47Y/whONay4uNh4+eWXjbCwMCMiIsJISkqy+qGt6Ohoy29qnO9SDU72jHnIkCFGYGBgub+L/VZOXZGXl2eMGzfOCA4ONiIjI40lS5ZY2s7/8eLU1FSjd+/eRlBQkNG3b1/jl19+qYWKq6ey473tttsqfEzP/e2JS4U9j/G5LuXgZM+Y//Of/xj333+/0bFjR+O+++4ztm7dWgsV1y/2HlN+//134+GHHzY6duxo3HXXXcb3339vaSstLTXmzZtndO/e3ejYsaPx8MMPG7t373bqeJzBkc/Va9asMaKioozg4GAjLi7O+PPPP501jFrlqDksKCgwpk2bZnTt2tUwm83G8OHDjUOHDjlzKLWiKseSil74ly2vb/ugo+bPEfufyTD++jwVAAAAAFAhvuMEAAAAADYQnAAAAADABoITAAAAANhAcAIAAAAAGwhOAAAAAGADwQkAAAAAbCA4AQAAAIANBCcAAAAAsIHgBAAAAAA2EJwAAAAAwAaCEwAAAADYQHACAAAAABv+P34JWPB3M3IWAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 1000x500 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAzsAAAHBCAYAAABOuaV5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABHpklEQVR4nO3df1xUdaL/8fcMXBAlUhEps1tXE38gImpoqYt4NWvXfqFt2pZr6mJXTG+mtv5o11KvJZU/8lfmjyxKvebWbtnWtvsoy8p0UXHVbAFLcVEB8xeKoMzn+4df5jYhysAww5x5PR+PeTyY8znnfD6f83PenDNnbMYYIwAAAACwGLuvGwAAAAAAdYGwAwAAAMCSCDsAAAAALImwAwAAAMCSCDsAAAAALImwAwAAAMCSCDsAAAAALImwAwAAAMCSCDsAPILfJwYAAPUNYQc+8Yc//EFt27bV4cOHfd2UWiksLNT06dOVnJyshIQEpaSk6IMPPnCWV/Szqtc777zj1fb27dtXv/3tbz0+TXZ2toYOHVqbpgFAvcO56srnqsOHD6tt27b6wx/+cMX6a3LuATwl2NcNAPxVWVmZRo0apTNnzmjcuHFq3ry5PvroIz3xxBMqKyvTfffdpz59+mj9+vWVpp0+fbqKi4uVlJTk1TYvWrRI4eHhHp/vhx9+qJ07d3p8vgCA2qkP56q6OvcA1UHYAWro008/1f79+7VhwwZ16tRJktSzZ0/l5+drxYoVuu+++9S0aVM1bdrUZbrXX39dubm5WrduXaWyutahQwev1gcA8K36cK7i3ANf4jY21DmHw6ElS5aoT58+io+P15gxY3Tq1KlK4/3zn//U6NGj1aVLF3Xp0kVpaWnKy8tzln/99ddq27atvvrqK40YMULx8fHq2bOn0tPTVV5e7hzviy++0C9/+UslJCTo1ltv1X/9138pNzfXpa6//vWvSklJUVxcnHr27KlZs2bp3LlzbvUrPDxcDz74oOLi4lyGt2rVSocOHbrsNEVFRZo/f76GDh2q+Pj4y45z8uRJdejQQa+99ppz2JEjR9S2bVtNmjTJOczhcKh79+565ZVXJEmlpaWaO3eukpKS1LFjR919990utylIlW8lKCgo0BNPPKHExETdeuut+t3vfqd58+apb9++LtNduHBBc+fOVc+ePdW5c2eNGDFCBw8elCS9/PLLWrRokSSpbdu2evnllyVVbz0AQH3Buer/VOdc9WPHjh3T6NGj1alTJyUlJWnhwoUuff3puefw4cOaPHmyevXqpdjYWN12222aPHmyTpw44Rxnz549+vWvf62uXbsqISFBw4cP165du1zq/fvf/66HH35Y8fHxSkxM1FNPPaUffvjBWe5wOJzntI4dO6pv37568cUXdeHChav2CdZB2EGdS09P1+LFizV48GAtWrRIjRs31osvvugyznfffachQ4bo+PHjev755zV79mzl5eVp6NChOn78uMu4EydOVNeuXbVs2TINHDhQK1as0IYNGyRJeXl5GjNmjDp27KilS5dq9uzZ+u6775SamiqHwyFJeu+995SWlqZWrVpp8eLFGjt2rP70pz9pzJgxbn3J/vbbb9ezzz4rm83mHHbhwgVt3rxZt9xyy2WnWbhwoex2u/77v/+7yvk2btxYnTt31pdffukc9tVXX0m6dGCvkJWVpZMnT6pPnz4yxigtLU3r1q3To48+qqVLlyohIUFPPPGE3n333cvWU1ZWpl//+tfasWOHpk6dqjlz5mj//v1atWpVpXE/+OADZWdn67nnntPvf/977dmzR0888YQk6YEHHtDgwYMlSevXr9cDDzxQrfUAAPUJ56r/U51z1Y+9/PLLioyM1OLFizVo0CAtW7ZMzz///GXHLSkp0bBhw5Sbm6vf//73WrlypYYNG6ZNmzZp3rx5kqTi4mKNGjVKTZo00csvv6x58+appKREI0eO1JkzZyRJ27dv1/Dhw9WgQQPNnz9fU6dO1bZt2zRs2DCdP39ekvTqq69q7dq1SktL06pVqzR06FCtXLlSS5cure7igxUYoA6dOnXKxMbGmvT0dJfhI0eONDExMSYvL88YY8yECRPM7bffbs6cOeMc58SJE6Zr167mueeeM8YYs3XrVhMTE2PmzZvnMq++ffua0aNHG2OMef/9901MTIw5evSoszwrK8u89NJL5syZM8bhcJif/exnZuTIkS7z+PLLL01MTIz55JNPatXf2bNnm5iYGPPRRx9VKisqKjJxcXHmpZdeuup8XnnlFdO5c2dTVlZmjDFm4sSJ5v7773dZZgsWLDDJycnGGGO2bNliYmJizKZNm1zmM3HiRNOzZ09z4cIFY4wxycnJ5qmnnjLGGLNhwwYTExNj/vGPfzjHP3PmjOnevbtzvhXTJCUlOdtijDHz5s0zMTExzvW1cOFCExMT4yy/2noAgPqEc9X/cedclZeXZ2JiYkxqamql+cfGxpoTJ04YY1zPPfv27TNDhw41hw4dcplm9OjRZsCAAcYYY3bu3GliYmJMZmams/zgwYNm7ty55siRI8YYYx588EEzcOBAc/HiRec4Bw4cMO3btzcZGRnGGGNGjBhhHn30UZd63njjDfPuu+9etW+wDq7soE7t2rVLFy5cUHJyssvwu+66y+X91q1blZiYqAYNGujixYu6ePGiwsPD1a1bN5crHJKUkJDg8v66665zXtaPj49XaGioBg8erNmzZ+vzzz9Xu3bt9MQTTyg8PFwHDhzQ0aNH1bdvX2c9Fy9e1K233qrw8HB98cUXNeqnMUZz587VmjVrNHLkSN1xxx2VxtmwYYMcDod+/etfX3V+SUlJOnfunLKyspzL59e//rXCwsK0fft2SdJnn32mPn36SLp05cdmsykpKcmlX3379lVhYaGys7Mr1bF161bdeOON6tixo3NYeHh4pXUlSZ06ddK//du/Od+3bNlSknT69OnLtv9q6wEA6hPOVf/HnXNVhZ8upzvuuEMXLlxwnsN+rH379nrrrbd0ww036Pvvv9fmzZu1cuVKHThwQGVlZZKkNm3aqGnTpnrsscf0u9/9Th9//LGaNWumSZMm6brrrlNJSYmysrKUlJQkY4xz+dx4441q3bq1c/l0795dX3zxhR566CGtWLFCOTk5evjhh3Xvvfe6s9jg53hAAepUxf3OTZo0cRkeFRXl8v7kyZP64IMPKn3HRFKlL0Y2aNDA5b3dbnde0m/ZsqUyMjK0fPlyvf3223r99dcVERGhhx56SP/93/+tkydPSpKeeeYZPfPMM5XqKigocK+DunQ72G9/+1tt2rRJI0eO1OTJky873kcffaSePXtW64uebdu21fXXX68vv/xSTZo0UUFBgW6//XZ16dJF27ZtU1JSkvbu3avx48dLurT8jDHq0qXLZedXUFCg9u3buww7ceKEIiMjK417uWENGzZ0eW+3X/o/SVW3pF1tPfz4dgoA8DXOVf/HnXNVhZ8up4ppL/edJ0lavXq1li1bppMnT6pZs2bq2LGjwsLCnLeoNWrUSG+++aaWLl2qP//5z1q/fr0aNGige++9V9OnT9fp06flcDj06quv6tVXX600/9DQUEnSqFGj1KhRI23cuFEvvPCC0tPT1aZNG02fPl09evSodv/g3wg7qFMVJ47jx4+rVatWzuEVB/IK11xzjW6//XY9+uijleYRHOzeZtqpUyctWrRIZWVlyszM1Pr167Vs2TK1a9fOeX/y5MmTlZiYWGnaa6+91q26zpw5o9TUVO3atUtTp06t8j9hx44d0759+9z6T1lSUpK++uorRUZG6j/+4z8UFRWl7t2763//93+1ZcsWNWjQQN27d5d0afk1bNhQr7/++mXnddNNN1UaFh0dre+//77S8J/ed15TV1oPP/0vIAD4EueqS2pyrpIqh5qioiJJl//n2XvvvafnnntOkyZNUkpKijMYjR8/Xv/4xz+c47Vq1cr5UIfdu3frj3/8o9auXat///d/15AhQ2Sz2TR8+HD94he/qFRHWFiYpEsB81e/+pV+9atf6fjx49q8ebOWLVumxx9/XF988YVCQkLc6if8E7exoU4lJCSoQYMG+vDDD12Gf/LJJy7vExMTlZOTo/bt2ysuLk5xcXHq2LGjXnvtNX388cfVru+1115TcnKyysrKFBISottuu00zZ86UJOXn56tVq1aKjIzU4cOHnfXExcUpOjpaL774ovbt21ftui5evKjHHntM//jHPzRv3rwrnhwqLuVXdeXlcvr06aN//OMf+uyzz5wnux49eujw4cNat26devbs6TxQJyYm6ty5czLGuPTrn//8pxYvXqyLFy9Wmn9iYqIOHz6sb775xjns/Pnz+vzzz6vdxgoVV3oqXG09AEB9wrnqkpqcq6RLj7f+sU2bNiksLOyyT3LLzMxURESERo0a5Qw6Z8+eVWZmpvNugQ8//FA9evRQYWGhgoKClJCQoBkzZigiIkL5+fkKDw9Xhw4ddODAAZfl06ZNG7388sv6+uuvJUlDhgzRrFmzJF0KXikpKfrVr36l06dPq7i42K0+wn9xZQd1qlGjRhozZozmz5+vsLAw9ejRQ5s3b650AhkzZoyGDBmi0aNHa+jQoQoNDdX69ev117/+VQsXLqx2fT169NALL7ygtLQ0PfzwwwoKCtK6desUEhKi5ORkBQUF6YknntDvfvc7BQUFKTk5WadPn9aSJUt07NgxxcbGVruuN998U3//+9/14IMP6rrrrqv0SMzOnTs7//7nP/+pkJAQ/fu//7tbfbHb7fr000/10ksvSZJiY2PVqFEjZWZmavbs2c5xk5KSdOutt2rMmDEaM2aMWrdurd27d2vhwoXq3bv3ZW9HGDhwoJYvX660tDSNHz9eERERWr16tY4fP64WLVpUu52SFBERIUl6//33FR8ff9X1AAD1CeeqS2pyrpKkv/zlL4qOjtbtt9+uLVu2aP369Ro/fvxlv6PZqVMnrV27Vs8995ySk5NVUFCglStXqqioyHnFqkuXLnI4HEpLS1NqaqoaNWqkP//5zzpz5ozze0YTJkxQamqqnnzySd1zzz0qLy/XqlWrlJWVpTFjxkiSbr31Vq1atUrNmjVTQkKCjh07ptWrVysxMdHrv3MH3yHsoM6NHj1aDRs21Jo1a7RmzRolJCToqaee0owZM5zjtGvXTm+++abmzZunyZMnyxijmJgYLV68WP/5n/9Z7bratWunZcuWafHixZowYYLKy8vVsWNHrVq1ynlrwgMPPKBGjRppxYoVWr9+vRo2bKguXbrohRde0I033ljtuv7yl79IuvS45cv98vS3337r/LuoqMgZCKorLCxM3bt3d7myExwcrG7durk8nEC6dGVl+fLlWrBggV555RUdP35c0dHRevTRR5WWlnbZ+QcHB2vlypWaPXu2ZsyYoeDgYN1zzz1q3LixvvvuO7faescdd+iPf/yjfvvb32rw4MGaMWPGVdcDANQnnKtqdq6SpGnTpmnTpk167bXXFBUVpalTp2rYsGGXHff+++/X4cOHtXHjRr311luKjo5WUlKSHnroIT399NPKzc1V69attWLFCi1YsEDTpk1TSUmJ86pNxXdtevXqpZUrV2rRokUaN26c/u3f/k2xsbFavXq1M8CNHz9eISEh2rhxoxYvXqxrrrlGffv21ZNPPul2H+G/bMa48bB2AJaRnZ2tAwcO6I477nB5YMDgwYN13XXXOX8oFAAAwF9xZQf4ifLy8qv+YJvNZlNQUJCXWlQ3zp07p/Hjx+uhhx5S//79VV5erg8++EB79uzRxIkTfd08AMAVBMq5CqgtruwAP9G3b1/961//uuI4iYmJeuONN7zUorrz4YcfauXKlcrNzZUxRh06dNB//dd/qVevXr5uGgDgCgLpXAXUBmEH+Ilvv/3W+cNmVWnUqBHfPQEA+AznKqB6CDsAAAAALInf2QEAAABgSYQdAAAAAJZE2AEAAABgSYQdAAAAAJbkd7+zc/z4GV3ukQo2mxQZeU2V5VYUiH2WArPfgdhnKTD7XR/7XNEmVK0u1ld93BbqO5ZZzbDc3McyqxlPLrfqnpv8LuwYoysunKuVW1Eg9lkKzH4HYp+lwOx3IPbZn9Xl+mJbcB/LrGZYbu5jmdWMN5cbt7EBAAAAsCTCDgAAAABLIuwAAAAAsCTCDgAAAABLIuwAAAAAsCTCDgAAAABLIuwAAAAAsCTCDgAAAABLIuwAAAAAsCTCDgAAAABLIuwAAALaxx9/rLZt27q8xo0b5+tmAQA8INjXDQAAwJdycnKUnJysmTNnOoeFhob6sEUAAE8h7AAAAlpubq5iYmIUFRXl66YAADzM7dvYDh48qJEjRyohIUF9+vTRihUrnGWzZs2qdCtARkaGs/z9999Xv379FB8fr7S0NP3www+e6QUAADWUm5urm2++2dfNAADUAbfCjsPhUGpqqpo0aaJ33nlHzzzzjJYuXar33ntP0qUTxpNPPqktW7Y4X4MGDZIk7d69W9OmTdPYsWO1fv16nT59WlOmTPF8jwAAqCZjjL777jtt2bJFAwYMUL9+/fTCCy+orKzM100DAHiAW7exFRUVqX379poxY4bCw8N1880367bbblNmZqbuvvtu5ebmauTIkZe9FSAjI0N33XWX7rvvPknS3LlzlZycrLy8PN14440e6QxQn9ntNtnttlrNIyio5s8UcTiMHA5Tq/oBq8nPz1dJSYlCQkI0f/58HT58WLNmzdL58+c1ffr0as/HVrtd+4rzrIt5/5jdbpOtriu5AmM8d2zy1jKzkh+fm4KD7TJePk14cv3XRE23/4pJarvMfN1/b/PkPlrdebgVdpo3b6758+dLurRyduzYoe3bt+v3v/+9iouLdezYsSpvBcjKytJvfvMb5/vrr79eLVq0UFZWFmEHlme323Rt44YKrkVYkaQmTRrVeNqL5Q6dOnkuoA6qwNXccMMN+vrrr3XttdfKZrOpffv2cjgcmjRpkqZMmaKgoKBqzScy8po6a2NdzluSyh1GQbX8R0x9q7+ul5mV/Hj5N25c83OMJ+r3hdrWX9tl5uv++4o399EaP6Cgb9++ys/PV3JysgYMGKA9e/bIZrNp2bJl+uyzz9S4cWM9+uijuv/++yVJBQUFat68ucs8IiMjdfTo0dr1APADdrtNwUF2jV+3UzkFxV6v/5bm4VowJEF2u42wA/xE48aNXd63bt1apaWlOnXqlJo2bVqteRw/fsbj/xG32S59IKiLeVcICrKrSZNGPj82nThxVuXljlrPzxvLzEqstv7dFej99wVP7qMV87qaGoedhQsXqqioSDNmzNCcOXMUGxsrm82mVq1a6eGHH9b27dv19NNPKzw8XP3799f58+cVEhLiMo+QkBC374uu6pJVIF66DsQ+S/7d75yCYu3NP+3TNvjTcvPndV1T9bHP9aktnvb5559r4sSJ+vTTTxUWFiZJ+uabb9S4ceNqBx1JMkZ19uG6LuddoT4cmzzZR28sMyux2vp3V6D33xe8uY/WOOzExcVJkkpLSzVx4kTt2LFDycnJzv+QtWvXTt9//73Wrl2r/v37KzQ0tFKwKSsrc55cqutqCS4QL10HYp+lwO13bdTmNjhfCsR1HYh99oWEhASFhoZq+vTpSktLU15enubOnatRo0b5umkAAA9w+wEFu3btUr9+/ZzDbrnlFl24cEHFxcWV/gvWqlUrbd26VZIUHR2toqKiSvNz93cNqrrsFYiXrgOxz5J/9rviUrmv+dulcn9c17VVH/tc3VsF/FF4eLhWrlyp//mf/9GgQYPUqFEjDRkyhLADABbhVtg5fPiwxo4dq82bNys6OlqStGfPHjVt2lRvvPGGdu7cqddee805/v79+9WqVStJUnx8vDIzM5WSkiJJOnLkiI4cOaL4+Hi3Gny1y16BeOnaX/rsiaeRuc7PvS/78zSyS/xhW/kpf9nGPSkQ++wrbdq00erVq33dDABAHXAr7MTFxSk2NlZTp07VlClT9K9//Uvp6el67LHHlJCQoOXLl2vlypXq37+/tmzZonfffVevv/66JGno0KF65JFH1LlzZ8XFxWn27Nnq06cPT2ILEJ56GtmPuXulhKeRAQAABBa3wk5QUJCWLFmimTNn6sEHH1RYWJgeeeQRDRs2TDabTQsWLNDChQu1YMEC3XDDDXrxxReVkJAg6dJ90c8++6wWLlyoU6dOqWfPnpo5c2addAr1D08jAwAAgLe5/YCC6OhoLVq06LJl/fr1c/k+z0+lpKQ4b2NDYKoPTzwBAABAYPDcPUUAAAAAUI/U+NHTgD8K8uB3hvyhXgAAgEBG2EFAiAoPVbnDKCLCvd91AgAAgP8i7CAgRIQFK8hu89kDEvq0jdKkAe28Xi8AAEAgI+wgoPjqAQmto3z/g6IAAACBhi8SAAAAALAkwg4AAAAASyLsAAAAALAkwg4AAAAASyLsAAAAALAkwg4AAAAAS+LR00AACQry3f83HA4jh8P4rH4AABB4CDtAAIgKD1W5wygiIsxnbbhY7tCpk+cIPAAAwGsIO0AAiAgLVpDdpvHrdiqnoNjr9d/SPFwLhiTIbrcRdgAAgNcQdoAAklNQrL35p33dDAAAAK/gAQUAAAAALImwAwAAAMCSCDsAAAAALImwAwAAAMCSCDsAAAAALImwAwAAAMCSCDsAAAAALImwAwAAAMCSCDsAAAAALImwAwAAAMCSCDsAAAAALImwAwAAAMCSCDsAAAAALImwAwAAAMCSCDsAAAAALImwAwAAAMCSCDsAAAAALImwAwAAAMCSCDsAAAAALImwAwAAAMCSCDsAAAAALImwAwAAAMCSCDsAAAAALImwAwAAAMCSCDsAAAAALMntsHPw4EGNHDlSCQkJ6tOnj1asWOEsy8vL0/Dhw9W5c2f9/Oc/15YtW1ym/fLLLzVw4EDFx8dr2LBhysvLq30PAAAAAOAy3Ao7DodDqampatKkid555x0988wzWrp0qd577z0ZY5SWlqZmzZpp48aNuvfeezV27Fjl5+dLkvLz85WWlqaUlBS9/fbbatq0qcaMGSNjTJ10DAAAAEBgC3Zn5KKiIrVv314zZsxQeHi4br75Zt12223KzMxUs2bNlJeXp3Xr1qlhw4Zq3bq1vvrqK23cuFGPP/64NmzYoI4dO2rEiBGSpDlz5qhnz57atm2bunfvXiedAwAAABC43Lqy07x5c82fP1/h4eEyxigzM1Pbt29XYmKisrKy1KFDBzVs2NA5fteuXbVr1y5JUlZWlrp16+YsCwsLU2xsrLMcAAAAADypxg8o6Nu3rx566CElJCRowIABKiwsVPPmzV3GiYyM1NGjRyXpquUAAAAA4Elu3cb2YwsXLlRRUZFmzJihOXPmqKSkRCEhIS7jhISEqKysTJKuWl5dNtuVh1dVbkWB2Gf4P3e210Dcxutjn+tTWwAAcEeNw05cXJwkqbS0VBMnTtSgQYNUUlLiMk5ZWZkaNGggSQoNDa0UbMrKyhQREeFWvZGR19Sq3IoCsc/wT02aNKrRdIG4jQdinwEA8DS3H1Cwa9cu9evXzznslltu0YULFxQVFaUDBw5UGr/i1rXo6GgVFRVVKm/fvr1bDT5+/Iwu9wA3m+3Sh4Oqyq3In/ocFGSv8QddWMeJE2dVXu6o9vj+tI17Sn3sc0WbAADwN259Z+fw4cMaO3asjh075hy2Z88eNW3aVF27dtXevXt1/vx5Z1lmZqbi4+MlSfHx8crMzHSWlZSUaN++fc7y6jKm6tfVyq348pc+AxWsuo1bfb8GAMAfuRV24uLiFBsbq6lTpyonJ0ebN29Wenq6HnvsMSUmJur666/XlClTlJ2dreXLl2v37t0aPHiwJGnQoEHasWOHli9fruzsbE2ZMkUtW7bksdMAAAAA6oRbYScoKEhLlixRWFiYHnzwQU2bNk2PPPKIhg0b5iwrLCxUSkqK/vSnP2nx4sVq0aKFJKlly5Z6+eWXtXHjRg0ePFgnT57U4sWLZeObrwAAAADqgNsPKIiOjtaiRYsuW3bTTTcpIyOjymmTkpKUlJTkbpUAAAAA4LYa/84OAAAAANRnhB0AAAAAlkTYAQAAAGBJhB0AAAAAlkTYAQAAAGBJhB0AAAAAlkTYAQAAAGBJhB0AACSlpqbqt7/9ra+bAQDwIMIOACDgbdq0SZs3b/Z1MwAAHkbYAQAEtJMnT2ru3LmKi4vzdVMAAB4W7OsGAADgS88//7zuvfdeFRQU+LopAAAPI+wAAALWV199pb///e967733NGPGjBrPx2areRvsdptsl5lBxaDgYLuMqfn8ryQoqP7c4FGbZfjTeXhiXvCuQF9nvup/VcefuvLT45oxRg5HzQ5w1W02YQcAEJBKS0v1+9//Xr/73e/UoEGDWs0rMvKaGk9b7jAKsld91m7cuFGN5+0vmjTxbB9rsz7gfZ5e//7Gl/2/2vGnrlQc17xRP2EHABCQFi1apI4dO6p37961ntfx42dqdPUlKMiuJk0aafy6ncopKK51O9zVp22UJg1o5/V6f+rEibMqL3fUej4226WgU9P1EWgqtj9f89T6dxf99+3x55bm4VowJKHG/a/Y36+GsAPAa2p6y4wnbrVxOGp+qRzWtGnTJhUVFSkhIUGSVFZWJkn66KOPtHPnTrfmdel2jJq3JaegWHvzT9d8BjXUOsr3H/QqeDKc1HZ9wPsCfX35sv++Ov78WF32n7ADoM5FhYeq3GEUERFWo+k98Z+3i+UOnTp5jsADpzfeeEMXL150vn/hhRckSRMnTvRVkwAAHkbYAVDnIsKCFWS3+fxSud1uI+zA6YYbbnB536jRpVB90003+aI5AIA6QNgB4DX14VI5AAAIHIQdAAAkPffcc75uAgDAw+rPA/YBAAAAwIMIOwAAAAAsibADAAAAwJIIOwAAAAAsibADAAAAwJIIOwAAAAAsibADAAAAwJIIOwAAAAAsibADAAAAwJIIOwAAAAAsibADAAAAwJIIOwAAAAAsibADAAAAwJIIOwAAAAAsibADAAAAwJIIOwAAAAAsibADAAAAwJIIOwAAAAAsibADAAAAwJIIOwAAAAAsibADAAAAwJLcDjvHjh3TuHHjlJiYqN69e2vOnDkqLS2VJM2aNUtt27Z1eWVkZDinff/999WvXz/Fx8crLS1NP/zwg+d6AgAAAAA/EuzOyMYYjRs3ThEREXrzzTd16tQpTZ06VXa7XU899ZRyc3P15JNP6v7773dOEx4eLknavXu3pk2bpmeeeUbt2rXT7NmzNWXKFL3yyiue7REAAAAAyM0rOwcOHNCuXbs0Z84ctWnTRt26ddO4ceP0/vvvS5Jyc3PVoUMHRUVFOV9hYWGSpIyMDN11112677771K5dO82dO1ebN29WXl6e53sFAAAAIOC5FXaioqK0YsUKNWvWzGV4cXGxiouLdezYMd18882XnTYrK0vdunVzvr/++uvVokULZWVlud9qAAAAALgKt8JORESEevfu7XzvcDiUkZGhHj16KDc3VzabTcuWLdPPfvYz3XPPPXrnnXec4xYUFKh58+Yu84uMjNTRo0dr2QUAAAAAqMyt7+z8VHp6uvbt26e3335be/fulc1mU6tWrfTwww9r+/btevrppxUeHq7+/fvr/PnzCgkJcZk+JCREZWVlbtVps115eFXlVhSIfQZqq77vL/Vxv65PbQEAwB01Djvp6elas2aN5s2bp5iYGLVp00bJyclq3LixJKldu3b6/vvvtXbtWvXv31+hoaGVgk1ZWZnzOz3VFRl5Ta3KrSgQ+wzURJMmjXzdhGpjvwYAoPZqFHZmzpyptWvXKj09XQMGDJAk2Ww2Z9Cp0KpVK23dulWSFB0draKiIpfyoqIiRUVFuVX38eNnZEzl4TbbpQ8HVZVbkT/1OSjI7lcfNGFNJ06cVXm5w9fNuKL6uF9XtAkAAH/j9u/sLFq0SOvWrdNLL72kX/ziF87hCxYs0PDhw13G3b9/v1q1aiVJio+PV2ZmprPsyJEjOnLkiOLj492q35iqX1crt+LLX/oM1Be+3hf8db8GAMAfuRV2cnNztWTJEv3mN79R165dVVhY6HwlJydr+/btWrlypQ4dOqS33npL7777rkaMGCFJGjp0qP74xz9qw4YN2r9/vyZPnqw+ffroxhtvrJOOAQAAAAhsbt3G9re//U3l5eVaunSpli5d6lL27bffasGCBVq4cKEWLFigG264QS+++KISEhIkSQkJCXr22We1cOFCnTp1Sj179tTMmTM91xMAAAAA+BG3wk5qaqpSU1OrLO/Xr5/69etXZXlKSopSUlLcqRIAAAAAasTt7+wAAAAAgD8g7AAAAACwJMIOAAAAAEsi7AAAAACwJMIOAAAAAEsi7AAAAACwJMIOAAAAAEsi7AAAAACwJMIOAAAAAEsi7AAAAACwJMIOAAAAAEsi7AAAAACwJMIOAAAAAEsi7AAAAACwJMIOAAAAAEsi7AAAAACwJMIOAAAAAEsi7AAAAACwJMIOAAAAAEsi7AAAAACwJMIOAAAAAEsi7AAAAACwJMIOAAAAAEsi7AAAAACwJMIOAAAAAEsi7AAAAACwJMIOAAAAAEsi7AAAAACwJMIOACCgHTx4UCNHjlRCQoL69OmjFStW+LpJAAAPCfZ1AwAA8BWHw6HU1FTFxcXpnXfe0cGDBzVhwgRFR0fr7rvv9nXzAAC1xJUdAEDAKioqUvv27TVjxgzdfPPNSkpK0m233abMzExfNw0A4AGEHQBAwGrevLnmz5+v8PBwGWOUmZmp7du3KzEx0ddNAwB4ALexAQAgqW/fvsrPz1dycrIGDBjg1rQ2Wx01KoB4YhlWzIP14V+Cgnzzv3df1Xs5gb7N1qT/1Z2GsAMAgKSFCxeqqKhIM2bM0Jw5czR9+vRqTxsZeU0dtsz6mjRp5NH5sT78Q1R4qModRhERYb5uik95evv3N3Xdf8IOAACS4uLiJEmlpaWaOHGiJk+erJCQkGpNe/z4GRnjfp1BQfaA/6AjSSdOnFV5uaPW87HZLgWdmq6PQOPr7S8iLFhBdpvGr9upnIJir9ffp22UJg1o5/V6f8pT27+7fL3+K9S0/xX7+9UQdgAAAauoqEi7du1Sv379nMNuueUWXbhwQcXFxWratGm15mOM+HBdS55cfqwP/5JTUKy9+ae9Xm/rKN9/0K8Q6NtrXfa//tysCACAlx0+fFhjx47VsWPHnMP27Nmjpk2bVjvoAADqL8IOACBgxcXFKTY2VlOnTlVOTo42b96s9PR0PfbYY75uGgDAAwg7AICAFRQUpCVLligsLEwPPvigpk2bpkceeUTDhg3zddMAAB7Ad3YAAAEtOjpaixYt8nUzAAB1wK0rO8eOHdO4ceOUmJio3r17a86cOSotLZUk5eXlafjw4ercubN+/vOfa8uWLS7Tfvnllxo4cKDi4+M1bNgw5eXlea4XAAAAAPAT1Q47xhiNGzdOJSUlevPNNzVv3jx98sknmj9/vowxSktLU7NmzbRx40bde++9Gjt2rPLz8yVJ+fn5SktLU0pKit5++201bdpUY8aMkQn0R08AAAAAqDPVvo3twIED2rVrl7744gs1a9ZMkjRu3Dg9//zz+tnPfqa8vDytW7dODRs2VOvWrfXVV19p48aNevzxx7VhwwZ17NhRI0aMkCTNmTNHPXv21LZt29S9e/e66RkAAACAgFbtKztRUVFasWKFM+hUKC4uVlZWljp06KCGDRs6h3ft2lW7du2SJGVlZalbt27OsrCwMMXGxjrLAQAAAMDTqh12IiIi1Lt3b+d7h8OhjIwM9ejRQ4WFhWrevLnL+JGRkTp69KgkXbUcAAAAADytxk9jS09P1759+/T222/rtddeU0hIiEt5SEiIysrKJEklJSVXLHeHzXbl4VWVW1Eg9hmorfq+v9TH/bo+tQUAAHfUKOykp6drzZo1mjdvnmJiYhQaGqqTJ0+6jFNWVqYGDRpIkkJDQysFm7KyMkVERLhdd2TkNbUqt6JA7DNQE02aNPJ1E6qN/RoAgNpzO+zMnDlTa9euVXp6ugYMGCDp0m8U5OTkuIxXVFTkvHUtOjpaRUVFlcrbt2/vdoOPHz+jyz3EzWa79OGgqnIr8qc+BwXZ/eqDJqzpxImzKi93+LoZV1Qf9+uKNgEA4G/c+p2dRYsWad26dXrppZf0i1/8wjk8Pj5ee/fu1fnz553DMjMzFR8f7yzPzMx0lpWUlGjfvn3OcncYU/XrauVWfPlLn4H6wtf7gr/u1wAA+KNqh53c3FwtWbJEv/nNb9S1a1cVFhY6X4mJibr++us1ZcoUZWdna/ny5dq9e7cGDx4sSRo0aJB27Nih5cuXKzs7W1OmTFHLli157DQAAACAOlPtsPO3v/1N5eXlWrp0qXr16uXyCgoK0pIlS1RYWKiUlBT96U9/0uLFi9WiRQtJUsuWLfXyyy9r48aNGjx4sE6ePKnFixfLxrdeAQAAANSRan9nJzU1VampqVWW33TTTcrIyKiyPCkpSUlJSe61DgAAAABqyK3v7AAAAACAvyDsAAAAALAkwg4AAAAASyLsAAAAALAkwg4AAAAASyLsAAAAALCkaj96GgD8XVCQ7/6/43AYORzGZ/UDABCICDsALC8qPFTlDqOIiDCfteFiuUOnTp4j8AAA4EWEHQCWFxEWrCC7TePX7VROQbHX67+lebgWDEmQ3W4j7AAA4EWEHQABI6egWHvzT/u6GQAAwEt4QAEAAAAASyLsAAAAALAkwg4AAAAASyLsAAAAALAkwg4AAAAASyLsAAAAALAkwg4AAAAASyLsAAAAALAkwg4AAAAASyLsAAAAALAkwg4AAAAASyLsAAAAALAkwg4AAAAASyLsAAAAALAkwg4AAAAASyLsAAAAALAkwg4AAAAASyLsAAAAALAkwg4AAAAASyLsAAAAALCkYF83AN5jt9tkt9t8UndQELkaAAAA3kXYCRB2u03XNm6oYEIHAAAAAgRhJ0DY7TYFB9k1ft1O5RQUe73+Pm2jNGlAO6/XCwAAgMBF2AkwOQXF2pt/2uv1to5q5PU6AQAAENi4pwkAAACAJRF2AAAAAFgSYQcAAACAJRF2AAAAAFgSYQcAAACAJRF2AAAAAFhSjcNOWVmZBg4cqK+//to5bNasWWrbtq3LKyMjw1n+/vvvq1+/foqPj1daWpp++OGH2rUeAAAAAKpQo7BTWlqqCRMmKDs722V4bm6unnzySW3ZssX5GjRokCRp9+7dmjZtmsaOHav169fr9OnTmjJlSu17AAAAAACX4faPiubk5OjJJ5+UMaZSWW5urkaOHKmoqKhKZRkZGbrrrrt03333SZLmzp2r5ORk5eXl6cYbb3S/5QAAAABwBW5f2dm2bZu6d++u9evXuwwvLi7WsWPHdPPNN192uqysLHXr1s35/vrrr1eLFi2UlZXlbhMAAAAA4KrcvrLz0EMPXXZ4bm6ubDabli1bps8++0yNGzfWo48+qvvvv1+SVFBQoObNm7tMExkZqaNHj7pVv8125eFVlVtRIPYZ8HdX21/r435dn9oCAIA73A47VTlw4IBsNptatWqlhx9+WNu3b9fTTz+t8PBw9e/fX+fPn1dISIjLNCEhISorK3OrnsjIa2pVbkWB2GfAHzVp0qja47JfAwBQex4LO/fdd5+Sk5PVuHFjSVK7du30/fffa+3aterfv79CQ0MrBZuysjKFhYW5Vc/x42d0ma8LyWa79OGgqnIrcqfPQUF2tz5oAfC8EyfOqrzcccVx6uOxrKJNAAD4G4+FHZvN5gw6FVq1aqWtW7dKkqKjo1VUVORSXlRUdNmHGVyJMbriB4CrlVtRIPYZ8FfV3VfZrwEAqD2P/ajoggULNHz4cJdh+/fvV6tWrSRJ8fHxyszMdJYdOXJER44cUXx8vKeaAAAAAABOHgs7ycnJ2r59u1auXKlDhw7prbfe0rvvvqsRI0ZIkoYOHao//vGP2rBhg/bv36/JkyerT58+PHYaAOBTx44d07hx45SYmKjevXtrzpw5Ki0t9XWzAAAe4LHb2Dp16qQFCxZo4cKFWrBggW644Qa9+OKLSkhIkCQlJCTo2Wef1cKFC3Xq1Cn17NlTM2fO9FT1AAC4zRijcePGKSIiQm+++aZOnTqlqVOnym6366mnnvJ18wAAtVSrsPPtt9+6vO/Xr5/69etX5fgpKSlKSUmpTZUAAHjMgQMHtGvXLn3xxRdq1qyZJGncuHF6/vnnCTsAYAEeu40NAAB/ExUVpRUrVjiDToXi4mIftQgA4EmEHQBAwIqIiFDv3r2d7x0OhzIyMtSjRw8ftgoA4Cke+84OAAD+Lj09Xfv27dPbb7/t1nQ2Wx01KIB4YhlWzMOdedntNtl8uAKNMXI4eM58IAsK8s21B1/Vezk12QWrOw1hBwAAXQo6a9as0bx58xQTE+PWtPzoau14+kev3Vkf5Q6jILvvwo6v64fvRIWHqtxhFBER5uum+FRd/+g9YQcAEPBmzpyptWvXKj09XQMGDHB7+uPHz9ToR2CDgux1fqL3BydOnFV5uaPW87HZLgWd6q6PiuU/ft1O5RR4/3tatzQP14IhCR7rv7vY/nwrIixYQXabz7a/Pm2jNGlAO6/X+1M13f4r9verIewAAALaokWLtG7dOr300ku68847azQPY1SjsIP/48nl5+76yCko1t78055rQA2w/QQuX21/raPqT9Cty+2fsAMACFi5ublasmSJUlNT1bVrVxUWFjrLoqKifNgyAIAnEHYAAAHrb3/7m8rLy7V06VItXbrUpeynvyUHAPA/hB0AQMBKTU1Vamqqr5sBAKgj9eeZcwAAAADgQYQdAAAAAJZE2AEAAABgSYQdAAAAAJZE2AEAAABgSYQdAAAAAJZE2AEAAABgSYQdAAAAAJZE2AEAAABgSYQdAAAAAJZE2AEAAABgSYQdAAAAAJZE2AEAAABgSYQdAAAAAJZE2AEAAABgSYQdAAAAAJZE2AEAAABgSYQdAAAAAJZE2AEAAABgSYQdAAAAAJZE2AEAAABgSYQdAAAAAJZE2AEAAABgSYQdAAAAAJZE2AEAAABgSYQdAAAAAJZE2AEAAABgSYQdAAAAAJZE2AEAAABgSYQdAAAAAJZE2AEAAABgSTUOO2VlZRo4cKC+/vpr57C8vDwNHz5cnTt31s9//nNt2bLFZZovv/xSAwcOVHx8vIYNG6a8vLyatxwAAAAArqBGYae0tFQTJkxQdna2c5gxRmlpaWrWrJk2btyoe++9V2PHjlV+fr4kKT8/X2lpaUpJSdHbb7+tpk2basyYMTLGeKYnAAAAAPAjboednJwc/fKXv9ShQ4dchm/dulV5eXl69tln1bp1a40ePVqdO3fWxo0bJUkbNmxQx44dNWLECLVp00Zz5szRv/71L23bts0zPQEAAACAH3E77Gzbtk3du3fX+vXrXYZnZWWpQ4cOatiwoXNY165dtWvXLmd5t27dnGVhYWGKjY11lgMAAACAJwW7O8FDDz102eGFhYVq3ry5y7DIyEgdPXq0WuXVZbNdeXhV5VYUiH0G/N3V9tf6uF/Xp7YAAOAOt8NOVUpKShQSEuIyLCQkRGVlZdUqr67IyGtqVW5FgdhnwB81adKo2uOyXwMAUHseCzuhoaE6efKky7CysjI1aNDAWf7TYFNWVqaIiAi36jl+/Iwu90wDm+3Sh4Oqyq3InT4HBdnd+qAFwPNOnDir8nLHFcepj8eyijYBAOBvPBZ2oqOjlZOT4zKsqKjIeetadHS0ioqKKpW3b9/erXqM0RU/AFyt3IoCsc+Av6ruvsp+DQBA7XnsR0Xj4+O1d+9enT9/3jksMzNT8fHxzvLMzExnWUlJifbt2+csBwAAAABP8ljYSUxM1PXXX68pU6YoOztby5cv1+7duzV48GBJ0qBBg7Rjxw4tX75c2dnZmjJlilq2bKnu3bt7qgkAAAAA4OSxsBMUFKQlS5aosLBQKSkp+tOf/qTFixerRYsWkqSWLVvq5Zdf1saNGzV48GCdPHlSixcvlo3H/AAAAACoA7X6zs63337r8v6mm25SRkZGleMnJSUpKSmpNlUCAAAAQLV47MoOAAAAANQnhB0AAAAAlkTYAQAAAGBJhB0AAAAAlkTYAQAAAGBJhB0AAAAAlkTYAQAAAGBJhB0AAAAAlkTYAQAAAGBJhB0AAAAAlkTYAQAAAGBJhB0AAAAAlkTYAQAAAGBJhB0AAAAAlkTYAQAAAGBJhB0AAAAAlkTYAQAAAGBJhB0AAAAAlkTYAQAAAGBJhB0AACSVlZVp4MCB+vrrr33dFACAhxB2AAABr7S0VBMmTFB2dravmwIA8CDCDgAgoOXk5OiXv/ylDh065OumAAA8jLADAAho27ZtU/fu3bV+/XpfNwUA4GHBvm4AAAC+9NBDD9V6HjabBxoSwIKCPPO/14r1EBxslzHeq7e2fNWO+tJ/oCbH0OpOQ9gBAKCWIiOv8XUT/FJUeKjKHUYREWEenW/jxo08Or+6Ulf9B/xJkyZ1u78SdgAAqKXjx89U60rCTwUF2ev8RF+fRYQFK8hu0/h1O5VTUOz1+vu0jdKkAe28Xm+FQO8/IEknTpxVebnD7elstur9o4mwAwBALRmjGoUdXJJTUKy9+ae9Xm/rqPoRNAO9/0BdHj+5WRMAAACAJRF2AAAAAFgSYQcAAACAJfGdHQAA/r9vv/3W100AAHgQV3YAAAAAWBJhBwAAAIAlEXYAAAAAWBJhBwAAAIAlEXYAAAAAWBJhBwAAAIAlEXYAAAAAWBJhBwAAAIAlEXYAAAAAWJJHw87HH3+stm3burzGjRsnSdq3b58eeOABxcfHa9CgQdqzZ48nqwYAAAAAFx4NOzk5OUpOTtaWLVucr1mzZuncuXNKTU1Vt27d9Ic//EEJCQkaPXq0zp0758nqAQAAAMDJo2EnNzdXMTExioqKcr4iIiL0wQcfKDQ0VJMnT1br1q01bdo0NWrUSB9++KEnqwcAAAAAJ4+HnZtvvrnS8KysLHXt2lU2m02SZLPZ1KVLF+3atcuT1QMAAACAU7CnZmSM0XfffactW7bolVdeUXl5ue68806NGzdOhYWFuuWWW1zGj4yMVHZ2ttv1/P+8VOXwqsqtKBD7DPi7q+2v9XG/rk9tAQDAHR4LO/n5+SopKVFISIjmz5+vw4cPa9asWTp//rxz+I+FhISorKzM7XoiI6+pVbkVBWKfAX/UpEmjao/Lfg0AQO15LOzccMMN+vrrr3XttdfKZrOpffv2cjgcmjRpkhITEysFm7KyMjVo0MDteo4fPyNjKg+32S59OKiq3Irc6XNQkN2tD1oAPO/EibMqL3dccZz6eCyraBMAAP7GY2FHkho3buzyvnXr1iotLVVUVJSKiopcyoqKitS8eXO36zBGV/wAcLVyKwrEPgP+qrr7Kvs1AAC157EHFHz++efq3r27SkpKnMO++eYbNW7cWF27dtXOnTtl/v+Z2xijHTt2KD4+3lPVAwAAAIALj4WdhIQEhYaGavr06Tpw4IA2b96suXPnatSoUbrzzjt1+vRpzZ49Wzk5OZo9e7ZKSkp01113eap6AAAAAHDhsbATHh6ulStX6ocfftCgQYM0bdo0Pfjggxo1apTCw8P1yiuvKDMzUykpKcrKytLy5cvVsGFDT1UPAAAAAC48+p2dNm3aaPXq1Zct69Spk9555x1PVgcAAAAAVfLoj4oCAAAAQH1B2AEAAABgSYQdAAAAAJZE2AEAAABgSYQdAAAAAJZE2AEAAABgSYQdAAAAAJZE2AEAAABgSYQdAAAAAJZE2AEAAABgSYQdAAAAAJZE2AEAAABgSYQdAAAAAJZE2AEAAABgSYQdAAAAAJZE2AEAAABgSYQdAAAAAJZE2AEAAABgSYQdAAAAAJZE2AEAAABgSYQdAAAAAJZE2AEAAABgScG+bkAgsdttstttHp9vUNDVM2t1xgFQt9zZDz29zzocRg6H8eg8AQCo7wg7XmK323Rt44YKroPQ0aRJI4/PE4DnRIWHqtxhFBERVu1pPL1fXyx36NTJcwQeAEBAIex4id1uU3CQXePX7VROQbHX6+/TNkqTBrTzer0ApIiwYAXZbT7b/29pHq4FQxJkt9sIOwCAgELY8bKcgmLtzT/t9XpbR3H1B/A1X+3/AAAEKr7IAQAAAMCSCDsAAAAALImwAwAAAMCSCDsAAAAALImwAwAAAMCSCDsAAAAALImwAwAAAMCSCDsAAAAALImwAwAAAMCSCDsAAAAALImwAwAAAMCSCDsAAAAALImwAwAAAMCSCDsAAAAALMmrYae0tFRTp05Vt27d1KtXL61atcqb1QMAUAnnJgCwrmBvVjZ37lzt2bNHa9asUX5+vp566im1aNFCd955pzebAQCAE+cmALAur4Wdc+fOacOGDXr11VcVGxur2NhYZWdn68033/TaCcVut8lut3mlrp8KCuKOQQCob+rDuQkAUHe8Fnb279+vixcvKiEhwTmsa9euWrZsmRwOh+z2ug0DdrtN1zZuqGBCBwDg//P1uQkAULe8FnYKCwvVpEkThYSEOIc1a9ZMpaWlOnnypJo2bVqt+djtkjGVh9tsVy63220KDrJr2ae5yj9VUpMu1ErcDdfqgW43KrZFhMJCgrxef+uocEmifuqn/gCsv1WzRs6/a/LZ3eabC+JeUdfnpuoK1G2T+qmf+gO3fm+dm2zG1ObwXH3vvvuuFixYoE8++cQ5LC8vT/369dPmzZt13XXXeaMZAAA4cW4CAGvz2vX50NBQlZWVuQyreN+gQQNvNQMAACfOTQBgbV4LO9HR0Tpx4oQuXrzoHFZYWKgGDRooIiLCW80AAMCJcxMAWJvXwk779u0VHBysXbt2OYdlZmYqLi6OL4ACAHyCcxMAWJvXjuRhYWG67777NGPGDO3evVt//etftWrVKg0bNsxbTQAAwAXnJgCwNq89oECSSkpKNGPGDP3lL39ReHi4Ro4cqeHDh3uregAAKuHcBADW5dWwAwAAAADewg3JAAAAACyJsAMAAADAkgg7AAAAACzJb8OOMUYvvPCCevToocTERM2dO1cOh6PK8T///HPdc8896tSpk+655x5t3rzZi631DHf7vGvXLg0ZMkQJCQkaMGCANmzY4MXWeo67/a5w8OBBderUyQst9IzS0lJNnTpV3bp1U69evbRq1aoqx923b58eeOABxcfHa9CgQdqzZ48XW+pZ7vS7wt///nf953/+pxdaVzfc6fOnn36qe++9VwkJCbr77rv1t7/9zYsthad5cj9///331a9fP8XHxystLU0//PBDXTffJzy5zLp166a2bdu6vM6ePVvXXfAJTx5b2daqVtUyY1u7vKud0+pkWzN+auXKlSYpKcls377dfPXVV6ZXr15mxYoVlx33+++/N506dTKrV682hw4dMqtWrTKxsbEmLy/Py62uHXf6XFBQYLp162ZefPFF891335n333/fxMXFmU8++cS7jfYAd/pdIT8/3wwYMMDExMR4qZW19+yzz5q7777b7Nmzx/zlL38xCQkJ5s9//nOl8c6ePWt69uxpnnvuOZOTk2Nmzpxpbr/9dnP27FkftLr2qtvvCvv37ze33367SU5O9mIrPau6ff7mm29MbGysWbNmjfn+++9NRkaGiY2NNd98840PWg1P8NR+npWVZTp16mTeeecd880335iHH37YpKamers7XuGpZXb06FETExNjDh06ZAoKCpwvh8Ph7S55haeOrWxr7i8ztrWandPqalvz27CTlJRkNm7c6Hz/7rvvVvnhZ+vWrWbWrFkuw2699VazadOmOm2jp7nT57feesvceeedLsOefvppM2HChDptY11wp9/GGPPxxx+bHj16mLvvvttvws7Zs2dNXFyc2bp1q3PY4sWLzcMPP1xp3A0bNpi+ffs6D5oOh8P079/fZRn5C3f6bYwxa9euNZ07dzZ3332334Ydd/qcnp5uRo4c6TJsxIgR5qWXXqrzdsLzPLmfT5o0yTz11FPO8fPz803btm3NoUOH6rgX3uXJZfbFF1+Ynj17eqfhPubJYyvbmvvLjG2tZue0utrW/PI2tmPHjunIkSO69dZbncO6du2qf/3rXyooKKg0fvfu3TVt2jRJ0oULF7RhwwaVlZX51S1O7va5d+/emjNnTqXhxcXFddpOT3O339KlS6Tjx493rnN/sH//fl28eFEJCQnOYV27dlVWVlalW/aysrLUtWtX2Ww2SZLNZlOXLl1cfgHeX7jTb0n67LPP9Pzzz/v1b6C40+f7779fEydOrDSPM2fO1Hk74Xme3M+zsrLUrVs35/jXX3+9WrRooaysrLrviBd5cpnl5OToP/7jP7zWdl/y5LGVbc39Zca2VrNzWl1ta34ZdgoLCyVJzZs3dw5r1qyZJOno0aNVTnfw4EHFx8dr+vTpGjNmjFq2bFm3DfUgd/vcsmVLde7c2fn++PHj2rRpk2677ba6baiH1WRdz5o1S0OGDKn7xnlQYWGhmjRpopCQEOewZs2aqbS0VCdPnqw07o+XhyRFRkZecduvr9zptyQtWbJEd9xxhxdb6Hnu9Ll169Zq166d8312dra++uorv9uPcYkn9/OCggLLHAeuxJPLLDc3VyUlJXrkkUfUq1cv/eY3v9F3331X533wBU8eW9nW3F9mbGs1O6fV1bYWXKup69D58+d17Nixy5adO3dOklwWbMXfZWVlVc6zadOmevvtt7Vz504999xzuummmzRgwAAPtrp26qLPFfN9/PHH1axZMz344IMeaq3n1FW//UlJSYlLH6Wq+1nVuP64PNzpt1XUtM8//PCDHn/8cXXp0sWvH84QyDy5n58/f94yx4Er8eQyO3DggE6dOqUJEyYoPDxcr776qoYPH65NmzYpPDy8DnvhfZ48trKtub/M2NZqdk6rq22t3oadrKwsDRs27LJlkyZNknRpIYaGhjr/lqSwsLAq53nNNdeoQ4cO6tChg3Jzc5WRkVGvwk5d9Pns2bMaM2aMvv/+e7311ltXHNdX6qLf/iY0NLTSzlzxvkGDBtUa96fj+QN3+m0VNelzUVGRHn30URljtHDhQtntfnlRPuB5cj+vqtxKx0XJs8ts5cqVunDhgho1aiRJeuGFF5SUlKRPPvlEd999d111wSc8eWxlW3N/mbGt1eycVlfbWr0NO927d9e333572bJjx44pPT1dhYWFzlvRKm53ioqKqjR+dna2Tp065XIfYOvWrbVt27Y6aHnNebLP0qXv54waNUqHDh3SmjVrdPPNN9dJu2vL0/32R9HR0Tpx4oQuXryo4OBLu2VhYaEaNGigiIiISuMWFRW5DCsqKqp06dcfuNNvq3C3z8eOHXP+M+D1119X06ZNvdpeeI4n9/Oqyq10XJQ8u8xCQkJc/mscGhqqli1bVnlngT/z5LGVbc39Zca2VrNzWl1ta37578Ho6Gi1aNFCmZmZzmGZmZlq0aLFZT/wffLJJ5o+fbqMMc5he/fuVatWrbzSXk9wt88Oh0Njx47V4cOH9cYbb6hNmzbebK7HuNtvf9W+fXsFBwe7PGQgMzNTcXFxlf6LHx8fr507dzq3Z2OMduzYofj4eG822SPc6bdVuNPnc+fOadSoUbLb7crIyFB0dLSXWwtP8uR+Hh8f73JcPHLkiI4cOeKXx4Er8dQyM8aoX79++sMf/uAc/9y5czp48KBffRaoLk8eW9nW3FtmbGs1P6fV2bZWq2e5+dArr7xievXqZbZu3Wq2bt1qevXqZVatWuUsP378uCkuLjbGGHPkyBHTpUsXM3fuXPPdd985n+u9Z88eXzW/Rtzp8/r16027du3MJ5984vKM9xMnTvio9TXnTr9/bOvWrX7z6GljLj0a/Be/+IXJysoyH3/8senSpYv56KOPjDGXfjeppKTEGGPMmTNnTI8ePczMmTNNdna2mTlzpunZs6ff/s5Odfv9Yxs3bvTbR08bU/0+v/TSS6ZTp04mKyvLZT8+ffq0L5uPWvDUfr5jxw4TGxtr/vd//9f5exSjR4/2Wb/qkqeW2cyZM02fPn3M1q1bzT//+U+TlpZmBg4caC5evOizvtUlTx1b2dbcX2ZsazU7p9XVtua3YefixYvmf/7nf0y3bt1M9+7dTXp6usuPNSUnJ5uFCxc63+/cudM88MADplOnTuauu+4yf/3rX33R7Fpxp88jRowwMTExlV5VPS++PnN3XVfwt7Bz7tw5M3nyZNO5c2fTq1cvs3r1amdZTEyMy+/oZGVlmfvuu8/ExcWZwYMHm7179/qgxZ7hTr8r+HvYqW6fK34Y96evH/8OAfyLJ/fzjRs3mqSkJNO5c2eTlpZmfvjhB291w6s8tczOnz9v5syZY3r27Gni4+PN6NGjTX5+vje74lWePLayrbm3zNjWVjvL3D2n1cW2ZjPmR/d2AQAAAIBFWPOmeAAAAAABj7ADAAAAwJIIOwAAAAAsibADAAAAwJIIOwAAAAAsibADAAAAwJIIOwAAAAAsibADAAAAwJIIOwAAAAAsibADAAAAwJIIOwAAAAAsibADAAAAwJL+H4T8eO0cfkJOAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 1000x500 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAzQAAAHBCAYAAAC/sv70AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABQDklEQVR4nO3deVyVdd7/8fcBhkWQVERa7LYRxQXxiBBq4o1yNy6TTTMq06otOpj7XZm5dKeNcWtS2eKemk42auZyVzI2NjlOi2ahYGg6IGY6loJpLmwK1+8Px/PziAsXnnPgOryejwcPva7z5bo+3++5zvXlzbm4js0wDEMAAAAAYEE+NV0AAAAAAFQXgQYAAACAZRFoAAAAAFgWgQYAAACAZRFoAAAAAFgWgQYAAACAZRFoAAAAAFgWgQYAAACAZRFoAFQJn8ELAABqIwIN3GLNmjVq1aqVDh06VNOlXJeCggI9++yz6tGjh2JjY9WvXz9lZGQ4tTl37pwWLFignj17qkOHDrrnnnsqtfGU5ORkjR8/3uXfk5ubq/vvv/96SgOAWoe56upz1aFDh9SqVSutWbPmqu2qM/cAruRX0wUAtVVZWZmGDBmiU6dOafTo0WrSpIk++ugjPfHEEyorK9Nvf/tbSdIbb7yhBQsWaMSIEYqLi9PGjRv1xBNPyNfXV7169fJozbNmzVJISIjLt7thwwbt2LHD5dsFAFyf2jBXuWvuAaqKQANcwd///nft2bNHq1atUvv27SVJXbt21eHDh7Vw4ULHJLF69Wr17dtXI0eOlCR16dJFu3bt0rJlyzweaNq2bevR/QEAalZtmKuYe1DTuOQM162iokJz5sxR9+7dZbfbNXz4cP3888+V2v3zn//U0KFD1bFjR3Xs2FEjRozQwYMHHY9/+eWXatWqlbZs2aLHHntMdrtdXbt2VXp6usrLyx3tPv/8c/3+979XbGysbr/9dg0bNkz79u1z2tfHH3+sfv36KSYmRl27dtULL7ygoqIiU/0KCQnRvffeq5iYGKf1zZs31/fff+9YLisrq/SbqQYNGujEiROX3e6JEyfUtm1bLVmyxLHuhx9+UKtWrfT000871lVUVKhTp06aP3++JKm0tFQzZsxQUlKS2rVrp7vvvrvS5QKXvu1/9OhRPfHEE0pISNDtt9+u5557TjNnzlRycrLT9509e1YzZsxQ165d1aFDBz322GM6cOCApPO/1Zs1a5YkqVWrVnrjjTckVe15AIDagrnK3Fx1sSNHjmjo0KFq3769kpKS9Prrrzv19dK559ChQxo3bpwSExMVHR2tLl26aNy4cTp+/LijTU5Ojh5++GHFxcUpNjZWjzzyiLKyspz2+/XXX+uhhx6S3W5XQkKCnnnmGf3000+OxysqKhxzWrt27ZScnKyXX35ZZ8+evWaf4F0INLhu6enpmj17tgYMGKBZs2apQYMGevnll53a7N+/X/fdd5+OHTumF198UWlpaTp48KDuv/9+HTt2zKnt2LFjFRcXp3nz5qlv375auHChVq1aJUk6ePCghg8frnbt2mnu3LlKS0vT/v37lZqaqoqKCknSBx98oBEjRqh58+aaPXu2Ro4cqffff1/Dhw839Yftd9xxh/74xz/KZrM51p09e1abN29WixYtHOsGDRqkdevW6R//+IdOnz6t999/X59++qnuueeey263QYMG6tChg7744gvHui1btkg6f/K+IDs7WydOnFD37t1lGIZGjBihFStW6NFHH9XcuXMVGxurJ554QuvWrbvsfsrKyvTwww9r+/btmjhxoqZNm6Y9e/Zo8eLFldpmZGQoNzdX06dP1+TJk5WTk6MnnnhCkpSSkqIBAwZIklauXKmUlJQqPQ8AUJswV5mbqy72xhtvKCwsTLNnz1b//v01b948vfjii5dtW1xcrEGDBmnfvn2aPHmyFi1apEGDBmn9+vWaOXOmJOn06dMaMmSIGjZsqDfeeEMzZ85UcXGxBg8erFOnTkmSvvrqKz3yyCMKDAzUq6++qokTJ2rbtm0aNGiQSkpKJElvvvmmli9frhEjRmjx4sW6//77tWjRIs2dO7fK4wcvYQDX4eeffzaio6ON9PR0p/WDBw82oqKijIMHDxqGYRhPPvmkcccddxinTp1ytDl+/LgRFxdnTJ8+3TAMw9i6dasRFRVlzJw502lbycnJxtChQw3DMIwPP/zQiIqKMn788UfH49nZ2cYrr7xinDp1yqioqDD+8z//0xg8eLDTNr744gsjKirK2LRp03X1Ny0tzYiKijI++ugjx7pTp045+nvha8KECVfdzvz5840OHToYZWVlhmEYxtixY43f/e53TmP22muvGT169DAMwzA+++wzIyoqyli/fr3TdsaOHWt07drVOHv2rGEYhtGjRw/jmWeeMQzDMFatWmVERUUZ33zzjVOtnTp1cmz3wvckJSU5ajEMw5g5c6YRFRXleL5ef/11IyoqyvH4tZ4HAKhNmKuqN1cdPHjQiIqKMlJTUyttPzo62jh+/LhhGM5zz+7du43777/f+P77752+Z+jQoUavXr0MwzCMHTt2GFFRUUZmZqbj8QMHDhgzZswwfvjhB8MwDOPee+81+vbta5w7d87RJj8/32jTpo2xbNkywzAM47HHHjMeffRRp/28/fbbxrp16645RvAuvEOD65KVlaWzZ8+qR48eTuv79OnjtLx161YlJCQoMDBQ586d07lz5xQSEqL4+HindyokKTY21mn5xhtvdLwFb7fbFRAQoAEDBigtLU2ffvqpWrdurSeeeEIhISHKz8/Xjz/+qOTkZMd+zp07p9tvv10hISH6/PPPq9VPwzA0Y8YMLV26VIMHD1bPnj0lnX8X5MEHH9Tu3bv1/PPP6+2339aTTz6pjIwMvfDCC1fcXlJSkoqKipSdne0Yn4cfflhBQUH66quvJEn/+Mc/1L17d0nn38Gx2WxKSkpy6ldycrIKCgqUm5tbaR9bt27Vrbfeqnbt2jnWhYSEVHquJKl9+/b6xS9+4Vhu2rSpJOnkyZOXrf9azwMA1CbMVdWbq640Tj179tTZs2cdc9jF2rRpoz//+c+65ZZb9N1332nz5s1atGiR8vPzVVZWJklq2bKlGjVqpMcff1zPPfecNm7cqMaNG+vpp5/WjTfeqOLiYmVnZyspKUmGYTjG59Zbb1VkZKRjfDp16qTPP/9cDzzwgBYuXKi8vDw99NBDVXrXCd6FmwLguly4/rhhw4ZO68PDw52WT5w4oYyMjMveIrJRo0ZOy4GBgU7LPj4+jrffmzZtqmXLlmnBggV677339Kc//UmhoaF64IEH9N///d+Oa4Gff/55Pf/885X2dfToUXMd1PmJYPz48Vq/fr0GDx6scePGOR776KOPtGfPHr311lu64447JEkJCQkKCQnRH//4R/3+979XVFRUpW22atVKN910k7744gs1bNhQR48e1R133KGOHTtq27ZtSkpK0q5duzRmzBhJ58fPMAx17NjxsjUePXpUbdq0cVp3/PhxhYWFVWp7uXX16tVzWvbxOf+7jitdPnat5+HiSx8AoKYxV1Vvrrrg0nG6MBaX+xskSXrrrbc0b948nThxQo0bN1a7du0UFBTkuJwsODhY77zzjubOnau//OUvWrlypQIDA3XPPffo2Wef1cmTJ1VRUaE333xTb775ZqXtBwQESJKGDBmi4OBgrV69Wi+99JLS09PVsmVLPfvss+rcubOJ0YPVEWhwXS5MDseOHVPz5s0d6y/9I8P69evrjjvu0KOPPlppG35+5g7D9u3ba9asWSorK1NmZqZWrlypefPmqXXr1o7rhceNG6eEhIRK33vDDTeY2tepU6eUmpqqrKwsTZw4UQ8//LDT44cPH5akSkHj9ttvlyTl5eVdcZJISkrSli1bFBYWpl/+8pcKDw9Xp06d9O677+qzzz5TYGCgOnXqJOn8+NWrV09/+tOfLrutZs2aVVoXERGh7777rtL6S68Dr66rPQ+X/jYPAGoSc1X15yqpcnApLCyUdPlfkH3wwQeaPn26nn76afXr188RfsaMGaNvvvnG0a558+aOGyns3LlT//d//6fly5frP/7jP3TffffJZrPpkUce0V133VVpH0FBQZLOh8gHH3xQDz74oI4dO6bNmzdr3rx5GjVqlD7//HP5+/tfsU/wLlxyhusSGxurwMBAbdiwwWn9pk2bnJYTEhKUl5enNm3aKCYmRjExMWrXrp2WLFmijRs3Vnl/S5YsUY8ePVRWViZ/f3916dJFU6dOlXT+hN28eXOFhYXp0KFDjv3ExMQoIiJCL7/8snbv3l3lfZ07d06PP/64vvnmG82cObPSBCHJMTFe/Mf8krR9+3ZJ///Srcvp3r27vvnmG/3jH/9wTGidO3fWoUOHtGLFCnXt2tVxMk5ISFBRUZEMw3Dq1z//+U/Nnj1b586dq7T9hIQEHTp0SN9++61jXUlJiT799NMqj8EFF96xueBazwMA1CbMVdWfq6Tzt4a+2Pr16xUUFCS73V6pbWZmpkJDQzVkyBBHmDlz5owyMzMd7/pv2LBBnTt3VkFBgXx9fRUbG6spU6YoNDRUhw8fVkhIiNq2bav8/Hyn8WnZsqXeeOMNffnll5Kk++67z3HJXFhYmPr166cHH3xQJ0+e1OnTp681dPAivEOD6xIcHKzhw4fr1VdfVVBQkDp37qzNmzdXmiSGDx+u++67T0OHDtX999+vgIAArVy5Uh9//LFef/31Ku+vc+fOeumllzRixAg99NBD8vX11YoVK+Tv768ePXrI19dXTzzxhJ577jn5+vqqR48eOnnypObMmaMjR44oOjq6yvt655139PXXX+vee+/VjTfeWOl2kh06dFBycrLsdruefvppjRo1Ss2bN9fOnTs1d+5cJScnOz4T4Ep98fHx0d///ne98sorkqTo6GgFBwcrMzNTaWlpjrZJSUm6/fbbNXz4cA0fPlyRkZHauXOnXn/9dXXr1q3SpRCS1LdvX8eHqI0ZM0ahoaF66623dOzYMd18881VHgdJCg0NlSR9+OGHstvt13weAKA2Ya6q/lwlSX/9618VERGhO+64Q5999plWrlypMWPGXPZvJtu3b6/ly5dr+vTp6tGjh44ePapFixapsLDQ8c5Tx44dVVFRoREjRig1NVXBwcH6y1/+olOnTjn+7ufJJ59UamqqnnrqKf3mN79ReXm5Fi9erOzsbA0fPlzS+XeYFi9erMaNGys2NlZHjhzRW2+9pYSEhMvOi/BeBBpct6FDh6pevXpaunSpli5dqtjYWD3zzDOaMmWKo03r1q31zjvvaObMmRo3bpwMw1BUVJRmz56t//qv/6ryvlq3bq158+Zp9uzZevLJJ1VeXq527dpp8eLFjt9ApaSkKDg4WAsXLtTKlStVr149dezYUS+99JJuvfXWKu/rr3/9q6TztypeuXJlpcf37t0rX19fLV68WDNnztScOXP0888/69Zbb9WwYcP0yCOPXHX7QUFB6tSpk9M7NH5+foqPj3e6IYB0/h2SBQsW6LXXXtP8+fN17NgxRURE6NFHH9WIESMuu30/Pz8tWrRIaWlpmjJlivz8/PSb3/xGDRo00P79+6s8DtL5PwD9v//7P40fP14DBgzQlClTrvk8AEBtwlxVvblKkiZNmqT169dryZIlCg8P18SJEzVo0KDLtv3d736nQ4cOafXq1frzn/+siIgIJSUl6YEHHtD//M//aN++fYqMjNTChQv12muvadKkSSouLna8+3Lhb18SExO1aNEizZo1S6NHj9YvfvELRUdH66233lKHDh0knb+Mzd/fX6tXr9bs2bNVv359JScn66mnnqry+ME72AzDxM3OAVhGbm6u8vPz1bNnT6c/0h8wYIBuvPFGx4dlAgAAWBnv0KDOKS8vv+aHltlsNvn6+nqoIvcoKirSmDFj9MADD+hXv/qVysvLlZGRoZycHI0dO7amywMAXEVdmasAV+AdGtQ5ycnJ+te//nXVNgkJCXr77bc9VJH7bNiwQYsWLdK+fftkGIbatm2rYcOGKTExsaZLAwBcRV2aq4DrRaBBnbN3717Hh3tdSXBwMH8LAgCoMcxVQNURaAAAAABYFp9DAwAAAMCyCDQAAAAALItAAwAAAMCyCDQAAAAALKvWfQ7NsWOnZBiSzSaFhdV3LHsL+mUt9Mta6Nf1bR9X5m3HVFV562vKnRgz8xgzc+rKeJmZm2pdoDEMOT05ly57C/plLfTLWugXXK2uj31d7391MGbmMWbmMF7/H5ecAQAAALAsAg0AAAAAyyLQAAAAALAsAg0AAAAAyyLQAAAAALAsAg0AAAAAyyLQAAAAALAsAg0AAAAAyyLQAAAAALAsAg0AAAAAyzIdaH744QcNHTpUHTt2VHJyspYsWeJ4bPfu3UpJSZHdblf//v2Vk5PjyloBAHCSmpqq8ePHX/HxL774Qn379pXdbtegQYN08OBBD1YHAPAE04Hmv//7v1WvXj2tWbNGEydO1KuvvqqNGzeqqKhIqampio+P15o1axQbG6uhQ4eqqKjIHXUDAOq49evXa/PmzVd8/PDhwxoxYoT69eun9957T40aNdLw4cNlGIYHqwQAuJupQPPzzz8rKytLw4YN02233aY777xT3bp105YtW5SRkaGAgACNGzdOkZGRmjRpkoKDg7VhwwZ31Q4AqKNOnDihGTNmKCYm5optVq1apXbt2umxxx5Ty5YtNW3aNP3rX//Stm3bPFgpAMDdTAWawMBABQUFac2aNTp79qzy8/O1fft2tWnTRtnZ2YqLi5PNZpMk2Ww2dezYUVlZWe6oGwBQh7344ou655571KJFiyu2yc7OVnx8vGM5KChI0dHRzEsA4GVMBZqAgAA999xzWrlypex2u/r06aP//M//VEpKigoKCtSkSROn9mFhYfrxxx9dWjAAoG7bsmWLvv76aw0fPvyq7ZiXAKBu8DP7Dfv27VOPHj306KOPKjc3V1OnTlWXLl1UXFwsf39/p7b+/v4qKysztf1/v8FT6V9vQb/cx8fH5niH0FUubM7Pz0fXuuzeMAxVVFjj2vza8Hy5A/26vu1bQWlpqSZPnqznnntOgYGBV23rqnlJstYYuZK3vqbciTEzjzEzx8x4ueNnIzOu52cjM2WbCjRbtmzRe++9p82bNyswMFAxMTE6cuSI5s6dq1tvvbXSJFFWVnbNCedSYWH1r7rsLeiX65VXGPL1cc+LtkGD4Brdv7twHFqLt/bLjFmzZqldu3bq1q3bNdsGBARcdl4KDQ01vd+6PvZ1vf/VwZiZx5iZU5XxqumfTTy1f1OBJicnR82aNXMKKW3bttW8efMUHx+vwsJCp/aFhYWV3u6/lmPHTskwzqeysLD6jmVvQb/cw9fXRw0bBmvMih3KO3ra4/tv0SREr90Xq+PHz6i8vMLj+zerpp8vd6Ff17d9K1i/fr0KCwsVGxsrSY7A8tFHH2nHjh1ObSMiIi47L7Vp08b0fr3tmKoqb31NuRNjZh5jZk5Vx8vqPxuZmZtMBZomTZrowIEDKisrc7yNn5+fr6ZNm8put+vNN9+UYRiy2WwyDEPbt2/X448/bqp4w5DTk3PpsregX+6Rd/S0dh0+WXMFyFrPa00/X+5Cv7zX22+/rXPnzjmWX3rpJUnS2LFjK7W12+3KzMx0LBcXF2v37t0aOXKk6f3W9bGv6/2vDsbMPMbMnKqOV1342cjUTQGSk5P1i1/8Qs8++6z279+vTz75RPPmzdPAgQPVu3dvnTx5UmlpacrLy1NaWpqKi4vVp08fd9UOAKhjbrnlFjVr1szxFRwcrODgYDVr1kzl5eUqKChwvGvTv39/bd++XQsWLFBubq4mTJigpk2bqlOnTjXcCwCAK5kKNPXr19eSJUtUUFCgAQMGaNq0aRo2bJjuvfdehYSEaP78+crMzFS/fv2UnZ2tBQsWqF69eu6qHQAAhx9++EGJiYmOS8+aNm2qN954Q6tXr9aAAQN04sQJzZ49u0b/QBYA4Hqm73LWokULvfXWW5d9rH379lq7du11FwUAQFVMnz7d8f+mTZtq7969To8nJSUpKSnJ02UBADzI1Ds0AAAAAFCbEGgAAAAAWJbpS84AXJmvb839jqCiwjof7AkAAOAqBBrABcJDAlReYSg0NKjGajhXXqGfTxQRagAAQJ1CoAFcIDTIT74+thr/8CofHxuBBgAA1CkEGsCFasOHVwEAANQl3BQAAAAAgGURaAAAAABYFoEGAAAAgGURaAAAAABYFoEGAAAAgGURaAAAAABYFoEGAAAAgGURaAAAAABYFoEGAAAAgGURaAAAAABYFoEGAAAAgGURaAAAAABYFoEGAAAAgGURaAAAAABYll9NFwDv4utbMxm5pvYLAACAmkWggUv4+NhUXmGoYcPgmi4FAAAAdQiBBi5hs9nk62PTmBU7lHf0tMf3371VuJ7u1drj+wUAAEDNItDApfKOntauwyc9vt/IcN4ZAgAAqIv4wwMAAAAAlkWgAQAAAGBZBBoAAAAAlkWgAQAAAGBZBBoAAAAAlkWgAQAAAGBZBBoAAAAAlkWgAQAAAGBZBBoAAAAAlkWgAQAAAGBZpgLNmjVr1KpVq0pfrVu3liTt3r1bKSkpstvt6t+/v3JyctxSNACgbjtw4IAGDx6s2NhYde/eXQsXLrxi22HDhlWatzZt2uTBagEA7uRnpvGvf/1rdevWzbF87tw5Pfzww+revbuKioqUmpqqu+++W9OnT9fy5cs1dOhQbdy4UfXq1XN54QCAuqmiokKpqamKiYnR2rVrdeDAAT355JOKiIjQ3XffXan9vn37lJ6eri5dujjW3XDDDZ4sGQDgRqbeoQkMDFR4eLjj6/3335dhGBo7dqwyMjIUEBCgcePGKTIyUpMmTVJwcLA2bNjgrtoBAHVQYWGh2rRpoylTpui2225TUlKSunTposzMzEpty8rKdOjQIcXExDjNX/7+/jVQOQDAHar9NzQnTpzQm2++qaeeekr+/v7Kzs5WXFycbDabJMlms6ljx47KyspyVa0AAKhJkyZ69dVXFRISIsMwlJmZqa+++koJCQmV2ubn58tms+nWW2+tgUoBAJ5g6pKziy1fvlxNmjRR7969JUkFBQVq0aKFU5uwsDDl5uaa2u6/81Clf72Ft/cLNa8qz4W3H4f0q3rbt6Lk5GQdPnxYPXr0UK9evSo9np+fr5CQEI0bN07btm3TjTfeqFGjRikpKcnUfqw8RtfDW19T7sSYmceYmWPF8apOrWa+p1qBxjAMrVq1SkOGDHGsKy4urvQWvr+/v8rKykxtOyys/lWXvYW39gs1q2HDYFPtvfU4pF91x+uvv67CwkJNmTJF06ZN07PPPuv0eH5+vkpKSpSYmKjU1FRt3LhRw4YN08qVKxUTE1Pl/dT1sa/r/a8Oxsw8xswcq4yX2Z9NqqNageabb77RkSNHdNdddznWBQQEVAovZWVlCgwMNLXtY8dOyTDOp7KwsPqOZW/hrf3y8/NRgwbuP2BxdcePn1F5ecU123nrcUi/rm/7VnQhlJSWlmrs2LEaN26c0y/Xhg8froEDBzpuAtC6dWvt2rVL7777rqlA423HVFV562vKnRgz8xgzc6o6Xr6+Ph4JE9dS1Z9NLmVmbqpWoPn0008VHx/vdJeYiIgIFRYWOrUrLCxUkyZNTG3bMOT05Fy67C28rV/e1BerM/NceNtxeAH98m6FhYXKysrSnXfe6VjXokULnT17VqdPn1ajRo0c6318fCrd0ax58+bKy8sztc+6PvZ1vf/VwZiZx5iZY6Xxcned1bopwM6dO9WxY0endXa7XTt27JDx74oNw9D27dtlt9uvv0oAAP7t0KFDGjlypI4cOeJYl5OTo0aNGjmFGUkaP368JkyY4LRuz549at68uUdqBQC4X7UCTW5ubqUbAPTu3VsnT55UWlqa8vLylJaWpuLiYvXp08clhQIAIJ2/zCw6OloTJ05UXl6eNm/erPT0dD3++OOSzt+kpqSkRNL5mwZ88MEHWrdunQ4cOKBZs2YpMzNTDz30UE12AQDgQtUKNIWFhQoNDXVaFxISovnz5yszM1P9+vVTdna2FixYwIdqAgBcytfXV3PmzFFQUJDuvfdeTZo0SQMHDtSgQYMkSYmJicrIyJAk9ezZU5MnT9bcuXPVt29fffLJJ1q4cKGaNm1ak10AALhQtf6GZufOnZdd3759e61du/a6CgIA4FoiIiI0a9asyz62d+9ep+WUlBSlpKR4oiwAQA2o9gdrAgAAAEBNI9AAAAAAsCwCDQAAAADLItAAAAAAsCwCDQAAAADLItAAAAAAsKxq3bYZQO3k62vudxRm219NRYWhigrDZdsDAACoCgIN4AXCQwJUXmEoNDTI1Pc1bBjsshrOlVfo5xNFhBoAAOBRBBrAC4QG+cnXx6YxK3Yo7+hpj++/RZMQvXZfrHx8bAQaAADgUQQawIvkHT2tXYdP1nQZAAAAHsNNAQAAAABYFoEGAAAAgGURaAAAAABYFoEGAAAAgGURaAAAAABYFoEGAAAAgGURaAAAAABYFoEGAAAAgGURaAAAAABYFoEGAAAAgGURaAAAAABYFoEGAAAAgGURaAAAAABYFoEGAAAAgGURaAAAAABYFoEGAAAAgGURaAAAAABYFoEGAAAAgGURaAAAAABYFoEGAAAAgGURaAAAAABYFoEGAAAAgGURaAAAAABYFoEGAAAAgGWZDjRlZWV6/vnndfvtt+uOO+7QK6+8IsMwJEm7d+9WSkqK7Ha7+vfvr5ycHJcXDACo2w4cOKDBgwcrNjZW3bt318KFC6/YlnkJALyf6UDzwgsv6IsvvtCiRYv08ssv691339XKlStVVFSk1NRUxcfHa82aNYqNjdXQoUNVVFTkjroBAHVQRUWFUlNT1bBhQ61du1bPP/+85s6dqw8++KBSW+YlAKgbTAWaEydOaPXq1Zo6darat2+vLl266LHHHlN2drYyMjIUEBCgcePGKTIyUpMmTVJwcLA2bNjgrtoBAHVMYWGh2rRpoylTpui2225TUlKSunTposzMzEptmZcAoG4wFWgyMzMVEhKihIQEx7rU1FRNmzZN2dnZiouLk81mkyTZbDZ17NhRWVlZLi0YAFB3NWnSRK+++qpCQkJkGIYyMzP11VdfOc1LFzAvAUDd4Gem8cGDB3XLLbdo3bp1mjdvns6ePat+/fpp2LBhKigoUIsWLZzah4WFKTc311RB/553Kv3rLby9X0BNHgve/vpyV7+sOl7Jyck6fPiwevTooV69elV63FXzkmTdMbpe3vqacifGzDxvHjMfH5vjlyqucmFzfn4++vefsV+Wr2/tufdXdYbAzPeYCjRFRUU6cOCAVqxYoWnTpqmgoEDPPfecgoKCVFxcLH9/f6f2/v7+KisrM7MLhYXVv+qyt/DWfqFua9gwuKZLkOS9ry9v7Vd1vf766yosLNSUKVM0bdo0Pfvss06Pu2pekhj7ut7/6mDMzPPGMSuvMOTr456k1qBB7Zhzr8UTPxuYCjR+fn46ffq0Xn75Zd1yyy2SpMOHD2v58uVq1qxZpUmirKxMgYGBpgo6duyUDON8KgsLq+9Y9hbe2i8/Px/LvLDgPsePn1F5eUWN7d9bX1/u7teF7VtNTEyMJKm0tFRjx47VuHHjnAJMQECAS+YlSV53TFWVt76m3IkxM89bx8zX10cNGwZrzIodyjt62uP7794qXE/3au3x/V6quj8bmJmbTAWa8PBwBQQEOMKMJP3yl7/UDz/8oISEBBUWFjq1LywsVJMmTczsQoYhp4P50mVv4W398qa+4PrUhmPB215fF3hrv8woLCxUVlaW7rzzTse6Fi1a6OzZszp9+rQaNWrkWB8REeGSeUli7Ot6/6uDMTPPW8cs7+hp7Tp80uP7jQyvPb9odvfzauriOrvdrtLSUu3fv9+xLj8/X7fccovsdrt27Njh+EwawzC0fft22e1211YMAKizDh06pJEjR+rIkSOOdTk5OWrUqJFTmJHEvAQAdYSpQNO8eXN1795dEyZM0J49e/Tpp59qwYIFuv/++9W7d2+dPHlSaWlpysvLU1pamoqLi9WnTx931Q4AqGNiYmIUHR2tiRMnKi8vT5s3b1Z6eroef/xxSedvBFBSUiJJzEsAUEeYvv3BSy+9pP/4j//Q/fffr2eeeUYPPvigBg4cqJCQEM2fP1+ZmZnq16+fsrOztWDBAtWrV88ddQMA6iBfX1/NmTNHQUFBuvfeezVp0iQNHDhQgwYNkiQlJiYqIyNDkpiXAKCOMPU3NJJUv359zZgx47KPtW/fXmvXrr3uogAAuJKIiAjNmjXrso/t3bvXaZl5CQC8X+25QTUAAAAAmGT6HRrUXj4+Nvm46V7n11KbPrwJAAAAdQeBxkv4+Nh0Q4N68iNYAAAAoA4h0HgJHx+b/Hx96vyHNwEAAKBuIdB4GT68CQAAAHUJ1ycBAAAAsCwCDQAAAADLItAAAAAAsCwCDQAAAADLItAAAAAAsCwCDQAAAADLItAAAAAAsCwCDQAAAADLItAAAAAAsCwCDQAAAADLItAAAAAAsCwCDQAAAADLItAAAAAAsCwCDQAAAADLItAAAAAAsCwCDQAAAADLItAAAAAAsCwCDQAAAADLItAAAAAAsCy/mi7Am/j42OTjY6tSW19f12ZJV28PAAAAsAICjYv4+Nh0Q4N68qtisGjYMNjNFQEAAADej0DjIj4+Nvn5+mjMih3KO3ra4/vv3ipcT/dq7fH9AgAAADWJQONieUdPa9fhkx7fb2Q47/gAAACg7uEPLwAAAABYFoEGAAAAgGURaAAAAABYFoEGAAAAgGURaAAAAABYFoEGAAAAgGWZDjQbN25Uq1atnL5Gjx4tSdq9e7dSUlJkt9vVv39/5eTkuLxgAEDdduTIEY0ePVoJCQnq1q2bpk2bptLS0su2HTZsWKU5a9OmTR6uGADgTqY/hyYvL089evTQ1KlTHesCAgJUVFSk1NRU3X333Zo+fbqWL1+uoUOHauPGjapXr55LiwYA1E2GYWj06NEKDQ3VO++8o59//lkTJ06Uj4+PnnnmmUrt9+3bp/T0dHXp0sWx7oYbbvBkyQAANzP9Ds2+ffsUFRWl8PBwx1doaKgyMjIUEBCgcePGKTIyUpMmTVJwcLA2bNjgjroBAHVQfn6+srKyNG3aNLVs2VLx8fEaPXq0Pvzww0pty8rKdOjQIcXExDjNWf7+/jVQOQDAXaoVaG677bZK67OzsxUXFyebzSZJstls6tixo7Kysq63RgAAJEnh4eFauHChGjdu7LT+9OnTldrm5+fLZrPp1ltv9VR5AIAaYOqSM8MwtH//fn322WeaP3++ysvL1bt3b40ePVoFBQVq0aKFU/uwsDDl5uaaKujfeajSvwBqP1/fmrvPiGEYMgxDkvedN9x9PrTSeIWGhqpbt26O5YqKCi1btkydO3eu1DY/P18hISEaN26ctm3bphtvvFGjRo1SUlKS6f1aaYxcibnYPMbMPMbM+1XnuTXzPaYCzeHDh1VcXCx/f3+9+uqrOnTokF544QWVlJQ41l/M399fZWVlZnahsLD6V10GUPuEhwSovMJQaGhQjdVQXmHI1+f82c9bzxve2q/rkZ6ert27d+u9996r9Fh+fr5KSkqUmJio1NRUbdy4UcOGDdPKlSsVExNjaj91fezrev+rgzEzjzHzTg0bBrt9H6YCzS233KIvv/xSN9xwg2w2m9q0aaOKigo9/fTTSkhIqBReysrKFBgYaKqgY8dOyTDOp7KwsPqO5drO19fHI08YUBuFBvnJ18emMSt2KO9o5Ut/3K1FkxC9dl+sTpw4owYNgi1z3qgqd58PL2zfatLT07V06VLNnDlTUVFRlR4fPny4Bg4c6LgJQOvWrbVr1y69++67pgONtx1TVWW1ubg2YMzM89Yx42fD844fP6Py8grT32dmbjJ9l7MGDRo4LUdGRqq0tFTh4eEqLCx0eqywsFBNmjQxtX3DkNPBfOkygNor7+hp7Tp8ssb2f+Fc4a3nDW/tV3VMnTpVy5cvV3p6unr16nXZNj4+PpXuaNa8eXPl5eWZ3l9dH/u63v/qYMzMY8y8l7ufV1MXvH/66afq1KmTiouLHeu+/fZbNWjQQHFxcdqxY4fjGnbDMLR9+3bZ7XbXVgwAqNNmzZqlFStW6JVXXtFdd911xXbjx4/XhAkTnNbt2bNHzZs3d3eJAAAPMhVoYmNjFRAQoGeffVb5+fnavHmzZsyYoSFDhqh37946efKk0tLSlJeXp7S0NBUXF6tPnz7uqh0AUMfs27dPc+bM0R/+8AfFxcWpoKDA8SVJBQUFKikpkSQlJyfrgw8+0Lp163TgwAHNmjVLmZmZeuihh2qyCwAAFzMVaEJCQrRo0SL99NNP6t+/vyZNmqR7771XQ4YMUUhIiObPn6/MzEz169dP2dnZWrBgAR+qCQBwmb/97W8qLy/X3LlzlZiY6PQlSYmJicrIyJAk9ezZU5MnT9bcuXPVt29fffLJJ1q4cKGaNm1ak10AALiY6b+hadmypd56663LPta+fXutXbv2uosCAOByUlNTlZqaesXH9+7d67SckpKilJQUd5cFAKhBNfehEQAAAABwnQg0AAAAACyLQAMAAADAsgg0AAAAACyLQAMAAADAsgg0AAAAACyLQAMAAADAsgg0AAAAACyLQAMAAADAsgg0AAAAACyLQAMAAADAsgg0AAAAACyLQAMAAADAsgg0AAAAACyLQAMAAADAsgg0AAAAACyLQAMAAADAsgg0AAAAACyLQAMAAADAsgg0AAAAACyLQAMAAADAsgg0AAAAACyLQAMAAADAsgg0AAAAACyLQAMAAADAsgg0AAAAACyLQAMAAADAsgg0AAAAACyLQAMAAADAsgg0AAAAACyLQAMAAADAsgg0AAAAACyLQAMAAADAsgg0AAAAACyr2oEmNTVV48ePdyzv3r1bKSkpstvt6t+/v3JyclxSIAAAFzty5IhGjx6thIQEdevWTdOmTVNpaell2zI3AYD3q1agWb9+vTZv3uxYLioqUmpqquLj47VmzRrFxsZq6NChKioqclmhAAAYhqHRo0eruLhY77zzjmbOnKlNmzbp1VdfrdSWuQkA6gbTgebEiROaMWOGYmJiHOsyMjIUEBCgcePGKTIyUpMmTVJwcLA2bNjg0mIBAHVbfn6+srKyNG3aNLVs2VLx8fEaPXq0Pvzww0ptmZsAoG4wHWhefPFF3XPPPWrRooVjXXZ2tuLi4mSz2SRJNptNHTt2VFZWlssKBQAgPDxcCxcuVOPGjZ3Wnz59ulJb5iYAqBv8zDTesmWLvv76a33wwQeaMmWKY31BQYFTwJGksLAw5ebmmi7o3/NOpX8B4Fq89bzh7n5ZabxCQ0PVrVs3x3JFRYWWLVumzp07V2rrjrmprvGG15SPj80Raj3hwq78/HxkGOeXDcNju6/EMAxVVNRgAVXgzuPM08//xXx9uffWBdV5Csx8T5UDTWlpqSZPnqznnntOgYGBTo8VFxfL39/faZ2/v7/KysqqXsm/hYXVv+oyAFxJgwbBkrz3vOGt/boe6enp2r17t957771Kj7lzbqprrNz/8gpDvj6e/4H2wvmopvZ/QU3v3wx3HGdW6r+3atgw2O37qHKgmTVrltq1a+f0m7ELAgICKk0QZWVllYJPVRw7dsrxG42wsPqO5drO19fHI08YgCs7ceKMGjQItsx5o6rcfT68sH2rSU9P19KlSzVz5kxFRUVVetwdc1NdY7W5+FIX5uYxK3Yo72jlyxLdrXurcD3dq3WN7b9FkxC9dl+sjh8/o/LyCo/vv6rcdZzVlue/rqvu8WdmbqpyoFm/fr0KCwsVGxsrSY5J4qOPPlLfvn1VWFjo1L6wsFBNmjSp6uYdDMP5rdlLlwHgSi6cK7z1vOGt/aqOqVOnavny5UpPT1evXr0u2yYiIsJtc1NdY/X+5x09rV2HT3p8v5HhwTW6/4tZ4flz13FW088/3H/8VfnivrffflsffPCB1q1bp3Xr1ik5OVnJyclat26d7Ha7duzYIePf1RqGoe3bt8tut7utcABA3TRr1iytWLFCr7zyiu66664rtmNuAoC6ocqB5pZbblGzZs0cX8HBwQoODlazZs3Uu3dvnTx5UmlpacrLy1NaWpqKi4vVp08fd9YOAKhj9u3bpzlz5ugPf/iD4uLiVFBQ4PiSzt8IoKSkRJKYmwCgjnDJ7RdCQkI0f/58ZWZmql+/fsrOztaCBQtUr149V2weAABJ0t/+9jeVl5dr7ty5SkxMdPqSpMTERGVkZEhibgKAusLUbZsvNn36dKfl9u3ba+3atdddEAAAV5KamqrU1NQrPr53716nZeYmAPB+3CAbAAAAgGURaAAAAABYFoEGAAAAgGURaAAAAABYFoEGAAAAgGURaAAAAABYFoEGAAAAgGURaAAAAABYFoEGAAAAgGURaAAAAABYFoEGAAAAgGURaAAAAABYFoEGAAAAgGURaAAAAABYFoEGAAAAgGURaAAAAABYFoEGAAAAgGURaAAAAABYFoEGAAAAgGURaAAAAABYFoEGAAAAgGURaAAAAABYFoEGAAAAgGURaAAAAABYFoEGAAAAgGURaAAAAABYFoEGAAAAgGURaAAAAABYFoEGAAAAgGURaAAAAABYFoEGAAAAgGURaAAAAABYFoEGAAAAgGWZDjQHDhzQ4MGDFRsbq+7du2vhwoWOxw4ePKhHHnlEHTp00K9//Wt99tlnLi0WAICLlZWVqW/fvvryyy+v2GbYsGFq1aqV09emTZs8WCUAwJ38zDSuqKhQamqqYmJitHbtWh04cEBPPvmkIiIi1LdvX40YMUJRUVFavXq1Pv74Y40cOVIZGRm6+eab3VU/AKCOKi0t1VNPPaXc3Nyrttu3b5/S09PVpUsXx7obbrjB3eUBADzEVKApLCxUmzZtNGXKFIWEhOi2225Tly5dlJmZqcaNG+vgwYNasWKF6tWrp8jISG3ZskWrV6/WqFGj3FU/AKAOysvL01NPPSXDMK7arqysTIcOHVJMTIzCw8M9VB0AwJNMXXLWpEkTvfrqqwoJCZFhGMrMzNRXX32lhIQEZWdnq23btqpXr56jfVxcnLKyslxdMwCgjtu2bZs6deqklStXXrVdfn6+bDabbr31Vg9VBgDwNFPv0FwsOTlZhw8fVo8ePdSrVy/97//+r5o0aeLUJiwsTD/++ON1FwkAwMUeeOCBKrXLz89XSEiIxo0bp23btunGG2/UqFGjlJSU5OYKAQCeUu1A8/rrr6uwsFBTpkzRtGnTVFxcLH9/f6c2/v7+KisrM7Vdm+3y/wLAtXjrecPd/fK28bpYfn6+SkpKlJiYqNTUVG3cuFHDhg3TypUrFRMTU+XtePMYXY23vqbqotr8HHKceb/qPLdmvqfagebCRFBaWqqxY8eqf//+Ki4udmpTVlamwMBAU9sNC6t/1WUAuJIGDYIlee95w1v75U7Dhw/XwIEDHTcBaN26tXbt2qV3333XVKCp62Nf1/tvdQ0bBtd0CVXCceadPHH8mb4pQFZWlu68807HuhYtWujs2bMKDw9Xfn5+pfaXXoZ2LceOnZJhnE9lYWH1Hcu1na+vj2VOGIC3OnHijBo0CLbMeaOq3H0+vLB9b+Tj41PpjmbNmzdXXl6eqe142zFVVVabiy/F3Hze8eNnVF5eUdNlXJG7jjOe/9qhusefmbnJVKA5dOiQRo4cqc2bNysiIkKSlJOTo0aNGikuLk6LFy9WSUmJ412ZzMxMxcXFmSreMOR0MF+6DABXcuFc4a3nDW/tlzuNHz9eNptN06ZNc6zbs2ePoqKiTG2nro99Xe+/N7DC88dx5r3c/byaustZTEyMoqOjNXHiROXl5Wnz5s1KT0/X448/roSEBN10002aMGGCcnNztWDBAu3cuVMDBgxwV+0AAFRSUFCgkpISSedvYPPBBx9o3bp1OnDggGbNmqXMzEw99NBDNVwlAMBVTAUaX19fzZkzR0FBQbr33ns1adIkDRw4UIMGDXI8VlBQoH79+un999/X7Nmz+VBNAIBHJSYmKiMjQ5LUs2dPTZ48WXPnzlXfvn31ySefaOHChWratGkNVwkAcBXTNwWIiIjQrFmzLvtYs2bNtGzZsusuCgCAqtq7d+9Vl1NSUpSSkuLJkgAAHmTqHRoAAAAAqE0INAAAAAAsi0ADAAAAwLIINAAAAAAsi0ADAAAAwLIINAAAAAAsi0ADAAAAwLIINAAAAAAsi0ADAAAAwLIINAAAAAAsi0ADAAAAwLL8aroAAHAVX18fp389qaLCUEWF4fH9AgBQ1xFoAFheeEiAyisMhYYGSZIaNgz2eA3nyiv084kiQg0AAB5GoAFgeaFBfvL1sWnMih3KO3ra4/tv0SREr90XKx8fG4EGAAAPI9AA8Bp5R09r1+GTNV0GAADwIG4KAAAAAMCyCDQAAAAALItAAwAAAMCyCDQAAAAALItAAwAAAMCyCDQAAAAALItAAwAAAMCyCDQAAAAALItAAwAAAMCyCDQAAAAALItAAwAAAMCyCDQAAAAALItAAwAAAMCyCDQAAAAALItAAwAAAMCyCDQAAAAALItAAwAAAMCyCDQAAAAALItAAwAAAMCyTAWaI0eOaPTo0UpISFC3bt00bdo0lZaWSpIOHjyoRx55RB06dNCvf/1rffbZZ24pGAAASSorK1Pfvn315ZdfXrHN7t27lZKSIrvdrv79+ysnJ8eDFQIAPKHKgcYwDI0ePVrFxcV65513NHPmTG3atEmvvvqqDMPQiBEj1LhxY61evVr33HOPRo4cqcOHD7uzdgBAHVVaWqonn3xSubm5V2xTVFSk1NRUxcfHa82aNYqNjdXQoUNVVFTkwUoBAO5W5UCTn5+vrKwsTZs2TS1btlR8fLxGjx6tDz/8UFu3btXBgwf1xz/+UZGRkRo6dKg6dOig1atXu7N2AEAdlJeXp9///vf6/vvvr9ouIyNDAQEBGjdunCIjIzVp0iQFBwdrw4YNHqoUAOAJVQ404eHhWrhwoRo3buy0/vTp08rOzlbbtm1Vr149x/q4uDhlZWW5rFAAACRp27Zt6tSpk1auXHnVdtnZ2YqLi5PNZpMk2Ww2dezYkbkJALyMX1UbhoaGqlu3bo7liooKLVu2TJ07d1ZBQYGaNGni1D4sLEw//vij6yoFAEDSAw88UKV2BQUFatGihdO6sLCwq16mBgCwnioHmkulp6dr9+7deu+997RkyRL5+/s7Pe7v76+ysjLT2/33L9Iq/QsAVuCOc5a7z4feep4tLi52+dxUHT4+Nse7RDXBZpMMo/rfK0l+fj7XtY3qfu/18vXlZq4X1ObXOT/zeb/qPLdmvqdagSY9PV1Lly7VzJkzFRUVpYCAAJ04ccKpTVlZmQIDA01vOyys/lWXAaC2atgw2K3b53xoTkBAQKXw4qq5yYzyCkO+PjX3k5or9t+gQfWP7ZruP9x/bnIVznHeyRPHn+lAM3XqVC1fvlzp6enq1auXJCkiIkJ5eXlO7QoLCytdhlYVx46dkmGcT2VhYfUdy7Wdr6+PZU4YANzj+PEzKi+vcPl23X0+vLB9bxMREaHCwkKnddc7N5l1YW4Ys2KH8o6eNr+B69S9Vbie7tW6zu+/rnPXuclV3HWO42ez2qG6x5+ZuclUoJk1a5ZWrFihV155Rb1793ast9vtWrBggUpKShy/+crMzFRcXJyZzUs6/7b0xQfzpcsAUJu583zF+dAcu92uN998U4ZhyGazyTAMbd++XY8//rjpbV3v2OcdPa1dh09WfwPVFBkezP4hyRrnDs5x3svdz2uVLy7dt2+f5syZoz/84Q+Ki4tTQUGB4yshIUE33XSTJkyYoNzcXC1YsEA7d+7UgAED3Fk7AABOCgoKVFJSIknq3bu3Tp48qbS0NOXl5SktLU3FxcXq06dPDVcJAHClKgeav/3tbyovL9fcuXOVmJjo9OXr66s5c+aooKBA/fr10/vvv6/Zs2fr5ptvdmftAAA4SUxMVEZGhiQpJCRE8+fPV2Zmpvr166fs7GwtWLDA6SMGAADWV+VLzlJTU5WamnrFx5s1a6Zly5a5pCgAAKpi7969V11u37691q5d68mSAAAexv0MAQAAAFgWgQYAAACAZRFoAAAAAFgWgQYAAACAZRFoAAAAAFgWgQYAAACAZRFoAAAAAFgWgQYAAACAZRFoAAAAAFgWgQYAAACAZRFoAAAAAFgWgQYAAACAZRFoAAAAAFgWgQYAAACAZRFoAAAAAFgWgQYAAACAZfnVdAGu5ONjk4+PrUb27etLNgQAAAA8zWsCjY+PTTc0qCc/ggUAAABQZ3hVoPHz9dGYFTuUd/S0x/ffvVW4nu7V2uP7BQAAAOoyrwk0F+QdPa1dh096fL+R4cEe3ycAAABQ13F9FgAAAADLItAAAAAAsCwCDQAAAADLItAAAAAAsCwCDQAAAADLItAAAAAAsCwCDQAAAADLItAAAAAAsCwCDQAAAADLItAAAAAAsCwCDQAAAADLItAAAAAAsCwCDQAAAADLItAAAAAAsKxqB5qysjL17dtXX375pWPdwYMH9cgjj6hDhw769a9/rc8++8wlRQKAFfj6+sjPz/Vfvr4+19y+j4+thnvvWaWlpZo4caLi4+OVmJioxYsXX7HtsGHD1KpVK6evTZs2ebBaAIA7+VXnm0pLS/XUU08pNzfXsc4wDI0YMUJRUVFavXq1Pv74Y40cOVIZGRm6+eabXVYwANQ24SEBKq8wFBoa5Nb9NGwYfMXHzpVX6OcTRaqoMNxaQ20xY8YM5eTkaOnSpTp8+LCeeeYZ3Xzzzerdu3eltvv27VN6erq6dOniWHfDDTd4slwAgBuZDjR5eXl66qmnZBjOk+bWrVt18OBBrVixQvXq1VNkZKS2bNmi1atXa9SoUS4rGABqm9AgP/n62DRmxQ7lHT3t8f23aBKi1+6LlY+PrU4EmqKiIq1atUpvvvmmoqOjFR0drdzcXL3zzjuVAk1ZWZkOHTqkmJgYhYeH11DFAAB3Mh1otm3bpk6dOumJJ55Qhw4dHOuzs7PVtm1b1atXz7EuLi5OWVlZrqgTAGq9vKOntevwyZouw+vt2bNH586dU2xsrGNdXFyc5s2bp4qKCvn4/P+rqfPz82Wz2XTrrbfWRKkAAA8wHWgeeOCBy64vKChQkyZNnNaFhYXpxx9/NLV9m+3y/wIArq0650yrnWcLCgrUsGFD+fv7O9Y1btxYpaWlOnHihBo1auRYn5+fr5CQEI0bN07btm3TjTfeqFGjRikpKcnUPq02RsClavMxzM983s/dc1O1/obmcoqLi50mF0ny9/dXWVmZqe2EhdW/6jIA4PKu9jc23uRK842kSnNOfn6+SkpKlJiYqNTUVG3cuFHDhg3TypUrFRMTU+V9MhfByqxybuB15p08cfy5LNAEBAToxIkTTuvKysoUGBhoajvHjp2SYZxPZWFh9R3L1+Lr62OZFywAuMPx42dUXl5h+vsunG+tIiAgoFJwubB86ZwzfPhwDRw40HETgNatW2vXrl169913TQWaqs5Fl2JuQm1Q3XODp5j9ma+qeP3VDp6Ym1wWaCIiIpSXl+e0rrCwsNJlaNdiGHI6mC9dBgBcWV04X0ZEROj48eM6d+6c/PzOT2MFBQUKDAxUaGioU1sfH59KdzRr3rx5pfnqWpiLYHVWOH55nXkvdz+vLvtgTbvdrl27dqmkpMSxLjMzU3a73VW7AABAbdq0kZ+fn9NNZzIzMxUTE+N0QwBJGj9+vCZMmOC0bs+ePWrevLknSgUAeIDLAk1CQoJuuukmTZgwQbm5uVqwYIF27typAQMGuGoXAAAoKChIv/3tbzVlyhTt3LlTH3/8sRYvXqxBgwZJOv9uzYVfriUnJ+uDDz7QunXrdODAAc2aNUuZmZl66KGHarILAAAXclmg8fX11Zw5c1RQUKB+/frp/fff1+zZs/lQTQCAy02YMEHR0dF6+OGH9fzzz2vUqFHq2bOnJCkxMVEZGRmSpJ49e2ry5MmaO3eu+vbtq08++UQLFy5U06ZNa7J8AIALXdff0Ozdu9dpuVmzZlq2bNl1FQQAwLUEBQXpxRdf1IsvvljpsUvnppSUFKWkpHiqNACAh7nsHRoAAAAA8DQCDQAAAADLItAAAAAAsCwCDQAAAADLItAAAAAAsCwCDQAAAADLItAAAAAAsCwCDQAAAADLItAAAAAAsCwCDQAAAADLItAAAAAAsCwCDQAAAADLItAAAAAAsCwCDQAAAADLItAAAAAAsCwCDQAAAADLItAAAAAAsCwCDQAAAADLItAAAAAAsCwCDQAAAADLItAAAAAAsCwCDQAAAADLItAAAAAAsCwCDQAAAADLItAAAAAAsCwCDQAAAADLItAAAAAAsCwCDQAAAADLItAAAAAAsCwCDQAAAADLItAAAAAAsCwCDQAAAADLItAAAAAAsCwCDQAAAADLcmmgKS0t1cSJExUfH6/ExEQtXrzYlZsHAMDUXLN7926lpKTIbrerf//+ysnJ8WClAABPcGmgmTFjhnJycrR06VJNnjxZs2bN0oYNG1y5CwBAHVfVuaaoqEipqamKj4/XmjVrFBsbq6FDh6qoqKgGqgYAuIvLAk1RUZFWrVqlSZMmKTo6Wr/61a80ZMgQvfPOO67aBQCgjjMz12RkZCggIEDjxo1TZGSkJk2apODgYH7RBgBexmWBZs+ePTp37pxiY2Md6+Li4pSdna2KigpX7QYAUIeZmWuys7MVFxcnm80mSbLZbOrYsaOysrI8WTIAwM38XLWhgoICNWzYUP7+/o51jRs3VmlpqU6cOKFGjRpVaTs+PpJhSP+efxzLVRV9c6iC/H3NlO4SkeEh7J/9s3/2XyP7b9442PF/n2r8murC+dYKzMw1BQUFatGihdP3h4WFKTc31/R+zc5Fl6qrxyb7rx3nBl/fmrsH1MU/013Jhcf9/Hyu63V2qQv9rqvPf03v35Nzk80wXHPorFu3Tq+99po2bdrkWHfw4EHdeeed2rx5s2688UZX7AYAUIeZmWsefvhhxcXFafTo0Y51r732mnbs2KElS5Z4smwAgBu5LLIHBASorKzMad2F5cDAQFftBgBQh5mZa67UljkJALyLywJNRESEjh8/rnPnzjnWFRQUKDAwUKGhoa7aDQCgDjMz10RERKiwsNBpXWFhoZo0aeKRWgEAnuGyQNOmTRv5+fk5/bFlZmamYmJi5FOdC+cAALiEmbnGbrdrx44dunBltWEY2r59u+x2uydLBgC4mcuSRlBQkH77299qypQp2rlzpz7++GMtXrxYgwYNctUuAAB13LXmmoKCApWUlEiSevfurZMnTyotLU15eXlKS0tTcXGx+vTpU5NdAAC4mMtuCiBJxcXFmjJliv76178qJCREgwcP1iOPPOKqzQMAcNW5plWrVpo2bZr69esnSdq5c6cmT56sffv2qVWrVnr++efVtm3bGqweAOBqLg00AAAAAOBJ/HELAAAAAMsi0AAAAACwLAINAAAAAMuqNYHGMAy99NJL6ty5sxISEjRjxgxVVFRcsf2nn36q3/zmN2rfvr1+85vfaPPmzR6sturM9isrK0v33XefYmNj1atXL61atcqD1Vad2X5dcODAAbVv394DFVZdaWmpJk6cqPj4eCUmJmrx4sVXbLt7926lpKTIbrerf//+ysnJ8WCl5pjp1wVff/21/uu//ssD1VWfmX79/e9/1z333KPY2Fjdfffd+tvf/ubBSs0x06/3339fvXr1Uvv27XXfffdp586dHqwUVufKc8OHH36oO++8U3a7XSNGjNBPP/3kjpJrnCvHLD4+Xq1atXL6OnPmjDvKrlGuPFdznFV2rTGrK8eZg1FLLFq0yEhKSjK++uorY8uWLUZiYqKxcOHCy7b97rvvjPbt2xtvvfWW8f333xuLFy82oqOjjYMHD3q46msz06+jR48a8fHxxssvv2zs37/f+PDDD42YmBhj06ZNni26Csz064LDhw8bvXr1MqKiojxUZdX88Y9/NO6++24jJyfH+Otf/2rExsYaf/nLXyq1O3PmjNG1a1dj+vTpRl5enjF16lTjjjvuMM6cOVMDVV9bVft1wZ49e4w77rjD6NGjhwerNK+q/fr222+N6OhoY+nSpcZ3331nLFu2zIiOjja+/fbbGqj62qrar6+++spo166dsW7dOuP77783pk+fbiQkJBinT5+ugaphRa46N2RnZxvt27c31q5da3z77bfGQw89ZKSmprq7/BrhqjH78ccfjaioKOP77783jh496viqqKhwdxc8zlXnao4z82NWl46zC2pNoElKSjJWr17tWF63bt0Vf7DaunWr8cILLzitu/32243169e7tcbqMNOvP//5z0bv3r2d1v3P//yP8eSTT7q1xuow0y/DMIyNGzcanTt3Nu6+++5aFWjOnDljxMTEGFu3bnWsmz17tvHQQw9Vartq1SojOTnZcUKoqKgwfvWrXzmNQ21hpl+GYRjLly83OnToYNx99921OtCY6Vd6eroxePBgp3WPPfaY8corr7i9TrPM9CsjI8OYM2eOY/nUqVNGVFSUkZ2d7ZFaYW2uPDc8/fTTxjPPPONYPnz4sNGqVSvj+++/d0/xNcSVY/b5558bXbt2dWu9tYErz9UcZ+bHrK4cZxerFZecHTlyRD/88INuv/12x7q4uDj961//0tGjRyu179SpkyZNmiRJOnv2rFatWqWysrJadymT2X5169ZN06ZNq7T+9OnTbq3TLLP9ks6/NTpmzBjH81Zb7NmzR+fOnVNsbKxjXVxcnLKzsytdQpedna24uDjZbDZJks1mU8eOHZ0+sby2MNMvSfrHP/6hF198sdZ/bpSZfv3ud7/T2LFjK23j1KlTbq/TLDP96tOnj4YNGyZJKikp0ZIlSxQWFqbIyEiP1gxrcuW5ITs7W/Hx8Y7lm266STfffLOys7PdUntNceWY5eXl6Ze//KU7y60VXHmu5jgzP2Z15Ti7WK0INAUFBZKkJk2aONY1btxYkvTjjz9e8fsOHDggu92uZ599VsOHD1fTpk3dW6hJZvvVtGlTdejQwbF87NgxrV+/Xl26dHFvoSZV5/l64YUXdN9997m/OJMKCgrUsGFD+fv7O9Y1btxYpaWlOnHiRKW2F/dZksLCwq56jNYUM/2SpDlz5qhnz54erLB6zPQrMjJSrVu3dizn5uZqy5Ytte71JJl/viRpy5Ytio2N1axZszRx4kQFBwd7qFpYmSvPDUePHrXMOfF6uHLM9u3bp+LiYg0cOFCJiYn6wx/+oP3797ur9BrjynM1x5n5Masrx9nF/Dy1o5KSEh05cuSyjxUVFUmS05N44f9lZWVX3GajRo303nvvaceOHZo+fbqaNWumXr16ubDqa3NHvy5sd9SoUWrcuLHuvfdeF1Vbde7qV21TXFzs1A/pyn25Utva2Gcz/bKS6vbrp59+0qhRo9SxY8daedOD6vSrZcuWWrNmjTZt2qTx48dX+oUIcDmuPDeUlJRY5px4PVw5Zvn5+fr555/15JNPKiQkRG+++aYeeeQRrV+/XiEhIS6ruaa58lzNcWZ+zOrKcXYxjwWa7OxsDRo06LKPPf3005LOP2EBAQGO/0tSUFDQFbdZv359tW3bVm3bttW+ffu0bNkyjwcad/TrzJkzGj58uL777jv9+c9/vmpbd3FHv2qjgICASieKC8uBgYFVantpu9rATL+spDr9Kiws1KOPPirDMPT666/Lx6dWvDHtpDr9aty4sRo3bqw2bdooOztbK1asINDgmlx5brjStqw2D1yLK8ds0aJFOnv2rOMd1ZdeeklJSUnatGmT7r77btcUXAu48lzNcWZ+zOrKcXYxjwWaTp06ae/evZd97MiRI0pPT1dBQYHjsrELlzWFh4dXap+bm6uff/7Z6ZrKyMhIbdu2zQ2VX50r+yWd/3uZIUOG6Pvvv9fSpUt12223uaXua3F1v2qriIgIHT9+XOfOnZOf3/mXQ0FBgQIDAxUaGlqpbWFhodO6wsLCSm+F1wZm+mUlZvt15MgRRzD/05/+pEaNGnm03qoy06+dO3fK19dX0dHRjnWRkZHat2+fR2uGNbny3HClc6LV5oFrceWY+fv7O/0WPiAgQE2bNr3iFRFW5cpzNceZ+TGrK8fZxWrFryojIiJ08803KzMz07EuMzNTN99882V/WNy0aZOeffZZGYbhWLdr1y41b97cI/VWldl+VVRUaOTIkTp06JDefvtttWzZ0pPlVpnZftVmbdq0kZ+fn9Mf9mdmZiomJqbSb/Ltdrt27NjhOO4Mw9D27dtlt9s9WXKVmOmXlZjpV1FRkYYMGSIfHx8tW7ZMERERHq626sz067333tMrr7zitK42nv9QO7ny3GC3253mgR9++EE//PBDrTwnXg9XjZlhGLrzzju1Zs0ax7qioiIdOHDA616/rjxXc5yZG7O6dJw5qbkbrDmbP3++kZiYaGzdutXYunWrkZiYaCxevNjx+LFjxxyfs/DDDz8YHTt2NGbMmGHs37/fcf/tnJycmir/isz0a+XKlUbr1q2NTZs2Od03/Pjx4zVU/ZWZ6dfFtm7dWqtu22wY52+NfddddxnZ2dnGxo0bjY4dOxofffSRYRjnPxuouLjYMIzzt8ft3LmzMXXqVCM3N9eYOnWq0bVr11r7OTRV7dfFVq9eXatv22wYVe/XK6+8YrRv397Izs52ej2dPHmyJsu/oqr2Kycnx2jbtq2xZMkSY//+/cZrr71mdOjQwfjxxx9rsnxYiKvODdu3bzeio6ONd9991/H5IEOHDvVIHzzNVWM2depUo3v37sbWrVuNf/7zn8aIESOMvn37GufOnfNIPzzJVedqjjPzY1aXjrMLak2gOXfunPG///u/Rnx8vNGpUycjPT3d6QOAevToYbz++uuO5R07dhgpKSlG+/btjT59+hgff/xxTZR9TWb69dhjjxlRUVGVvq50r/uaZPb5uqA2BpqioiJj3LhxRocOHYzExETjrbfecjwWFRXl9Dkz2dnZxm9/+1sjJibGGDBggLFr164aqLhqzPTrAisEmqr268KHuF76dfHnGdQmZp6vTz75xOjbt68RExNj9OvXz8jMzKyBimFVrjw3rF692khKSjI6dOhgjBgxwvjpp5/cWXqNcdWYlZSUGNOmTTO6du1q2O12Y+jQocbhw4fdXX6NcOW5muPM3JjVpePsApthXHTdFgAAAABYiHUvpgcAAABQ5xFoAAAAAFgWgQYAAACAZRFoAAAAAFgWgQYAAACAZRFoAAAAAFgWgQYAAACAZRFoAAAAAFgWgQYAAACAZRFoAAAAAFgWgQYAAACAZRFoAAAAAFjW/wPAwJAyN9kQwwAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 1000x500 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAzgAAAHBCAYAAACljh56AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABLA0lEQVR4nO3de1xVdb7/8fcGBlDIRFQ6ZVNHDTVEQhgvhWPq5KWxk2lM1lGbSQfvdhnHvKRS5phS2QU1L+PJyimz1LLM0tHpnF9pFgqGBke0Y5qpYJgXbgHr94fDHreAsrb7wlq+no8HD91rffdan+/ai/3db9baazkMwzAEAAAAADYQ4O8CAAAAAMBTCDgAAAAAbIOAAwAAAMA2CDgAAAAAbIOAAwAAAMA2CDgAAAAAbIOAAwAAAMA2CDgAAAAAbIOAA8Bt3CcYAADUNwQc+MSaNWvUpk0bHT582N+lXJb8/Hw98cQT6tGjh+Lj4zVw4EBt2LDBpU1ZWZmee+45de/eXR06dNA999yjDz/80C/1Dh06VEOHDvX4c44ePaqUlBR9//33l1MeANQrjFWXHqvatGmjl19++aJt3Bl7AE8K8ncBgFWUlZVpxIgROn36tCZMmKDmzZvr448/1qOPPqqysjINGDBAkvToo4/qH//4hx566CF17dpV2dnZmjZtmn788Uefv+HPnDnTK8v9/PPP9emnn3pl2QAA99WHscpbYw9QVwQcoI7+8Y9/KCcnR6tXr1aHDh0kSbfddpuOHDmiZcuWacCAAdq7d682b96sRx55RKNHj5Yk3XrrrWrYsKGee+453X333WrUqJHPam7durXP1gUA8L/6MFYx9sDfOEUNHldZWamFCxfq9ttvV1xcnMaMGaOffvqpWrv//d//1ciRI9WxY0d17NhRY8eO1aFDh5zzv/jiC7Vp00bbtm3TQw89pLi4ON12221KS0tTRUWFs91nn32m3/3ud4qPj9evfvUrjR49Wvv373dZ1+bNmzVw4EDFxsbqtttu09NPP62ioiJT/QoPD9d9992n2NhYl+ktW7bUd999J0nO9fbo0cOlTefOnVVUVKQdO3bUuL26dOmip59+2jmtrKxMcXFxeuCBB1za3n333ZoxY4bzeUuWLNEdd9yh9u3bq0+fPnr99ddd2l94msCZM2c0Y8YMde3aVfHx8Xr00Uf16quvqk2bNi7PMwxDS5cu1e23364OHTrovvvu0+7duyWdO4VjypQpkqRevXpp8uTJkqTs7Gw9+OCDSkhIUHx8vH7/+98rMzPzIlsUAPyHscrcWHW+M2fOaOLEiYqPj1fXrl319NNPq7i42Dn/wrHnxx9/1JNPPqkePXqoffv26tSpk8aOHetyKuB3332nUaNGqXPnzoqLi9N9991X7UyBS70WkrRixQr17dtXsbGx6tatm1JTU3XmzJlLbTbYDAEHHpeWlqYFCxbo3nvvVXp6uho3bqznnnvOpc23336rwYMH68SJE5o7d65mz56tQ4cO6f7779eJEydc2k6cOFEJCQl65ZVX1L9/fy1btkyrV6+WJB06dEhjxoxR+/bttWjRIs2ePVvffvutUlJSVFlZKUlav369xo4dq5YtW2rBggUaN26c3n//fY0ZM8bUl+RvvfVWPfXUU3I4HM5pP//8sz799FPnX6siIiIkSUeOHHF5btWgcuEbsSQFBASoW7du2rZtm3Parl27VFJSoq+//lqlpaWSpOPHjysnJ0e33367JCk1NVUvvfSS/uM//kOvvPKK+vbtq7/85S9asGBBrX0YM2aMPvroI40fP17z58/X2bNnq702kpSRkaFNmzZp+vTpSktL0/HjxzV69GiVl5fr9ttvd/7FLz09XWPGjNGZM2c0YsQIRURE6OWXX9b8+fNVXFys4cOH6/Tp05fctgDga4xV5saq873++us6e/asXnjhBY0cOVKrV6/WxIkTa2xrGIZGjhypzz77TBMnTtRf//pXjRs3Ttu2bXOeylZZWamRI0equLhY8+bN08KFC9W4cWONHj1aBw8elFS31+KDDz5QWlqa/vM//1N//etfNXbsWL333nuaNWtWnbcfbMIAPOinn34yYmJijLS0NJfpw4cPN6Kjo41Dhw4ZhmEYjz32mHHrrbcap0+fdrYpLCw0EhISjGeeecYwDMPYvn27ER0dbcyfP99lWT179jRGjhxpGIZhfPDBB0Z0dLRx9OhR5/ysrCzj+eefN06fPm1UVlYav/71r43hw4e7LOPzzz83oqOjja1bt15Wf2fPnm1ER0cbH3/8sWEYhlFaWmr06tXL6NGjh/H5558bp0+fNr788kujb9++Rps2bYz09PQal1PVj2PHjhmGYRjz58837rnnHiM6OtrYvn27YRiG8c477xgdOnQwiouLjQMHDhht2rQxFi9e7LKc+fPnG7GxscaPP/5oGIZhDBkyxBgyZIhLn6tqNQzDqKioMPr162dER0c7pw0ZMsTo0KGDUVhY6Jz29ttvG9HR0cY333xjGIZhvPvuuy6v565du4zo6GgjIyPD+ZyDBw8a8+bNM3744QfzGxYAvIixyr2xyjAMIzo62ujfv79RUVHhnPbqq68a0dHRRm5urmEYrmPP0aNHjaFDhxpffvmly3JmzZpltG/f3jAMwzh+/LgRHR1tvP/++875p06dMv7yl78Y//u//2sYRt1ei+nTpxt9+vRxqe29994zXnvtNfMbDZbGERx4VGZmpn7++edqh7379evn8nj79u3q1KmTQkNDVV5ervLycoWHhysxMVGff/65S9v4+HiXx9dcc43zkH1cXJxCQkJ07733avbs2fqf//kftW3bVo8++qjCw8N14MABHT16VD179nSup7y8XL/61a8UHh6uzz77zK1+GoahefPmacWKFRo+fLh69+4tSQoODtZf//pX/du//Zt+//vfKyEhQY888ogefvhhSVKDBg1qXF5SUpICAwOdfd++fbv69u2rG2+8UV9++aUk6b//+7/VpUsXhYaGavv27TIMo1q/evbsqdLSUmVkZFRbx/bt2/WLX/xCv/nNb5zTAgICdOedd1Zr27p1azVu3Nj5uEWLFpJU69GYm266SU2aNNGoUaM0Y8YMbdq0SU2bNtWf//xnXXPNNZfanADgU4xV7o1VVfr27auAgH99hKxabtV4db6oqCi99tprSkhI0OHDh/XZZ5/p9ddf186dO1VWViZJatq0qVq3bq3p06fr8ccf1/r161VZWakpU6bopptuklS316JLly769ttvNXDgQKWnp+vrr7/WXXfdxRXdrkBcZAAeVXX+ctXh7yrNmjVzeXzy5Elt2LCh2mUrJalJkyYuj0NDQ10eBwQEOA/Xt2jRQm+88YaWLFmid955R6+99poaNWqkBx54QI888ohOnjwpSXryySf15JNPVlvX8ePHzXVQ574fM3nyZH344YcaPny4Jk2a5DL/hhtu0MqVK3XixAmdPHlSN9xwg3744QcZhqGrr766xmVeffXVio+P17Zt2/Sb3/xGX3/9tSZPnqxDhw5px44dqqio0LZt2/TYY49JkrNfv/3tb2tc3rFjx6pNKywsVOPGjV0GJUmKjIys1rZhw4Yuj6ueU3UqxYXCwsK0cuVKLVq0SB999JFWrVql0NBQ3X333XriiScUHBxc4/MAwB8Yq9wbq6pcuJ2qxpFTp07V2P7999/X888/rx9++EGNGzdWu3btXLaXw+HQ8uXLtWjRIm3atEnr1q1z/kHuySef1NVXX12n1+LOO+9UZWWl/va3v2nhwoV6+eWXdd1112nixIk1/jEP9kXAgUdVDRYnTpxQy5YtndOr3ryrXHXVVbr11lv1hz/8odoygoLM7ZYdOnRQenq6ysrKlJGRoVWrVumVV15R27ZtnecbT5o0SZ06dar23Eu9iV/o9OnTSklJUWZmpqZOnaoHH3zQZX5JSYk+/vhjdezYUddff73zTX/Pnj2SpJiYmFqX3b17d73xxhv66quvFBwcrPbt2+vw4cN6//33tWPHDv3000/OvzZWXd1mxYoVCgsLq7asa6+9ttq0qKgoFRYWqrKy0iXkXHgeubtatmzp/FLt7t279d577+nNN9/UL3/5S40YMcIj6wAAT2Cscn+skqpvp/z8fEk1/8Hsq6++0uOPP66hQ4dq+PDhioqKkiTNmzfP5WyDqKgopaamaubMmcrJydHGjRu1dOlSRUREaObMmXV+Lfr376/+/fvr9OnT+n//7/9p6dKl+vOf/6yEhATnumF/nKIGj4qPj1doaKg2btzoMn3r1q0ujzt16qS8vDy1a9dOsbGxio2NVfv27fXqq69q06ZNdV7fq6++qh49eqisrEzBwcHq2rWr88uER44cUcuWLRUZGanDhw871xMbG6uoqCg999xz2rt3b53XVV5erlGjRunrr7/W/Pnzqw0YkvSLX/xCs2bN0ttvv+3yvDfeeEO//OUvFR0dXevyb7/9dh07dkyrV69Wx44dFRQUpM6dO6ukpEQvv/yybr75Zuebc2JioqRzR2XO79ePP/6oF198sdrgI53b5uXl5dqyZYtzmmEY2rx5c523QZULjwJt3LhRXbp0UX5+vgIDAxUfH6/U1FQ1atSo2pdYAcDfGKvcH6ukc6dMn+/DDz+Uw+GoMZzt2rVLlZWVGj9+vHMMq6iocJ5WVllZqV27dunWW2/V7t275XA41K5dOz366KOKjo52jiF1eS0eeeQRjR07VtK5cNqvXz+NGTNG5eXlbh0Fg3VxBAceFRYWpjFjxuiFF15QgwYN1KVLF3366afVBo0xY8Zo8ODBGjlypO6//36FhIRo1apV2rx5s1566aU6r69Lly569tlnNXbsWA0ZMkSBgYF66623FBwcrB49eigwMFCPPvqoZsyYocDAQPXo0UOnTp3SwoULdezYsUv+lep8K1eu1FdffaX77rtP11xzTbVLIN9yyy0KDAzUAw88oBUrVuiaa67Rv//7v2vlypXauXOnFixYUC0YnC86OlrXXnutNm/erD/96U+Szp0G0KpVK2VkZGjMmDHOtm3atNF//Md/aPr06fr+++/Vvn17ffvtt5o/f75atGihG2+8sdryf/WrX+m2227TtGnTVFBQoGuvvVbvvPOOcnNzXa62UxdVR5A2bdqkX//61+rYsaMqKys1duxYpaSkKCwsTB999JFOnz7tPDcbAOoLxir3xypJ+vrrrzVt2jT1799fX3/9tV566SXde++9NY49VffieeqppzRo0CD99NNPWrlypXJyciRJRUVFuvnmmxUaGqpJkyZp/Pjxatq0qT7//HN98803GjZsmKS6vRZdunTRzJkzNXfuXP3617/WqVOnlJ6erhtvvFFt27at8zaE9RFw4HEjR45Uw4YNtWLFCq1YsULx8fF6/PHHlZqa6mzTtm1brVy5UvPnz9ekSZNkGIaio6O1YMEC9erVq87ratu2rV555RUtWLBAjz32mCoqKtS+fXstX77cedpBcnKywsLCtGzZMq1atUoNGzZUx44d9eyzz+r666+v87o++eQTSdKqVau0atWqavNzc3MlSePHj5fD4dDSpUv1008/qW3btlqyZImSkpIuuY7u3bvrzTffdPkrWOfOnbV///5qX4adM2eOFi9erLfeektHjx5VZGSk7rzzTj3yyCMKDAyscfnz58/XM888o+eee07l5eXq1auX7r//fq1bt66um8FZ06233qrnnntO27Zt05IlS7Rs2TK9+OKLmjZtmoqLi3XTTTfp5ZdfVpcuXUwtGwB8gbHK/bFq7Nixys7O1qhRo3TVVVdpxIgRGjduXI1tO3furBkzZui//uu/tHHjRjVt2lSdO3dWenq6xo4dq4yMDHXv3l3Lly/Xc889p9mzZ+vUqVO68cYb9dRTT2ngwIHObXip12Lw4MH6+eef9dZbb+lvf/ubQkND1bVrV/35z3/WL37xizpvQ1ifwzBMXFwdgGV9//33yszMVK9evVy+3DlhwgQdOnRIa9eu9WN1AAAAnsERHFzxKioqLnkTNYfDUetREasICAjQ5MmT1atXL917770KDAzU//zP/+iTTz7RnDlz/F0eAOAirpSxCvAEjuDgitezZ099//33F23TqVMnvf766z6qyHu2b9+uBQsW6JtvvlF5eblatWqlP/zhD+rfv7+/SwMAXMSVNFYBl4uAgytebm6u82ZjtQkLC3O5lCgAAL7EWAXUHQEHAAAAgG1wHxwAAAAAtkHAAQAAAGAbBBwAAAAAtkHAAQAAAGAb9f4+OCdOnJYVLoPgcEiRkVdZpt7zWbl2ydr1U7v/WLl+b9detXzUrr7tN1benz2B/tN/+m///psZm+p9wDEMWerFslq957Ny7ZK166d2/7Fy/Vau3erq67avr3X5Cv2n//Tf31XUD5yiBgAAAMA2CDgAAAAAbIOAAwAAAMA2CDgAAAAAbIOAAwAAAMA2CDgAAAAAbIOAAwAAAMA2CDgAAAAAbIOAAwAAAMA2CDgAAAAAbMPtgJOSkqLJkyfXOv/zzz9X//79FRcXp2HDhunQoUPurgoAgEsqKytT//799cUXX9TaZu/evUpOTlZcXJwGDRqk7OxsH1YIAPAFtwLOhx9+qE8//bTW+UeOHNHYsWM1cOBAvfPOO2rSpInGjBkjwzDcLhQAgNqUlpbqscce0759+2ptU1RUpJSUFCUmJmrNmjWKj4/XyJEjVVRU5MNKAQDeZjrgnDx5UvPmzVNsbGytbVavXq327dvroYce0k033aQ5c+bo+++/144dOy6rWAAALpSXl6ff/e53+u677y7absOGDQoJCdGkSZPUqlUrTZs2TWFhYdq4caOPKgUA+ILpgDN37lzdfffdat26da1tsrKylJiY6HzcoEEDxcTEKDMz060iAQCozY4dO9S5c2etWrXqou2ysrKUkJAgh8MhSXI4HOrYsSNjEwDYTJCZxtu2bdNXX32l9evXKzU1tdZ2+fn5at68ucu0yMhIHT161K0iAQCozQMPPFCndvn5+dX+OBcZGXnR09oAANZT54BTWlqqmTNnasaMGQoNDb1o2+LiYgUHB7tMCw4OVllZmekC//mHNrcEBDicf6nztqrVBAUFqOqrRg6H5M+vHRmGocrKSxdQVbuPNpXHWbl+avcfK9fv7dqtuE3qor6MTd5g5f3ZE+i/678X48vPRjWp62cTM3j9Xf+1KzP9q3PASU9PV/v27dWtW7dLtg0JCak2YJSVlalRo0Z1r+yfIiOvMv2cKhWVhgIDfPtqN24c5tf1n8/s+i9nW9cHVq6f2v3HyvVbuXZ/qG1sutQf7WpSX7d9fa3LV+j/pftvtc8mZvD6X9n9P1+dA86HH36ogoICxcfHS5JzkPj444+1a9cul7ZRUVEqKChwmVZQUKB27dqZLvDEidNuHQUJDAxQRESYHn5rl/KOnzG/gMt0e5tm+nOftn5bf+vm4XpxcLwKC8+qoqLyom0djnO/FO5ua3+zcv3U7j9Wrt/btVct325qG5suPKW6LurbfmPl/dkT6H/d+u/vz0ZmPpuYwet/ZfTfzNhU54Dz+uuvq7y83Pn42WeflSRNnDixWtu4uDhlZGQ4HxcXF2vv3r0aN25cXVfnZBiXd5pX3vEz2nPklPsLcFOrZmF+Xf/56rr9Lndb+5uV66d2/7Fy/Vau3R/i4uK0dOlSGYYhh8MhwzC0c+dOjRo1yvSy6uu2r691+Qr9r1v/rfTZxOwyef39XUX9UOerqF133XW64YYbnD9hYWEKCwvTDTfcoIqKCuXn5zuP6gwaNEg7d+7UkiVLtG/fPk2ZMkUtWrRQ586dvdYRAAAulJ+fr5KSEklS3759derUKc2ePVt5eXmaPXu2iouL1a9fPz9XCQDwJLdu9HmhH374QUlJSc5T1Vq0aKGXX35Z7777ru69916dPHlSCxYs8OuX2gAAV56kpCRt2LBBkhQeHq7FixcrIyNDAwcOVFZWlpYsWaKGDRv6uUoAgCeZukz0+Z555hnn/1u0aKHc3FyX+d27d1f37t3drwwAAJMuHIsufNyhQwetXbvWlyUBAHzMI0dwAAAAAKA+IOAAAAAAsA0CDgAAAADbIOAAAAAAsA0CDgAAAADbIOAAAAAAsA0CDgAAAADbIOAAAAAAsA0CDgAAAADbIOAAAAAAsA0CDgAAAADbIOAAAAAAsA0CDgAAAADbIOAAAAAAsA0CDgAAAADbIOAAAAAAsA0CDgAAAADbIOAAAAAAsA0CDgAAAADbIOAAAAAAsA0CDgAAAADbIOAAAAAAsA0CDgAAAADbIOAAAAAAsA0CDgAAAADbIOAAAAAAsA0CDgAAAADbIOAAAAAAsA0CDgAAAADbIOAAAAAAsA0CDgAAAADbIOAAAAAAsA0CDgAAAADbIOAAAAAAsA3TAefgwYMaPny44uPjdfvtt2vZsmW1th09erTatGnj8rN169bLKhgAAAAAahNkpnFlZaVSUlIUGxurtWvX6uDBg3rssccUFRWlu+66q1r7/fv3Ky0tTV27dnVOu/rqqy+/agAAAACogamAU1BQoHbt2ik1NVXh4eG68cYb1bVrV2VkZFQLOGVlZTp8+LBiY2PVrFkzjxYNAAAAADUxdYpa8+bN9cILLyg8PFyGYSgjI0NffvmlOnXqVK3tgQMH5HA4dP3113usWAAAAAC4GFNHcM7Xs2dPHTlyRD169FCfPn2qzT9w4IDCw8M1adIk7dixQ9dcc43Gjx+v7t27m1qPw+FuhahyqW1YNd+q29rK9VO7/1i5fm/XbsVtAgBAFbcDzksvvaSCggKlpqZqzpw5euKJJ1zmHzhwQCUlJUpKSlJKSoo2bdqk0aNHa9WqVYqNja3zeiIjr3K3REiKiAirc1urb2sr10/t/mPl+q1cOwAA3uJ2wKkKKaWlpZo4caImTZqk4OBg5/wxY8Zo6NChzosKtG3bVnv27NHbb79tKuCcOHFahmG+vsDAAFMf7u2qsPCsKioqL9rG4Tj3Qcndbe1vVq6f2v3HyvV7u/aq5QMAYEWmLzKQmZmp3/zmN85prVu31s8//6wzZ86oSZMmzukBAQHVrpjWsmVL5eXlmSrQMGS5Dx/1TV23n9W3tZXrp3b/sXL9Vq4dAABvMXWRgcOHD2vcuHE6duyYc1p2draaNGniEm4kafLkyZoyZYrLtJycHLVs2fIyygUAAACA2pkKOLGxsYqJidHUqVOVl5enTz/9VGlpaRo1apQkKT8/XyUlJZLOXYRg/fr1WrdunQ4ePKj09HRlZGRoyJAhnu8FAAAAAMhkwAkMDNTChQvVoEED3XfffZo2bZqGDh2qYcOGSZKSkpK0YcMGSVLv3r01c+ZMLVq0SP3799eWLVu0bNkytWjRwvO9AAAAAAC5cZGBqKgopaen1zgvNzfX5XFycrKSk5PdqwwAAAAATDJ1BAcAAAAA6jMCDgAAAADbIOAAAAAAsA0CDgAAAADbIOAAAAAAsA0CDgAAAADbIOAAAAAAsA0CDgAAAADbIOAAAAAAsA0CDgAAAADbIOAAAAAAsA0CDgAAAADbIOAAAAAAsA0CDgAAAADbIOAAAAAAsA0CDgAAAADbIOAAACyttLRUU6dOVWJiopKSkrR8+fJa227atEn9+vVTfHy87r//fu3Zs8eHlQIAfIGAAwCwtHnz5ik7O1srVqzQzJkzlZ6ero0bN1Zrt2/fPv3pT3/SyJEj9d5776ldu3YaOXKkiouL/VA1AMBbCDgAAMsqKirS6tWrNW3aNMXExOiOO+7QiBEjtHLlymptP/vsM7Vu3VoDBgzQL3/5Sz322GPKz89XXl6eHyoHAHgLAQcAYFk5OTkqLy9XfHy8c1pCQoKysrJUWVnp0rZx48bKy8tTRkaGKisrtWbNGoWHh+uXv/ylr8sGAHhRkL8LAADAXfn5+YqIiFBwcLBzWtOmTVVaWqqTJ0+qSZMmzul33nmntmzZogceeECBgYEKCAjQ4sWLdfXVV5ter8PhkfI9pqqe+laXr9B/13+twJO1WrH/nnSl9N9M/wg4AADLKi4udgk3kpyPy8rKXKYXFhYqPz9fM2bMUFxcnN58801NmTJFa9euVWRkpKn1RkZedXmFe0l9rctX6L81+h8REeaV5Vql/95ypff/fAQcAIBlhYSEVAsyVY9DQ0Ndpj/77LOKjo7Wf/7nf0qSZs2apX79+undd99VSkqKqfWeOHFahnEZhXuYw3Huw019q8tX6H/d+h8YGOC1cGFGYeFZVVRUXrphHfH6Xxn9r+pnXRBwAACWFRUVpcLCQpWXlyso6NyQlp+fr9DQUDVq1Mil7Z49ezR06FDn44CAALVt21ZHjhwxvV7DUL38IFFf6/IV+m+d/nujTiv13xuu9P6fj4sMAAAsq127dgoKClJmZqZzWkZGhmJjYxUQ4DrENW/eXPv373eZ9u2336pFixa+KBUA4CMEHACAZTVo0EADBgxQamqqdu/erc2bN2v58uUaNmyYpHNHc0pKSiRJv/vd7/T2229r3bp1OnjwoJ599lkdOXJE99xzjz+7AADwME5RAwBY2pQpU5SamqoHH3xQ4eHhGj9+vHr37i1JSkpK0pw5czRw4EDdeeedOnv2rBYvXqyjR4+qXbt2WrFihekLDAAA6jcCDgDA0ho0aKC5c+dq7ty51ebl5ua6PE5OTlZycrKvSgMA+AGnqAEAAACwDQIOAAAAANsg4AAAAACwDQIOAAAAANsg4AAAAACwDQIOAAAAANswHXAOHjyo4cOHKz4+XrfffruWLVtWa9u9e/cqOTlZcXFxGjRokLKzsy+rWAAAAAC4GFMBp7KyUikpKYqIiNDatWv15JNPatGiRVq/fn21tkVFRUpJSVFiYqLWrFmj+Ph4jRw5UkVFRR4rHgAAAADOZyrgFBQUqF27dkpNTdWNN96o7t27q2vXrsrIyKjWdsOGDQoJCdGkSZPUqlUrTZs2TWFhYdq4caPHigcAAACA85kKOM2bN9cLL7yg8PBwGYahjIwMffnll+rUqVO1tllZWUpISJDD4ZAkORwOdezYUZmZmR4pHAAAAAAuFOTuE3v27KkjR46oR48e6tOnT7X5+fn5at26tcu0yMhI7du3z9R6/pmPcBkutQ2r5lt1W1u5fmr3H2/XHxDgcP6Bx9OqFhsUFCDDqLmNYRiqrKxlZh2XDwCAFbkdcF566SUVFBQoNTVVc+bM0RNPPOEyv7i4WMHBwS7TgoODVVZWZmo9kZFXuVsiJEVEhNW5rdW3tZXrp3b/8Vb9FZWGAgO8mxQaN67999sX6wcAoD5yO+DExsZKkkpLSzVx4kRNmjTJJdCEhIRUCzNlZWUKDQ01tZ4TJ07X+hfKiwkMDDD14d6uCgvPqqKi8qJtHI5zH/Lc3db+ZuX6qd1/vFl/1fvPw2/tUt7xM55deB20bh6uFwfH1+n3vyZV2wYAACsyFXAKCgqUmZmp3/zmN85prVu31s8//6wzZ86oSZMmzulRUVEqKCio9vzmzZubKtAwZMkPT/VJXbef1be1leundv/xZv15x89oz5FT3ll4HVn5tQEAwB2mLjJw+PBhjRs3TseOHXNOy87OVpMmTVzCjSTFxcVp165dMv45uhqGoZ07dyouLs4DZQMAAABAdaYCTmxsrGJiYjR16lTl5eXp008/VVpamkaNGiXp3IUFSkpKJEl9+/bVqVOnNHv2bOXl5Wn27NkqLi5Wv379PN8LAAAAAJDJgBMYGKiFCxeqQYMGuu+++zRt2jQNHTpUw4YNkyQlJSVpw4YNkqTw8HAtXrxYGRkZGjhwoLKysrRkyRI1bNjQ870AAAAAALlxkYGoqCilp6fXOC83N9flcYcOHbR27Vr3KgMAAAAAk0wdwQEAAACA+oyAAwAAAMA2CDgAAAAAbIOAAwAAAMA2CDgAAAAAbIOAAwAAAMA2CDgAAAAAbIOAAwAAAMA2CDgAAAAAbIOAAwAAAMA2CDgAAAAAbIOAAwAAAMA2CDgAAAAAbIOAAwAAAMA2CDgAAAAAbIOAAwAAAMA2CDgAAAAAbIOAAwAAAMA2CDgAAAAAbIOAAwAAAMA2CDgAAAAAbIOAAwAAAMA2CDgAAAAAbIOAAwAAAMA2CDgAAAAAbIOAAwAAAMA2CDgAAAAAbIOAAwAAAMA2CDgAAAAAbIOAAwAAAMA2CDgAAAAAbIOAAwAAAMA2CDgAAAAAbIOAAwAAAMA2TAecY8eOacKECerUqZO6deumOXPmqLS0tMa2o0ePVps2bVx+tm7detlFAwAAAEBNgsw0NgxDEyZMUKNGjbRy5Ur99NNPmjp1qgICAvT4449Xa79//36lpaWpa9euzmlXX3315VcNAAAAADUwFXAOHDigzMxMffbZZ2ratKkkacKECZo7d261gFNWVqbDhw8rNjZWzZo181zFAAAAAFALU6eoNWvWTMuWLXOGmypnzpyp1vbAgQNyOBy6/vrrL69CAAAAAKgjU0dwGjVqpG7dujkfV1ZW6o033lCXLl2qtT1w4IDCw8M1adIk7dixQ9dcc43Gjx+v7t27myrQ4TDVHDW41Dasmm/VbW3l+qndf6xef1250z+7bxMAgL2ZCjgXSktL0969e/XOO+9Um3fgwAGVlJQoKSlJKSkp2rRpk0aPHq1Vq1YpNja2zuuIjLzqckq84kVEhNW5rdW3tZXrp3b/sXr9F2Pm9x8AALtwO+CkpaVpxYoVmj9/vqKjo6vNHzNmjIYOHeq8qEDbtm21Z88evf3226YCzokTp2UY5usLDAxgcJdUWHhWFRWVF23jcJz7kOfutvY3K9dP7f7jzfrry/tPXX7/a1K1bQAAsCK3As6sWbP05ptvKi0tTX369KmxTUBAQLUrprVs2VJ5eXmm1mUYsuSHp/qkrtvP6tvayvVTu/9Yvf5LsXPfAACoien74KSnp+utt97S888/r9/+9re1tps8ebKmTJniMi0nJ0ctW7Y0XyUAAAAA1IGpgLN//34tXLhQf/zjH5WQkKD8/HznjyTl5+erpKREktSzZ0+tX79e69at08GDB5Wenq6MjAwNGTLE870AAFyxSktLNXXqVCUmJiopKUnLly+vtW1ubq7uv/9+dejQQXfddZe2b9/uw0oBAL5gKuD8/e9/V0VFhRYtWqSkpCSXH0lKSkrShg0bJEm9e/fWzJkztWjRIvXv319btmzRsmXL1KJFC8/3AgBwxZo3b56ys7O1YsUKzZw5U+np6dq4cWO1dqdPn9ZDDz2k1q1ba/369brjjjs0btw4nThxwg9VAwC8xdR3cFJSUpSSklLr/NzcXJfHycnJSk5Odq8yAAAuoaioSKtXr9bSpUsVExOjmJgY7du3TytXrlTfvn1d2q5du1YNGzZUamqqAgMDNWHCBH366afKzs42fQsDAED9dVmXiQYAwJ9ycnJUXl6u+Ph457SEhAS98sorqqysVEDAv05U2LFjh3r16qXAwEDntHfffden9QIAvI+AAwCwrPz8fEVERCg4ONg5rWnTpiotLdXJkyfVpEkT5/RDhw6pQ4cOmj59urZs2aLrrrtOjz/+uBISEkyvt77dDPVKuXFtbei/679W4Mlardh/T7pS+m+mfwQcAIBlFRcXu4QbSc7HZWVlLtOLioq0ZMkSDRs2TEuXLtWHH36o4cOH66OPPtK//du/mVpvfb1PUH2ty1fovzX67637hFml/95ypff/fAQcAIBlhYSEVAsyVY9DQ0NdpgcGBqpdu3aaMGGCJOnmm2/WZ599pvfee0+jRo0ytd76doNbq99493LR/7r13+o3Ia4Nr/+V0X8zN6Em4AAALCsqKkqFhYUqLy9XUNC5IS0/P1+hoaFq1KiRS9tmzZpVuxfbjTfeqB9++MH0euvrDWLra12+Qv+t039v1Gml/nvDld7/85m+0ScAAPVFu3btFBQUpMzMTOe0jIwMxcbGulxgQJJuueWWalf7PHDggK677jpflAoA8BECDgDAsho0aKABAwYoNTVVu3fv1ubNm7V8+XINGzZMkusNqAcPHqzc3Fy9/PLLOnjwoF588UUdOnRId999tz+7AADwMAIOAMDSpkyZopiYGD344IN68sknNX78ePXu3VuS6w2or7vuOi1btkxbt25V//79tXXrVi1ZskRRUVH+LB8A4GF8BwcAYGkNGjTQ3LlzNXfu3GrzLjwlLSEhQWvWrPFVaQAAP+AIDgAAAADbIOAAAAAAsA0CDgAAAADbIOAAAAAAsA0CDgAAAADbIOAAAAAAsA0CDgAAAADbIOAAAAAAsA0CDgAAAADbIOAAAAAAsA0CDgAAAADbIOAAAAAAsA0CDgAAAADbIOAAAAAAsA0CDgAAAADbIOAAAAAAsA0CDgAAAADbIOAAAAAAsA0CDgAAAADbIOAAAAAAsA0CDgAAAADbIOAAAAAAsA0CDgAAAADbIOAAAAAAsA0CDgAAAADbMBVwjh07pgkTJqhTp07q1q2b5syZo9LS0hrb7t27V8nJyYqLi9OgQYOUnZ3tkYIBAAAAoDZ1DjiGYWjChAkqLi7WypUrNX/+fG3dulUvvPBCtbZFRUVKSUlRYmKi1qxZo/j4eI0cOVJFRUWerB0AAAAAXNQ54Bw4cECZmZmaM2eObrrpJiUmJmrChAn64IMPqrXdsGGDQkJCNGnSJLVq1UrTpk1TWFiYNm7c6NHiAQAAAOB8dQ44zZo107Jly9S0aVOX6WfOnKnWNisrSwkJCXI4HJIkh8Ohjh07KjMz8/KqBQAAAICLCKprw0aNGqlbt27Ox5WVlXrjjTfUpUuXam3z8/PVunVrl2mRkZHat2+f6QL/mZFwGS61DavmW3VbW7l+b9YeEOBw/pHBG6oWHRQUIMOoeX5N033FMAxVVtZegJX3GzPc6Z/dtwkAwN7qHHAulJaWpr179+qdd96pNq+4uFjBwcEu04KDg1VWVmZ6PZGRV7lbIiRFRITVua3Vt7WV6/dG7RWVhgIDvP9JtXHjmvcxX62/NnVdv5X3m0sx8/sPAIBduBVw0tLStGLFCs2fP1/R0dHV5oeEhFQLM2VlZQoNDTW9rhMnTrv1V+DAwAAGd0mFhWdVUVF50TYOx7kPee5ua3+zcv3eqr1q/3/4rV3KO179NFJvu71NM/25T1u/rb9183C9ODj+ovu/N/eb+vL+U5ff/5pUbRsAAKzIdMCZNWuW3nzzTaWlpalPnz41tomKilJBQYHLtIKCAjVv3tx0gYbh39Nc7KCu28/q29rK9Xur9rzjZ7TnyCnPL/gSWjUL8+v6z3ep7Wrl/aYu7Nw3AABqYuo+OOnp6Xrrrbf0/PPP67e//W2t7eLi4rRr1y4Z/xxZDcPQzp07FRcXd3nVAgAAAMBF1Dng7N+/XwsXLtQf//hHJSQkKD8/3/kjnbuwQElJiSSpb9++OnXqlGbPnq28vDzNnj1bxcXF6tevn3d6AQAAAAAyEXD+/ve/q6KiQosWLVJSUpLLjyQlJSVpw4YNkqTw8HAtXrxYGRkZGjhwoLKysrRkyRI1bNjQO70AAAAAAJn4Dk5KSopSUlJqnZ+bm+vyuEOHDlq7dq37lQEAAACASaa+gwMAAAAA9RkBBwAAAIBtEHAAAAAA2AYBBwAAAIBtEHAAAAAA2AYBBwAAAIBtEHAAAAAA2AYBBwAAAIBtEHAAAAAA2AYBBwAAAIBtEHAAAAAA2AYBBwAAAIBtEHAAAAAA2AYBBwAAAIBtEHAAAAAA2AYBBwAAAIBtEHAAAAAA2AYBBwAAAIBtEHAAAAAA2AYBBwAAAIBtEHAAAAAA2AYBBwAAAIBtEHAAAAAA2AYBBwAAAIBtEHAAAJZWWlqqqVOnKjExUUlJSVq+fPkln3P48GHFx8friy++8EGFAABfCvJ3AQAAXI558+YpOztbK1as0JEjR/T444/r2muvVd++fWt9TmpqqoqKinxYJQDAVwg4AADLKioq0urVq7V06VLFxMQoJiZG+/bt08qVK2sNOO+//77Onj3r40oBAL7CKWoAAMvKyclReXm54uPjndMSEhKUlZWlysrKau0LCwuVlpamp556ypdlAgB8iIADALCs/Px8RUREKDg42DmtadOmKi0t1cmTJ6u1f+aZZ3TPPffopptu8mGVAABf4hQ1AIBlFRcXu4QbSc7HZWVlLtM///xzZWRk6IMPPrjs9Tocl70Ij6qqp77V5Sv03/VfK/BkrVbsvyddKf030z8CDgDAskJCQqoFmarHoaGhzmklJSWaMWOGZs6c6TLdXZGRV132MryhvtblK/TfGv2PiAjzynKt0n9vudL7fz4CDgDAsqKiolRYWKjy8nIFBZ0b0vLz8xUaGqpGjRo52+3evVuHDh3ShAkTXJ7/xz/+UQMGDDD9nZwTJ07LMC6/fk9xOM59uKlvdfkK/a9b/wMDA7wWLswoLDyriorq35FzF6//ldH/qn7WBQEHAGBZ7dq1U1BQkDIzM5WYmChJysjIUGxsrAIC/vU10w4dOuiTTz5xeW7v3r319NNP67bbbjO9XsNQvfwgUV/r8hX6b53+e6NOK/XfG670/p/P7YsMlJWVqX///he9Sdro0aPVpk0bl5+tW7e6u0oAAFw0aNBAAwYMUGpqqnbv3q3Nmzdr+fLlGjZsmKRzR3NKSkoUGhqqG264weVHOncEKDIy0p9dAAB4mFtHcEpLS/WnP/1J+/btu2i7/fv3Ky0tTV27dnVOu/rqq91ZJQAANZoyZYpSU1P14IMPKjw8XOPHj1fv3r0lSUlJSZozZ44GDhzo5yoBAL5iOuDk5eXpT3/6k4xLHAMrKyvT4cOHFRsbq2bNmrldIAAAF9OgQQPNnTtXc+fOrTYvNze31uddbB4AwLpMn6K2Y8cOde7cWatWrbpouwMHDsjhcOj66693uzgAAAAAMMP0EZwHHnigTu0OHDig8PBwTZo0STt27NA111yj8ePHq3v37qaLBAAAAIC68NpV1A4cOKCSkhIlJSUpJSVFmzZt0ujRo7Vq1SrFxsbWeTl2v2mRL1xqG1r9BlFWrt/KtVtFbdv2Stn27vTP7tsEAGBvXgs4Y8aM0dChQ50XFWjbtq327Nmjt99+21TA4aZFl8fM9e6tvq2tXL+Va6/P6rL/23nb14f7XQAA4GteCzgBAQHVrpjWsmVL5eXlmVqOuzctqi83s/K3utxMy+o3iLJy/d6qnf3/nIvt/97cb+rL9nf3ZnpmbqYGAEB947WAM3nyZDkcDs2ZM8c5LScnR9HR0aaWw02LLl9dt5/Vt7WV67dy7fXdpbar3be9nfsGAEBN3L7RZ02qbqgmST179tT69eu1bt06HTx4UOnp6crIyNCQIUM8uUoAAAAAcPJowElKStKGDRskSb1799bMmTO1aNEi9e/fX1u2bNGyZcvUokULT64SAAAAAJwu6xS1C2+SduHj5ORkJScnX84qAAAAAKDOPHoEBwAAAAD8iYADAAAAwDYIOAAAAABsg4ADAAAAwDYIOAAAAABsg4ADAAAAwDYIOAAAAABsg4ADAAAAwDYIOAAAAABsg4ADAAAAwDYIOAAAAABsg4ADAAAAwDYIOAAAAABsg4ADAAAAwDYIOAAAAABsg4ADAAAAwDYIOAAAAABsg4ADAAAAwDYIOAAAAABsg4ADAAAAwDYIOAAAAABsg4ADAAAAwDYIOAAAAABsg4ADAAAAwDYIOAAAAABsg4ADAAAAwDYIOAAAAABsg4ADAAAAwDYIOAAAAABsg4ADAAAAwDYIOAAAAABsg4ADAAAAwDYIOAAAAABsg4ADAAAAwDbcDjhlZWXq37+/vvjii1rb7N27V8nJyYqLi9OgQYOUnZ3t7uoAAAAA4JLcCjilpaV67LHHtG/fvlrbFBUVKSUlRYmJiVqzZo3i4+M1cuRIFRUVuV0sAAAAAFyM6YCTl5en3/3ud/ruu+8u2m7Dhg0KCQnRpEmT1KpVK02bNk1hYWHauHGj28UCAAAAwMWYDjg7duxQ586dtWrVqou2y8rKUkJCghwOhyTJ4XCoY8eOyszMdKtQAAAAALiUILNPeOCBB+rULj8/X61bt3aZFhkZedHT2gAAAADgcpgOOHVVXFys4OBgl2nBwcEqKysztZx/HgCCmwIDL32QrmobBwUFyDA8t27DMFRZ6cEF1qKqfivuK1au3Spq27ZXyrZ3p3923yYAAHvzWsAJCQmpFmbKysoUGhpqajmRkVd5sqwrRrPwEFVUGmrUqEGdn9O4cZhHa6ioNBQY4LtPSlbeV6xce30WEXHpfdrO274u/QcAwG68FnCioqJUUFDgMq2goEDNmzc3tZwTJ067dVQhMDDgih7cGzUIUmCAQw+/tUt5x8/4fP2tm4frxcHxKiw8q4qKSq+uy+E49yHV3X3Fn7xV+5W+/1e52P7nzf2mvmx/d3//qrYNAABW5LWAExcXp6VLl8owDDkcDhmGoZ07d2rUqFGmlmMYstyH1vok7/gZ7Tlyyq81+Or1s/K+YuXa67tLbVe7b3s79w0AgJq4faPPmuTn56ukpESS1LdvX506dUqzZ89WXl6eZs+ereLiYvXr18+TqwQAAAAAJ48GnKSkJG3YsEGSFB4ersWLFysjI0MDBw5UVlaWlixZooYNG3pylQAAAADgdFmnqOXm5l70cYcOHbR27drLWQUAAAAA1JlHj+AAAAAAgD8RcAAAAADYBgEHAAAAgG0QcAAAAADYBgEHAAAAgG0QcAAAAADYBgEHAAAAgG0QcAAAllZaWqqpU6cqMTFRSUlJWr58ea1t//GPf+juu+9WfHy87rrrLv3973/3YaUAAF8g4AAALG3evHnKzs7WihUrNHPmTKWnp2vjxo3V2uXk5GjcuHEaNGiQ1q1bp8GDB+vhhx9WTk6OH6oGAHhLkL8LAADAXUVFRVq9erWWLl2qmJgYxcTEaN++fVq5cqX69u3r0vaDDz5Qly5dNGzYMEnSDTfcoC1btuijjz5S27Zt/VE+AMALCDgAAMvKyclReXm54uPjndMSEhL0yiuvqLKyUgEB/zpR4Z577tHPP/9cbRmnT5/2Sa0AAN8g4AAALCs/P18REREKDg52TmvatKlKS0t18uRJNWnSxDm9VatWLs/dt2+ftm3bpsGDB5ter8Phfs3eUFVPfavLV+i/679W4Mlardh/T7pS+m+mfwQcAIBlFRcXu4QbSc7HZWVltT7vxx9/1Pjx49WxY0f16tXL9HojI68y/RxfqK91+Qr9t0b/IyLCvLJcq/TfW670/p+PgAMAsKyQkJBqQabqcWhoaI3PKSgo0B/+8AcZhqGXXnrJ5TS2ujpx4rQMw3y93uJwnPtwU9/q8hX6X7f+BwYGeC1cmFFYeFYVFZUeWx6v/5XR/6p+1gUBBwBgWVFRUSosLFR5ebmCgs4Nafn5+QoNDVWjRo2qtT927JjzIgOvvfaayylsZhiG6uUHifpal6/Qf+v03xt1Wqn/3nCl9/98XCYaAGBZ7dq1U1BQkDIzM53TMjIyFBsbW+3ITFFRkUaMGKGAgAC98cYbioqK8nG1AABfIOAAACyrQYMGGjBggFJTU7V7925t3rxZy5cvdx6lyc/PV0lJiSRp8eLF+u677zR37lznvPz8fK6iBgA2wylqAABLmzJlilJTU/Xggw8qPDxc48ePV+/evSVJSUlJmjNnjgYOHKiPP/5YJSUlSk5Odnn+Pffco2eeecYfpQMAvICAAwCwtAYNGmju3LnOIzPny83Ndf5/48aNviwLAOAnnKIGAAAAwDYIOAAAAABsg4ADAAAAwDYIOAAAAABsg4ADAAAAwDYIOAAAAABsg4ADAAAAwDYIOAAAAABsg4ADAAAAwDYIOAAAAABsg4ADAAAAwDYIOAAAAABsg4ADAAAAwDYIOAAAAABsg4ADAAAAwDZMB5zS0lJNnTpViYmJSkpK0vLly2ttO3r0aLVp08blZ+vWrZdVMAAAAADUJsjsE+bNm6fs7GytWLFCR44c0eOPP65rr71Wffv2rdZ2//79SktLU9euXZ3Trr766surGAAAAABqYSrgFBUVafXq1Vq6dKliYmIUExOjffv2aeXKldUCTllZmQ4fPqzY2Fg1a9bMo0UDAAAAQE1MnaKWk5Oj8vJyxcfHO6clJCQoKytLlZWVLm0PHDggh8Oh66+/3jOVAgAAAMAlmDqCk5+fr4iICAUHBzunNW3aVKWlpTp58qSaNGninH7gwAGFh4dr0qRJ2rFjh6655hqNHz9e3bt3N1Wgw2GqOeohb7+GVcu34r5i5dqtorZte6Vse3f6Z/dtAgCwN1MBp7i42CXcSHI+Lisrc5l+4MABlZSUKCkpSSkpKdq0aZNGjx6tVatWKTY2ts7rjIy8ykyJqGciIsJ8ti4r7ytWrr0+q8v+Z+dt78vfPwAA6gtTASckJKRakKl6HBoa6jJ9zJgxGjp0qPOiAm3bttWePXv09ttvmwo4J06clmGYqfKcwMAABvd6oLDwrCoqKi/d8DI4HOc+pLq7r/iTt2pn/z/nYvufN/eb+rL93f39q9o2AABYkamAExUVpcLCQpWXlyso6NxT8/PzFRoaqkaNGrm0DQgIqHbFtJYtWyovL89UgYYhy31ohStfvX5W3lesXHt9d6ntavdtb+e+AQBQE1MXGWjXrp2CgoKUmZnpnJaRkaHY2FgFBLguavLkyZoyZYrLtJycHLVs2dL9agEAAADgIkwFnAYNGmjAgAFKTU3V7t27tXnzZi1fvlzDhg2TdO5oTklJiSSpZ8+eWr9+vdatW6eDBw8qPT1dGRkZGjJkiOd7AQAAAAAyGXAkacqUKYqJidGDDz6oJ598UuPHj1fv3r0lSUlJSdqwYYMkqXfv3po5c6YWLVqk/v37a8uWLVq2bJlatGjh2R4AAAAAwD+Z+g6OdO4ozty5czV37txq83Jzc10eJycnKzk52f3qAAAAAMAE00dwAAAAAKC+IuAAAAAAsA0CDgAAAADbIOAAAAAAsA0CDgAAAADbIOAAAAAAsA0CDgAAAADbIOAAAAAAsA0CDgAAAADbIOAAAAAAsA0CDgAAAADbIOAAAAAAsA0CDgAAAADbIOAAAAAAsA0CDgAAAADbIOAAAAAAsA0CDgAAAADbIOAAAAAAsA0CDgAAAADbIOAAAAAAsA0CDgAAAADbIOAAAAAAsA0CDgAAAADbIOAAAAAAsA0CDgAAAADbIOAAAAAAsA0CDgAAAADbIOAAAAAAsA0CDgAAAADbIOAAAAAAsA0CDgAAAADbIOAAAAAAsA0CDgAAAADbIOAAAAAAsA3TAae0tFRTp05VYmKikpKStHz58lrb7t27V8nJyYqLi9OgQYOUnZ19WcUCAHAhxiUAwPlMB5x58+YpOztbK1as0MyZM5Wenq6NGzdWa1dUVKSUlBQlJiZqzZo1io+P18iRI1VUVOSRwgEAkBiXAACuTAWcoqIirV69WtOmTVNMTIzuuOMOjRgxQitXrqzWdsOGDQoJCdGkSZPUqlUrTZs2TWFhYTUOOgAAuINxCQBwIVMBJycnR+Xl5YqPj3dOS0hIUFZWliorK13aZmVlKSEhQQ6HQ5LkcDjUsWNHZWZmXn7VAACIcQkAUF2Qmcb5+fmKiIhQcHCwc1rTpk1VWlqqkydPqkmTJi5tW7du7fL8yMhI7du3z1SBAQGSYZh6iouYaxupQXCg+wtwU6tm4Vf0+ls2DZMkBQZ6/zoW//ysoqCgAJd9xTD+Nc8f6rL+2mq/XFXbnf2v9v3PW9v+/PX6u//SufdQs/z5e2OWP8Yl6fLGJofD4QxZnmJmf7bCe6NZ9P/cv5fqf315b/L0ZwNe/3P/WqP/hgw33zzN1G0q4BQXF7sMIpKcj8vKyurU9sJ2l9KkyVWm2l9o3r1xl/X8y3Wlr79RowY+W1fjxmGXblRPeat2f7/+/l5/XfY/b+43/u5/RIR1fyfqyh/jknT5Y5O3WPl90BPof9367+/3Jm99NuD1v7L7fz5TETokJKTaQFD1ODQ0tE5tL2wHAIC7GJcAABcyFXCioqJUWFio8vJy57T8/HyFhoaqUaNG1doWFBS4TCsoKFDz5s0vo1wAAP6FcQkAcCFTAaddu3YKCgpy+UJmRkaGYmNjFXDBid5xcXHatWuX8zw7wzC0c+dOxcX597AoAMA+GJcAABcyFXAaNGigAQMGKDU1Vbt379bmzZu1fPlyDRs2TNK5v5qVlJRIkvr27atTp05p9uzZysvL0+zZs1VcXKx+/fp5vhcAgCsS4xIA4EIOw+SlDIqLi5WamqpPPvlE4eHhGj58uH7/+99Lktq0aaM5c+Zo4MCBkqTdu3dr5syZ2r9/v9q0aaMnn3xSN998s8c7AQC4cjEuAQDOZzrgAAAAAEB95f2blAAAAACAjxBwAAAAANgGAQcAAACAbRBw3GQYhp599ll16dJFnTp10rx581RZWVlr+8zMTA0ePFjx8fHq06ePVq9e7cNqXZmtvcrBgwfVoUMHH1RYXWlpqaZOnarExEQlJSVp+fLltbbdu3evkpOTFRcXp0GDBik7O9uHlVZnpvYqX331lXr16uWD6i7OTO3/+Mc/dPfddys+Pl533XWX/v73v/uw0urM1P7++++rT58+6tChgwYPHqzdu3f7sNKaubPfHD58WPHx8friiy98UCH8yd338dOnT6tbt25as2aND6r0HiuPwe6y8jjoCVYejzyBMcEkA27561//anTv3t348ssvjW3bthlJSUnGsmXLamx7/PhxIzEx0XjuueeMb7/91vjggw+M2NhYY+vWrb4t+p/M1F7lyJEjRp8+fYzo6GgfVenqqaeeMu666y4jOzvb+OSTT4z4+Hjjo48+qtbu7Nmzxm233WY888wzRl5enjFr1izj1ltvNc6ePeuHqs+pa+1VcnJyjFtvvdXo0aOHD6usWV1r/+abb4yYmBhjxYoVxv/93/8Zb7zxhhETE2N88803fqj6nLrW/uWXXxrt27c31q1bZ3z33XfGM888Y3Tq1Mk4c+aMH6r+F7P7jWEYxvDhw43o6Ghj+/btPqoS/uLO+7hhGMb06dON6Oho49133/VBld5j5THYXVYeBz3ByuORJzAmmEPAcVP37t1dBoh169bV+oH0b3/7m9G3b1+XadOnTzcee+wxr9ZYGzO1G4ZhbNq0yejSpYtx1113+SXgnD171oiNjXX5BV2wYIExZMiQam1Xr15t9OzZ06isrDQMwzAqKyuNO+64w2+DuZnaDcMw3nzzTeOWW24x7rrrLr8HHDO1p6WlGcOHD3eZ9tBDDxnPP/+81+usiZnaN2zYYCxcuND5+PTp00Z0dLSRlZXlk1prYna/MQzDeO+994zBgwdfsYPZlcbs+7hhnAvzd9xxh3HbbbdZPuBYeQx2h5XHQU+w8njkCYwJ5nGKmhuOHTumH374Qb/61a+c0xISEvT999/r+PHj1dp369ZNc+bMqTb9zJkzXq2zJmZrl84d6n344Yc1bdo0X5XpIicnR+Xl5YqPj3dOS0hIUFZWVrVTErKyspSQkCCHwyFJcjgc6tixo8tdzn3JTO2S9N///d+aO3eu8x4e/mSm9nvuuUcTJ06stozTp097vc6amKm9X79+Gj16tCSppKREr776qiIjI9WqVSuf1nw+s/tNYWGh0tLS9NRTT/myTPiJO+/jZWVlmj59umbMmKHg4GBfleoVVh6D3WXlcdATrDweeQJjgnkEHDfk5+dLkpo3b+6c1rRpU0nS0aNHq7Vv0aKFbrnlFufjEydO6MMPP1TXrl29W2gNzNYuSU8//bQGDx7s/eJqkZ+fr4iICJdBuWnTpiotLdXJkyertT2/b5IUGRlZa9+8zUztkrRw4UL17t3bhxXWzkztrVq1Utu2bZ2P9+3bp23btvllH5fMb3dJ2rZtm+Lj45Wenq6pU6cqLCzMR9VWZ7b+Z555Rvfcc49uuukmH1YJf3HnffyVV17RzTffrKSkJO8X6GVWHoPdZeVx0BOsPB55AmOCeUH+LqC+Kikp0bFjx2qcV1RUJEkuO1rV/8vKyi653PHjx6tp06a67777PFRt9XV4o3Z/KS4urvYXx9pqrq2tv/pmpvb6xt3af/zxR40fP14dO3b024US3Kn9pptu0po1a7R161ZNnjy52ociXzJT/+eff66MjAx98MEHPqsP3ufJ9/G8vDy99dZbev/9971QqXdYeQz2BiuPg55g5fHIExgTzCPg1CIrK0vDhg2rcd6f//xnSed2qpCQEOf/JalBgwa1LvPs2bMaM2aM/u///k9/+9vfLtr2cnijdn8KCQmp9gtc9Tg0NLRObS9s5ytmaq9v3Km9oKBAf/jDH2QYhl566SUFBPjnILE7tTdt2lRNmzZVu3btlJWVpbfeestvAaeu9ZeUlGjGjBmaOXNmvd+fYI6n3scNw9ATTzyhCRMmOI9yWIGVx2BvsPI46AlWHo88gTHBPAJOLTp37qzc3Nwa5x07dkxpaWnKz89XixYtJP3rkHmzZs1qfM6ZM2c0YsQIfffdd1qxYoVuvPFGr9Qteb52f4uKilJhYaHKy8sVFHRul83Pz1doaKgaNWpUrW1BQYHLtIKCgmqH633FTO31jdnajx075vxA8tprr6lJkyY+rfd8ZmrfvXu3AgMDFRMT45zWqlUr7d+/36c1n6+u9e/evVuHDh3ShAkTXJ7/xz/+UQMGDLiiz7+2Ok+9jx85ckS7du1Sbm6u5s6dK+ncX4NnzpypDRs2aNmyZV7shfusPAZ7g5XHQU+w8njkCYwJ5lk3zvpRVFSUrr32WmVkZDinZWRk6Nprr63xDaSyslLjxo3T4cOH9frrr/v1nEiztdcH7dq1U1BQkMsXJDMyMhQbG1vtLzJxcXHatWuXDMOQdO6vlzt37lRcXJwvS3YyU3t9Y6b2oqIijRgxQgEBAXrjjTcUFRXl42pdman9nXfe0fPPP+8ybc+ePWrZsqUvSq1RXevv0KGDPvnkE61bt875I5373tzDDz/s46rhK2bex6OioqrtI82bN9eECRM0e/ZsX5fuEVYeg91l5XHQE6w8HnkCY4Ib/HgFN0tbvHixkZSUZGzfvt3Yvn27kZSUZCxfvtw5/8SJE877aKxatcpo27atsXXrVuP48ePOn8LCwnpf+/m2b9/ut/vgTJ8+3fjtb39rZGVlGZs2bTI6duxofPzxx4ZhnLvHQXFxsWEY5y7x26VLF2PWrFnGvn37jFmzZhm33XabX6//X9faz/fuu+/6/TLRhlH32p9//nmjQ4cORlZWlss+furUqXpfe3Z2tnHzzTcbr776qvHtt98aL774onHLLbcYR48e9VvthuHefmMYxhV7SdArjbvv44ZhGD169LD0JYMNw9pjsLusPA56gpXHI09gTDCHgOOm8vJy4y9/+YuRmJhodO7c2UhLS3Nec94wzg0gL730kmEY566/Hh0dXe3nYtcvry+1n8+fAaeoqMiYNGmSccsttxhJSUnGf/3XfznnXXjTuqysLGPAgAFGbGysce+99xp79uzxQ8X/Yqb2KvUl4NS19qqbwF748/jjj/upcnPbfcuWLUb//v2N2NhYY+DAgUZGRoYfKnblzn5TNe9KHMyuNO6+j1fNs3rAsfIY7C4rj4OeYOXxyBMYE8xxGMY/j2ECAAAAgMXV7y8BAAAAAIAJBBwAAAAAtkHAAQAAAGAbBBwAAAAAtkHAAQAAAGAbBBwAAAAAtkHAAQAAAGAbBBwAAAAAtkHAAQAAAGAbBBwAAAAAtkHAAQAAAGAbBBwAAAAAtvH/AX+DmfOQV+1AAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 1000x500 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# 1. Visualize Weights and Biases\n",
"for layer in model.layers:\n",
" if 'dense' in layer.name:\n",
" weights, biases = layer.get_weights()\n",
" plt.figure(figsize=(10, 5))\n",
" plt.subplot(1, 2, 1)\n",
" plt.hist(weights.flatten())\n",
" plt.title(f'{layer.name} weights')\n",
" plt.subplot(1, 2, 2)\n",
" plt.hist(biases.flatten())\n",
" plt.title(f'{layer.name} biases')\n",
" plt.show()"
]
},
{
"cell_type": "markdown",
"id": "618bc6deb5ea296b",
"metadata": {
"collapsed": false
},
"source": [
"## Confusion Matrix Evaluation\n",
"\n",
"The confusion matrix is a table that is often used to describe the performance of a classification model on a set of test data for which the true values are known. It gives a more detailed breakdown of correct and incorrect classifications for each class.\n",
"\n",
"The confusion matrix shows that the model has a good performance in distinguishing between positive and negative instances. The majority of the instances are correctly classified, with a small number of false positives and false negatives."
]
},
{
"cell_type": "code",
"execution_count": 64,
"id": "6b7d586ea49a858a",
"metadata": {
"ExecuteTime": {
"end_time": "2024-03-21T13:53:04.785818Z",
"start_time": "2024-03-21T13:53:04.696985Z"
},
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAcQAAAHUCAYAAACkiViEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABKUklEQVR4nO3de3xMd/7H8dcQE9EgJBHiWqouQZImEhaVuFSVtlFq0bq3qIRW1TWtIi5boUXjulQpv1YJvehFVy9K69aooMRGXIoQCRVVSUYuvz9sZ3d60KQdos77uY/zWHO+55z5zuyst89nzjljKSgoKEBERMTkShT3BERERG4HCkQREREUiCIiIoACUUREBFAgioiIAApEERERQIEoIiICKBBFREQABaKIaegeHCI3pkAUp9u3bx+jRo0iLCyMJk2a0K5dO1566SVOnDhx057zzTffpEWLFjRp0oT58+c75Zg7duygXr167NixwynHK07z589n6dKlv7tdmzZtGDt27C2Ykcjtx6Jbt4kzrVq1imnTphEaGkqXLl2oVKkSx48fZ+nSpVy4cIHly5dTv359pz7npUuXaNq0KWFhYQwYMIBq1apRpUoVpxz38OHD3HPPPbi7uzthpsWnXr16REVFMWzYsBtud+DAAdzd3alRo8YtmpnI7cOluCcgd46EhASmTp3KE088QXR0tH19aGgo7dq1IyIigvHjx7Nu3TqnPm9mZib5+fm0a9eOpk2bOu247u7uBAQEOO14fwUNGzYs7imIFBu1TMVpli5dStmyZXn++ecNYxUrVmTs2LG0bduWy5cvA5CXl8eqVat4+OGHadKkCWFhYcycOZOcnBz7fmPHjqVfv37Ex8fToUMHGjVqxKOPPsrXX38NwLp162jTpg0A48ePp169esC1W3/r1q2jXr16nDx5EoDs7GwmTpzI/fffT6NGjXjwwQcd2orXapnu27ePgQMHEhoayn333ceQIUNITk427LNt2zYGDBiAv78/LVq0IDY2lry8vOu+d+vWraNx48Z89913dO3alcaNG9OhQwe++OILjhw5Qt++ffH396d9+/Z89NFHDvvu2rWLgQMH0rRpUxo1akSbNm14/fXXyc/PB7C/J3FxcfY/v/7667Rv3564uDhCQkJo2bIlmZmZDu/b9OnTqVevHtu3bze8h++99951X4vIX5UCUZyioKCArVu30rx5c9zc3K65zUMPPURkZCRlypQBYMKECUyfPp127dqxYMECnnjiCVauXMnQoUMdTgDZv38/S5cuZfjw4cybN4+SJUsybNgwMjMzCQsLIy4uDoBnnnmG1atXF3rO06ZN4+uvv2bMmDEsXbqUtm3bMmPGDOLj46+5/fbt2+nZs6d93ylTpnD69Gl69OhBSkqKw7YvvPACQUFBLFy4kM6dO7NkyRLWrFlzw/nk5uYycuRIevTowYIFC3Bzc+OFF15gyJAhhIWFsXDhQipVqsSYMWM4c+YMAElJSfTr1w8PDw9ee+01FixYQHBwMHFxcXzyyScA9vekW7duDu9Pamoqmzdv5rXXXmPcuHGUL1/eYT4jRoygVq1avPzyy9hsNlJTU5k6dSodO3YkIiKi0O+zyF+FWqbiFD/99BM5OTlUq1atUNsfPnyYtWvXMnLkSAYNGgRAixYtqFSpEqNHj+brr7+mdevWAPz888+sW7fO/r1WmTJlePLJJ9m+fTsdOnSgQYMGANSoUaNILc6dO3fSokULOnXqBFxt7ZYpUwZPT89rbj9r1ixq1qzJ4sWLKVmyJAAtW7akffv2zJ07lzlz5ti3ffzxx4mMjASgefPmbNq0ia+++ooePXpcdz75+fkMGTKExx9/HICLFy8yYsQI+vbtS//+/QEoW7YsXbt2Zf/+/VSuXJmkpCT+9re/ERsbS4kSJezv4xdffMGOHTvo1KmT/T2pXLmyw/uTm5vLmDFjCA4OvuZ8SpcuzT/+8Q969erF4sWL2b17N+7u7kyaNOn33lqRvyQFojjFrwFxo7bg/9q5cyeAPYx+1alTJ8aNG8eOHTvsgVixYkWHkzwqV64MQFZW1p+ac2hoKO+88w5nzpyhdevWtG7d2h5iv3X58mX27dtHVFSU/bUClCtXjvDwcDZv3uywfWBgoMPjypUr21vFN/K/+/0azP7+/vZ1Hh4ewNWwBIiIiCAiIoKcnByOHj3K8ePHOXjwIHl5eVy5cuV3n+/Xf0zcaD79+vVj3rx5FBQUsGzZMkMlKXKnUMtUnKJ8+fLcddddpKamXneby5cvk5mZCWD/b29vb4dtXFxcqFChAj///LN93W9bsBaLBcD+HdkfFR0dzXPPPcfJkyeJiYmhXbt29OjRg6SkJMO2P//8MwUFBXh5eRnGvLy8HOYLV6ur/1WiRIlCXQd4rbNZr9eChqvfg0ZHRxMUFERERASxsbGcOnUKFxeXQj3fXXfd9bvbdOnShfz8fLy8vBzCWeROo0AUp2nZsiU7duxwOCnmf7377rs0a9aMH374wV5lpKenO2xz5coVfvrpJypUqPCn5/PbavW3FZrVauWZZ57hk08+4csvv2TChAmcOHGCkSNHGo5VtmxZLBYLGRkZhrH09HR75XarTZ06lY0bNzJ79mx2797Npk2biI2NxcXFOc2f/Px8Jk6cSI0aNfjll1+IjY11ynFFbkcKRHGaAQMGcOHCBWbPnm0YS09P54033uCee+7Bz8+PkJAQAMMZkx999BF5eXkEBQX9qbm4u7vbTzz5VUJCgv3P2dnZdOjQgTfeeAMAX19fnnjiCTp16nTNKrdMmTI0atSITz75xCFof/75Z7766qs/Pd8/KiEhwX5Zy68nK+3fv5/z5887VNC/fr9YVMuXL2f37t1MmzaNZ599lrfffptt27Y5Ze4itxt9hyhOExAQwLPPPsvs2bNJSUkhIiKCChUqkJyczNKlS8nJybGH5T333EOXLl2YO3cuWVlZNG3alIMHDxIXF0doaCitWrX6U3MJDw9n0aJFLFq0CH9/f7744guHywdKly6Nn58fcXFxlCpVinr16nH06FHWr19Phw4drnnMkSNHMnDgQAYNGkSvXr24cuUKixcvxmazXfe7x5utSZMmfPLJJ7z99tvUqVOHpKQkFixYgMVicfiOtVy5cuzevZtdu3Zd9ySa3zp69CizZ8+me/fuNG3alPvuu48PP/yQ6OhoPvzww0K1W0X+ShSI4lTPPPMMDRs2tN+xJjMzkypVqhAWFsaQIUMc7iAzdepUatasSXx8PP/85z+pVKkSffr0YejQoX+4ovnV4MGDOX/+PEuXLuXKlSuEhYUxdepUnnnmGfs2kydPZvbs2bzxxhukp6fj6elJt27dePbZZ695zObNm7Ns2TLmzp3L888/j9VqJTg4mFdeeYW6dev+qfn+UWPHjuXKlSvMnj0bm81GtWrVeOaZZzh8+DBffPEFeXl5lCxZkiFDhjB//nyefvppPv744989bn5+PuPGjaNs2bKMGjUKuHriVExMDN26deOVV15h8uTJN/vlidxSunWbiIgI+g5RREQEUCCKiIgACkQRERFAgSgiIgIoEEVERAAFooiICKBAFBERAe7QC/PdAqOKewpiEj/tiivuKYhJlHby39bO/Hsy6/s74/8Hd2QgiojI77CoQfhbekdERERQhSgiYk7/+V1R+S8FooiIGallaqB3REREBFWIIiLmpJapgQJRRMSM1DI10DsiIiKCKkQREXNSy9RAgSgiYkZqmRroHREREUEVooiIOallaqBAFBExI7VMDfSOiIiIoApRRMSc1DI1UCCKiJiRWqYGekdERERQhSgiYk5qmRooEEVEzEgtUwO9IyIiIqhCFBExJ1WIBgpEEREzKqHvEH9L/0QQERFBFaKIiDmpZWqgQBQRMSNddmGgfyKIiIigClFExJzUMjVQIIqImJFapgb6J4KIiAiqEEVEzEktUwMFooiIGallaqB/IoiIiKAKUUTEnNQyNVAgioiYkVqmBvongoiICKoQRUTMSS1TA70jIiJmZLE4bymC48ePM3DgQAIDAwkLC2PJkiX2sSlTplCvXj2HZeXKlfbxDRs20K5dO/z9/YmMjOT8+fP2sYKCAmbOnEmzZs0ICQlhxowZ5OfnF2luqhBFROSWyM/PZ9CgQTRu3Jj169dz/Phxnn/+eXx8fHj44YdJSUlh5MiRdOnSxb6Pu7s7AHv37iU6OppJkyZRv359pk6dyrhx41i0aBEAy5YtY8OGDcTFxZGbm8uoUaPw9PRk4MCBhZ6fKkQRETOylHDeUkgZGRk0aNCAiRMnUqtWLVq3bk3z5s1JSEgAICUlhYYNG+Lt7W1f3NzcAFi5ciUdO3YkIiKC+vXrM2PGDDZv3syJEycAWLFiBcOHDyc4OJhmzZrxwgsvsGrVqiK9JQpEEREzKoZArFSpErNnz8bd3Z2CggISEhLYtWsXISEhXLp0ibS0NGrVqnXNfRMTEwkODrY/rlKlCr6+viQmJpKWlsbp06dp2rSpfTwoKIhTp05x9uzZQs9PLVMREflTbDYbNpvNYZ3VasVqtV53nzZt2pCamkp4eDgdOnRg//79WCwWFi5cyNdff42Hhwf9+/e3t0/Pnj1LpUqVHI7h6enJmTNnSE9PB3AY9/LyAuDMmTOG/a5HgSgiYkZOvA5x0aJFxMXFOayLiopi2LBh191n7ty5ZGRkMHHiRKZPn46fnx8Wi4XatWvz5JNPsmvXLl566SXc3d1p37492dnZhoC1Wq3YbDays7Ptj/93DDAE9Y0oEEVEzMiJl10MHjyY/v37O6y7UXUI0LhxYwBycnJ44YUX2L17N+Hh4Xh4eABQv359jh07xttvv0379u1xdXU1hJvNZsPNzc0h/FxdXe1/BuzfQRaGvkMUEZE/xWq14u7u7rBcKxAzMjLYtGmTw7p77rmHK1eucOnSJXsY/qp27dqkpaUB4OPjQ0ZGhuF43t7e+Pj4ANhbp//7Z29v70K/DgWiiIgZFcN1iCdPniQqKsoecgD79++nYsWKvPXWW/Tr189h+6SkJGrXrg2Av7+//WxUgNOnT3P69Gn8/f3x8fHB19fXYTwhIQFfX99Cf38IapmKiJhTMdyppnHjxvj5+TF+/HjGjRvHqVOniI2NZciQIQQGBrJ48WKWLl1K+/bt2bp1K++99x4rVqwAoGfPnvTu3ZuAgAAaN27M1KlTCQsLo3r16vbxmTNnUrlyZQBmzZrFgAEDijQ/S0FBQYFzX3LxcwuMKu4piEn8tCvu9zcScYLSTi5f3Los+f2NCilr/VOF3jYtLY2YmBi2bduGm5sbTz75JIMHD8ZisbBp0ybmzp3LsWPHqFq1KiNGjOCBBx6w77tu3Trmzp1LZmYmLVq0ICYmhgoVKgCQl5fHjBkzWLduHSVLlqRbt26MHDkSSxEqWAWiyJ+gQJRbxemB+NhSpx0ra13h7wZzO1PLVETEhIpSOZmFTqoRERFBFaKIiCmpQjRSIIqImJHy0EAtUxEREVQhioiYklqmRgpEERETUiAaqWUqIiKCKkQREVNShWikQBQRMSEFopFapiIiIqhCFBExJxWIBgpEERETUsvUSC1TERERVCGKiJiSKkQjBaKIiAkpEI3UMhUREUEVooiIKalCNFIgioiYkfLQQC1TERERVCGKiJiSWqZGCkQRERNSIBqpZSoiIoIqRBERU1KFaKRAFBExI+WhgVqmIiIiqEIUETEltUyNFIgiIiakQDRSy1RERARViCIipqQK0UiBKCJiQgpEI7VMRUREUIUoImJOKhANFIgiIiaklqmRWqYiIiKoQhQRMSVViEYKRBERE1IgGqllKiIigipEERFzUoFooEAUETEhtUyN1DIVERFBgXhHql3diw/mRZL+zSz+/fFkRvRpax9rEViHb1aNJuPbWWx/ZyzhofUc9n2ud1sObpjI6a9nsGjik9zlZrWPlXd3Y/6EXhzbNI0fv5jO4klPUt7d7Za9Lrn9/Xj8OEOeHkiz4EA6tA3jzTeW2MdOnjzBoIH9CA0OoMvDD/HtN1sd9t2+7Vsee7QzoUH+PNW/DydPnLjV0zcVi8XitKUojh8/zsCBAwkMDCQsLIwlS/77GTlx4gT9+vUjICCAhx56iK1bHT8j3377LZ07d8bf358+ffpw4jefkTfffJNWrVoRGBjI+PHjycrKKtLcFIh3GIvFwvq5z5Dx08806/kPhk17hzFPPcjfHwzGu4I7a+cMZu3GBIIfn0b8Z7tZ89ogqlbyAGBg1xZED3mIl+M+pE2/V/GtVJ43p/e3H/v1F3vQ5N6qdBm2gEeGzqP+3ZWZP6FnMb1Sud3k5+cTNXQQFSpWYHX8el58eRL/XLSAjzd8SEFBASOGReLp5cXbq+Pp/MijjHg2itOpqQCcTk3luWGRPNrlMVatXkuFihV5bvhQCgoKivlV3bmKIxDz8/MZNGgQFSpUYP369UyaNIkFCxbw4YdXPyORkZF4eXkRHx/Po48+SlRUFKn/+YykpqYSGRnJY489xtq1a6lYsSJDh/73M7Jx40bi4uKYPHkyy5cvJzExkdjY2CK9JwrEO4yPZ1n2HjrJ8GmrSfkxnY1bD/DVzkM0D6xN84Da5Obm89qKzzl26hyxb3xGdk4uIU1qAfBMj9bMeetz3v00gYNHzvD0hLd4qJUfdWtWokxpK13aBjDiH+/y/cET7Ek6yaiZ8TwS7o+rVV9FC5w7l0G9+g14ccJEatasRav7WxPSrDnf705g547tnDhxgpdenkztOnUY+PRg/P0DeG99PADr4tfg16gRffsN4J576jJ5ynRST53iu107i/lViTNlZGTQoEEDJk6cSK1atWjdujXNmzcnISGB7duvfkYmT55MnTp1GDx4MAEBAcTHX/2MrFmzhkaNGjFgwADq1q3L9OnTOXXqFDt3Xv2MrFixgr59+xIeHk6TJk2YNGkS8fHxRaoSb4tA/Omnn0hLS+PixYvFPZW/vDMZF+k9dhmXLucA0Ny/Ni3uu4ct3yVzLvMXvCq482gbfwAeDmtC2btc2Z989V9gd1f1Ytf+Yw7HSv/pEqFN7ia/oIDHnl1I4qFTDs/n4lIS9zKut+bFyW3N27sSsbNmc9dd7hQUFPD97gR2f7eL4JAQ9u1NpEHDhpQpU8a+feB9QSTu2QPA3r2J3BcUbB9zc3OjQUM/9ibuucWvwjyKo0KsVKkSs2fPxt396mckISGBXbt2ERISQmJiIg1/8xkJCgpiz38+I4mJiQQHO35G/Pz82LNnD3l5eezbt89hPCAggCtXrpCUlFTo+RXbP+0/++wzVq5cyd69e8nJybGvL126NI0aNaJv3760a9euuKZ3Rzj08WRqVKnIR5v3sf7zPeTnF7Dwnc38X+xA8vMLcHEpydMT3iL5+FkAzp6/iK+3h33/MqWtVCx3F14e7mTnXOFf3x50OH5krzD2/vsk5y78citflvwFdGzfhtOnU7m/dTjt2ndgxj+m4V2pksM2np6epKWdASAjPd0wXtHTk7QzZ27ZnE3HiSeZ2mw2bDabwzqr1YrVar3OHtCmTRtSU1MJDw+nQ4cOTJs2jUrX+Iyc+c9nID09/brjFy9eJCcnx2HcxcUFDw8P+/6FUSyBuGzZMuLi4njqqaeIiorC09MTq9WKzWYjIyOD7777jrFjx/Lss8/Su3fv4pjiHaHnC0vw8SzH3PF/J/aFrrwc9yG1qnkxZdHHfPL1fh5tE8Cs0d3Yue8Y/z6WxtrPdjNqwAN8uyeFY6fO8crIxwAoVaqk4dhD/n4/XdsH8kjk/Fv9suQvYNbsuWRkZDA1ZiKxr0wnOzsLaynHvxxLWa1c+c9fotnZWYa/PK1WK7Yrjn/Jyu1p0aJFxMXFOayLiopi2LBh191n7tyrn5GJEycyffp0srKu8xn4z2fkRuPZ2dn2x9fbvzCKJRDfeOMNXnnllWtWgHXq1CE0NJR69eoRExOjQPwTdh/4EYDRs1xYNrUvv2TZsFhg+uJPAdiTdJKmjWsR2SuMZ6etZvriT7m7qhe710ZzJTePpfHfsPffJ/n5l2yH4w56vBWzRndj9Mx1fL698O0IMQ+/Ro0BsOXkMG7MC0Q81tXwXc4Vm43SbqUBsFpdDX9x2Ww2ypYtd2smbELOvA5x8ODB9O/f32HdjapDgMaNr35GcnJyeOGFF+ja1fgZsdlslC599TPi6nrtz0i5cuVwdXW1P/7tuJtb4c+EL5bvELOzs6lWrdoNt/Hx8eHnn3++RTO6c1SqWJaHw5o4rDt45Ayu1lI0vrcq+/7t+B1gYtIJalSpCMDlbBtPjnmDKq1HU73NOEbOWEv1KhU5nnrevv1zvdsyZ/zfiZ79PvPe/uqmvx756ziXkcEXn29yWFe7zj1cuXIFLy9vzmVkOIxlZGTg5XW1xVXJx8cwfi4jA29v75s7aRNz5neIVqsVd3d3h+VagZiRkcGmTY6fkXvuufoZ8fb2JuMan5Ff26A+Pj7XHPf29sbDwwNXV1eH8dzcXC5cuFCkz1CxBGL79u0ZO3Ys3333Hbm5uQ5j+fn57N69m/Hjx9OhQ4fimN5fWq2qnrwz6yl8vcvb1wU2qM7Z8z9zOj2T+rWrOGx/792VOXbqHABTn32UJx4O5eKlbH7+JZughjUo716a7YlHAHji4VCmP9+FUbFrmf3W57fuRclfwqlTJ3n+2SjS0tLs6w4c2E+FihUJvC+Igwd+sLe2AL7fnUAT/6sneDVp4s/3uxPsY1lZWSQdPEDjJv637gXITXfy5Emiohw/I/v376dixYoEBQXxww+On5GEhAT8//MZ8ff3JyHB8TNy4MAB/P39KVGiBI0bN3YY37NnDy4uLtSvX7/Q8yuWQJw4cSJBQUEMHDiQgIAAWrZsSZs2bWjZsiVNmjRhwIAB3Hfffbz88svFMb2/tO9+OM73B0+wcOKT1K9dmQ4tGzLtuS7MWLKRN9d/y4MtGjLsiXBqVfUkqlcYD/ytAYvf/RqA0+mZRA/qSFDDGgQ2qM4bU/vyzzVb+eniZSqUK8NrYx7nrQ+2s2ZjAj6eZe1LiRK6BZRcbZM2bOjHyy+OJ+XwYbZ8vZnXZsby9KAhBDcNwadyFSa8OI7Dh5NZ+s/F7N+3ly6PdQMg4rGu7Pl+N0v/uZjDh5OZ8OI4qlatRtOQ0GJ+VXcui8V5S2E1btwYPz8/xo8fz+HDh9m8eTOxsbEMGTKEkJAQqlSpwrhx40hOTmbx4sXs3buXbt2ufka6du3K7t27Wbx4McnJyYwbN45q1aoRGnr1M9KrVy+WLl3Kpk2b2Lt3LxMnTqR79+5FaplaCorxytesrCySkpJIT08nKysLV1dXfHx8aNCggb1v/Ee4BUY5cZZ/PVW8y/PamMcJC6nH5WwbC97ZTOwbnwHQqXVjXnqmE3Wqe/PvY2m8OPd9vtxxCIASJSy88vxj9HioKfkFBbz90U6i57xPXl4+j3cIYsU/+l/z+eo9NIEfT5+/5tid7qddcb+/kYmcPZvG9Kkx7Ny+DTc3N3r0epKBTw/GYrHw4/HjTJwQzb69iVSvUZPRY8fTrPnf7Ptu3bKZGf+YRtqZM/gHBDJhUgzVqlUvxldzeynt5DM+6o761GnHSo59sNDbpqWlERMTw7ZtVz8jTz75JIMHX/2MHD9+nOjoaBITE6lZsybjx4/nb3/772dk8+bNTJs2jTNnzhAYGEhMTAzVq//3M7J48WLefPNNbDYbDzzwAC+//LL9+8XCKNZAvFnMHohy6ygQ5Va5UwLxdqZbjIiImJB+7MJIgSgiYkL6+Sej2+LWbSIiIsVNFaKIiAmpQDRSIIqImJAulzJSy1RERARViCIipqSWqZEqRBEREVQhioiYki67MFIgioiYkPLQSC1TERERVCGKiJiSWqZGCkQRERNSIBqpZSoiIoIqRBERU1KBaKRAFBExIbVMjdQyFRERQRWiiIgpqUA0UiCKiJiQWqZGapmKiIigClFExJRUIBopEEVETEgtUyO1TEVERFCFKCJiSioQjRSIIiImpJapkVqmIiIiqEIUETElFYhGCkQRERNSy9RILVMRERFUIYqImJIKRCMFooiICallaqSWqYiICKoQRURMSQWikQJRRMSE1DI1UstUREQEVYgiIqakCtFIgSgiYkLKQyO1TEVERFCFKCJiSmqZGikQRURMSHlopJapiIgIqhBFRExJLVMjVYgiIiZksThvKYq0tDSGDx9OSEgIrVq1Yvr06eTk5AAwZcoU6tWr57CsXLnSvu+GDRto164d/v7+REZGcv78eftYQUEBM2fOpFmzZoSEhDBjxgzy8/OLNDdViCIicksUFBQwfPhwypUrx6pVq8jMzGT8+PGUKFGCMWPGkJKSwsiRI+nSpYt9H3d3dwD27t1LdHQ0kyZNon79+kydOpVx48axaNEiAJYtW8aGDRuIi4sjNzeXUaNG4enpycCBAws9P1WIIiImVMJicdpSWEeOHGHPnj1Mnz6dunXrEhwczPDhw9mwYQMAKSkpNGzYEG9vb/vi5uYGwMqVK+nYsSMRERHUr1+fGTNmsHnzZk6cOAHAihUrGD58OMHBwTRr1owXXniBVatWFe09KdLWIiJyRyiOlqm3tzdLlizBy8vLYf2lS5e4dOkSaWlp1KpV65r7JiYmEhwcbH9cpUoVfH19SUxMJC0tjdOnT9O0aVP7eFBQEKdOneLs2bOFnp8CUURE/hSbzWYPtV8Xm81m2K5cuXK0atXK/jg/P5+VK1fSrFkzUlJSsFgsLFy4kPvvv59HHnmE9evX27c9e/YslSpVcjiep6cnZ86cIT09HcBh/NfQPXPmTKFfh75DFBExIWeeZbpo0SLi4uIc1kVFRTFs2LAb7hcbG8uBAwdYu3YtP/zwAxaLhdq1a/Pkk0+ya9cuXnrpJdzd3Wnfvj3Z2dlYrVaH/a1WKzabjezsbPvj/x0DrhnM16NAFBExoRJOvOpi8ODB9O/f32Hdb8Prt2JjY1m+fDmvvfYa9957L3Xr1iU8PBwPDw8A6tevz7Fjx3j77bdp3749rq6uhnCz2Wy4ubk5hJ+rq6v9z4D9O8jCUMtURET+FKvViru7u8Nyo0CMiYlh2bJlxMbG0qFDB+BqxfprGP6qdu3apKWlAeDj40NGRobDeEZGBt7e3vj4+ADYW6f/+2dvb+9Cvw4FooiICVksFqctRREXF8c777zDq6++SqdOnezr58yZQ79+/Ry2TUpKonbt2gD4+/uTkJBgHzt9+jSnT5/G398fHx8ffH19HcYTEhLw9fU1fO94I2qZioiYUHHcqCYlJYX58+czaNAggoKCHCq68PBwFi9ezNKlS2nfvj1bt27lvffeY8WKFQD07NmT3r17ExAQQOPGjZk6dSphYWFUr17dPj5z5kwqV64MwKxZsxgwYECR5qdAFBGRW+Lzzz8nLy+PBQsWsGDBAoexQ4cOMWfOHObOncucOXOoWrUqs2bNIjAwEIDAwEAmT57M3LlzyczMpEWLFsTExNj3HzhwIOfOnSMqKoqSJUvSrVs3Q8X5eywFBQUFf/pV3mbcAqOKewpiEj/tivv9jUScoLSTy5fOi3Y57VgbBjf9/Y3+AlQhioiYkDPPMr1T6KQaERERVCGKiJiSfv7JSIEoImJCykMjtUxFRERQhSgiYkpF+dkms1AgioiYkPLQqMgt00uXLjFz5kyOHDlCfn4+o0ePJiAggF69enHq1KmbMUcREZGbrsiBOGnSJDZv3ozFYuHDDz/ks88+Y9q0aXh5eTFp0qSbMUcREXGy4rqX6e2syC3TzZs3s2LFCu6++25iY2MJDw/noYceomHDhnTp0uVmzFFERJzsDsoxpylyhVhQUECpUqXIzs5m27ZttG7dGoDMzEzKlCnj9AmKiIjcCkWuEJs1a8ZLL71EmTJlKFGiBO3atWPbtm3ExMTQpk2bmzFHERFxMp1lalTkCnHatGk0bNgQq9XKvHnzcHd359ChQ7Ru3Zro6OibMUcREXEyixOXO0WRK8SyZcvy4osvOqx75JFHqFChwh315aqIiJhLkSvEtLQ0RowYwcGDB8nJyeHJJ5+kRYsWtG3blqSkpJsxRxERcTKdZWpU5ECcOHEi58+fx8PDg3Xr1vHvf/+bd955h/DwcIcfaxQRkdtXCYvzljtFkVum27dvZ926dVSpUoVNmzbRtm1b/P39qVixIp07d74ZcxQREbnpilwhurq6kpOTQ2ZmJjt27CAsLAyAkydPUr58eWfPT0REbgK1TI2KXCG2a9eO5557jtKlS1O+fHnCwsL4+OOPmTZtmi7MFxH5i7iDcsxpihyIEydOZOXKlZw6dYq///3vuLq6YrPZGDJkCE888cTNmKOIiMhNV+RAdHFxoV+/fg7rIiIiALhy5QqlSpVyxrxEROQmupNanc5S5EDMyMhg0aJFHD58mLy8PODq7dyuXLlCSkoKu3btcvokRUTEue6ks0Odpcgn1YwfP54tW7bQuHFjdu/ebT/DdO/evQwbNuxmzFFEROSmK3KFuGvXLt544w0CAwP55ptvCAsLIygoiMWLF/P111/Tp0+fmzFPERFxIrVMjf7Qr134+PgAcM8993DgwAEAOnbsyL59+5w7OxERuSl0L1OjIgdiw4YNef/99wFo0KAB33zzDXD1OkQREZG/qiK3TEeOHMmQIUNwc3Pj0UcfZcmSJTz88MOkpqbyyCOP3Iw5ioiIk+nnn4yKHIhBQUF8+eWXZGdnU6FCBeLj49m0aRMeHh507NjxZsxRREScTHloVORABHB3d8fd3R0AHx8fXZAvIiJ/eYUKxPr16xf6jKSDBw/+qQmJiMjNp7NMjQoViCtWrLjZ8xARkVtIeWhUqEAMCQlxeLx582ZKlChBq1atAJg6dSqtWrXi/vvvd/4MRUREboEiX3bx1ltvMWLECDIyMuzrXFxceO6553j33XedOjkREbk5SlgsTlvuFEUOxGXLljFr1iyHn3oaM2YMsbGxLF682KmTExGRm8Nicd5ypyhyIP7000/UqFHDsP7uu+92qBpFRET+SoociEFBQbz++utkZWXZ1+Xk5LBw4UICAwOdOjkREbk5fvur939muVMU+TrECRMmMGDAAFq2bEmtWrUA+PHHH/Hy8mL+/PnOnt8f8sNnM4t7CmISFR5fUtxTEJPIWv+UU49X5GrIBIociDVq1ODjjz9my5YtHDt2DBcXF2rVqkXLli0pWbLkzZijiIjITfeH7lRjtVpp27ats+ciIiK3yJ3U6nSWPxSIIiLy11ZCeWigNrKIiAiqEEVETEkVotEfqhDz8vL46quvePPNN7l48SKJiYn8/PPPzp6biIjcJMV12UVaWhrDhw8nJCSEVq1aMX36dHJycgA4ceIE/fr1IyAggIceeoitW7c67Pvtt9/SuXNn/P396dOnDydOnHAYf/PNN2nVqhWBgYGMHz/e4fLAwihyIJ4+fZqHH36Y8ePHExsbS2ZmJkuWLKFjx44cOnSoqIcTERGTKCgoYPjw4WRlZbFq1Spee+01vvzyS2bPnk1BQQGRkZF4eXkRHx/Po48+SlRUFKmpqQCkpqYSGRnJY489xtq1a6lYsSJDhw6loKAAgI0bNxIXF8fkyZNZvnw5iYmJxMbGFml+RQ7EyZMnExQUxJYtW7BarQC8+uqr/O1vf2PKlClFPZyIiBSDEhbnLYV15MgR9uzZw/Tp06lbty7BwcEMHz6cDRs2sH37dk6cOMHkyZOpU6cOgwcPJiAggPj4eADWrFlDo0aNGDBgAHXr1mX69OmcOnWKnTt3Ald/lalv376Eh4fTpEkTJk2aRHx8fJGqxCIH4nfffceAAQMcrjksVaoUQ4cOZf/+/UU9nIiIFIPiuJept7c3S5YswcvLy2H9pUuXSExMpGHDhpQpU8a+PigoiD179gCQmJhIcHCwfczNzQ0/Pz/27NlDXl4e+/btcxgPCAjgypUrJCUlFXp+RT6ppnTp0pw7d467777bYf3Ro0dxd3cv6uFEROQvzmazYbPZHNZZrVZ7F/FX5cqVs/9sIEB+fj4rV66kWbNmpKenU6lSJYftPT09OXPmDMANxy9evEhOTo7DuIuLCx4eHvb9C6PIFWKPHj2YMGECX331FXA1COPj43nppZfo1q1bUQ8nIiLFwJk//7Ro0SKCgoIclkWLFv3uHGJjYzlw4AAjRowgKyvLEKBWq9UetDcaz87Otj++3v6FUeQKMTIyknLlyjFx4kSysrIYNGgQnp6e9OvXj4EDBxb1cCIiUgyceRH64MGD6d+/v8O634bTb8XGxrJ8+XJee+017r33XlxdXblw4YLDNjabjdKlSwPg6upqCDebzUa5cuVwdXW1P/7tuJubW6Ffxx+6DrF379707t2by5cvk5eXR9myZf/IYURE5A5wrfbojcTExPD2228TGxtLhw4dAPDx8eHw4cMO22VkZNjboD4+PoafGMzIyKBBgwZ4eHjg6upKRkYGderUASA3N5cLFy7g7e1d6HkVORDfe++9G45HREQU9ZAiInKLFdetTOPi4njnnXd49dVXefDBB+3r/f39Wbx4MdnZ2faqMCEhgaCgIPt4QkKCffusrCwOHDhAVFQUJUqUoHHjxiQkJBAaGgrAnj17cHFxoX79+oWeW5EDce7cuQ6P8/LyOHfuHC4uLjRp0kSBKCLyF1CiGBIxJSWF+fPnM2jQIIKCgkhPT7ePhYSEUKVKFcaNG8fQoUP58ssv2bt3L9OnTwega9euLF26lMWLFxMeHs68efOoVq2aPQB79erFhAkTuPfee6lUqRITJ06ke/fuN7dl+sUXXxjW/fLLL0yYMIF69eoV9XAiImISn3/+OXl5eSxYsIAFCxY4jB06dIj58+cTHR3NY489Rs2aNZk3bx6+vr4AVKtWjddff51p06Yxb948AgMDmTdvnv1OOZ06deLUqVNMmDABm83GAw88wKhRo4o0P0vBr5f5/0nHjh2jZ8+ebNu2zRmH+1OOpGcX9xTEJPwGrSzuKYhJOPsHgidsTHbasSZ3qOu0YxUnp93cOykpifz8fGcdTkREbiLd3NuoyIHYu3dvw81cf/nlFw4dOkS/fv2cNS8REZFbqsiB+OsXmP/LarXywgsv0Lx5c6dMSkREbq7iOKnmdlfkQLxw4QJ9+vShRo0aN2M+IiJyCygPjYp8s4IPPviAEiWceY8DERGR4lfkCrFfv35MmjSJfv364evra79lzq9+PUVWRERuXzqpxugPX5i/ZcsWAPsJNgUFBVgsFg4ePOjE6YmIyM1gQYn4W4UKxF27dhEYGIiLiwuff/75zZ6TiIjILVeoQOzTpw9bt27F09OTqlWr3uw5iYjITaaWqVGhAtFJN7MREZHbhALRqNCni/72YnwREZE7SaFPqunatWuhLrfQd4wiIrc/FTlGhQ7E/v3764eARUTuEGqZGhUqEC0WC506dcLT0/Nmz0dERKRY6KQaERETUsfUqFCB2KVLF8MdaURE5K9LN/c2KlQgTp8+/WbPQ0REpFg57QeCRUTkr0Mn1RgpEEVETEgdUyP9jpOIiAiqEEVETKmEfu3CQIEoImJCapkaqWUqIiKCKkQREVPSWaZGCkQRERPShflGapmKiIigClFExJRUIBopEEVETEgtUyO1TEVERFCFKCJiSioQjRSIIiImpPagkd4TERERVCGKiJiSRT1TAwWiiIgJKQ6N1DIVERFBFaKIiCnpOkQjBaKIiAkpDo3UMhUREUEVooiIKaljaqRAFBExIV12YaSWqYiICApEERFTKuHE5Y+w2Wx07tyZHTt22NdNmTKFevXqOSwrV660j2/YsIF27drh7+9PZGQk58+ft48VFBQwc+ZMmjVrRkhICDNmzCA/P79Ic1LLVETEhIqzZZqTk8PIkSNJTk52WJ+SksLIkSPp0qWLfZ27uzsAe/fuJTo6mkmTJlG/fn2mTp3KuHHjWLRoEQDLli1jw4YNxMXFkZuby6hRo/D09GTgwIGFnpcqRBERuWUOHz5M9+7d+fHHHw1jKSkpNGzYEG9vb/vi5uYGwMqVK+nYsSMRERHUr1+fGTNmsHnzZk6cOAHAihUrGD58OMHBwTRr1owXXniBVatWFWluCkQREROyOHEpip07dxIaGsrq1asd1l+6dIm0tDRq1ap1zf0SExMJDg62P65SpQq+vr4kJiaSlpbG6dOnadq0qX08KCiIU6dOcfbs2ULPTS1TERETcmbL1GazYbPZHNZZrVasVqth2169el3zGCkpKVgsFhYuXMjXX3+Nh4cH/fv3t7dPz549S6VKlRz28fT05MyZM6SnpwM4jHt5eQFw5swZw37Xo0AUEZE/ZdGiRcTFxTmsi4qKYtiwYYU+xpEjR7BYLNSuXZsnn3ySXbt28dJLL+Hu7k779u3Jzs42BKzVasVms5GdnW1//L9jgCGob0SBKCJiQs78vmzw4MH079/fYd21qsMbiYiIIDw8HA8PDwDq16/PsWPHePvtt2nfvj2urq6GcLPZbLi5uTmEn6urq/3PgP07yMJQIIqImJAzW6bXa48WhcVisYfhr2rXrs327dsB8PHxISMjw2E8IyMDb29vfHx8AEhPT6datWr2PwN4e3sXeg46qUZERIrdnDlz6Nevn8O6pKQkateuDYC/vz8JCQn2sdOnT3P69Gn8/f3x8fHB19fXYTwhIQFfX99Cf38IqhBFREzpdrtxW3h4OIsXL2bp0qW0b9+erVu38t5777FixQoAevbsSe/evQkICKBx48ZMnTqVsLAwqlevbh+fOXMmlStXBmDWrFkMGDCgSHNQIIqImNDtdivTJk2aMGfOHObOncucOXOoWrUqs2bNIjAwEIDAwEAmT57M3LlzyczMpEWLFsTExNj3HzhwIOfOnSMqKoqSJUvSrVs3Q8X5eywFBQUFznxRt4Mj6dnFPQUxCb9BK39/IxEnyFr/lFOP9/6+M0471qONKzvtWMVJFaKIiAmVuO2apsVPgSgiYkK3W8v0dqCzTEVERFCFKCJiSha1TA0UiCIiJqSWqZFapiIiIqhCFBExJZ1laqRAFBExIbVMjdQyFRERQRWiiIgpqUI0UiCKiJiQLrswUstUREQEVYgiIqZUQgWigQJRRMSE1DI1UstUREQEVYgiIqaks0yNFIgiIiaklqmRWqYiIiKoQhQRMSWdZWqkQLzD/evj93l12gTDeovFwsdb9nA0JZm4mVM4fOggvtWqM+S5MfjfFwLAzxcv0v2hVg77lSvvweqPNt+Sucvtr3blcswe9Dea1/fhp0s5LPj4B157b5/DNuXKlOL7ud14edV3rPwy2XCMx/52N6tGtcWty5IiHVf+HLVMjRSId7j723YgKLSF/XFebi5jn32akL/dzy+XfiZ6xGBCW4QxMjqGzzduIGb88yx5+308Knjy47EUypX3YMGKePv+JfTPSvkPiwXWv/gACYczaDZyPfdUKcfy59uQeu4yq7ek2Leb0icEX8+7rnmM8mWszBzY/A8dV8TZ9B3iHc7VtTQVPb3syxeffURBQQH9hzzLpk8+oLRbGaJeiMa3Wg16DxyKb7Ua/DvpAAAnjh+lavWaDvt7VPAs5lcktwsfDzf2Hj3P8IXfkHL6Iht3n+Srfak0b+Bj3+ZvDXwIb+zL6fOXr3mMaf1COJp2scjHlT/PYnHecqdQIJrIzxczWbNqGf2HPIvVamXv99/RvGUYJUuWtG8zd8n/EdL8apv0x2MpVK1es7imK7e5Mz9l0XvWF1zKvgJA8/o+tGhYmS37TwNgdSnBvKGteG7xt9hy8wz7t/SrzP1+VXhl7Z4iHVecw+LE5U6hlqmJbFj/LhW9vGkV3h6AM6mnqNegEXNemcyOb76iUmVfno4aiV+TQABOHDtKbm4uzz7di3PpZ/Hzv4/Bw0ZR0cu7OF+G3IYOLfo7NSqV5aNdP7J++zEARncLIPFIBp8nnjJsb3UpwbxnWv4nLPOLdFyRm0UVokkUFBSwccM6Huna074uK+sy765aRkUvLybPnEfjgCCinx9CetoZAE78eJTLly8xaNgoxk6awfmMdF4ePYy8POO/9sXces74nMembsT/7orE9m9G/WoePNWhAaPf2HHN7cd1D2TPkXPXDMsbHVecp4TF4rTlTqEK0ST+nfQDGWfP0rrtg/Z1JUuWpE7devQeOBSAe+5twO5d2/h84wZ69HmKhW+tw2Kx4OpaGoDoKTN54tF2HDqwj4aNA4rjZchtandKBgCjS21n2Yhwgup6EfN2AmczswzbNqxRgQEP1Kfps+uKfNyxy3dw5QYVpRTenRNjzlNsgbhr165Cb9u0adObOBNzSNjxDY0C7qNsuXL2dRU9vahW826H7apVr0n62asVYunSbg5jHhU8KVuuPOfSz978Ccttr1J5N0LrVeLDncft6w6euIBrqZKE1vPBr0ZF/tEvFIAyri68PqQF3VrWZuehs1R0d+WHBd0BKPmfM5fT/68vwxZu5YvE1Oset5xbKc79nHMLX6WYSbEF4uTJkzl8+DBwtZ13PRaLhYMHD96qad2xrlXV1fdrwr49CQ7rThw/Rlj7jvzyyyX6dX2QF6e9ar8uMSM9jYuZFwwhKuZUy8edd8a0o+7Tb5P6n7NIA+t4cf7nbFqN/sBh289iOjH/ox945+vDZNnyeOfr/14+EXKvN8tGhBP6/HrOXsiiYQ2Pax73bGaWwtCZVCIaFFsgxsfH8/zzz3Py5ElWr16Nq6trcU3FFI4dSSH8gU4O6x6KeJwP4t9m5dIFtOnQiU2ffsiZ1JO06dCJu+5yx8//PhbPncnwMRMoWaIkC+e8QlBoC+6uU7eYXoXcTr47nMH3KRksjLqf0W9sp2Yld6b1DWHau99z5IzjpRS5+fmczcyyB9xPl/4bbFX/c43ir/tc77gzfnM2qvw5ujDfqNhOqrFarbz66qsAzJ49u7imYRoXzp+jbNlyDut8KvsyZdYCdnyzmSF9urLjm81Mio3Dy/vq9V4jo6dQ5976TBgVxehhA/Gp4svoCdOLY/pyG8rPL+Dx6f/ick4uX/3jERZEtmL+Rz8wb8MPt+VxRX6PpeBG/cpbICUlhZ07d9KzZ8/f37iQjqRnO+1YIjfiN2hlcU9BTCJr/VNOPd7OI5lOO1ZI7fJOO1ZxKvazTOvUqUOdOnWKexoiIqaihqmRrkMUERHhNqgQRUSkGKhENFAgioiYkM4yNVLLVEREBFWIIiKmdAfdgtRpVCGKiIigClFExJRUIBopEEVEzEiJaKCWqYiICKoQRURMSZddGKlCFBExIYvFecsfYbPZ6Ny5Mzt27LCvO3HiBP369SMgIICHHnqIrVu3Ouzz7bff0rlzZ/z9/enTpw8nTpxwGH/zzTdp1aoVgYGBjB8/nqws4w9U34gCUUREbqmcnByef/55kpOT7esKCgqIjIzEy8uL+Ph4Hn30UaKiokhNTQUgNTWVyMhIHnvsMdauXUvFihUZOnSo/fd0N27cSFxcHJMnT2b58uUkJiYSGxtbpHkpEEVETMjixKUoDh8+TPfu3fnxxx8d1m/fvp0TJ04wefJk6tSpw+DBgwkICCA+Ph6ANWvW0KhRIwYMGEDdunWZPn06p06dYufOnQCsWLGCvn37Eh4eTpMmTZg0aRLx8fFFqhIViCIiZlRMibhz505CQ0NZvXq1w/rExEQaNmxImTJl7OuCgoLYs2ePfTw4ONg+5ubmhp+fH3v27CEvL499+/Y5jAcEBHDlyhWSkpIKPTedVCMiIn+KzWbDZrM5rLNarVitVsO2vXr1uuYx0tPTqVSpksM6T09Pzpw587vjFy9eJCcnx2HcxcUFDw8P+/6FoQpRRMSELE78z6JFiwgKCnJYFi1aVKT5ZGVlGQLUarXag/ZG49nZ2fbH19u/MFQhioiYkDPvZTp48GD69+/vsO5a1eGNuLq6cuHCBYd1NpuN0qVL28d/G242m41y5crh6upqf/zbcTc3t0LPQRWiiIj8KVarFXd3d4elqIHo4+NDRkaGw7qMjAx7G/R6497e3nh4eODq6uownpuby4ULF/D29i70HBSIIiImVFxnmV6Pv78/P/zwg739CZCQkIC/v799PCEhwT6WlZXFgQMH8Pf3p0SJEjRu3NhhfM+ePbi4uFC/fv1Cz0GBKCJiRrdZIoaEhFClShXGjRtHcnIyixcvZu/evXTr1g2Arl27snv3bhYvXkxycjLjxo2jWrVqhIaGAldP1lm6dCmbNm1i7969TJw4ke7du6tlKiIify0lS5Zk/vz5pKen89hjj/HBBx8wb948fH19AahWrRqvv/468fHxdOvWjQsXLjBv3jws//kytFOnTgwePJgJEyYwYMAAmjRpwqhRo4o0B0vBr5f530GOpGf//kYiTuA3aGVxT0FMImv9U0493g+nfnHasfyq3uW0YxUnnWUqImJCzjzL9E6hlqmIiAiqEEVETEkFopECUUTEjJSIBmqZioiIoApRRMSULCoRDRSIIiImpLNMjdQyFRERQRWiiIgpqUA0UiCKiJiREtFALVMRERFUIYqImJLOMjVSIIqImJDOMjVSy1RERARViCIipqQC0UiBKCJiRkpEA7VMRUREUIUoImJKOsvUSIEoImJCOsvUSC1TERERVCGKiJiSCkQjBaKIiBkpEQ3UMhUREUEVooiIKeksUyMFooiICeksUyO1TEVERFCFKCJiSioQjRSIIiImpJapkVqmIiIiqEIUETEplYi/pUAUETEhtUyN1DIVERFBFaKIiCmpQDRSIIqImJBapkZqmYqIiKAKUUTElHQvUyMFooiIGSkPDdQyFRERQRWiiIgpqUA0UiCKiJiQzjI1UstUREQEBaKIiClZnPifovjXv/5FvXr1HJbhw4cDcODAAR5//HH8/f3p2rUr+/fvd9h3w4YNtGvXDn9/fyIjIzl//rzT3g9QIIqImJPFiUsRHD58mPDwcLZu3WpfpkyZwuXLlxk0aBDBwcGsW7eOwMBABg8ezOXLlwHYu3cv0dHRREVFsXr1ai5evMi4ceP+9NvwvxSIIiJyy6SkpHDvvffi7e1tX8qVK8fHH3+Mq6sro0ePpk6dOkRHR3PXXXfx6aefArBy5Uo6duxIREQE9evXZ8aMGWzevJkTJ044bW4KRBEREyqmApGUlBRq1aplWJ+YmEhQUBCW/5ztY7FYuO+++9izZ499PDg42L59lSpV8PX1JTExsYgzuD4FooiICVkszltsNhuXLl1yWGw2m+E5CwoKOHr0KFu3bqVDhw60a9eOmTNnYrPZSE9Pp1KlSg7be3p6cubMGQDOnj17w3Fn0GUXIiLypyxatIi4uDiHdVFRUQwbNsxhXWpqKllZWVitVmbPns3JkyeZMmUK2dnZ9vX/y2q12oM1Ozv7huPOoEAUETEhZ97LdPDgwfTv399h3W/DC6Bq1ars2LGD8uXLY7FYaNCgAfn5+YwaNYqQkBBDuNlsNkqXLg2Aq6vrNcfd3Nyc9joUiCIiJuTMC/OtVus1A/BaPDw8HB7XqVOHnJwcvL29ycjIcBjLyMiwt0l9fHyuOe7t7f3HJ/4b+g5RRERuiS1bthAaGkpWVpZ93cGDB/Hw8CAoKIjvv/+egoIC4Or3jbt378bf3x8Af39/EhIS7PudPn2a06dP28edQYEoIiK3RGBgIK6urrz44oscOXKEzZs3M2PGDJ566ikefPBBLl68yNSpUzl8+DBTp04lKyuLjh07AtCzZ0/ef/991qxZQ1JSEqNHjyYsLIzq1as7bX6Wgl/j+A5yJD27uKcgJuE3aGVxT0FMImv9U0493oWsPKcdy8OtZKG3TU5OZtq0aezZs4e77rqLHj16EBkZicViYe/evbz88sukpKRQr149Jk2aRMOGDe37rlu3jrlz55KZmUmLFi2IiYmhQoUKTnsdCkSRP0GBKLfKnRKItzOdVCMiYkLOPMv0TqFAFBExIf38k5FOqhEREUEVooiIKalANFIgioiYkRLRQC1TERERVCGKiJiSzjI1UiCKiJiQzjI1UstUREQEVYgiIqakAtFIgSgiYkZKRAO1TEVERFCFKCJiSjrL1EiBKCJiQjrL1EgtUxEREe7Q30MUEREpKlWIIiIiKBBFREQABaKIiAigQBQREQEUiCIiIoACUUREBFAgioiIAApEERERQIEoIiICKBAFyMnJYfz48QQHB9OyZUveeOON4p6S3MFsNhudO3dmx44dxT0VEQe6ubcwY8YM9u/fz/Lly0lNTWXMmDH4+vry4IMPFvfU5A6Tk5PDyJEjSU5OLu6piBgoEE3u8uXLrFmzhn/+85/4+fnh5+dHcnIyq1atUiCKUx0+fJiRI0ei2yfL7UotU5NLSkoiNzeXwMBA+7qgoCASExPJz88vxpnJnWbnzp2EhoayevXq4p6KyDWpQjS59PR0KlSogNVqta/z8vIiJyeHCxcuULFixWKcndxJevXqVdxTELkhVYgml5WV5RCGgP2xzWYrjimJiBQLBaLJubq6GoLv18elS5cujimJiBQLBaLJ+fj48NNPP5Gbm2tfl56eTunSpSlXrlwxzkxE5NZSIJpcgwYNcHFxYc+ePfZ1CQkJNG7cmBIl9PEQEfPQ33gm5+bmRkREBBMnTmTv3r1s2rSJN954gz59+hT31EREbimdZSqMGzeOiRMn0rdvX9zd3Rk2bBgPPPBAcU9LROSWshToKlkRERG1TEVERECBKCIiAigQRUREAAWiiIgIoEAUEREBFIgiIiKAAlFERARQIIqIiAAKRLlNtGnThnr16tkXPz8/HnzwQd58802nPk/v3r15/fXXARg7dixjx4793X1sNhvvvvvuH37OdevW0aZNmyLv9/rrr9O7d+8//LwiUjS6dZvcNsaPH89DDz0EQG5uLtu3byc6OhoPDw8iIiKc/nzR0dGF2u6jjz5i4cKFdO/e3elzEJHbhypEuW2ULVsWb29vvL29qVKlCl26dKF58+Z89tlnN+35ypYt+7vb6e6GIuagQJTbmouLC6VKlQKutjtjYmJo27YtYWFhXLp0idOnTzNkyBD8/f1p06YNcXFx5OXl2ff/17/+RYcOHQgICGDy5MkOY79tmb7//vs8+OCD+Pv706NHDw4cOMCOHTsYN24cp06dol69epw8eZKCggLmzZtHy5YtCQ4OZsiQIaSmptqPk5aWxlNPPUVAQABdunThxx9/vOFr/Prrr+nSpQv+/v488sgjbNu27ZrbrVmzhgcffJBGjRoRGhrKpEmT7K8nNTWVAQMGEBgYSPPmzYmJieHKlSsAJCUl0aNHD/z9/WnVqhVxcXFF/F9BxBwUiHJbunLlCp999hnffPMNbdu2ta9ft24dsbGxxMXFcddddxEVFYWnpyfr169n+vTpfPjhhyxcuBCAw4cP89xzz9GzZ0/i4+PJzc0lISHhms+3ZcsWoqOj6du3Lx988AGNGjVi8ODBBAYGMn78eCpXrszWrVupUqUKK1eu5MMPP2TWrFmsXr0aT09PBgwYYA+gZ599lvz8fNasWcPTTz/N8uXLr/s6k5OTeeaZZ2jfvj3vv/8+nTt3ZujQoaSnpztst3PnTqZMmcLzzz/Pp59+yqRJk1i7di2ff/45ADExMZQpU4b33nuPefPmsXHjRvv3nqNHj6ZBgwZs2LCBqVOnsmTJEjZv3vzH/8cRuUPpO0S5bbz88svExMQAkJ2dTenSpenbty+PPPKIfZuwsDDuu+8+ALZt20Zqaipr1qyhRIkS1K5dmzFjxjBu3DgiIyOJj48nODiYfv36AfDSSy/x5ZdfXvO5V69eTefOnenZsydwNURKlSpFZmYmZcuWpWTJknh7ewOwZMkSXn75ZUJDQwGYPHkyLVu2ZMuWLVSvXp3vv/+eL7/8El9fX+rWrcv+/fv59NNPr/m8a9eu5b777mPo0KEADBo0iMuXL3Px4kWH7cqUKcPUqVPtP8tVrVo1li1bRnJyMg888ACnTp3Cz88PX19fatasyeLFiylXrhwAp06dom3btlStWpXq1auzbNkyqlWrVrT/cURMQIEot43hw4fb/8J3dXXF29ubkiVLOmxTtWpV+59TUlK4cOECQUFB9nX5+flkZ2fz008/kZKSQoMGDexjpUqVcnj8v44ePUqPHj3sj61WK2PGjDFs98svv3DmzBlGjBhBiRL/bbBkZ2dz7NgxcnJy8PDwwNfX1z7WuHHj6wbi0aNH8fPzc1j33HPPGbZr1KgRpUuXZu7cuRw+fJhDhw5x/PhxWrZsCcBTTz3F+PHj+de//sX999/PQw89RMOGDQEYPHgwr776KqtXryYsLIxHH33UHu4i8l8KRLlteHp6UrNmzRtu4+rqav9zbm4utWvXZv78+Ybtfj1Z5rcnxPz6feRvubgU7v8Kv35nN2fOHO6++26HsfLly7Nt27ZCP2dRnnfLli1ERkYSERFBq1atiIyMZNKkSfbxRx55hObNm7Np0ya++uorhg8fztNPP82IESMYNGgQHTt2ZNOmTXzxxRf07duXmJgYHn/88UI9t4hZ6DtE+cu6++67SU1NpWLFitSsWZOaNWty8uRJ5s6di8VioW7duuzbt8++fX5+PklJSdc8Vs2aNR3G8vLyaNOmDQkJCVgsFvv6cuXK4enpSXp6uv05q1SpQmxsLEePHuXee+8lMzOT48eP2/c5ePDgdV/Db58XoEePHnz00UcO69asWUPXrl2ZPHkyjz/+OHXq1OHHH3+0h+9rr73GuXPn6NmzJ4sWLeK5557js88+IycnhylTpmC1Wunfvz9vvfUW3bt3Z+PGjYV4h0XMRYEof1ktW7akatWqjBo1ikOHDvHdd9/x0ksv4ebmRsmSJenevTv79+9nwYIFHDlyhFdeecXhbND/1bt3bz744APWr1/P8ePHmT59OgUFBfj5+eHm5kZmZibHjh0jNzeXfv36MXv2bL744guOHTvGiy++yO7du6lduzZ16tShefPmjB8/nqSkJDZt2sTKlSuv+xp69uzJd999x7Jlyzh+/DiLFi0iOTmZ4OBgh+08PDz4/vvvOXToEMnJyYwdO5b09HRsNhsAR44cYfLkySQlJZGcnMzmzZtp2LAhrq6u7N69m5iYGI4cOcK+ffv47rvv7O1UEfkvBaL8ZZUsWZIFCxaQn59P9+7dGTZsGK1bt+bFF18ErlZfCxYs4KOPPiIiIoL09HRat259zWM1bdqUl19+mXnz5vHII49w8OBBFi5cSOnSpWnWrBk1a9bk4Ycf5uDBgwwcOJBu3boxYcIEIiIiSE1NZenSpZQvXx64Wq1VqFCBHj168Oqrr97wbjM1atTg9ddfJz4+ns6dO7Nx40YWLlyIj4+Pw3a/nk3797//nf79++Pq6krPnj3t1efEiRPx8vKid+/edO/enUqVKtlvPPDaa6+RlZVFt27dGDhwIMHBwfaTeETkvywFuupYREREFaKIiAgoEEVERAAFooiICKBAFBERARSIIiIigAJRREQEUCCKiIgACkQRERFAgSgiIgIoEEVERAAFooiICAD/DxqfgbwqWkdWAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 500x500 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# 2. Confusion Matrix\n",
"# Convert the predicted probabilities to binary outputs\n",
"y_pred_classes = (y_pred > 0.5).astype(\"int32\")\n",
"# Generate the confusion matrix\n",
"cm = confusion_matrix(y_test, y_pred_classes)\n",
"# Plot the confusion matrix\n",
"plt.figure(figsize=(5, 5))\n",
"sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')\n",
"plt.title('Confusion matrix')\n",
"plt.xlabel('Predicted class')\n",
"plt.ylabel('True class')\n",
"plt.show()\n",
"\n"
]
},
{
"cell_type": "markdown",
"id": "8645f7e159d38f0a",
"metadata": {
"collapsed": false
},
"source": [
"## ROC Curve Evaluation\n",
"\n",
"The Receiver Operating Characteristic (ROC) curve is a graphical representation that illustrates the performance of a binary classification model at all classification thresholds. It is commonly used in machine learning to evaluate the performance of a classifier system for two-class problems.\n",
"\n",
"The ROC curve has two axes:\n",
"- The X-axis represents the False Positive Rate (FPR), which is the proportion of negative instances that are incorrectly classified as positive.\n",
"- The Y-axis represents the True Positive Rate (TPR), which is the proportion of positive instances that are correctly classified as positive.\n",
"\n",
"A perfect classifier would classify all positive instances correctly (TPR = 1) and all negative instances correctly (FPR = 0). This would be represented by a curve that goes straight up the left side of the ROC graph and then along the top to the right corner.\n",
"\n",
"The Area Under the Curve (AUC) is a numerical measure of the ROC curves performance. A larger AUC indicates a better performance. In our case, the AUC is 0.91, which is considered to be very good.\n",
"\n",
"In summary, the ROC curve shows that our binary classification model has a good performance in distinguishing between positive and negative instances."
]
},
{
"cell_type": "code",
"execution_count": 65,
"id": "4d080bef0cf9bec4",
"metadata": {
"ExecuteTime": {
"end_time": "2024-03-21T13:53:04.875096Z",
"start_time": "2024-03-21T13:53:04.785818Z"
},
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHFCAYAAADyj/PrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACHS0lEQVR4nO3dd1gUVxsF8LOF3qSJIlYUKyj2GhUbWLHGErHG3mLy2QtWjBqNDVusUWNiN4kFu8bYe+9iQRGQ3nd3vj+IoyuorAKzsOf3PD5h7s7Mvrs37B7u3JmRCYIggIiIiMgAyKUugIiIiCinMPgQERGRwWDwISIiIoPB4ENEREQGg8GHiIiIDAaDDxERERkMBh8iIiIyGAw+REREZDAYfIgoV+E1V7OelO8p+5NyGoMP5Vndu3dH6dKltf6VKVMGlStXRrt27bBr1y5J6jpz5gxKly6NM2fOSPL8bzx79gyTJ09Go0aN4O7ujrp162LAgAH4559/JK3rQ2JiYjBq1CicP39ebOvevTu6d++eo3Vcu3YN//vf/9CgQQN4eHigcePGmDhxIp4+faq1npeXF8aMGZOjtekqJSUFM2fOxJ9//pkl+9O1Py5cuIB+/fqJy8+ePUPp0qWxffv2LKmHKCNKqQsgyk7lypXD5MmTxWW1Wo2XL19i7dq1GDVqFPLly4f69evnaE3ly5fH77//jpIlS+bo877r1KlTGDx4MAoUKIC+ffvC1dUVr1+/xl9//YU+ffqgR48eGDdunGT1ZeTWrVvYtWsX2rdvL7a927c5YePGjZg5cyZq1KiB77//Hvnz50dwcDBWrVqFoKAgrFu3DmXKlMnRmr7Eq1evsG7dOgQEBGTJ/nTtjy1btuDBgwficv78+fH777+jSJEiWVIPUUYYfChPs7S0RKVKldK1f/XVV6hVqxa2b9+e48HnQzXllNDQUAwbNgyVK1fGkiVLYGJiIj7m7e2NtWvXIiAgAKVKlULHjh0lqzMzcjI8XrhwATNmzEC3bt0wfvx4sb1GjRpo3LgxfH19MW7cOIMerfjS/jA2Npb0d4MMAw91kUEyMTGBsbExZDKZ2KbRaLBixQo0adIEFSpUQLNmzfDrr7+m23bnzp1o27YtKlasiAYNGuCnn35CSkqK+Pjdu3fRv39/VK5cGZUrV8bgwYO1DoO8e6jr4sWLKF26NI4cOaL1HLdu3ULp0qVx4MABAEBycjJmz56N+vXro0KFCmjVqhX27NmjtY2XlxdmzpyJHj16wMPDQ+vL+V1r165FQkICpk+frhV63ujZsycqVaqEpUuXivMvunfvjjFjxmDZsmWoXbs2qlSpgkGDBuH58+da22b2tW/evBkNGzZE5cqVcfLkSQBpf/23a9cOlSpVgoeHB9q0aYO9e/eK2/n5+QEA/Pz8xMMp7x9aKV26NDZu3Ijx48ejevXq8PT0xPDhwxEeHq5V56pVq9CoUSN4eHigc+fOOHz48CcPP65atQpWVlYYOXJkusfs7OwwZswYNGrUCAkJCWJ7amoqZs+ejTp16qBSpUro3bs3goODtbb92OsGgO3bt6NcuXLYsmUL6tSpg+rVq+P+/ftQq9VYsWIFWrZsCQ8PD1SqVAmdO3fG6dOntfZ/+fJl9O7dG5UrV0bNmjUxcuRIhIaG4tmzZ2jUqBEAYOzYsfDy8hK3OX/+PL755htUrFgR1atXx+jRo/H69etP1vR+f5w8eRKdOnWCp6cnqlWrhoEDB4ojPGPGjMGOHTvw/Plz8fBWRoe6Hj58iCFDhqB69eqoVq0a+vfvrzVKRKQzgSiP+uabb4Ru3boJqamp4r+kpCThwYMHwsiRIwU3Nzfh8OHD4voTJ04UypcvLyxcuFA4ceKEMG/ePKFMmTLC4sWLxXU2bNgguLm5CePHjxeOHz8ubNy4UahYsaIwceJEQRAE4eHDh4Knp6fQvn17ISgoSNizZ4/QqlUroU6dOkJ4eLggCIJw+vRpwc3NTTh9+rQgCILQuHFj4fvvv9eqffbs2UL16tWF5ORkQaPRCH369BE8PT2FNWvWCMePHxcmTpwouLm5CTt27BC3adiwoVCuXDlhzpw5wokTJ4SLFy9m+L60bNlSaN++/UffuzVr1ghubm7CjRs3xPeyatWqQpMmTYS///5b+PPPP4UGDRoIDRs2FBISEnR+7XXq1BH27t0r7NixQ4iPjxc2bNgglClTRliyZIlw+vRpYf/+/UKHDh2EcuXKCS9evBBiY2PF937Dhg3CvXv3xLq++eYbsW43NzehSpUqwpgxY4QTJ04ImzZtEtzd3YXvvvtOXGfRokVCmTJlxPdp5syZgru7u1afvE+j0Qju7u7C8OHDP/q+vathw4ZCmTJlhL59+wrHjx8Xtm/fLlSrVk1o27atuM6nXrcgCMK2bdsENzc3wdvbWzhy5Iiwfft2QaPRCLNmzRIqVqworF+/Xjhz5oywe/duoVmzZkL16tXFPrlx44ZQvnx5oWvXrsKBAweEffv2CU2aNBFatGghJCcnC0FBQYKbm5swf/58sa/Pnj0rlC9fXujTp49w+PBhYceOHUKDBg2EFi1aCImJiR+t6d3+ePLkieDh4SFMmTJFOHXqlLB//36hWbNmgpeXl6BWq4Xg4GDh22+/FerUqSNcunRJiIiIEJ4+fSq4ubkJ27ZtEwRBEF6+fClUrVpVaNGihfD3338LR44cEdq1ayfUqVNHiIyMzHRfEL2Lh7ooTzt37hzKly+v1SaTyeDm5oYFCxagYcOGAIBHjx7hjz/+wMiRI8XJlnXr1oVMJsPy5cvRtWtX2NjYYMmSJWjcuDGmT58u7i8xMRF///03UlNTsXjxYpiZmWHt2rWwtLQEANSqVQuNGzfGL7/8gtGjR6ersXXr1li9ejWSkpJgamoKQRCwZ88eeHt7w9jYGCdPnsSJEycwf/58NG/eHABQr149JCYmYu7cuWjZsiWUyrRfZWdnZ/zwww8ffU+ePXuGr7766qPrFC1aFADw/PlzlCtXTnyd27dvR+HChQEAJUqUQNu2bbFz50506dJFp9fetWtXeHt7i8tPnz5Fnz59MGjQILGtUKFCaNeuHS5cuIAWLVqIh1FKliz50UMqbm5uWnNWrl69in379gEAEhISsHLlSnTr1k18n+rWrYvExET8/vvvH9xnZGQkkpOT4eLi8tH37X1OTk4IDAyEkZERACA4OBhLly5FXFwcLC0tM/W63xgwYAAaNGggLr969Qrfffed1giLiYkJhg4dijt37qBSpUpYtmwZ8uXLh9WrV4uje/nz58f333+PBw8eoGzZsgCAIkWKiP38008/oXjx4li+fDkUCgUAoGLFimjRogW2bduGbt26fbCmd129ehVJSUno378/nJycAAAFChTAoUOHkJCQgCJFisDOzk7r8Na7o2VA2uhkSkoK1qxZA0dHRwBAmTJl0KVLF1y5ciXHD1NT3sDgQ3la+fLlMWXKFABpXxQ///wzUlNT8fPPP6NEiRLieqdPn4YgCPDy8oJKpRLbvby8sHTpUly4cAHFixdHREQEmjRpovUcffr0QZ8+fcT9VK9eHaampuJ+LC0tUbVqVfz7778Z1ti6dWssXrwYR44cgY+PDy5evIiQkBC0adMGQNpEZJlMhvr166erbffu3bh37574Bfbmvx8jCIIYlD7kzRee8M6pxpUrVxZDD5A2cbxw4cI4d+4cunTpotNrf7/ON2c/xcTE4OHDhwgODhYPO717GDEz3p8jUqBAASQmJgJIO+yTlJSkFboAoGXLlh8NPm/eD7VarVMtHh4eYugBIAanmJgYWFpa6vS633/PfvrpJwDA69evxW3fHDJ9s+2FCxdQv359rUOanp6eOHz4MIC0EPyuxMREXLlyBX369IEgCGI/Fi5cGK6urjh58qRW8PnY/28VK1aEiYkJOnToAG9vb3z11VeoUaMGPDw8PvqevevChQuoVKmSGHqAtP58/9AwkS4YfChPs7CwgLu7u7hcsWJFtG7dGr1798b27dthZ2cHAIiKigIArb+w3xUaGgpbW1sAgL29/QefLyoqCnv27Ek3/waA+FzvK1q0KDw9PfH333/Dx8cHf//9N4oUKYLKlSuL+xQEQVx+36tXr8QvIHNz8w/W9kahQoXSzc1535t5Oc7OzmLbm7/a32Vvb4/o6Gixzsy+9vfrfPLkCSZNmoRTp07ByMgIJUqUEM+OEnS8zouZmZnWslwuF/fxZp7K+/V8rE8BwMbGBhYWFggJCfngOgkJCUhNTYWNjY3Y9v7rlMvTplVqNBoAur3u9/d17do1TJkyBdeuXYOZmRlKliwp9tebbaOioj752t4VExMDjUaDlStXYuXKlekef39O2Mf+f3NxccGGDRuwYsUKbN26FevXr4e1tTW6du2KESNGaM2v+5CoqCidR9mIPoXBhwyKg4MDJk2ahOHDh2PGjBniX83W1tYAgHXr1sHCwiLdds7OzuKX5ruTPIG0wyA3b96Ep6cnrKysULt2bfTq1SvdPj42ytK6dWsEBAQgNjYW+/btQ5cuXcTHrKysYG5ujvXr12e47ZvDUpnl5eWF1atX4/nz5yhUqFCG6+zbtw8FCxYUD38Aaa/zfeHh4eKpx5/72jUaDfr16wcjIyNs3boVZcuWhVKpxP3797P8WksFChQAAERERGiN+L3fpxmpW7cuzpw5g+Tk5Awnhf/xxx/48ccfsXXr1nSHVzPyJa87Li4Offv2RenSpfH333+jRIkSkMvlOHbsGPbv3y+uZ2VlleFrO3bsWIajNRYWFpDJZOjZs2eGfwS8Hyo/xcPDA4sXL0ZKSgouXLiA33//HcuWLUOZMmXg4+Pzye0/VP+pU6fg4uKiNQJJlFk8q4sMjre3N+rVq4e//voLZ8+eBQBUrVoVQNqXu7u7u/jv9evXWLBgAaKiolCiRAnY2tqmG2bftWsX+vXrh9TUVPHslrJly4r7qFChAtauXSueoZWR5s2bQxAELFiwABEREWjdurX4WPXq1ZGQkABBELRqu3v3LpYsWaJ1+CszunfvDktLS4wdOxZJSUnpHt+0aRPOnj2L/v37iyMUQNphh3fDz/Xr1/Hs2TPUqlVLrPNzXntkZCQePXqEDh06wN3dXQxJx48fB/B2dOTN4aYvUaZMGVhZWaWrJygo6JPb9u7dG1FRUfj555/TPRYWFobVq1ejZMmSmQo9QOZfd0YePnyIqKgo+Pn5oWTJkmI/vb9t1apVcfLkSa3DZjdv3kS/fv1w48aNdO+ppaUlypUrh4cPH2r9v1aqVCksWrRIp4turl27Fg0bNkRKSgqMjY1Rq1YtTJs2DQDEkbN3///KSNWqVXHlyhWt8BMREYG+ffvi2LFjma6F6F0c8SGDNG7cOLRu3RrTp0/Hjh07ULp0abRu3RoTJ07E8+fPUaFCBTx69Ajz58+Hi4sLihUrBoVCgaFDh2Lq1Kmwt7eHl5cXHj16hIULF6Jbt26wsbHBoEGD0LlzZ/Tv3x9dunSBiYkJfv/9dxw8eBALFy78YD1vLqS4adMmeHp6ao3i1K9fH9WqVcOgQYMwaNAguLq64urVq1i4cCHq1av3wUNoH5I/f34sWLAAw4YNQ7t27eDn5wdXV1dER0dj7969+Pvvv9GtWzetUScgbf5H3759MXDgQMTHx2P+/Plwc3NDy5YtAeCzX7u9vT0KFSqEjRs3okCBArC2tsaJEyfEEa4383OsrKwAAEePHoWNjc1nXSjQ0tISffv2xcKFC2FmZobq1avj7Nmz+O233wB8/Iu4UqVKGD58OH7++Wc8ePAAvr6+sLW1xb1797Bq1SokJydnGIq+9HVnpHjx4rC0tMSyZcugVCqhVCqxf/9+bN26VWvbQYMG4euvv0b//v3h5+eHpKQk/Pzzz/Dw8ECdOnXEQHTq1Cm4urqiYsWK4gT/77//Hq1bt4Zarcbq1atx5coVrUnYn1KzZk3MnTsXgwcPxjfffAOFQoHNmzfD2NhYPKnA2toa4eHhHxyB6tmzJ3bu3Im+ffuif//+MDIywtKlS1GgQAG0atUq07UQvYsjPmSQSpQoge7du+POnTvil15AQAB69eqFzZs3o2/fvli2bBmaN2+O1atXi38Zd+vWDbNmzcKZM2fQv39/rF27Ft9++y1GjRoFIG1EYePGjZDJZBg1ahSGDRuGsLAwLFmyBE2bNv1oTW3atIFarU73gS6Xy7FixQq0aNECy5cvR58+fbB582b06tUL8+fP/6zXX7NmTezcuRN169bFmjVr0KdPH/j7+4tnPU2aNCndNlWrVkXDhg0xfvx4zJw5E7Vq1cL69ethbGz8xa89MDAQTk5OGDNmDEaMGIErV65g6dKlKFGihHiLilKlSqFly5bYuHHjJ89c+5j+/ftj6NCh2LVrF/r374/z58+L+/vUHKmBAwdixYoVAICZM2eiX79+2LBhAxo0aICdO3fC1dVVp1oy87ozYmVlhcDAQAiCgOHDh2PUqFEICQnBhg0bYGFhIW5brlw5/Prrr1CpVBgxYgSmT5+OKlWqYPny5TA2NoalpSV69eqFgwcP4ttvv0Vqairq1q2LVatW4eXLlxg2bBhGjRoFhUKBNWvW6HRxwTJlymDZsmWIi4vDyJEjMWTIEERFRWH16tXiYcZ27dqhUKFCGDx4MHbu3JluHwULFsSmTZuQP39+jBkzBmPHjkXBggWxbt06rblURLqQCbrOHCQig/PmlOmMLuiYm6hUKvz111+oUaMGChYsKLZv3LgR06dPx5kzZ8T5XkSUN/FQFxEZDKVSiZUrV2LdunUYOHAgbG1tcffuXfz888/w9fVl6CEyAAw+RGRQli1bhnnz5sHf3x8xMTFwdnZGjx490L9/f6lLI6IcwENdREREZDA4uZmIiIgMBoMPERERGQwGHyIiIjIYDD5ERERkMBh8iIiIyGAY3Onsr1/H4iO3wKEcIJMB9vZWiIiIBc8plBb7Qn+wL/QH+0K/yOWAnZ1Vlu3P4IKPIID/I+sJ9oX+YF/oD/aF/mBf6Ies7gMe6iIiIiKDweBDREREBoPBh4iIiAwGgw8REREZDAYfIiIiMhgMPkRERGQwGHyIiIjIYDD4EBERkcFg8CEiIiKDweBDREREBkMvgk9KSgpatmyJM2fOfHCdmzdvomPHjqhYsSLat2+P69ev52CFRERElBdIHnySk5MxcuRI3Lt374PrJCQkoF+/fqhatSq2b98OT09P9O/fHwkJCTlYKREREeV2kgaf+/fvo1OnTnjy5MlH19uzZw9MTEwwatQouLq6Yvz48bCwsMC+fftyqFIiIiLKCyS9O/vZs2dRo0YNfPfdd6hUqdIH17ty5QqqVKkCmUwGAJDJZKhcuTIuX76Mdu3a5VC1REREekCTClnya8g0KkBQARoV5ClRkKXGAYIGgAYQNJC9+VmT9l+ZOgmK2IfQGOdL248gQAYBgCAuiz+/u6zVrr0s+9jjggCjsDNQWxYDZLJ32jXi4zJoMmxPew3AzafGcCtmDLRdl2Vvn6TBp2vXrplaLywsDCVLltRqs7e3/+jhsQ+RydL+kXTevP/sB+mxL/QH+0JPCEJaYFCnQqZO+i9AqAFBDQgayJMiAFUCZKp4KOKCIciUkAkqQKOGLCUKipgHEEzt077ExeCh/u8LXg3jZ/uhsvNI92UvE7/03/nvf+vIk8KgjLwBjXE+yFOiJHxzco5GI8NPx2ph/L5GmNrqPMa0zbp9Sxp8MisxMRHGxsZabcbGxkhJSdF5X3Z2VllVFn0he3v2hb5gX+gP9sV7BOFtiHgngECjBlQJQEIYEPsESIkDXpwCTO2013mzTXI08OIMYFcaUKcCmlTg8T7A1i1t3cSwtHXeYZ9NL0kR++iztjOU0PMsyho9Nvvi8P0SAIAfj9TFmCzcf64IPiYmJulCTkpKCkxNTXXe1+vXsWmjfiQZmSztwz0iIjbtDxqSDPtCf+T5vtCoASEVMk0qZImhMA45AggqyBNCoYi5B42pI2SaFBg/+QvqfGVg9Op09tQRcUN7OfJu9jxPNlFbFYfGOB+MIi4huWgbQKaEIFcCMiUUMXeR6lgTUJoBMjkEmRyQKQCZHMB/P2vSvks1loX/26MMAt49FPLm54yW3x2W1F4WxHa8fezNeoIGGvMC/7XJ33lcLq4jvLPPocPO4fD95+JTfdu7bJa+h7ki+Dg5OSE8PFyrLTw8HPnz59d5X8Kbw4ckOfaF/mBf6I8c7QtBSJsjok6GIvElZKnxkMc9gkyTCmX4BQjGNmnzSTQqKCMuQlCYAkrztBGUN6Mp0EAR+xjKmHtQ2ZQBBHXaoZ//RlwUCc90LkueXaHnI9RmBQC5ERTxT6GydYfSPB9SVQKEN8FBJocgU0D232Gu1Py1IEuNh2BsA7VlEUBuBMiUgKCCYGQFjanDf9spIEAOyN+GD0FpAcHYCoD8vy/8twEgbT6GXGwT3n1MYWoQx0KnzcqP46fWw9RUiSVLfFCvXuFPb6SDXBF8KlasiJUrV0IQBMhkMgiCgIsXL2LAgAFSl0ZEpF8EDaBJgUydAmXERciTX0MReQOy1BiY3VsHjZkTBJkCytiHWf7UyujbWb5PAEh1rPFOANEOIsqoW0hxaQZZSgxSHasDMjnUViXeWU/x37ZpgUJj4gBBaQHIlYBcCUFhDsgVWs8nkwEODlaIDs+jo296JjExFWZmRuKyk5MlNm5sC1dXW+TLp/uRnU/R2+ATFhYGKysrmJqawtvbGz/99BNmzJiBzp07Y/PmzUhMTISPj4/UZRIRZQ9BgCL2PhRRdwDIoHx9CUah/0JjXhAAYPpoC1Q2pdMm36oSoEh4DkEm/2+S7Icp4oKztWyNkU1akBADhwLy5AjI1ElIcaqbNjKiUUEZdRNJxTsi1akuIJNBY5YfgpENBIUxBON8EIxtDWJ0w5CpVBosWHAWv/12AwcPdtMKOVWqFMy259Xb4FO3bl0EBASgXbt2sLS0xPLlyzF58mT88ccfKF26NFasWAFzc3OpyyQiQ6BRQ6aKfXumzX9n68jESbdvTiFWQ5HwQhx1UcSkjaoYvzwOjZkToE6GyZNdUNlVgkyTDKNXpyBABsHUMe2wkUwDO7UaMnUSZJpPn7yhjL6jtfyp0PMutZkTFImhUFsUhtrKFTJVPAANUh2rQ54UgVSnOoAmBWprN0Bu9N88EkVa8Hon1KSNpCggyJSAkYUObyoZsuDgaAwevBdnz4YAAH744SBWrmwhXrYmO+lN8Llz585Hlz08PLBjx46cLImI8ihZaiwU0XcgUyWmnYIc9wQydSIUr6/BKOwc1NauMH55TAwHWc345dG3tUCALOmVuPw5V5XVmDpAkBlBkfgCKqsSaeFEbvzf6dfhSCzdBxDUUNtWgMq6JAQzpy9/EUSfQRAEbN16C6NHH0ZcXFq4l8tlcHOzgyDkzCCf3gQfIqLMUsT8dwjov7OElBFX/huxAEyCd6ZdJ0Wj+u+xC5BpUqE2c4JMnQJ5SuSn9//fhNzsCD0forYsBoWREVSaN/NYFFBGXoNGaYnEsgMhKC0ggwYpTnXTRo8AaEwdASPLHKuR6EtERydh9OhD2L797cBGkSI2CAz0QfXqzjlWB4MPEUlPo4IsJRryxJeQpcZCpkmBPOEFTO9vgDzpFTSmTpAnh0MZmbmbExu/OJKu7UtCjCpfOSijbiLFuXHaIR/IxQm2kMnfnnkjk0Oe/BqC0gKqfGUAuTHkCS+gsnOHYJwPKhs3QG4CjYkdBGPrtLOAxCvSp02ojeKEWsqDTp16hsGD9+LZs1ixrVOncggIaAgrK5McrYXBh4iyhzoF8qRXUMQ+giLqNmSCCsqws9CY5Yci5iEUcY+gMSsI45fHMrGzW1lSksrKFVAYp13iP/ElVA7VkOpYDTJ1CjRm+aG2KATBNH/a4aA3pyMT0ReZN+80fvzxXzHQW1ubYO7cxvD1LS1JPQw+RPRFLM/8AKgToYh5AKPXl6G2coUy8lrmNo7+vIvHaYysAUGDxArDIRhZQZAZAdBAZV8ZgpE1NCa2EIys/ru2ioJnBxFJyNHRXAw9tWu7YPFib7i4WEtWD4MPEX2YKhEyVQKUkdchUyX8d32YJBi/OApZUjhMnu9Pt0mmQ08Gkou0hiL2EVIKNYEgN4I8OQKp9lWQ4uL9TpBhiCHKTb75xh3Hjj2Bh0d+DB5cFQqFtCOpDD5EhkSVAEXsQyhfX4VMkwqj0JOAnQsso17C6MVxaEztYRRxCWrzQlAkPP/spxGUFmnBJSUKqY7VocpXDhqzAlDblIagNIfaohAgN0n7r8Is3QXkiCh3ev06Efv2PUDXrhXENplMlmOnqmcGgw9RHiJLDINMFQuZOhXKiPMwCv0XRmFn0s4QivrAPJmHwJvLhinin6T99zNCT0S76xAUZv/NjdGPDzgiyjlHjwZj6NB9CA2Nh6OjOZo0KSE+pi+hB2DwIcp91CmQpcbCKPQEjMLOwvTBb5ClREEmqLP2acydIU+JhsbUAap8ZSFTJyOloFfaZf7lxoDCGKlOtaG2KAIocvasDCLSH0lJKsyY8Q+WL78otk2degKNGhWHXK4/gecNBh8iPaWIvA5l5HUYvfznv+vRXMqSeyFpTPNDZeMGtU1pqJxqwsraElEoAI3cBBqzgmk3ppTzo4GIPu327XAMGLAHN2++vZF4gwZFsWhRM70MPQCDD1HOUyfBKOwsoE5Ou4u1RgMIKihi7sM45BCMQ//57F0LSgtojG2RUrABIDeCTJOM5GLtoLL1gMbUPm1y8DtkMsDKwQoqXjuGiHQgCAJWrbqMqVOPIykpbbTZ2FiBSZPqoW9fT70NPQCDD1GWMnm0BaZ310AwtkmbRBx1C2qr4oBGBWhUUCS+yLLnUtlWgKAwQ2KZb5FaoAE05gWybN9ERB8SGhqPESP249Chx2Jb2bL2CAxsjvLlHaUrLJMYfIg+h0YNeeILGIX+C4sLE6BIfPnBVRWxjz77aQSFGeIqT4Fg6gi1tSvUVsUhGFlz8jARSWb06ENaoadfP09MmFAPpqa5I1LkjiqJJKSIugXjF0fT7g8VfTeTVxrWpjF1gCA3Ea9Do4h9hKRi7aDOVy7trtb/3flalhwBlWP1tEnECuNseDVERF9m2rQGOHHiCUxNlVi0qBm8vIpLXZJOGHyI3idooAw7C/Pr82DybJ9Om2pMHaE2d0ZcrYVQW5WAoDDlGU9ElKulpKhhbPz2WluFC1tj/fo2KF3aHg4O5hJW9nkYfIhUCbC4NA3mt5bovGlS0baQp0QjofxwpBZswENQRJRnaDQCliw5j99/v4F9+7rC0vLtKHSdOoUlrOzLMPiQQZAlhsHs3lpYXJ4GjdIy7dCSoIZMlZDp698kVPgeqfmrQ21RBOp85RhyiCjPCgmJxZAh+/DPP08BAOPGHcHChc0kriprMPhQniJLioDRy+MwfnkcEDRQxNxLd3q4XBX3yf0IciOo7CoiqVRPJBXvCCjNsqtkIiK9snv3XfzwwwFERSUDSPsbz9HRHBqNoNenqWcWgw/lXoIGlme+hyw5EiZP/4ZMk6zT5iqb0oDcCILcCMrIG0hxbozYOoEQTOyyqWAiIv0VF5eCceOOYPPmG2Kbs7MllizxydWHtt7H4EO5hyoBZrdXQvn6Ckwfb/2sXcRXHIck167QWBbJ4uKIiHKv8+dDMHDgXgQHR4ttrVu7Ye7cxsiXz/QjW+Y+DD6k12RJ4TB+cRTWJ3pnehuVjRvUViWRWOZbaCwKQ1CYQmNRmHNyiIgysHDhWQQEnIRanXb5dgsLIwQEeOHrr8vp1c1FswqDD+kdWUoUrI/6wfjl0Uytr8pXFlFN90AwsgAUeesvEyKi7GZiohRDT5UqBREY6IPixfNJW1Q2YvAh/SAIkMc9hv2Oip9cNbF0XyS69YXaplS6e08REZFuvv3WE8eOBaNSJSeMHFkTSqVc6pKyFYMPScrs2jxYXvL/5HqJpfshqUQnqByrZ39RRER5VHR0Eg4ffoy2bcuIbXK5DBs2+OaJM7Yyg8GHco46BcYvjsDyzEgg/ikcPrF6UrH2iKv5MwRjmxwpj4goLzt16hkGD96L589j4eBgjnr13p7kYSihB2DwoRygDD0Fm8MdIU+N+eS6KutSSC7RGQnuP3AyMhFRFkhNVWPOnFNYsOAshLSpPJgw4QiOHPEzqMDzBoMPZR1BgCw1GkavzsDk0RaYPvrjk5tojGwgUyfgdbtr0Jg750CRRESG48GDSAwcuAeXL4eKbbVru2DJEh+DDD0Agw9lAUXkDVidHACj11cytX5ysfYwqToQ4RbVxb8+iIgo6wiCgA0brmHixKNISFABAJRKOcaMqY3Bg6tCocjbE5g/hsGHPk9qHEwf/QGr0yMytbrG1BEx9VYjtWB9yGSAiYMVEB6bvTUSERmgiIhEjBwZhL17H4htrq62WLasOSpWdJKwMv3A4EOZogw7B6t/B0EZfeeT66Y6VIOgMEZimQFIdaoLwdQ+ByokIiIA+O67IOzb9zb0+Pl5YMqU+rCw4OU/AAYfyoR8+5rB6NWpT64XW202ksr0A2SGO4RKRCS1yZO/wvHjwTAzM8K8eU3g41NS6pL0CoMPpWMUehL59vtAY2QFeeqHD0cJMgWSi7ZBfJXp0Fi45GCFRET0hlqt0Zqz4+pqi1WrWqFCBUc4OVlKWJl+YvAhAIA8/hmsj3aDUcSlt20ZhJ5or9+RUsibp5oTEUlMEASsWnUZmzffwO7dX8Pc/O2hrEaNiktYmX5j8DFk6hRYnewP08fbPrpaqkMVGIVfQHjH+xDM8udQcURE9CGhofEYMWI/Dh16DACYOvU4Zs1qJG1RuQSDj4Exu74AivgnMH7yJxSJLz+6bmTzI1A5VMmhyoiIKDOCgh5ixIj9CA9PFNsUCjkEQciTd1PPagw+BkCWEgPzy9NhfnvZJ9eNrbUYSaX8cqAqIiLSRUJCKvz9j2Pt2rfXTHN0NMeiRc3g5cVDW5nF4JPHWZwbA/NbgR9dJ7GkH+JqLeTZWEREeuratVcYMGAP7t17LbY1a1YC8+c3hYODuYSV5T4MPnmQLCUaNgfbwSj8XIaPa0zsEdVsLwRja2jMCnKiMhGRHlu27AKmTTuB1FQNAMDMTImpUxvAz8+dh7Y+A4NPHqOIvgu7XVUzfExQWiCi3XVeUJCIKBdJSlKJocfDIz+WLm2OUqXsJK4q92LwyQtUibC4PAMmj7dBkfA8w1XCuoUDCuMcLoyIiL7U0KHVcOxYMCpXLojRo2vD2FghdUm5GoNPbpYaD8ffCn7w4aQSXRBbewkgZzcTEeUGcXEp+Oefp/D2dhXbFAo5tmzpAKWS8zCzAt/FXEqe8OLjoadYB8TWXc7QQ0SUS5w/H4KGDX9Fr167ce5ciNZjDD1Zh9+KuY1GDfutpSBPCk/3UFLxjoirPgeCCY/9EhHlFiqVBj//fAY//XQaarUAABg16hAOH/6Gk5ezAYNPLuOwqQBkmmStNo2JPSK+fiRRRURE9LmCg6MxaNBerRGeKlUKIjDQh6EnmzD45CJ22z3ShZ7YmguR5NZTmoKIiOizCIKArVtvYfTow4iLSwEAyOUyjBxZAyNH1uShrWzE4JNLmF+ZBUXcY622sG8iATln9xMR5SbR0UkYPfoQtm+/I7YVKWKDwEAfVK/uLGFlhoHBR8/JE17AfmvpdO3hnR4y9BAR5UKDBu3FgQNvpyd06lQOAQENYWVlImFVhoNjaXouo9Dz2vciBFMHCaohIqIvNX58XZiYKGBtbYIVK1pg8WJvhp4cxBEfffWBa/RENdsLtXVJCQoiIqLP8f5d08uVc8TSpc1RqZITXFysJazMMHHERw8ZB+/OMPSE+cUg1amOBBUREZGuBEHAr79eRevWfyA5WaX1WMuWpRh6JMIRHz1ju6s6lNG307WHd3ooQTVERPQ5IiISMXJkEPbufQAAmDXrX0ye/JXEVRHA4KNXHNenT/8q65KI9L0oQTVERPQ5jh4NxtCh+xAaGi+2xcenpjvkRdJg8NET+fY1S9f22vcC1NalJKiGiIh0lZSkwowZ/2D58rd/rNrbm2HevCbw8eHcTH3B4CM1VQIcNxVI1xze+QkE43w5Xw8REens9u1wDBiwBzdvvr2dUIMGRbFoUTM4OVlKWBm9j8FHYhmFnkjvIIYeIqJcYtWqy/D3P4bkZDUAwMREgYkT66FvX0/I5Ty0pW8YfCRienslrM5+n649osNdaMzThyEiItJPr17Fi6GnbFl7LF3aHOXKOUpcFX0Ig08OkyWFw+GPEhk+FtY9GuDENyKiXOWHH2ri2LFgVK1aEBMm1IOpKb9a9Rl7JwdZnegL00d/ZPhYWJcXDD1ERHouISEVZ8+GoEGDomKbkZECu3Z1gokJv1JzA/ZSDlBE3oDdn7UyfCyi3Q1oLAvncEVERKSrq1dDMXDgXjx+HIV9+7rC3T2/+BhDT+4h6ZWbk5OTMW7cOFStWhV169bF6tWrP7jugQMH4OPjA09PT3Tp0gU3btzIwUq/gCBkGHqSXLsizC+GoYeISM9pNAIWLToHH5/fcO/ea6SmavDdd0EQBEHq0ugzSBpRZ8+ejevXr2PdunUICQnB6NGj4ezsDG9vb6317t27h++//x5Tp05F5cqVsXbtWvTv3x8HDhyAmZmZRNVnjuOvNunaItrfhMbCRYJqiIhIFyEhsRgyZB/++eep2ObhkR9LlzbnxQhzKclGfBISErBlyxaMHz8e5cuXR5MmTdC3b19s3Lgx3bonT55EyZIl4evriyJFimDkyJEICwvD/fv3Jag88xQx6esL84th6CEiygV27bqLBg3Wi6FHJgOGDq2GPXu6oFQpO4mro88lWfC5ffs2VCoVPD09xbYqVargypUr0Gg0Wuvmy5cP9+/fx4ULF6DRaLB9+3ZYWlqiSJEiOV22Tux2VtZaDu/89ANrEhGRvoiLS0Hv3rvQt+9fiIpKBgA4O1ti+/aOmDixHoyNFRJXSF9CskNdYWFhsLW1hbGxsdjm4OCA5ORkREVFwc7ubZpu3rw5Dh8+jK5du0KhUEAul2P58uWwsUl/GOlTZLLsP3lKGX4B+f5uqNUWX3UGYGIDDoy+ff85Siw99oX+YF/oj2+//QsHDz4Wl9u0ccPcuY2RL5+pdEUZsKz+nZAs+CQmJmqFHgDickpKilZ7ZGQkwsLCMGnSJFSsWBG//fYbxo4dix07dsDe3l6n57Wzs/qywj/l1yrAq/Q3FbX4aiws+Immxd4+m/uCMo19oT/YF9ILCGiCo0dXwdRUiSVLmqN7dw/O58lDJAs+JiYm6QLOm2VTU+1UPXfuXLi5uaFbt24AgGnTpsHHxwfbtm1Dv379dHre169j8d6RtCxju8MTipgH6Z+zwy1oIuKy50lzIZks7cM9IiIWPClCWuwL/cG+kM77d00vXtwKa9a0QZkytihWLB8i+PktKbk8awctJAs+Tk5OiIyMhEqlglKZVkZYWBhMTU1hbW2tte6NGzfQvXt3cVkul6NMmTIICQnR+XkFAdnyoeK43jpdW1SjbUgt1OS/J87658ztsqsvSHfsC/3Bvsg5giBg69Zb2Lr1FjZubAul8u2012++8UB4OEOoPsjqPpBscnPZsmWhVCpx+fJlse3ChQtwd3eHXK5dVv78+fHggfZIyqNHj+Dioh9nRykjLqdrC/vm9dvQQ0REeiU6OgkDBuzB4MH7cORIMObPPyN1SZRDJAs+ZmZm8PX1hb+/P65evYqDBw9i9erV8PPzA5A2+pOUlAQA6NSpE/744w/s3LkTwcHBmDt3LkJCQtC2bVupytdi+/dXWsth3cIAOa/iSUSkj06deoaGDX/Fjh13xLbnz2N4QUIDIem389ixY+Hv748ePXrA0tISQ4cORdOmTQEAdevWRUBAANq1a4fmzZsjPj4ey5cvx8uXL1G2bFmsW7dO54nN2eK9X5SY2ksBhYlExRAR0YekpKgxZ84pLFx4VvzotrY2wdy5jeHrW1ra4ijHyAQDi7gREVk4uVkQ0l2ZOcwvJot2nnfJZICDgxWPn+sB9oX+YF9kr/v3X2PgwL24ciVUbKtd2wWLF3vDxUV7jib7Qr/I5Vl7tiOPx3wBq38HSl0CERF9woYN1zBhwhEkJKgAAEqlHGPG1MbgwVWhUEh6y0qSAIPPFzB9sElrOazrS4kqISKiD7lzJ0IMPa6utli2rDkqVnSSuCqSCoNPFgn/OhhQmktdBhERvWf8+Lo4fvwJqlVzxpQp9WFhYSR1SSQhBp/PpHh9TWtZMLGVqBIiInojKUmFK1dCUaNGIbHN1FSJPXu6MPAQAAlPZ8/V1Emw+6uOuCjIeRYXEZHUbt8Oh7f3JnTsuBV370ZoPcbQQ28w+HwGx435tZZja/0sTSFERARBEPDLL5fQpMlG3LwZjqQkNYYPD+J1eShDPNSlI1liaLq2ZNduElRCREShofEYMWI/Dh16LLaVLWuPuXMb88ailCEGHx05bCmltRz2TaRElRARGbagoIcYMWI/wsMTxbZ+/TwxYUI9mJry640yxv8zdOCwUfv0x/hK4wG5QqJqiIgMU0JCKvz9j2Pt2itim6OjORYtagYvr+ISVka5AYNPJsljH0OmTtRqS/AYLVE1RESGq0+fP7UObTVrVgLz5zeFgwMvKUKfxsnNmSEIsN/hodXEQ1xERNIYPrw65HIZzMyUmDOnMdavb8PQQ5nGEZ9MsNtRUWs5tvpPPMRFRCSRmjVdMHt2I9Sq5YJSpeykLodyGY74fIomFYq4x1pNSaX7SlMLEZGB+fPPu+jd+09oNNqnpvv5eTD00Gdh8PkE45CDWsth30Sm3bqXiIiyTVxcCoYP348+ff7CX3/dQ2DgealLojyCh7o+webw1+LPgkzOQ1xERNns/PkQDBq0F48fR4ttN2+GQxAEXpuHvhiDz0fIUqK1lmPqrZGoEiKivE+l0uDnn8/gp59OQ61OO7RlYWGEgAAvfP11OYYeyhIMPh9hdUJ7Lk9KsbYSVUJElLcFB0dj0KC9OHcuRGyrUqUgAgN9ULx4PukKozyHwecjTJ7vF39W5SsnYSVERHnXli03MXr0YcTFpQAA5HIZRo6sgZEja0Kp5FRUyloMPpkUW2eZ1CUQEeVJp08/F0NPkSI2CAz0QfXqzhJXRXkVg88HmN1aqrWssqv4gTWJiOhLTJ3aAP/++wxVqhREQEBDWFmZSF0S5WEMPh9gee6921FwUh0R0RdLSVHj1q1wVKz49t6HFhZG2LevC2xsTCWsjAwFD55mQJYUrrUc0f6mRJUQEeUd9++/RosWm+Hr+wcePYrSeoyhh3IKg08GTB/9obWssXCRqBIiotxPEAT8+utVNG68AVeuhCI+PhXDh++HIAif3pgoi/FQVwYsz40Rf1bZuktYCRFR7hYRkYiRI4Owd+8Dsc3V1RbTpjXgdXlIEgw+77E8NUxrOd5zkkSVEBHlbkeOPMawYfsRGhovtvn5eWDKlPqwsDCSsDIyZAw+7zG7t1ZrOcWlmTSFEBHlUklJKsyY8Q+WL78ottnZmWL+/Kbw8SkpYWVEDD5aFJHak5gj2l2XqBIiotyrZ8/dOHz4sbjcoEFRLFrUDE5OltIVRfQfTm5+h92fNbWWNZZFJKqEiCj36t+/MgDAxESB6dMbYPPmdgw9pDc44vOGoNFajK3+k0SFEBHlbg0bFsPUqfXx1VdFUK6co9TlEGnhiM9/5IkvtZaTSvf9wJpERPRGUNBDDBuW/tT0AQOqMPSQXuKIz38sLk3VbuBplkREH5SQkAp//+NYu/YKAKBSJSf07l1J2qKIMoEjPv8xfbBJ/DmlYEMJKyEi0m/Xrr1CkyYbxdADpN1olBckpNyAIz4ZiKsyTeoSiIj0jkYjIDDwPAICTiI1NW1epJmZElOnNoCfnzsvSEi5AoMP0t+bS23nIVElRET6KSQkFkOH7sOJE0/FNg+P/Fi6tDlKlbKTsDIi3XxW8ImNjcXu3bvx6NEjDBo0CFeuXIGrqyuKFMmdp39bH+8p/qw2d5auECIiPbR791388MMBREUlA0ibAjlkSDWMHl0bxsYKiasj0o3Oc3zu3r2Lpk2bYtu2bdi8eTPi4+MRFBSENm3a4OzZs9lRY7Yzfnlc/FljXkjCSoiI9M/evffF0OPsbInt2zti4sR6DD2UK+kcfKZPn44uXbpg+/btMDJKu9dKQEAAunbtitmzZ2d5gdnuvcl40Q03S1QIEZF++vHHRihc2Bpt2rjh6FE/1KlTWOqSiD6bzsHn2rVr8PX1TdfeuXNn3L9/PytqylHGwTu1lgUzXneCiAyXSqXB7dva8x6trU2wb19XrFjRAvnymUpUGVHW0Dn42NnZ4dGjR+naL168CHt7+ywpKifJk8LEnwW5iYSVEBFJKzg4Gr6+f6BVq9/x/Hms1mOOjuY8a4vyBJ2Dz7fffosJEyZg48aNEAQBp0+fxsKFCzFlyhT06tUrO2rMVsYvj4k/x1WdKWElRETSEAQBW7bcRMOGv+Ls2RBERydj+PD0V2Mmygt0Pqurc+fOyJ8/P1atWgVTU1PMnj0bxYsXx/Tp09G8efPsqDFbCUrztz+b2EpYCRFRzouOTsKoUYewY8cdsa1IEWuMGlWbIzyUJ+kcfM6dO4evvvoKXl5eWu0pKSk4ePAgGjdunGXF5QSTJ3+JP6fae0pYCRFRzjp16hkGD96LZ8/eHtbq1KkcAgIawsqKh/4pb9L5UJefnx9iYmLStd+7dw8jR47MkqJykkwVL/4sGOeTrhAiohySmqrGzJn/wNf3DzH0WFubYMWKFli82Juhh/K0TI34bNq0CVOnToVMJoMgCKhTp06G69WuXTtLi8sJarMCUPx3Z3Ye6iIiQ+DntwuHDj0Wl2vXdsHixd5wcbGWriiiHJKp4NO1a1eUKlUKGo0GPXr0wMKFC2FjYyM+LpPJYGZmBjc3t2wrNLvIk1+/XZDxnq1ElPd17+6BQ4ceQ6mUY8yY2hg8uCoUCn7+kWHI9ByfatWqAQAOHToEZ2fnPDPpTaZJAQBoTPNLXAkRUc5o3rwkRo+ujUaNiqFSpQJSl0OUo3Se3GxnZ4d169bh/v37UKvVYntKSgpu3ryJvXv3ZmmB2eqdUzXlSa8kLISIKHscPRqM/fsfYObMhlp/sH7/fU0JqyKSjs5jmxMmTMCKFSuQmJiI3bt3IzU1Fffv38fff/+NFi1aZEeN2cb8Cq/bQ0R5U1KSChMnHkWnTtuwatVl/P77TalLItILOo/4HD9+HAsWLEDt2rVx79499OzZExUqVMCsWbNw79697Kgx+8h4gz0iyntu3w7HgAF7cPPm21tPBAU9ROfO5SWsikg/6Dzik5ycjGLFigEASpUqhevXrwMAvv76a5w/fz5Li8tuFu+M+MR8tVa6QoiIsoAgCPjll0to0mSjGHpMTBSYPr0BfvmlpcTVEekHnYOPq6sr/v33XwBpwefChQsAgNjYWCQnJ2dtddlMUJiJP3NyMxHlZqGh8ejadQfGjTuC5OS0+Zdly9pj//6u6NevMuTyvHFCCtGX0vlQ15AhQzB8+HBoNBq0adMGLVq0wIABA3Dnzh3UrVs3O2rMNjJ1ovhzqn0l6QohIvoCQUEPMWLEfoSHv/1M69fPExMm1IOpqc4f80R5ms6/EY0aNcLevXuh0WhQsGBBbNq0Cbt27ULlypXh5+eXHTVmG0FhCpk6KW3ByFLaYoiIPtOmTdfF0JM/vwUWLmwGL69i0hZFpKc+60+BwoULiz+XKVMGZcqUgSAI2LZtGzp06JBlxWU3QW7yNvgQEeVSP/3UBBcuvICnZwHMm9cEDg7mn96IyEBlKvioVCqsWLECBw8ehEKhgLe3N3r37i1eE+Lq1auYNm0arl+/nquCjzw1GgCgssl9V5wmIsOk0Qh4/DgKJUq8vcWOvb0Z9u/vioIFLfPMxWWJskumJjfPmjULy5YtQ/ny5eHh4YHly5cjMDAQarUaM2bMwNdff43ExESsXr06u+vNOqlvb04qjw+RsBAioswJCYlFx45b0bLlZrx6Fa/1mLOzFUMPUSZkasRn//79mDp1Knx9fQEATZs2xahRo/Dw4UMcPnwYo0aNgp+fHxSK3HNdHOOQA+LPclWchJUQEX3a7t138cMPBxAVlXb27MiRB7Bhg6+0RRHlQpkKPpGRkahevbq4XKNGDUREROD27dvYvXu31pyf3MLm2NuJ2GpzFwkrISL6sLi4FIwbdwSbN98Q25ydLTFwYBUJqyLKvTJ1qEulUsHExESrzcjICJMmTfqi0JOcnIxx48ahatWqqFu37kcPld25cwddunSBh4cHWrVqhdOnT3/28wKARvn2LK7YWgu/aF9ERNnh/PkQNGz4q1boadPGDUeP+qFOndz3ByeRPtD5AobvcnZ2/qInnz17Nq5fv45169Zh8uTJWLx4Mfbt25duvdjYWPTu3RslS5bEn3/+iSZNmmDIkCGIiIj47Od+9/BWasGGn70fIqKsplJpMHfuKbRq9TuCg9NOwrCwMMKiRd5YsaIF8uUzlbhCotwr06ezv3z5Mt2VmUNDQ9PN68lsGEpISMCWLVuwcuVKlC9fHuXLl8e9e/ewceNGeHt7a627Y8cOmJubw9/fHwqFAsOGDcOxY8dw/fp11K9fP7MvQaSIvKHdIM89c5OIKO/r0WMXDhx4JC5XqVIQgYE+KF48n3RFEeURmQ4+75+mLggCvvnmG/EsAkEQIJPJcOvWrUzt7/bt21CpVPD09BTbqlSpgmXLlkGj0UAufzsYdfbsWTRq1EgrZG3bti2zpaejiHnw2dsSEWW39u3L4sCBR5DLZRg5sgZGjqwJpfKLBuiJ6D+ZCj6HDh3K8icOCwuDra0tjI2NxTYHBwckJycjKioKdnZ2YvvTp0/h4eGBiRMn4vDhwyhUqBBGjx6NKlU+b3KfPClM/DmpWO657hARGYZ27crgxo0wNGvmiurVv2xKARFpy1TwKVSoUJY/cWJiolboASAup6SkaLUnJCRgxYoV8PPzw8qVK/H333+jT58+2Lt3LwoWLKjT88pkgDLmjriszlcGvPRFznrzfvN9lx77Qnr//vsMhw8/xsSJafc6fNMXkybVk7Aqw8bfC/2S1f0g2d3rTExM0gWcN8umptoT9xQKBcqWLYthw4YBAMqVK4eTJ09i165dGDBggE7Pa2dnBdi/PRvCws4JFg5Wn/MS6AvZ2/N91xfsi5yXmqqGv/9RBAT8A0EA6tQpgo4dy7Mv9Aj7Im+SLPg4OTkhMjISKpUKSmVaGWFhYTA1NYW1tbXWuo6OjihRooRWW7FixfDixQudn/f161jYXFmFN7OFYpAfKeGxn/Ua6PPIZGkfKBERsRAEqasxbOwLaTx4EIkBA/bg8uVQsW3t2kvo2LE8+0IP8PdCv8jl/w1aZBHJgk/ZsmWhVCpx+fJlVK1aFQBw4cIFuLu7a01sBoBKlSrh3LlzWm0PHz5Ey5YtdX5eQQAUsQ/fLv/XRjlPEPje6wv2Rc4QBAEbNlzDxIlHkZCgAgAolXKMGVMbQ4ZU/W8d9oW+YF/oh6zug88+TSAuLg43b95ESkoK4uJ0v+WDmZkZfH194e/vj6tXr+LgwYNYvXo1/PzSrqgcFhaGpKS0O6d37twZd+7cwaJFixAcHIwFCxbg6dOnaNOmzeeWL0op2OiL90FE9CkREYno2XM3vv/+oBh6XF1tsXdvFwwbVh0KBc/aIsoJOv+mJScnY8KECahevTo6dOiA0NBQjBkzBn369EF0dLRO+xo7dizKly+PHj16YMqUKRg6dCiaNm0KAKhbty727NkDIG1y9S+//IIjR46gZcuWOHLkCFasWAEnJyddy09PYfzpdYiIvsDRo8Fo0GA99u59eykNPz8PHDz4DSpWzILPMSLKNJkg6DaINH36dFy/fh1TpkxB586dsXv3biQkJGDs2LFwdXXFnDlzsqvWLPH6eTDsNhcDkHbbioiuvDN7TpPJAAcHK4SH8/i51NgX2U8QBHTtugOHDj0GANjZmWL+/Kbw8SmptR77Qn+wL/SLXJ61E811HvEJCgrC+PHjUbp0abGtdOnSmDZtGo4fP55lhWUXecz9tz/zruxElM1kMhl+/rkp7O3N0KBBURw75pcu9BBRztF5cnN8fDzMzMzStWs0GqjV6iwpKjvJk8LFn1Pz15KwEiLKiwRBQEhIHAoVevsXqpOTJfbs6YKiRW0gl/PiMERS0nnEx8vLC/Pnz9ea0Pz06VNMnz79s+6blePeGbdMdagmYSFElNeEhsaja9cdaN78N0RGJmo9Vrx4PoYeIj2gc/CZNGkS5HI5qlevjsTERLRv3x5NmzaFtbU1Jk6cmB01ZilFzD3xZ0FpLmElRJSXBAU9RMOG63Ho0GO8eBGH//0v62/1Q0RfTudDXVZWVli0aBGePHmChw8fQqVSoXjx4nB1dc2O+rLcu8GHiOhLJSSkwt//ONauvSK25c9vga5dK0hYFRF9iM7Bp3fv3mjRogWaNGmCBg0aZENJ2Uswe3vqqNqyiISVEFFud+3aKwwYsAf37r0W27y9XTFvXhM4OHBEmUgf6Xyoq0KFCli5ciXq1KmDAQMGYPfu3YiPj8+O2rKF8fMD4s9qq9wxSkVE+kWjEbBkyXl4e28SQ4+ZmRJz5jTGunWtGXqI9JjO1/F5486dOwgKCkJQUBCePHmC+vXro3nz5vD29s7qGrNU8s5uMHmwCQDwuuVJqO3cJa7I8PAaGfqDfaE7QRDQo8du7Nv39mKEHh75sXRpc5QqZffZ+2Vf6A/2hX6R/Do+b5QuXRpDhw7Fpk2bMHjwYPzzzz/47rvvsqyw7GLy9E/xZ8E4n3SFEFGuJJPJ0KxZif9+BoYOrYY9e7p8UeghopzzWTcpff36NQ4dOoSgoCCcPn0aJUuWxIABA9CiRYusri9baUxspS6BiHKhrl0r4Pr1MLRsWQp16hSWuhwi0oHOwad79+64ePEiihYtiubNm2Ps2LEoUaJEdtSW/Ywspa6AiPTc+fMhOHHiKb77robYJpPJEBDgJWFVRPS5dA4+lSpVwvjx41GmTJnsqIeISC+oVBr8/PMZ/PTTaajVAsqXd0TTprn0jzwiEmUq+ISEhKBgwYKQyWTo0qWL2JYRZ2fnrKuOiEgCwcHRGDRoL86de/s5t2HDNQYfojwgU8HHy8sLJ0+ehL29Pby8vCCTySAIAmSyt5dff7N869atbCs2K/E+XUT0PkEQsHXrLYwefRhxcSkAALlchpEja2DkyJoSV0dEWSFTwefQoUOwtbUVf84LFNF3pC6BiPRIdHQSRo8+hO3b3342FClig8BAH1SvzpFsorwiU6ezFypUCHJ52qpjx46FlZUVChUqpPXPzMwMQ4cOzdZis5La2k3qEohIT5w69QwNG/6qFXo6dSqHI0e+YeghymMyNeJz/PhxXL16FQBw7tw5LFu2DObm2lcmDQ4OxvPnz7O+wmwiKIylLoGI9IAgCJgz5xSePYsFAFhbm2Du3Mbw9S0tcWVElB0yFXyKFy+OX375BYIgQBAEXLx4EUZGRuLjMpkM5ubmmDFjRrYVmtUEY17Dh4jSPr8WLGiGhg1/RYUKjli82BsuLtZSl0VE2SRTwadw4cJYv349gLRDXePHj4elZe6+Bo7G1F7qEohIAoIgICwsAfnzW4hthQtb46+/vkapUnZQKD77gvZElAvofDr70KFDERMTg5iYmAzXzTWns8sUUldARDksIiIRI0cG4caNcBw58g2srEzEx8qUcZCwMiLKKV90Ovv7ctPp7CmFGktdAhHloKNHgzF06D6EhsYDAMaNO4JFi/T7pspElPUyfTq7nZ2d+HPewOFsIkOQlKTCjBn/YPnyi2Kbvb0ZmjcvKWFVRCSVTAWfQoUKaf0cExMDExMTmJiY4Pbt2/jnn39Qvnx51KrFiwISkf64fTscAwbswc2b4WJbgwZFsWhRMzg55e55ikT0eXQe9jh48CC++uorXLhwAcHBwejWrRt27NiBQYMGYcOGDdlRIxGRTgRBwC+/XEKTJhvF0GNiosD06Q2weXM7hh4iA6Zz8Pn5558xbNgw1K5dG1u2bEHBggXx999/Y968eVi9enV21JhN0s9RIqLcTxAE9Or1J8aNO4LkZDUAoGxZe+zf3xX9+lWGXC77xB6IKC/TOfg8efIEPj4+ANLm+zRp0gQAUKpUKbx+/Tprq8tGaosiUpdARNlAJpOhTh0XcblfP0/s398N5co5SlgVEemLTM3xeZezszPOnDkDJycnPHr0CF5eXgCAP//8E8WKFcvq+oiIdNa3ryeuXn2Ftm1Lw8uruNTlEJEe0Tn4DBs2DKNGjYJarUaDBg3g7u6OH3/8EZs3b8bixYuzo8bswVtWEOUJ1669wr//PkP//pXFNplMxlPViShDOgef5s2bo2bNmggNDUXZsmUBAB07dkSfPn3g4JB7LgCmNs8lF1okogxpNAICA88jIOAkUlM1KFvWAV99xUPYRPRxOgcfADA3N8e1a9ewc+dOqNVqFC9eHM2bN8/q2rKX0vzT6xCRXgoJicXQoftw4sRTsW3lyosMPkT0STpPbr579y6aNm2KpUuXIiQkBCEhIVixYgWaN2+O+/fvZ0eNRESi3bvvokGD9WLokcmAoUOrYdWqVhJXRkS5gc4jPjNmzECdOnUwbdo0KJVpm6empmLixImYOXNmLjulnYhyi7i4FIwbdwSbN98Q25ydLbFkiQ/q1CksYWVElJvoPOJz+fJlfPvtt2LoAQAjIyN8++23uHTpUpYWl10E3qCUKFc5fz4EDRv+qhV6Wrd2w9Gjfgw9RKQTnYOPo6Mjnjx5kq79yZMnsLCwyJKisluSa1epSyCiTBIEAZMnH0dwcDQAwMLCCAsXNsPKlS2QL5+pxNURUW6j86Guzp07Y8KECRg+fDg8PDwAAFeuXMHChQvRsWPHLC8wWyj4YUmUW6Sdmt4MXl4bULasAwIDfVC8eD6pyyKiXErn4NOnTx8kJiZi7ty5iI5O+wvMwcEBPXv2RO/evbO8QCIyPFFRSVqjOSVK2GL37k4oV84RSqXOA9VERCKdg49MJsPQoUMxdOhQREREwMTEBJaWvOEfEX256OgkjB59CNeuheHAgW4wNzcSH/PwcJKwMiLKKzIdfHbt2oUDBw7AyMgIjRs3RosWLWBvb5+dtRGRATl16hkGD96LZ89iAQD+/scxe3YjiasiorwmU2PG69atw7hx45CUlITExESMHj0a8+bNy+7aiMgApKaqMXPmP/D1/UMMPdbWJqhVq5DElRFRXpSpEZ/NmzdjxowZ8PX1BQAEBQVh7Nix+O677yCTybKzPiLKwx4+jMTAgXtw6VKo2Fa7tgsWL/aGi4u1hJURUV6VqRGfp0+folatWuKyl5cXEhMT8erVq2wrjIjyLkEQsGHDNXh5/SqGHqVSjgkT6mLbtg4MPUSUbTI14qNSqbQuWKhUKmFiYoKUlJRsKyxbCRqpKyAyWIIgoF+/v7Fr112xzdXVFsuWNUfFipzATETZyyDPC5XHP/30SkSULWQyGSpUyC8u+/l54ODBbxh6iChHZPqsrr1792qdtq7RaHDgwAHY2dlprfdmHpA+S3WqK3UJRAZtyJCquHIlFB07loWPT0mpyyEiA5Kp4OPs7Jzu5qP29vbYsGGDVptMJssVwYeIcs7t2+E4dy4E3bt7iG0KhRyrV/Nu6kSU8zIVfA4fPpzddRBRHiMIAlatuowpU44jNVWD0qUdUL26s9RlEZGBM8g5PkSUvUJD49G16w6MG3cEyclqaDQCFi06K3VZRES637KCiOhjgoIeYsSI/QgPTxTbvv3WExMmcG4dEUmPwYeIskRCQir8/Y9j7dorYpujo/l/d1YvLmFlRERvMfgQ0Re7du0VBgzYg3v3XottzZqVwPz5TeHgYC5hZURE2j4r+KjVapw4cQKPHz9Gu3bt8OjRI5QoUQJWVlZZXR8R6TlBEPD99wfE0GNmpsTUqQ3g5+fOW9oQkd7ROfi8ePECffr0QVRUFKKjo9GoUSP88ssvuHTpElatWoXSpUtnR51EpKdkMhkWLGiGpk03ws3NHsuWNUepUnaf3pCISAI6n9U1depUVKlSBSdOnICxsTEAYN68eahduzamT5+e5QVmB0X8E6lLIMrV4uK0b1dTtqwDtm7tgL17uzD0EJFe0zn4nD9/Hr1794ZCoRDbjIyMMGjQIFy/fj1Li8suyUVaS10CUa4UF5eCYcP2o3Xr35GcrNJ6rEaNQjA2VnxgSyIi/aBz8DE1NUVERES69kePHmnd0kKfCQozqUsgynXOnw9Bw4a/YvPmG7h+PQwBASelLomISGc6B5/OnTtj0qRJOHr0KIC0wLNt2zZMnDgRHTp0yOr6iEhiKpUGc+eeQqtWvyM4OBoAYGFhhLJlHSWujIhIdzpPbh48eDCsra3h7++PxMRE9OvXD/b29ujZsyf69OmTHTUSkUSCg6MxaNBenDsXIrZVqVIQgYE+KF48n3SFERF9ps86nb179+7o3r07EhISoFareRo7UR4jCAK2br2F0aMPixOZ5XIZvv++Jr77rgaUSt7thohyJ52Dz86dOz/6OO/OTpS7CYKAwYP3YevWW2JbkSI2CAz04U1GiSjX0zn4LFy4UGtZrVYjIiICSqUSHh4eOgWf5ORkTJkyBUFBQTA1NUXv3r3Ru3fvj27z7NkztGrVCsuWLUONGjV0LZ+IPkEmk6FIEWtxuVOncggIaAgrKxMJqyIiyho6B5/Dhw+na4uPj8ekSZN0vnjh7Nmzcf36daxbtw4hISEYPXo0nJ2d4e3t/cFt/P39kZCQoGvZRKSD77+viUuXXqJLlwrw9eVFSYko78iSA/UWFhYYOnQo1qxZk+ltEhISsGXLFowfPx7ly5dHkyZN0LdvX2zcuPGD2+zevRvx8fFZUTIR/efu3Qitw1oAYGSkwObN7Rh6iCjPybIZirdv34ZGo9FpfZVKBU9PT7GtSpUquHLlSob7iYyMxJw5czB16tQsqZfI0AmCgF9/vQpPz+UYNmw/rl4N1Xqc99kiorxI50Nd3bt3T/eBGB8fjzt37qBnz56Z3k9YWBhsbW3F214AgIODA5KTkxEVFQU7O+3L3s+aNQtt27ZFqVKldC05HZks7R9J4817zz6QTkREIkaODMKePQ/EtrlzT+PXX9tIWJVh4++F/mBf6Jes7gedg09GE4qNjY3xww8/oFatWpneT2JiolboebMfAEhJ0b4P0L///osLFy7gr7/+0rXcDOWzNgUceAq+1Ozt2QdSCAp6gJ49d+LFizixrX//Kvjpp6awsDD+yJaUE/h7oT/YF3mTzsEnKioKfn5+KFKkyBc9sYmJSbqA82bZ1NRUbEtKSsKkSZMwefJkrfYv8TrFEprw2CzZF+lOJkv7QImIiIUgSF2N4UhKUmHGjH+wbNlFsc3e3gyrVrVG3bqFkJiYjMTEZAkrNGz8vdAf7Av9IpcDdnZZF0J1Dj67d+/W6ZDWhzg5OSEyMhIqlQpKZVoZYWFhMDU1hbX121Npr169iqdPn2LYsGFa23/77bfw9fX9rDk/gsKM/zPrAUEA+yGH3L4djgED9uDmzXCxrUGDoli0qBkqVCiI8HB+wOsL/l7oD/aFfsjqPtA5+PTs2RNTpkxBz5494ezsDBMT7Wt7ODtn7gJnZcuWhVKpxOXLl1G1alUAwIULF+Du7g65/O2caw8PDwQFBWlt27RpU0yfPh116tTRtXwAgCDncD4ZDkEQMHDgXjH0mJgoMHFiPfTt6wmFgpMYiMiwfPYFDE+cOAHg7ZkfgiBAJpPh1q1bH9z2XWZmZvD19YW/vz9mzpyJV69eYfXq1QgICACQNvpjZWUFU1NTFC1aNN32Tk5OsLe317X8tFpNHT5rO6LcSCaT4eefm8LH5zeUKmWLpUubo1w53mCUiAxTpoLPuXPn4OnpCaVSiUOHDmXZk48dOxb+/v7o0aMHLC0tMXToUDRt2hQAULduXQQEBKBdu3ZZ9nwAIMh4jyHK+5KSVDA1ffvrXbGiE377rS2qV3eGmZmRhJUREUlLJgifPnpWtmxZ/PPPP589wqJPhMX5EP71U6nLMGgyGeDgYMV5JdkgISEV/v7Hcf36K+ze/fUnbybKvtAf7Av9wb7QL3J51p5hl6nhj0xkIyKS2LVrr9CkyUasXXsF58+/wLx5p6UuiYhI72R6jg+v4kqknzQaAYGB5xEQcBKpqWlXPTczU6JAAUuJKyMi0j+ZDj7t27fXOtvqQ7JyDhARfVxISCyGDt2HEyfeHr718MiPpUubo1Qpu49sSURkmDIdfHr16gUrK17Fkkhf7N59Fz/8cABRUWkXHZTJgCFDqmH06NowNlZIXB0RkX7KVPCRyWRo0aJFnpjcTJTbCYKA774LwqZNN8Q2Z2dLLFnigzp1CktYGRGR/stU8OHkZiL9IZPJYG399vYtbdq4Yc6cxsiXL2tu6UJElJdlKvi0bds23RWaiUg648fXwaVLL/HNN+7o1KksTz4gIsqkTAWfN1dTzgtkgkbqEoh0EhwcjevXX6FFi1Jim4mJErt3d2LgISLSkcFdxliQ86q1lDsIgoAtW26iYcNfMXDgHty5E6H1OEMPEZHuDC74aMwKSl0C0SdFRydh4MA9GDx4H+LiUpCUpMbMmf9IXRYRUa6n801KiSh7nTr1DIMH78WzZ7FiW6dO5RAQ0FDCqoiI8gYGHyI9kZqqxpw5p7BgwVnx/kDW1iaYO7cxfH1LS1scEVEeweBDpAcePIjEwIF7cPlyqNhWu7YLFi/2houLtYSVERHlLQw+RBLTaAT06rUbt2+nTV5WKuUYM6Y2Bg+uCoXC4KbhERFlK36qEklMLpdh9uzGkMtlcHW1xZ49nTFsWHWGHiKibMARHyIJpKaqYWT09n5aNWsWwtq1rVGvXhFYWPCSC0RE2cXw/qTk7TdIQklJKkyceBSdO2+HWq19MU1vb1eGHiKibGZwwUeR8FTqEshA3b4dDm/vTVi+/CJOnHiKwMALUpdERGRwDO5QlyA3lroEMjCCIGDVqsuYMuU4kpPVAABjYwXMzQ3u14+ISHIG98mb6lBN6hLIgISGxmPEiP04dOix2Fa2rD0CA5ujfHlH6QojIjJQBhd8NOa8ZQXljKCghxgxYj/CwxPFtn79PDFhQj2Ymhrcrx4RkV4wuE9fjbmz1CVQHqfRCBg79jDWrLkituXPb4GFC5vBy6uYdIUREZHhBR+i7CaXy6BWvz170NvbFfPmNYGDg7mEVREREcDgQ5Qtpkypj0uXXsLPzwN+fu6QyWRSl0RERGDwIfpiISGxuH07HF5excU2CwsjBAV15dWXiYj0DD+Vib7A7t130aDBevTp8xcePozUeoyhh4hI//CTmegzxMWlYPjw/ejb9y9ERSUjPj4V06adkLosIiL6BB7qItLR+fMhGDRoLx4/jhbb2rRxw5w5jSWsioiIMoPBhyiTVCoNfv75DH766bR41paFhRFmzWqETp3KcgIzEVEuwOBDlAnBwdEYNGgvzp0LEduqVCmIwEAfFC+eT7rCiIhIJww+RJ+g0Qjo2nUH7t17DSDtOj0jR9bAyJE1oVRymhwRUW7CT22iT5DLZZg5syEAoEgRG+ze/TVGjarN0ENElAtxxIcoAxqNALn87Zyd+vWLYsWKFmjUqBisrEwkrIyIiL4E/2QlekdqqhozZ/6DHj12QRAErcd8fUsz9BAR5XIc8SH6z4MHkRg4cA8uXw4FAKxefQV9+lSStigiIspSDD5k8ARBwIYN1zBx4lEkJKgAAEqlHCkpaokrIyKirMbgQwYtIiIRI0cGYe/eB2Kbq6stli71QaVKBSSsjIiIsgODDxmsI0ceY9iw/QgNjRfbund3x9SpDWBhYSRhZURElF0YfMjgqNUa+Psfx/LlF8U2OztTzJ/fFD4+JSWsjIiIspvBBR9ZaozUJZDEFAo5IiISxeUGDYpi0aJmcHKylLAqIiLKCQYXfARjG6lLID0wa5YXrlwJRY8eHujb11Prmj1ERJR3GVzwUVsUkroEymGvXsXj3r3XqFOnsNhmbW2Co0e7w8hIIWFlRESU03gBQ8rTgoIeokGD9ejZczeeP4/Veoyhh4jI8DD4UJ6UkJCKUaMO4ZtvdiI8PBHR0cnw9z8mdVlERCQxgzvURXnftWuvMGDAHvFu6gDg7e2KgAAvCasiIiJ9YHDBR/be/Zco79BoBCxdegEzZ/6D1FQNAMDMTImpUxvAz88dMhknMBMRGTqDCz7QpEhdAWWDkJBYDB26DydOPBXbPDzyY+nS5ihVyk7CyoiISJ8YXPBRW5WQugTKYmq1Bh06bMX9+5EAAJkMGDKkGkaPrg1jY05gJiKitzi5mXI9hUKOSZO+AgA4O1ti27YOmDixHkMPERGlY3AjPpQ3CIKgNWfH29sV8+c3QYsWpZAvn6mElRERkT7jiA/lKiqVBnPnnsKAAXsgvDdRvVs3d4YeIiL6KI74UK4RHByNQYP24ty5EABp99jq0qWCxFUREVFuwuBDek8QBGzdegujRx9GXFzaWXlyuQxhYQkSV0ZERLkNgw/ptejoJIwadQg7dtwR24oUsUFgoA+qV3eWsDIiIsqNGHxIb5069QyDB+/Fs2dv77HVqVM5BAQ0hJWViYSVERFRbsXgQ3pHrdbgxx//xYIFZ/Fm/rK1tQnmzm0MX9/S0hZHRES5GoMP6R25XIa7d1+Load2bRcsXuwNFxdraQsjIqJcj8GH9I5MJsO8eU1w7dor9OjhgcGDq0Kh4JUXiIjoy0n6bZKcnIxx48ahatWqqFu3LlavXv3BdY8ePYo2bdrA09MTrVq1wqFDh3KwUspOERGJOH8+RKvNzs4MJ0/2xLBh1Rl6iIgoy0j6jTJ79mxcv34d69atw+TJk7F48WLs27cv3Xq3b9/GkCFD0L59e+zcuROdO3fG8OHDcfv2bQmqpqx05MhjNGiwHn5+uxAaGq/1mKkpBySJiChrSfbNkpCQgC1btmDlypUoX748ypcvj3v37mHjxo3w9vbWWvevv/5CzZo14efnBwAoWrQoDh8+jL1796JMmTJSlE9fKClJhYkTj2LZsoti2+TJx7BsWXMJqyIiorxOsuBz+/ZtqFQqeHp6im1VqlTBsmXLoNFoIJe/HYxq27YtUlNT0+0jNjY2XRvpv9u3wzF48H5cvRoqtjVoUBRTpnwlYVVERGQIJAs+YWFhsLW1hbGxsdjm4OCA5ORkREVFwc7OTmx3dXXV2vbevXs4deoUOnfurPPzymRp/yjnCYKAX365jClTjiM5WQ0AMDFRYOLEevj2W0/I5eyYnPbmd4G/E9JjX+gP9oV+yep+kCz4JCYmaoUeAOJySkrKB7d7/fo1hg4disqVK6NRo0Y6P6+1lRngYKXzdvRlXr6MQ+/eu7F3732xrUKF/Ni0qR3c3Z0krIwAwN6evxP6gn2hP9gXeZNkwcfExCRdwHmzbGqa8R22w8PD0atXLwiCgIULF2odDsusmNhEpITzEFlOUqs1qFt3HR48iBTbhg+vgf/9rwZMTJQIZ39IRiZL+3CPiIjFeze7pxzGvtAf7Av9IpcDdnZZF0IlCz5OTk6IjIyESqWCUplWRlhYGExNTWFtnf5CdaGhoeLk5vXr12sdCtOFIID/I+cwuVyOUaNqoX//Pcif3wKLFjVDp07uCA/nh4q+4O+F/mBf6A/2hX7I6j6QLPiULVsWSqUSly9fRtWqVQEAFy5cgLu7e7qRnISEBPTt2xdyuRzr16+Ho6OjFCXTF2jbtgwiIhLh61sajo7mUpdDREQGSrLr+JiZmcHX1xf+/v64evUqDh48iNWrV4ujOmFhYUhKSgIALF++HE+ePMGPP/4oPhYWFsazuvSQRiNgyZLz+P77A+ke69vXEw4ODD1ERCQdSa8QN3bsWPj7+6NHjx6wtLTE0KFD0bRpUwBA3bp1ERAQgHbt2mH//v1ISkpCx44dtbZv27YtZs2aJUXplIGQkFgMHboPJ048BQDUq1eENxUlIiK9ImnwMTMzw48//iiO5Lzrzp074s8ZXc2Z9Muff97F998fQFRUMoC0yYGPHkVJWxQREdF7eE8A+iJxcSkYP/4Ifvvthtjm7GyJJUt8UKdOYQkrIyIiSo/Bhz7b+fMhGDRoLx4/jhbb2rRxw5w5jZEvX8aXJCAiIpISgw/pTK3W4Oefz2Lu3FNQq9POM7SwMMKsWY3QqVNZyHi5UyIi0lMMPqQzuVyGc+dCxNBTpUpBBAb6oHjxfNIWRkRE9AmSnc5OuZdMJsOCBc2QP78FfvihJv7882uGHiIiyhU44kOfFB2dhCdPYuDunl9sc3KywOnTvWBpafyRLYmIiPQLR3zoo06deoaGDX/FN9/sxOvXiVqPMfQQEVFuw+BDGUpNVWPmzH/g6/sHnj2LxYsXcZg8+ZjUZREREX0RHuqidB4+jMSAAXtw+XKo2Fa7tgtGj64tYVVERERfjsGHRIIgYOPG65gw4QgSElQAAKVSjjFjamPw4KpQKDhASEREuRuDDwEAXr9OxMiRB7Bnz32xzdXVFsuWNUfFik4SVkZERJR1GHwIKpUGLVpsxoMHkWKbn58HpkypDwsLIwkrIyIiylo8dkFQKuUYOrQaAMDe3gzr1rXG3LmNGXqIiCjP4YgPAQC6dCmP8PAEfP11OTg5WUpdDhERUbbgiI+BEQQBv/xyCRMnHtVql8lkGDasOkMPERHlaRzxMSChofEYMWI/Dh16DACoW7cwmjVzlbYoIiKiHMQRHwMRFPQQDRuuF0MPAFy5EvrhDYiIiPIgjvjkcQkJqfD3P461a6+IbfnzW2Dhwmbw8iomXWFEREQSYPDJw65de4UBA/bg3r3XYpu3tyvmzWsCBwdzCSsjIiKSBoNPHqTRCAgMPI+AgJNITdUAAMzMlJg6tQH8/Nwhk8kkrpCIiEgaDD55kCAIOHDgoRh63N3zY9my5ihVyk7iyoiIiKTFyc15kEIhx5IlPrC1NcWQIVWxd28Xhh4iIiJwxCdPiItLQUhILNzc7MU2FxdrnD7dC7a2ZhJWRkREpF844pPLnT8fgoYNf0XXrjsQG5us9RhDDxERkTYGn1xKpdJg7txTaNXqdwQHR+PJkxj4+x+XuiwiIiK9xkNduVBwcDQGDdqLc+dCxLYqVQpiyJBqElZFRESk/xh8chFBELB16y2MHn0YcXEpAAC5XIaRI2tg5MiaUCo5gEdERPQxDD65RHR0EkaPPoTt2++IbUWK2CAw0AfVqztLWBkREVHuweCTC6SmquHj8xvu348U2zp1KoeAgIawsjKRsDIiIqLchcdGcgEjIwV6964EALCxMcGKFS2weLE3Qw8REZGOOOKTS/TpUwlhYQno3t0dLi7WUpdDRESUKzH46BlBELBhwzU8fx6LMWPqiO0ymQxjx9b5yJZEpK8EQYBGo4ZGo/ngOjIZkJSUhNTUFAhCDhZH6bAvcpZcLodcrsix+0gy+OiRiIhEjBwZhL17HwAAatVyQf36RSWuioi+hEqViujo10hNTfrkuq9fyz8ajijnsC9ylrGxKayt7aBUGmX7czH46ImjR4MxdOg+hIbGi22nTj1j8CHKxQRBQETES8jlctjYOEChUH70r1qFQga1mkMM+oB9kTMEQYBarUJcXBQiIl4if36XbB/5YfCRWFKSCjNm/IPlyy+Kbfb2Zpg3rwl8fEpKWBkRfSmVKhWCoIGNjSOMjU0/ub5SKYdKxVEGfcC+yEkmUCgUeP06FCpVKoyMjLP12Rh8JHT7djgGDNiDmzfDxbYGDYpi0aJmcHKylLAyIspKMhlPoCX6mJz8HWHwkYAgCFi16jKmTDmO5GQ1AMDERIGJE+uhb19PyOU5M8GLiIjI0DD4SECtTrv1xJvQU7asPZYubY5y5RwlroyIiChv4/irBJRKOQIDfWBhYYR+/Tyxf383hh4i0isdOrRC3bpVxX/16lWDj48XxowZidDQl1rrxsXFYcmSBWjfviW8vGrj6699sXLlUiQmJqbbb2joS/z443S0bdscjRvXRa9eXbFv39859bKy3LlzpzF16kSpy/gsycnJCAiYCm/vBmjTphl++23DR9c/e/Y0evTogiZN6mH48EF48uRxhusdPnwQdetWFZdTU1PRu3c3REa+zsryPxtHfHJAQkIqXr2KR7Fi+cS2EiVscfp0bzg5WUhXGBHRRwwb9j0aNWoCANBoNHj8+CHmzAnAjBn+WLhwGQAgISEegwf3hUKhxKhR41GkSFE8evQQy5cvwalTJ7F48QqYm5sDAJ4+fYJBg/rC3b0ipk2bBVtbO5w/fxZz5sxEZGQkunT5RrLX+jlSU1Px889z8eOP86Uu5bMEBi7A7du3sGDBMrx8+QIzZvijQIECaNiwcbp1Hz58gP/9bzi6d++Fpk298ddfuzBs2EBs2rRN7F8AiI2NxYIFc7S2NTIyQvv2XyMwcCHGj/fP7pf1SRzxyWbXrr1CkyYb0bXrDiQkpGo9xtBDRPrM0tIS9vYOsLd3gKNjflSrVhN9+w7AxYvnERcXBwBYuXIZUlJSsGTJStSoUQsFCzqjdu26WLJkJaKiIrFmzUpxfz/9NAslS5bCjBmzUaGCBwoVckGbNu0wcOBQrF69HLGxsVK91M9y8OB+ODkVhItLYalL0VliYiL+/HMXhg//HqVLl0H9+g3RtWt3bNv2R4br79y5Fe7uFdG37wAUKVIMAwcOg6WlJYKC9mqtFxi4AM7OLum2b9rUB//8cxwvX77IltejCwafbKLRCFi8+By8vTfh3r3XuH8/EtOmnZC6LCKiL2JklHaBOblcDrVajT17dqNjxy4wMzPTWs/S0hIdO3bBnj27oVar8epVKC5cOIevv+6W7jotLVv6Yu7cRen28catWzcwcGAfNGpUB507t8PBg/sBAHv2/IkOHVpprTtkSD+sWrUcADBjhj9mzPBHjx5d0LJlE4wf/z8MGdJPa/3ly5dg+PBBANJGK6ZNm4imTeujZcummD9/NpKTP3zhyZ07t+Grr+qLy/HxcZg5cwpatmyCBg1qomvX9jh+/Kj4eN26VfHLL8vQokUjjB79HQDgypVL6NOnO7y86sDP72scPXpIXD81NRWLFs2Dr68P6tevgQ4dWmHXru0Z1vLiRYjWocl3/+3Z82e69e/fvwu1WgV394pim4dHJdy8eSPDCzeGhDxHuXLlxWWZTIYSJUrixo1rYtulSxdw6dIF+Pn1Tre9kZERqlWr8cH6c5LhHepSZP+NPUNCYjF06D6cOPFUbHN3zy/eaJSIDJvx4x2wuDIDstQ4rXYZgOy4ZJ5gZIn4ShOQUtT3i/bz/Pkz/PrrWtSoURvm5uZ4/PgR4uPjUbZsuQzX9/CohOjoaDx//gzPnz+FIAgZrmtqaoqKFStluI/IyNf47rvBaNrUB2PHTsT169cwY4Y/ihYtnqma9+/fg5kz58Le3h5KpRJ9+nRHZORr2NraAQCOHj2Erl39AACzZk2FSqXC0qWroFKl4KefZmPevNkYO3ZSuv3GxMTg5s3rmDRpmti2YMFPePo0GPPnL4apqRk2bVqPH3+chlq16oiB8eTJ41i6dBXUag0iIsIxatQI9Os3CDVq1MaNG9cwY8YU2NraoWJFT/z66xr8++8/mD59NmxtbbFv39+YP3826tWrDzs7e6168ud3wq5d+zJ8Dywt018eJSIiHDY2+cS6AMDOzh4pKcmIjo6Gra2t1vp2dvYICwvTanv1KhTW1mn3jkxJScHs2TMwcuRoKJUZR4tq1Wpgx44t6N9/cIaP5xSDCz4aE4ds3f/u3Xfxww8HEBWVDCDtni+DB1fFmDF1YGysyNbnJqLcwfzGAiij7+b4c+oafObODcD8+bMBAGq1GkqlEerV+wrDhn0PAIiJiQYAWFllfONkKysrcb3Y2LSQZ2Gh2zXKDh4MgpWVDUaM+B/kcjmKFCmGmJhoJCcnZ2r7MmXKoW7dr8TlwoWL4Pjxo2jTph0ePLiPFy9CUL9+Qzx//gwnThzDnj2HYWlpCaVSjtGjJ6BXr64YOnRkuvBw//5dGBkZoWBBZ7GtUqXK6Ny5G0qUSLv4bJcu3+DPP3fi9esIODkVAAC0adMORYoUAwCsXLkUVatWR/v2XwMAXFwK4+7dO/jjj02oWNETJUu6oUqV6qhQwR0A0L17L6xZsxJPnz5JF3wUCgXs7TP//ZaUlKQVeoC3o3mpqSnp1vfyaoIxY0aiceNmqFGjFg4c2Idbt26gcuW0Scxr1/4CN7cyqF69Ji5ePJ/hcxYrVhz379+DWq2GQiHd96HBBZ/sEheXgnHjjmDz5htim7OzJRYv9kbdukUkrIyI9E1ChRGwuDw9R0d8EsoP13m7Pn36o359LyQkxGP16hV48eIF+vcfAhubfAAAa2sbAEBERESG81zCw8PE9eLj027HExsbm2404WOePAmGm5sb5PK3MzM6d/7mv8cef3L7ggULai17eTXBsWNH0KZNOxw9egjVqtWAtbUNrl27Co1Gg7ZtfbTW12g0ePbsKcqUKavVHhkZCSsra626vL1b4MSJo9i9eweCgx/jzp3b4j7eKFDgbVAKDn6EkydPoEmTemKbSqVC4cJp3xlffdUA586dxqJF8/HkyWPcvZu2P7Vane51vnz5Et27d8zwPfjf/8ahaVPt12VsbILUVO15p2+WTU3TX2W8Zs3a6NXrW0yYMApqtRqenlXh7d0C8fFxePjwPnbv3oH16zdn+Pxv2NjYQKPRICYmWhxxkwKDTxZISVGjWbO0uTxvtG7thrlzGyNfvk9fpp6IDEtKUd8MR1/07TYJtrZ2YqCZNu1H9O3rhzFjvseKFWuhVCrh4lIY1tY2uHPnVoaHqm7fvgUbGxs4OxeClZU1ZDIZ7ty5hZo1a2utl5iYiLFjv8fgwSNQqpSb1mMfOmwCIMN7Or0fCoyNtac3NG7cDL/+ugaxsbE4duwwunTpLm5naWmJX375FYD2vbocHdNfbkQmk6WbCzN9+mRcu3YV3t7N4evbAfb2DhgwoNd79by9HYNarUbTpj7p5sS8ec0rVgTizz93onnzVvD2boHvvx+Tbk7TGw4ODlizZlOGj9nZpQ8Zjo6OiI6OgkqlEp/v9esImJiYwNLSKsP99OjRB126dEd8fBxsbe0wceIYFCjgjKNHDyM2NgZff+373+tKe1+aNKmnFbo0mrT3U+ormRvc5GbBOOMh2S9hbKzA11+nHbe2sDDCwoXNsHJlC4YeIsozjIyMMGbMBNy/fxe//74RQNoXdIsWrfHbb78iISFBa/2EhHj8/vsG+Pi0glKphK2tLapVq4k//tgEQdAe1/r77124evWyeDjoXS4uhfHgwX2tbSZNGotNm9ZDqVRqPa8gCHjxIuSjr6No0WIoVqwEdu7chmfPnuKrrxoAAIoUKYq4uDjIZDK4uBRG4cJFkJycjCVLFiAlJTXdfuzs7BAbGyPWFR8fhwMH9mHq1Jn/jZQ1RGxstFhXRgoXLopnz57CxaWw+O/EiWPimVK7dm3Dd9+NwsCBQ9GoUdMMr4v0xpsgmtE/c/P0ZxCXKlUaCoUSN25cF9uuXr2MsmXLa41ivXHgwD4sWPATjI2NYWtrh+TkJFy6dB6VK1dFhw5fY+PGrVizZhPWrNmEMWMmAADWrNmkdZgxOjoKCoUCNjY2H3wdOcHwgo9Rxkn2Sw0eXBX9+1fG4cPd0blz+Wy/uywRUU4rW7Y8WrRog7VrV4mHsXr1+hZ2dvYYOrQ/zp07jZcvX+LcudMYMqQ/7O0d0KdPf3H7oUO/w82bNzBx4mjcvHkdT54E47ffNiAwcBEGDBgiTpR9V9OmPoiOjkZg4EI8ffoEe/b8iX/+OYZq1WqgTJlyiImJxtatm/H8+TMsWjQPMTExn3wdjRo1xfr1q1GjRm1xzlGxYsVRo0ZtTJkyAbdu3cDt27cwY4Y/EhMTxLlK73J1LQVBEPD48SMAaSNLpqZmOHr0MF68CMGZM6cwb17a9WzeP6T0Rrt2HXH79i2sWBGIp0+fIChoH1asWIICBdIOz1lb2+DkyeN4/vwZrly5jGnT0iZZp6Skn4OjK1NTU/j4tMDcuTNx69YNHD9+FL/99is6duwsrhMRES6e1Va4cFHs2rUNx44dxtOnT+DvPwH58zuhZs3asLa20QpaDg5pI2Tvh6779+/Bza205N+PBhd8vpQgCNiy5SYWLjyr1a5QyDFtWgMUL55PmsKIiHJA//6DoVQqERi4EABgbm6ORYuWo0aNWpg7dxa6dm2PuXNnoVatOliy5BetU9SLFy+BwMBfAMgwZsz36N27Gw4c2IcxYyaiU6euGT6flZUV5sz5GZcvX4Sf39fYuHEdJk+ejlKlSqNw4SIYPHgE1q1bjd69u0EQgIYNvT75Gho3borExAQ0btxUq33ixKkoWNAZw4cPwrBhA1GkSFFMmTLzg3WVK1ceV69eBpA2IjZp0lQcPXoI33zTEYsWzUePHr1hb+8gzs15X4ECBfHjj/Nw+vS/8PP7GitXLsWQISPEQ0Njx07C/ft30b3715g50x9eXo1Rtmx53Lt355OvMTOGDh2J0qXLYtiwAZg370dxTtcbbdp449ChAwCAMmXK4vvvx2Dx4p/Rp0/a4cHZsxdkODr0IVevXkbNmnWypPYvIRM+NAaXR0W8DIVGYf7pFTMQHZ2E0aMPYfv2O5DLZdi1qxNq1CiUxRXmfTIZ4OBghfDwWBjW/336h32RvVJTUxAR8QL29gVhZGT8yfX1bY6PIctMX+zZ8yf27ftbvIo1fVhiYiLatvXBmjWbtM6Ee+NjvytyOWBvn3VHazjik0mnTj1Dw4a/Yvv2tKSt0Qg4ePCRxFUREZFUmjTxxsuXLzJ1dpmhCwrai9q162UYenIag88npKaqMXPmP/D1/QPPnqVdTt3a2gQrVrTA+PF1Ja6OiIikYmRkhO++G4XVq1d+emUDlpqaiu3bt2DwYN0vqZAdeDr7Rzx8GIkBA/bg8uVQsa12bRcsXuwNF5esPzuMiIhyl1q16qBWLennregzIyMjrFv3m9RliBh8MiAIAjZuvI4JE44gIUEFIO1475gxtTF4cFUoFBwoIyIiyo0YfDKQmqrBL79cEkOPq6stli1rjooVnSSujIhyIwM7h4RIZzn5O8KhiwwYGyuwbFlzmJoq4OfngYMHv2HoISKdvbkfUUpK5u4rRWSo3vyOKBTZPx7DER8ASUkqREQkolCht6fLlSnjgJMne6FwYc7lIaLPI5crYGZmibi4SABpF7n72MXbNJq3t0kgabEvcoYgCEhJSUZcXCTMzCx1ui7Q5zL44HP7djgGDNgDANi/vytMTN6+JQw9RPSlrK3T7pP0Jvx8jFwuT3f/J5IG+yJnmZlZir8r2c1gg48gCFi16jKmTDmO5OS0m9oFBJyEv399iSsjorxEJpPBxsYeVla2UKtVH1kPsLW1QGRkPC8mKTH2Rc5SKJQ5MtLzhqTBJzk5GVOmTEFQUBBMTU3Ru3dv9O7dO8N1b968icmTJ+Pu3bsoWbIkpkyZggoVKnzW84aGxmPEiP04dOix2Fa2rD06diz3WfsjIvoUuVwOufzDV2+WydLun2RklMovW4mxL/I2SSc3z549G9evX8e6deswefJkLF68GPv27Uu3XkJCAvr164eqVati+/bt8PT0RP/+/dPdDTgzDh15ioYN12uFnn79PLF/fzeUL+/4JS+HiIiI9JxkwSchIQFbtmzB+PHjUb58eTRp0gR9+/bFxo0b0627Z88emJiYYNSoUXB1dcX48eNhYWGRYUj6lL79DyA8PBEAkD+/BTZvbofp0xvC1NRgj/oREREZDMmCz+3bt6FSqeDp6Sm2ValSBVeuXEk3oezKlSuoUqWKeDaETCZD5cqVcfny5c9+fm9vVxw92h1eXsU+ex9ERESUu0g2zBEWFgZbW1sYG7895u3g4IDk5GRERUXBzs5Oa92SJUtqbW9vb4979+7p/LyOjuaYMaMhunQp99HTSin7vHnb5XLw+LnE2Bf6g32hP9gX+iWrv6olCz6JiYlaoQeAuJySkpKpdd9fLzMePNCPm6QRYGdn9emVKEewL/QH+0J/sC/yJskOdZmYmKQLLm+WTU1NM7Xu++sRERERfYxkwcfJyQmRkZFQqd5e1yIsLAympqawtrZOt254eLhWW3h4OPLnz58jtRIREVHeIFnwKVu2LJRKpdYE5QsXLsDd3T3dhYwqVqyIS5cuiTcxEwQBFy9eRMWKFXOyZCIiIsrlJAs+ZmZm8PX1hb+/P65evYqDBw9i9erV8PPzA5A2+pOUlAQA8Pb2RkxMDGbMmIH79+9jxowZSExMhI+Pj1TlExERUS4kE3LyXvDvSUxMhL+/P4KCgmBpaYk+ffqgZ8+eAIDSpUsjICAA7dq1AwBcvXoVkydPxoMHD1C6dGlMmTIF5crxSstERESUeZIGHyIiIqKcJOktK4iIiIhyEoMPERERGQwGHyIiIjIYeSr4JCcnY9y4cahatSrq1q2L1atXf3DdmzdvomPHjqhYsSLat2+P69ev52CleZ8ufXH06FG0adMGnp6eaNWqFQ4dOpSDleZ9uvTFG8+ePYOnpyfOnDmTAxUaDl364s6dO+jSpQs8PDzQqlUrnD59Ogcrzft06YsDBw7Ax8cHnp6e6NKlC27cuJGDlRqWlJQUtGzZ8qOfPV/8/S3kIVOnThVatWolXL9+XQgKChI8PT2FvXv3plsvPj5eqFOnjjBr1izh/v37wrRp04TatWsL8fHxElSdN2W2L27duiWUL19eWLdunfD48WNhw4YNQvny5YVbt25JUHXelNm+eFefPn0ENzc34fTp0zlUpWHIbF/ExMQItWvXFiZMmCA8fvxYWLBggVClShUhPDxcgqrzpsz2xd27dwV3d3dhx44dQnBwsDBlyhShTp06QkJCggRV521JSUnC4MGDP/rZkxXf33km+MTHxwvu7u5ab9aSJUuEb775Jt26W7ZsEby8vASNRiMIgiBoNBqhSZMmwrZt23Ks3rxMl76YM2eO0KdPH6223r17C/Pmzcv2Og2BLn3xxq5du4TOnTsz+GQxXfpi3bp1QuPGjQWVSiW2tWvXTjh69GiO1JrX6dIXa9asEdq2bSsux8bGCm5ubsLVq1dzpFZDce/ePaF169ZCq1atPvrZkxXf33nmUNft27ehUqng6ekptlWpUgVXrlyBRqPRWvfKlSuoUqWKeHd2mUyGypUra11Fmj6fLn3Rtm1b/PDDD+n2ERsbm+11GgJd+gIAIiMjMWfOHEydOjUnyzQIuvTF2bNn0ahRIygUCrFt27ZtqF+/fo7Vm5fp0hf58uXD/fv3ceHCBWg0Gmzfvh2WlpYoUqRITpedp509exY1atTA77///tH1suL7W7K7s2e1sLAw2Nraat3F3cHBAcnJyYiKioKdnZ3WuiVLltTa3t7eHvfu3cuxevMyXfrC1dVVa9t79+7h1KlT6Ny5c47Vm5fp0hcAMGvWLLRt2xalSpXK6VLzPF364unTp/Dw8MDEiRNx+PBhFCpUCKNHj0aVKlWkKD3P0aUvmjdvjsOHD6Nr165QKBSQy+VYvnw5bGxspCg9z+ratWum1suK7+88M+KTmJio9T8xAHH5/Tu7f2jd99ejz6NLX7zr9evXGDp0KCpXroxGjRpla42GQpe++Pfff3HhwgUMGjQox+ozJLr0RUJCAlasWAFHR0esXLkS1apVQ58+ffDixYscqzcv06UvIiMjERYWhkmTJuGPP/5AmzZtMHbsWERERORYvfRWVnx/55ngY2Jiku6Fv1k2NTXN1Lrvr0efR5e+eCM8PBw9evSAIAhYuHBhuhvV0ufJbF8kJSVh0qRJmDx5Mn8PsokuvxcKhQJly5bFsGHDUK5cOfzvf/9DsWLFsGvXrhyrNy/TpS/mzp0LNzc3dOvWDRUqVMC0adNgZmaGbdu25Vi99FZWfH/nmW8XJycnREZGQqVSiW1hYWEwNTWFtbV1unXDw8O12sLDw5E/f/4cqTWv06UvACA0NBTdunVDSkoK1q9fn+7wC32+zPbF1atX8fTpUwwbNgyenp7i3Idvv/0WkyZNyvG68yJdfi8cHR1RokQJrbZixYpxxCeL6NIXN27cQJkyZcRluVyOMmXKICQkJMfqpbey4vs7zwSfsmXLQqlUak1wunDhAtzd3dONHlSsWBGXLl2C8N9tygRBwMWLF1GxYsWcLDnP0qUvEhIS0LdvX8jlcmzYsAFOTk45XG3eltm+8PDwQFBQEHbu3Cn+A4Dp06dj+PDhOVx13qTL70WlSpVw584drbaHDx+iUKFCOVFqnqdLX+TPnx8PHjzQanv06BFcXFxyolR6T1Z8f+eZ4GNmZgZfX1/4+/vj6tWrOHjwIFavXg0/Pz8AaWk+KSkJAODt7Y2YmBjMmDED9+/fx4wZM5CYmAgfHx8pX0KeoUtfLF++HE+ePMGPP/4oPhYWFsazurJIZvvC1NQURYsW1foHpP11ZW9vL+VLyDN0+b3o3Lkz7ty5g0WLFiE4OBgLFizA06dP0aZNGylfQp6hS1906tQJf/zxB3bu3Ing4GDMnTsXISEhaNu2rZQvwaBk+ff3l557r08SEhKEUaNGCZUqVRLq1q0rrFmzRnzMzc1N6zz/K1euCL6+voK7u7vQoUMH4caNGxJUnHdlti+aNWsmuLm5pfs3evRoiSrPe3T5vXgXr+OT9XTpi/Pnzwtt27YVKlSoILRp00Y4e/asBBXnXbr0xR9//CF4e3sLlSpVErp06SJcv35dgooNx/ufPVn9/S0ThP/Gi4iIiIjyuDxzqIuIiIjoUxh8iIiIyGAw+BAREZHBYPAhIiIig8HgQ0RERAaDwYeIiIgMBoMPERERGQwGH6I8zMvLC6VLl073r0uXLpnavnTp0jhz5kyW1vTs2bN09Xh4eKBLly44duzYF+9/+/bt8PLyEpdPnTol3nLg/ceyyvbt29O9Jnd3dzRr1gybNm3K9H7i4uLE24UQUfZQSl0AEWWvcePGoXnz5lptRkZGElXz1pYtW1CwYEEAaXeHX7duHQYPHow9e/agSJEin73f5s2bo0GDBuJyz549sX79eri6uqZ7LCsVKFAAW7duFZdjY2OxdetWTJkyBSVLlkT16tU/uY+1a9fizJkz8PX1zZYaiYgjPkR5npWVFRwdHbX+5cuXT+qyYGdnJ9ZTuHBhjB49GsbGxjh8+PAX7dfU1BR2dnY6P/alFAqF1ntcokQJjBo1CkWLFsXBgwcztQ9eSJ8o+zH4EBmwuLg4jB07FrVq1UKFChXg7e39wS/pU6dOoU2bNnB3d0ejRo2wefNm8bGYmBj873//Q+XKlVG3bl1MmzZNvKlgZimVaQPQb0ajoqOjMXHiRNSuXRtVqlTB//73P0RHR4vrz5s3D3Xr1oWHhwe6d++Oe/fuAdA+nPXmv35+fli0aJHWY506dcLChQu1aujcuTMCAwMBAHfv3kX37t3h4eGBZs2aYePGjTq9njeMjY2hUCgApAWbZcuWwcvLCxUqVEDdunWxePFise7Fixfj7NmzKF26NAAgJSUF06dPR40aNVCjRg388MMPiIqK+qw6iCgNgw+RAZsxYwYePXqE1atX46+//kLVqlUxfvx4pKSkaK2nVqsxYsQIeHt7Y+/evRg+fDimTJmC+/fvAwDGjx+P2NhY/PbbbwgMDMS1a9cwderUTNcRHx+P+fPnIzU1FfXq1QMADBkyBLdu3cKyZcuwZs0aPHjwAGPGjAEAHDhwAL///jt+/vln/PXXX3BwcMDYsWPT7ffNoadFixahd+/eWo81b94cBw4cEJdDQ0Nx+fJltGjRAklJSfj2229RpUoV7N69G6NHj0ZgYKBO829SUlKwceNG3L9/H02bNgUA7Ny5E+vWrcOMGTOwb98+DB48GIsWLcKNGzfQvHlz9O7dG56envjnn38ApIW769evY+XKlVi/fj3i4uIwfPjwTNdAROlxjg9RHjd58mRMmzZNq+3kyZMwNzdHtWrV0KtXL7i5uQEAevfujS1btiAiIkKcfwOkzVeJioqCg4MDXFxc4OLigvz588PR0RFPnjzBwYMHcfbsWVhZWQEApk2bBl9fX4wdO1Zse1/Lli0hk8kgCAISExPh5OSEgIAAFClSBLdv38bZs2exb98+FC9eHAAwZ84cNG/eHA8fPsTz589hZGQEZ2dnODs7Y+LEiXj48GG653hzWMvGxgYWFhZaj/n4+ODHH3/E48ePUaxYMQQFBaFcuXIoWrQotmzZAnt7e4wYMQIAUKxYMTx//hzr16//4PybkJAQeHp6istJSUkoUaIE5s+fL7YXLFgQAQEBqFWrFgCgS5cuWLJkCe7du4fy5cvD3NwcRkZGcHR0RGJiIjZs2IBt27aJI0CzZ89GjRo1cOfOHbGNiHTD4EOUxw0bNkwccXjDzMwMAODr64uDBw/ijz/+wMOHD3Hjxg0AaSM878qXLx+6dOmCCRMmIDAwEA0bNkT79u1hY2ODixcvQqPR4KuvvtLaRqPRIDg4GBUqVMiwrhUrVsDJyQkymQzm5uZwcHAQH3v48CGsra3F0AMArq6usLGxwcOHD9GiRQts2LABjRo1QqVKldC4cWN06NBBp/fFyckJVatWRVBQEPr164egoCBxEvjDhw9x+/ZtrSCjVqvFQ1YZyZ8/P3799VcIgoArV65g5syZaN++PXx8fMR1atasiStXruCnn37CgwcPcOvWLYSFhUGj0aTb39OnT5GamorOnTtrtWs0Gjx+/JjBh+gzMfgQ5XH29vYoWrRoho+NGjUKly5dQps2bdClSxc4Ojri66+/znBdf39/dOvWDQcPHsTBgwfx+++/IzAwEGq1GlZWVti2bVu6bZycnD5Yl7OzM1xcXDJ8zNjYOMN2tVoNtVoNR0dH7N27FydPnsSRI0ewatUq/PHHHzqfCt68eXNs3boV7du3x8WLFzFr1iwAgEqlQq1atTBp0qRM70upVIrvc7FixaBUKjFy5Ei4uLiIwXPLli2YOXMmOnbsiKZNm2L06NHw8/P74GsFgE2bNsHc3FzrMXt7e51eJxG9xTk+RAYqLi4Of/31F+bPn49hw4ahSZMm4uTh988uCgsLw5QpU1C0aFEMHDgQ27ZtQ82aNXH48GEUL14csbGxkMlkKFq0KIoWLYqkpCTMnj073VyhzCpevDhiYmK0Dl/dv38fcXFxKF68OI4ePYotW7agQYMGmDJlCnbt2oXHjx/j7t27Oj1Ps2bNcOfOHWzZsgXu7u4oVKiQ+PyPHj2Ci4uL+JouX76MX3/9NdP7btGiBRo2bIgpU6YgLi4OAPDbb79h8ODBGDduHHx9fWFra4uIiAjx/ZbJZOL2hQsXhkKhQFRUlFiDpaUlAgICEBERodPrJKK3GHyIDJSxsTHMzMwQFBSEZ8+e4cSJE+KE5PcDi42NDQ4cOICZM2fiyZMnOHfuHG7fvo1y5crB1dUV9erVww8//ICrV6/ixo0bGDt2LBISEmBtbf1Ztbm6uuKrr77C6NGjcfXqVVy9ehWjR49GtWrV4ObmBo1Gg9mzZ+PAgQN49uwZtm/fDjMzMxQrVizdvszNzXHv3j3Exsame8zOzg41atTA8uXLtQ5JtW7dGklJSZg0aRIePHiAY8eOYcaMGTqPtIwfPx4xMTHimVu2trY4deoUHj16hOvXr+O7775Damqq+H6bmZnh1atXePbsGSwtLdGxY0f4+/vjzJkzuH//PkaNGoXg4OAPjpQR0acx+BAZKGNjY8yZMwf79+9HixYtMGvWLAwcOBCOjo64detWunUDAwNx+/ZttG7dGiNGjECHDh3QsWNHAGmTbl1cXNCzZ0/06tULxYsXx7x5876ovh9//BGFCxdGz5490adPH5QqVQpLliwBkHaa+rBhwxAQEAAfHx/s2bMHgYGBsLGxSbef7t27Y/bs2Vi0aFGGz/PmLK53g4+lpSVWrlyJx48fw9fXFxMmTEC3bt3Qv39/nV5D4cKF0adPH2zYsAEPHjzAuHHjEBcXhzZt2mDo0KEoXbo0mjRpIr7fTZo0gUajQYsWLRAREYExY8agVq1aGDZsGDp16gSlUokVK1Z8dK4REX2cTOAVs4iIiMhAcMSHiIiIDAaDDxERERkMBh8iIiIyGAw+REREZDAYfIiIiMhgMPgQERGRwWDwISIiIoPB4ENEREQGg8GHiIiIDAaDDxERERkMBh8iIiIyGAw+REREZDD+D7Ftn4JpzNppAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# 3. ROC Curve\n",
"# Compute ROC curve and ROC area for each class\n",
"fpr, tpr, _ = roc_curve(y_test, y_pred)\n",
"roc_auc = auc(fpr, tpr)\n",
"# Plot the ROC curve\n",
"plt.figure()\n",
"lw = 2\n",
"plt.plot(fpr, tpr, color='darkorange', lw=lw, label='ROC curve (area = %0.2f)' % roc_auc)\n",
"plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')\n",
"plt.xlim([0.0, 1.0])\n",
"plt.ylim([0.0, 1.05])\n",
"plt.xlabel('False Positive Rate')\n",
"plt.ylabel('True Positive Rate')\n",
"plt.title('Receiver Operating Characteristic')\n",
"plt.legend(loc=\"lower right\")\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "5d1867cb3af9788d",
"metadata": {
"collapsed": false
},
"source": [
"## Learning curve"
]
},
{
"cell_type": "code",
"execution_count": 66,
"id": "c67bb53e5a864293",
"metadata": {
"ExecuteTime": {
"end_time": "2024-03-21T13:53:05.001520Z",
"start_time": "2024-03-21T13:53:04.875096Z"
},
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0sAAAIhCAYAAACfXCH+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAADooElEQVR4nOzdd3hUZfrG8e/UTHqnJNTQOwEElGYB7NhdG1hX17a61XXddXVd15/urmUta8WKit21rCI2QBHpvdfQ0+tk6vn9MWEgkAiB5MwkuT/XxTXJmTMzTx7PxLnzvuc9FsMwDERERERERKQWa6QLEBERERERiUYKSyIiIiIiInVQWBIREREREamDwpKIiIiIiEgdFJZERERERETqoLAkIiIiIiJSB4UlERERERGROigsiYiIiIiI1EFhSUREREREpA4KSyIiUsvkyZOZPHlypMs4rHnz5tGrVy/mzZtn2mt6PB5eeuklLrjgAoYOHcrw4cO55JJL+OCDDzAMw7Q6RETEHPZIFyAiInI0+vXrx/Tp0+nevbspr1dQUMB1113Hrl27mDx5MgMHDiQYDPL111/zhz/8gQULFnDfffdhsVhMqUdERJqewpKIiDRLCQkJDB482LTXu+OOO9i9ezfTp0+nS5cu4e0nnngiWVlZPPzww5x00kmccsopptUkIiJNS9PwRETkqCxYsIArrriCQYMGMXz4cO644w6Kiopq7TN//nyuvfZajjvuOPr378/JJ5/M448/TjAYBGD79u306tWLF198kdNOO41Bgwbx7rvv8vjjjzNhwgS++eYbzj77bPr378+pp57KBx98EH7ug6fhHcljADZu3MjPf/5zhgwZwgknnMAjjzzCnXfe+ZNTD1evXs2cOXO49tprawWlfa666iouv/xy4uLiwrX06tXrkP169erF448/Xu/P/p///IdevXrx9ddfH/L6vXr14osvvgBC0wEfeughxo0bR//+/Tn77LP59NNP661fRESOjkaWRESkwebPn8/VV1/NyJEjefTRRyktLeWxxx5jypQpvPPOO7hcLtasWcNVV13FaaedxiOPPIJhGHz00Uc88cQT5OTkcOaZZ4af7/HHH+euu+4iISGBQYMG8fbbb5Ofn89f//pXbrzxRrKzs3nhhRe44447GDBgAN26dauzrsM9pqioiCuuuIL09HQeeOABAoEAjz32GDt37vzJUarZs2cDcPLJJ9d5f0xMDHffffdR9fLgn/29997jk08+4aSTTgrv8/HHH5OSksK4ceMwDIObb76ZRYsW8ctf/pJu3brxxRdf8Ktf/Qqv18u55557VHWIiMihFJZERKTB/vWvf9G1a1eeeeYZbDYbAIMGDeLMM8/k3Xff5fLLL2fNmjWccMIJ/OMf/8BqDU1kGDVqFF999RXz5s2rFZZOP/10Lrjgglqv4Xa7uf/++zn++OMB6NKlCyeddBLffvttvWHpcI959dVXqays5IMPPqBt27bhuk899dSf/Hl37doFQIcOHRraqsM6+GefNGkSU6dOpbq6GpfLhWEYfPrpp5x22mk4nU6+++47Zs+ezSOPPMIZZ5wBwJgxY3C73fzzn//krLPOwm7X/95FRBqDpuGJiEiDuN1uli5dGh7l8Pv9+P1+OnbsSLdu3fjuu+8AOPfcc3nuuefw+XysWbOGzz//nH//+98EAgF8Pl+t5+zTp0+dr3XgaE+7du0AqKqq+sn6fuoxP/zwA7m5ueGgBJCdnU1ubu5PPue+QBgIBH5yv6Nx8M8+adIkqqqqwlPxFi1axM6dOznnnHMAmDt3LhaLhXHjxoV77/f7Ofnkk8nPz2f9+vWNXqOISGulPz2JiEiDlJWVEQwGee6553juuecOuT8mJgaA6upq7rvvPj788EP8fj8dOnQgNzcXu91+yDLb+871OVhsbGz4632jU4dbovunHlNUVES/fv0OeUxGRgYFBQX1Pmd2djYAO3furHf1vT179tCmTZsGr4Z38M/euXNncnNz+eSTTzj99NP55JNP6NSpE0OGDAGgpKQEwzDC3x9s79699YZPERFpGIUlERFpkPj4eCwWC1dddVWtqXT77Asr999/P59//jmPPvooJ5xwQjgU7JsiFwnt2rWrMxQVFhb+5ONGjx4NwLfffltnWPL7/ZxzzjkMGTKEp556KhyYAoFAeFSqsrLyiOucNGkSDzzwAOXl5Xz22Wdceuml4fsSExOJi4vjlVdeqfOxnTt3PuLXERGRn6ZpeCIi0iAJCQn07duXTZs2MWDAgPC/Hj168Pjjj4dXp1u4cCEjRoxg/Pjx4aC0YsUKioqKwqvhme24445jyZIl5Ofnh7ft3buXJUuW/OTjevTowdixY3nuuefIy8s75P5nnnmG4uJiJk2aBIR6BLB79+7wPgsXLjziOs844wwMw+Cxxx6jsLAw/LwAw4cPp6qqCsMwavV/3bp1PPnkk/j9/iN+HRER+WkaWRIRkUPs3r2bl1566ZDtPXv25IQTTuDXv/41119/Pb/5zW+YNGkSgUCAqVOnsnTpUm666SYABg4cyP/+9z/eeOMNunXrxpo1a/jPf/6DxWLB7Xab/BOFTJkyhWnTpnHttddy8803A/DUU0/h8/kOO33u3nvv5corr+Tiiy9mypQpDBo0iMrKSj777DM++eQTLrnkEk477TQAxo0bxwMPPMDdd9/Ntddey65du3jyySeJj48/ojr3rXz3+uuvk5ubW2u0aNy4cRx33HHcdNNN3HTTTXTr1o1ly5bx73//mzFjxpCWlnaU3RERkYMpLImIyCG2bdvGAw88cMj2Cy+8kBNOOIHRo0fzwgsv8MQTT/DLX/4Sh8NBv379ePHFF8MLLPzhD3/A5/Px6KOP4vV66dChAzfeeCMbNmzgq6++apLFEg4nKSmJV155hfvvv5/f//73xMfHc9lllxEbG1vveVP7ZGVlMX36dF5++WU+/vhjnn32WZxOJzk5OfzrX/8Kr0wH0LVrVx588EH+85//cP3119OtWzfuu+8+7rvvviOu9ZxzzmHmzJmcffbZtbZbrVaeffZZHnvsMZ555hkKCwtp27YtV199dTgAiohI47AYhztTVkREpIVYunQpJSUljBs3LrzN7/dz4okncuaZZ3LnnXdGsDoREYk2GlkSEZFWY+fOnfzqV7/i5ptvZvjw4bjdbqZPn055eTkXX3xxpMsTEZEoo5ElERFpVd544w1ef/118vLycDgcDBo0iNtuu40BAwZEujQREYkyCksiIiIiIiJ10NLhIiIiIiIidVBYEhERERERqYPCkoiIiIiISB0UlkREREREROqgsCQiIiIiIlKHVnedpcLCciK9/p/FAunpiVFRS2uhnptL/Tafem4+9dxc6rf51HPzqefm2dfrw2l1YckwiJqDL5pqaS3Uc3Op3+ZTz82nnptL/Tafem4+9Tx6aBqeiIiIiIhIHRSWRERERERE6qCwJCIiIiIiUgeFJRERERERkTooLImIiIiIiNRBYUlERERERKQOCksiIiIiIiJ1UFgSERERERGpg8KSiIiIiIhIHRSWRERERERE6qCwJCIiIiIiUgeFJRERERERkTooLImIiIiIiNRBYUlERERERKQOCksiIiIiIiJ1UFgSERERERGpgz3SBbRGWwqrCDodSqoiIiIiIlFMn9dNVl7t55KXF3LxM3MJBI1IlyMiIiIiIvVQWDKZy2El1mFjS2EVS3aURrocERERERGph8KSyRw2Kyf1SAdgxpr8CFcjIiIiIiL1UViKgIm92wAwc10+/kAwwtWIiIiIiEhdFJYiYFinFDISnJS6/fy4rSTS5YiIiIiISB0UliLAbrVwxoD2AMxYq6l4IiIiIiLRSGEpQs4elAXAN+sL8Pg1FU9EREREJNooLEXI0E6ptE10UukNMHdzUaTLERERERGRgygsRYjVamFCr9BCD59rVTwRERERkaijsBRBp/bOBGD2pkKqvIEIVyMiIiIiIgdSWIqg3m0T6JjiwuMPMntjYaTLERERERGRAygsRZDFYmFCzTWXtCqeiIiIiEh0UViKsIm9QlPxvt9cRFm1L8LViIiIiIjIPgpLEdYtI55uGXH4gwbfrNdUPBERERGRaBHRsOTxePjjH//IsGHDGD16NFOnTq133zlz5jBp0iRyc3O56qqr2LRpk4mVNq1Tw1Px9ka4EhERERER2SeiYemhhx5ixYoVvPzyy/zlL3/hiSee4LPPPjtkv/Xr13PDDTdwyimn8O6779K3b1+uvPJKKisrI1B145tQMxVv/rYSiqq8Ea5GREREREQggmGpqqqKt99+m7vuuot+/foxYcIErrvuOqZNm3bIvm+88Qa5ubncdttt5OTk8Lvf/Y7ExEQ++uijCFTe+DqkxNK3XSJBA75cVxDpckREREREhAiGpTVr1uD3+8nNzQ1vGzp0KEuXLiUYDNbaNy8vj4EDB4a/t1gs9OzZkyVLlphVbpPbt9DDF2s0FU9EREREJBrYI/XC+fn5pKam4nQ6w9syMjLweDyUlJSQlpZWa/uePXtqPX737t0kJyc3+HUtlqOvubHsq+HAWib0zuTRbzexeEcZe8qraZfkikxxLVRdPZemo36bTz03n3puLvXbfOq5+dRz8xxpjyMWltxud62gBIS/93prn7dz+umnc9NNN3HWWWcxZswYPvroI5YvX86IESMa/Lrp6YlHX3QjO7CWjIxEhndJ48ctRczdXs7Px2ZGsLKWK5r++7cG6rf51HPzqefmUr/Np56bTz2PHhELSzExMYeEon3fu1y1R1XGjh3LzTffzK233kogEGDEiBGcc845VFRUNPh1CwvLMYyjr7sxWCyhN8HBtZzcPRSW3l+Yx3l9FZYaU309l6ahfptPPTefem4u9dt86rn51HPz7Ov14UQsLLVt25bi4mL8fj92e6iM/Px8XC4XSUlJh+x/4403cu2111JeXk56ejq33XYb2dnZDX5dwyBqDr6DazmpRwb/+HIDq/ZUsK3ITcfU2MgV10JF03//1kD9Np96bj713Fzqt/nUc/Op59EjYgs89OnTB7vdXmuRhoULFzJgwACs1tplffzxx9x///04nU7S09Oprq5m3rx5RzUNL5qlxTk5rlMqAF+szY9wNSIiIiIirVvEwlJsbCznnnsu99xzD8uWLWPmzJlMnTqVKVOmAKFRpurqagC6dOnCm2++yYwZM9iyZQu/+c1vaN++PWPHjo1U+U1mQu/Q9LvPtSqeiIiIiEhERfSitHfeeSf9+vXjyiuv5N577+XWW29l4sSJAIwePZpPP/0UgP79+3PPPffwf//3f5x//vkAPPPMM4eMQLUEJ3XPwGGzsKmwig0FLeOiuyIiIiIizZHFMFrXjMiCgsifMGexhFa/q6+W336wkm83FnLNiI7cOLqr+QW2QIfruTQu9dt86rn51HNzqd/mU8/Np56bZ1+vD6flDc20ABNrpuLNWJtPK8uyIiIiIiJRQ2EpCo3plo7LbmV7STWr9zR8eXQRERERETl2CktRKNZhY0y3dEALPYiIiIiIRIrCUpSa2Cs0FW/m2nyCmoonIiIiImI6haUodULXNBJibOyt8LJ0R1mkyxERERERaXUUlqKU027lxO4ZAMzQVDwREREREdMpLEWxfavifbmuAH9QU/FERERERMyksBTFjuuYQkqsg2K3jwXbiiNdjoiIiIhIq6KwFMXsNiun9Nw3FS8/wtWIiIiIiLQuCktRbt9UvK83FOD1ByNcjYiIiIhI66GwFOUGZyeTmeCkwhNg7hZNxRMRERERMYs90gXIT7NaLEzolcnrC3fwxdq9jOueHumSRERERFotwzDA68GoqsJwuzGqKjGqqyEQwPD7IRCo/2u/HyNw4NeBmn32fx1wWHFXuMOPMQJ+CH990OPq+nrfa2GA04klJgZLjAtiYsJfW2JiwOWq+f6g+10uLM4D76/ZP8aFxVWzr9OJxdo6xlwUlpqBiTVh6dsNhbh9AWIdtkiXJCIiItIsGIEARrW7drhx13xfVQluN8GqKnBX1exTVfe+B2wPhZGm4W6yZ25kzphw2KImYFlc+4LVgSFrfwCzZmTgOnMSltjYSFd/xBSWmoG+7RLJTnaxo7Sa2RsLmdi7TaRLEhERETkmoREaL4bPFxqp8fnAE7o1vF7weUO33tCt4av52uM5KLzU3B4SdELfU13ddD+Ey4UlNi404mJ3gM0GNhsWux1sdrDbsNjsoe12O5aaW2y20Nc191n2bbPbiE2Mw+0Ngq1m//oea6/9WGz2/c9jC33EN7yeUL881aHeejyhUTBv6Nao2YZn/9cH30/N4w2PB3y+/T+71xN6/vKGtcySkIjrtDMa8T9C01JYagYsFgsTe2fy4rw8vlibr7AkIiIijcowDKiuJlhRjlFRgVFZAZWVlDmgurA0FFbqCi77th0QeAzPAUGn5vbAx+6/z3f4whqT1YolLi70LzYeS1xsKOjExdXcxh66PS4OwvvEYomLr7mNw+KKDYWWRmSxQEZGIgUF5RhReIlNIxDYH7r2Bah9oasmYFETuPYFtfD9nmosMS6cJ4yK9I/RIApLzcTEXm14cV4e320uosLjJyFG/+lERESkJui43QQrK8JBx6isDH8d3LftgPvq2lbX1LJSM38QpxOL0wmOfbeO0NQupyN0n8NZs0/MAaGnniBzQNjZF4RwxmCxWMz8iVoci80G+0JkK6FP3M1Et4w4uqbHsbmwim82FHBWv3aRLklERESOkeH3h/4KX1UZCjiHCzoVB2yrrMCoqAydd9NY59BYrVjiE7AkxGOJT8CZlIjfYtsfUg4OLg4nlphDAw7OmqDjcOwPQfv23/f1AdtwOBRkJCopLDUTFouFib0yeeb7rXy+Jl9hSURExGThc2yOaBGA+s6jqb0vHk/jFXhQ0LEkJGJNSMASv+/7BCzxCTXb9n2//z5rfALExoZDS7RPCRMxg8JSMzKxdxue+X4r87cWU1zlJTXOGemSREREmg0jGCSYn08gbytGSUl4NbR6g04d25tsFTSbLTSNLCEeS0LiAaHm6IKOiDQOhaVmpFNqLH3aJrB6TwVfrS/ggkFZkS5JREQk6gSrKgls20pg27bQbd5WAnnbCORta7yV0WJiQuEmfL5M3EGLBfzEeTQH3x8Xp2loIlFKYamZmdArk9V7KpixJl9hSUREWi3D7ye4e1dNKNpKYPu2cDgKFhbU/0CbDVtWNtaMzP0LABwQYIiNwxoXFxqlqS/oxDb+KmgiEp0UlpqZCb0y+feszSzeXsrecg9tEmMiXZKIiJjE8HgwyssJlpeGbsvKMMrLMMrKCJaXYZSXh06qT0nGmpKKJTkFa3IK1uRkLCkpoeldVmukf4wGCZaUhEeH9hbupnzN+lAo2pEHfn+9j7OkpmHr1Albx87YOnXG1rFT6DYrO3QtGhGRI6DfFs1MuyQXg7KSWLqzjJnr8rlsaIdIlyQiIg1gBAKhVcz2hZ2ymuBTHgo+oQBUjlFWSrC8vFYYOubFAKxWLEnJWJNTQoEqOeWgQJWKNWXftpqAFRvX5NPDDK+XwI7toelyB06d27YVo6wsvF/FwQ90xmDr0DEUivYFoppwZE1MbNKaRaR1UFhqhib2zmTpzjJmrFFYEhGJFMPjwbe7Ev+WnQTLfnq0Jxx8yspCF/s8lqXFrNbQyf1JyVgTE7EkJmFJTMKalIQlISF0AdDSEoIlpaHb0pKaxQwqIRjEKCkmUFIMW4/w9RyOmlC1L2SlHBCyakawwttq9ok5dNaDYRgECwv2T5vbVnMe0batBHfvgmCw/h+5TVtsnTqT0LM73sz24VEia9t2zW6kTESaF4WlZuiUnpn86+uNrNxdzvYSNx1SYiNdkohIi2X4/aFRj00b8G/cGLrdtJHgzh0UHEvoiY3FmpiEJTERa1IylprgY00KhR9LUlIoDB0Uiizx8UcVEAyvl2BZKUZJTYAqLSFYeuj3wZKar0tKwOsBn49gQT4U5HPE68DFxu4frUpKDj1v3rbQanL1sMTF7582t2/KXKfO2Dp0DJ0jpGWsRZoFb8BLkbeQoupCCjwFFFUXUujJp9BTiGEYXNvrBjJcmZEu84gpLDVD6fFOhnVM4cdtJXyxNp+rR3SKdEkiIs2eYRgYhYX4a8JQYOMG/Bs3ENi6Gbzeuh9kt4cCTmIilqQkLAn7wk5iTdhJqjsAJSaFLtZpIovTiS0jEzKO/EOKUV0dHpkK7hulKi0lWFJ8QMgqDd1XE7IIBMDtJuh2h0aMDmS1Ys3Krpkutz8Q2Tt2xpKertXgRKKYN+Ch0FNIYXUBhZ6C8NdFnkIKPPk1oaiQMl/pTz7PkIxhTMg+zaSqj53CUjM1sXemwpKIyFEyqqrwb94UCkSbNhDYtBH/pg0YpfX8T97lwt41B1tON+w53bHldMPRvTuZ3TtRWFjRYkc6LC4XNlc7aHtkF0I3DAOjsjI8MrVvGqAlPiEUjLI7mB4SReSnVQeqwwGoyFNIQXUBRQeEoUJPIUWeAsp95Uf8nA6rg7SYdNJj0kmLySDdlUF6TDod4jsypu24JvxpGp/CUjN1YvcM/m/mBtbnV7KpsJKc9PhIlyQiEnUMv5/A9rzw1LlQOApNoauT1YotuwO2bt1DoahbKBxZs7IPmfpmsaCRkINYLBYsCQmQkIAtW+fUikSCYRgECeIJVFNYXUiRpzA0ElQTfEKjQvumxxVQ6a884ud2Wp2kx2SQ5konPSYUgNJrwlBaTDoZrgzSYjJIciS1mN+PCkvNVHKsg5FdUpmzqYgZa/L5xSiFJRFpvcKLB9SEofD5RT8xhc6Slo69W/fwaJG9WzdsXbpiiXGZXL2IRDvDMPAGvVT5K6nyV1EdcFPlr8Jdc+sJVOM3/ASCgdCtESAQDN36DT/+mq8DNfft+/7A7f5ggAB+rHao9nhC39c8fv/z1n6N2o/f/3oN5bK5akaCDgg+tUJRBumudBLsiS0mBB0phaVm7NTebZizqYgv1uZzwwmdW93BKyKtU2gK3UYCGzfi37g+HI4OXGK6FpcLe9duoVB0QDiypqaaW7iImCZgBHD73bgDbtz+Stx+N1WBqtA2f1XN11XhwOM+IPi4a+6r9ZiAm6BxxEucRI1YW1xo9OegkZ992/ZNk4u3x+tzZD0Ulpqxsd3SibFb2VbsZu3eCnq31TUlRKT5MoJBjIry0IIBZaX7b8vKCBYVEdi6Gf/GDQR37az7CazW0DV3crph79YjHI6s7bO0vLRIlDMMA1/QS2XNyM2+EZzQ9/u3VforcQdqQo7fXevrqkAl1f6akZ7gMV6T7Ce4bLHE2eOItcUSW3PrsrmwWx3YLDbsVnvo1hK6tVnt2C22WvfZLHZs1v37hLbbsVttpCQl4K7whfapefy+5ws/94HPc/Br1nzttDqJtWvF5GOlsNSMxTltjMlJY+a6AmasyVdYEpGoYBgGVFcfFHhKQ8tUH3hbc0HWfd8b5eVHfP2hfVPoDhwpsnXpoil0IiYLjeDUFWqqDgk5VbX2OfQxRzN97HCsFhtxtrhQuLHHEmsL3e4PO/GHBJ/Q93U/xmWLxWppuj++aIn86KOw1MxN6N0mFJbW5nPL2K5YNYQqIo3I8PsxysvqDjp1BCGjrIxgWWn9S20fAUtcfGgZ7qTk8HV6rMnJoaWm902hS0lpvB9SpBULGAEqfOWUeksp95VR5i2jzFdKma+Mcl8p/g0eCitK6g1C1QF3o9e0L6iE/sUTb48nribUhG9tcaFwY4+t+ToUfGIPGPWJs8fhsDo1vUyOicJSM3dCl1TinTb2lHtYvrOMQdnJkS5JRI6A4fPhX70K/4Z14PdjBINw8D8jiBEIQjAAQSN0axgYgdDtwft6HTaq3R4IHPBYo/ZzHvI6h+xnhAOSUVaKUXnkqyQdwm6vHXjqCEDh7cnJoQuzJiVraWmRo2AYBpX+yprAUxoOPPvCz/7tBwQibxkV/iNfDvqn2C124h0JNaM4oUBzcMiJPzjw1BGEYu2x2Cy2RqlJpDEoLDVzLoeNcd3T+XTVXmasyVdYEolShteLf/VKfIsX4VuyCN+KZeBp3Dn11Y36bLVZEmsCTeIBwSYccJJqf58c2maJjdNfdEWOgifgOSjw1Iz0eMso9ZVStm8UqOa+fV8HjmEBgnh7PImOJJIcySQ5k0h0JJHsTCYzKQ2rzxkKNPuCkOOAIFSzzWlzNmIHRKKHwlILMLF3Gz5dtZeZ6/L51UndsFv14UQk0gyPB9+qFfiXLAoFpJUrwFs7HFmSU7D36481Ph4sVrDu/2ex1v4eiwWLzRaa0G61gXX/raXmNj4xjiq3F8NqC4WU8P51PKfFCjYrlppbrDX72mxYrFYsiYk1oz7Joa9t+kuvyJEwDIPqQDUV/goqfRVU+iuoOOi20l9Jha+cSn8llb6K8L7l/nLKvKV4g0c/jTXGGkOic3/oSQoHoOSaMJRUs732Nrv10I+EOn9GRGGpRRjRKYVkl52iKh+L8koY3lnL4YqYzaiuxrdiGb4li/EtWYh/1Urw+WrtY0lNwzE4F8fgITgGDwld06eRVmnThxqRxuENeH8y0FT6K6nwl1Ppqwxvq/DXhCBfBRX+ykZZYtpmsdUEm2SSHMkkOhLDXx8YeMLBqGbfGFtMI3RBRPZRWGoB7DYrJ/fM4P1lu5mxJl9hScQERlVVTThahG/JYvyrV4K/9kpO1vQM7IOHhAOSrXMXTUsTiQDDMCjwFJBXsZVtFVvJq9xKkacoHHoOHPU5llGdA1ktNhLs8cQ7Eoi3J5BgTyDese82ngR7IvE19++7L9GRWBOMkoizaxqrSDRQWGohJvZqw/vLdvPV+gLuGN8dh03XFBFpTMGqSvzLltaEo0X416yGQO2/Hlsz24RHjRyDc7F27KQPOyIm8gY87KjazraKrWyr3FoTjraRV7kNd6CqQc8VWqBgf5CJt8eT4EisdRtvTyChJgwdGHoS7PG4bLF6/4u0AApLLURuh2Qy4p0UVHr5YUsxY7qlR7okkWYtWFGBf9mS0PlGSxfhX7f20HDUth2O3CHhgGTNytaHI5EmZhgGxZ7imjC0jbzKreFwtLtqFwZ1z0O1WmxkxWXTKb4THRM6k+lqU2u0Z3/oCS1coBXZRAQUlloMm9XC+F6ZvLloBzPW5issiTRQsLwM39IloZGjxYsIbFgXWkr7ANb2WaFgVBOQbO2zIlStSMvnD/rZWbUjHIbyKreyy7ODTSWbKPfVv9x1vD2BTgmd6RTfmY4JnWpuO5MVl43DqmXpRaRhFJZakIk1YWnWhkKqfQFcDv1VTKQ+wdISfEsX1yzIsIjAhvUcvDKCtUNHHINywwHJ1rZdhKoVabnKfWXkVWxj2wGhaFvFVnZW7ah3KWwLFtrFtqdjQic6xnc+IBx1JtWZqhFeEWk0CkstSP/2ibRPimFXmYc5m4oY3ysz0iWJRI1gSUnNqNFCfEsWE9i04ZB9bJ064xg8BPu+BRky20SgUpGWJ2AE2OPeXROGtoXOJao5p6jYW1zv41w2VzgMdUzoRL/2vUgNtiU7rqNWfRMRUygstSAWi4UJvdrwyvw8ZqzNV1iSVi1YXhY632jxQnyLFtYdjrp0rb0gQ3pGBCoVMZdhGPiCPrxBb80/D96A94Btoe+9wX3b9n/vDXrxHfD1/u89Nd/7Drg/9DhP0EN+dT6+n1hlLsOVGR4Z6hTfmY7xneiU0JkMVyZWS2jBIi2PLyKRoLDUwkzsnckr8/P4blMhFR4/CTH6TyytQ7CyAv/SJfgWL8S7aCGB9WsPmVZny+lWOxylpkWoWpGj4wl4KPYWUeopodhbTKk3dFvi2f91dcB9QPipCTEHhp1GWhq7oRxWJx3iOoQCUU0o6pTQmQ7xHYmzx0ekJhGRw9En6RamZ2Y8XdJi2VLkZtbGQs7o2zbSJYk0CcPtxrd8Kb5FC/EtWoB/3ZpDVquzde6CI3cojiFDcQweijVV1yCT6OIL+ijxllDiKQrdeotrvi/e/3VNGCrxljR4+esj4bQ6cVidOK1OnLaaW2sMTpsTh9VR870Tpy2mZl9Hre/3/XPUevy+r2NwWB2kxaTTLq69VpgTkWZHYamFsVgsTOzVhmfnbmXGmnyFJWkxDE81vhXLw9Pq6rwIbHaH/eEodyi2DE1FFXMFgn5KfWUHhJ3iWgFo32jQvq8r/RUNfg2H1UGyM4UUZyqpzlSSnSmkxqSGt8XZ4w8INDXBZ1+gsTlqf291aDEEEZGfoLDUAk3olcmzc7fyw9ZiStw+UmK1VKo0P4bPh3/VitDI0eKF+FYuB2/t6UOh6xwNxTF0GI7cYdja6o8D0ngCQT/lvnLKfKWU+cop95bVfF1Gua+MMm8pbksFe8rzQ1PgPMWU+8rqvc5PfawWGyk1QSd8G5Nae1tMWjgYxdvjFXBEREyisNQCdUmPo2dmPOvyK/lqfQHnD2wf6ZJEDsvw+/GvXR2eVudbvhQ8nlr7WDMy948cDRmGtX2WPjTKYe0PPWWhoOMNhZ1SXynlNd+HQ5C3PBSEfKVU+iuP6vUsWEh2JpNcM/KTUjPqEx4FqhWG0khwJIQXMRARkeiisNRCTezdhnX5m/lizV6FJYlKRiCAf/3a8MiRf+kSDHft8zEsKanhKXWOIcOwdeykcNSKHRh6QiM7Nbc14SYUeg6972imuh0owZ5IkjOJREcSSY4kkpzJoa+dSWSntsXhi6s1LS7RmaRzc0REWgiFpRZqQq9Mnpi9mYV5pRRUeMhI0PUoJLKMYJDApg37p9UtWYRRUftDrCUpKbRS3ZBhOIYMxdYlR+GolarwVbC6ZCWrSlawqngFa0vXUOYrPabnjLcnkOQMBZ5Q8Ekmseb7JEdSzdfJ++93JpPgSKg3+GgpaxGRlk9hqYXKSnYxoH0Sy3eVMXNdAZcMyY50SdLKGIaBf/MmvPum1S1ZhFFa+8OuJT4+FI72jRx1647FqulIrY1hGORVbmNVyQpWFi9nVfEKtlRsrvfcn3h7wgGBpo4RnwO2JzqSSHYmk2BPwGbV//JERKRh9H+OFmxi70yW7ypjxpq9CkvS5ILFxfjXrcG/ZhX+tWsoWr2SQEFB7Z1iY3EMHBwOR/YePbHY9WuotXH7q1hTujocjFaVrKDMV3bIfu1js+ib2p9+KQPom9qPNq62JDgSsSv0iIiISfR/nBZsfM8MHv56I8t3lbOj1E12cmykS5IWIlhSgn/t6pp/a/CvWU1w755Dd3TG4BgwMLwgg713X4WjVsYwDHZW7QhPp1tZspxNZRsJEqy1n8PqpHdyH/qm9qdvSn/6pfYnLSY9QlWLiIiE6FNLC5aREMPQjsksyCtl5toCrhzeMdIlSTMULC0JB6LQyNFqgnt2H7qjxYKtYyfsvXpj792HjBFDqczqCg6n+UVLxHgCHtaWrg4Ho1XFKyj2Fh+yXxtX25pRo/70TR1A96QeOKy6zIGIiEQXhaUWbmLvNizIK2XGmr0KS3JYwbLS/cFo7Rr8a1cT3L2rzn1tHTth790He8/e2Hv1wdazJ9b4BCB04ntcRiJVOvG9RTMMg73Ve0LT6UpWsLJ4BRvK1hEwArX2s1vs9EjuFQ5G/VL6kxnbJkJVi4iIHDmFpRbupB4ZPPjlBtblV7KlsIou6XGRLkmiRLCsFP+6tTXBKPQvuKvuYGTt0BFH7z7YevUJjRz16IU1IcHkiiXSvAEv68vWhkeNVhavoNBTcMh+aTHpNecZ9adf6gB6JvXEadOKnCIi0vwoLLVwKbEORnZO5bvNRcxYu5frT+gS6ZIkAoLlZeGRotDtGoI7d9S5r7VDR+z7QlGv3th79lYwaqUKqvNrjRqtL1uLL+irtY/VYqN7Yg/6pfYPL8bQNradlnwXEZEWQWGpFZjYOzMUltbk8/PjO+tDTAsXLC8Pn1vkX1cTjHZsr3Nfa3aHQ4NRYqLJFUs0qPBVsL5sLetL17K2dDUri1ewt/rQRTtSnCn0TekfHjXqldwHl80VgYpFRESansJSKzC2Wzoxditbi92sy6+kVxuNErQUhteLf80qfCuWh0aM1q0huD2vzn2tWdkHnGMU+mdNTDK5YokGFb5y1pWuZV3ZWtaXrmFd6Vp2VB0aqK1Y6ZrYrdaoUVZctv7gIiIirYbCUiuQEGNnVNc0vlpfwIw1+QpLzZjhqca3cgW+JYvwL1mMb+UK8HoO2c/aPisUjHr1Do8cKRi1TuW+MtaXrmNd6RrWla1lXekadlbVPQWzbWw7eib1pmdyL/qk9KN3Sh/i7PEmVywiIhI9FJZaiYm9M/lqfQFfrN3LLWO66C/DzYRRVYVv+VJ8SxfjW7IY/+qV4PfX2seSmoZj4CDsvfvWjBz1wpqUHKGKJZJKPaUsyF/A2prRovWla9nl3lnnvu1i29MzuRc9k3rTI7kXPZN7kexMMbdgERGRKKew1EqM6ppGnMPGrjIPy3eVMzBLowzRKFhejn/ZEnxLFuNbuhj/ujUQqL0MszWzDY7BudgH5eIYPARbJ52H1hqVektZV7qG9aVrWVcWCke73XWvZtg+Lis8YtQjqRc9knuR7FSgFhERORyFpVbC5bAxtns6n63ey4w1exWWokSwpATfstCokW/JIgIb1nPwhYms7dvjGDQEx+AhOAbnYs3SOSOtTam3JDSNrnRtzblGa9jjruPCwEBWXDY9k3vTM6kXPZN70yO5J4kOvd9FRESORkTDksfj4d5772XGjBm4XC6uueYarrnmmjr3/eKLL3j44YfZvXs3vXv35k9/+hP9+vUzueLmbWKvTD5bvZeZ6wr41YndsFn1gdtswcKC8JQ635JFBDZvOmQfW8dO4VEjx+BcbG3bRaBSiZRiT1E4EO2bSlfXqnQAHeI61kyh603P5J6MzBmKt8yiCwGLiIg0koiGpYceeogVK1bw8ssvs3PnTu644w6ysrI47bTTau23fv16fvOb3/DXv/6VIUOG8NJLL3HDDTfwxRdfEBsbG6Hqm5+RXVJJctkprPSyeHspwzqlRLqkFi+wZw++JYtCCzIsXUwgb9sh+9i65oSC0aBcHINysWZkRKBSiYQKXzkri1fULL4QCkf51Xvr3LdDfKea0aJQOOqe1JMEx/7FWiwWSHImUkC5WeWLiIi0eBELS1VVVbz99ts899xz9OvXj379+rF+/XqmTZt2SFj67rvv6N69O+eeey4Av/71r5k2bRobNmxgwIABEai+eXLYrJzUI4MPl+9mxtq9CkuNzDAMgjt3hEeNfEsXEdx10DkkFgu27j3Co0aOAYOxpqZGpmAxXZm3jOXFS1hSuJilRYvZWLYeg9rDQBYsdIzvFDq/qGY6XfeknsQ7tCqdiIiI2SIWltasWYPf7yc3Nze8bejQoTz99NMEg0GsVmt4e0pKChs2bGDhwoXk5uby3nvvkZCQQKdOnSJRerM2sVcmHy7fzVfrCvjdyd1x2KyHf5DUyTAMAtu2hkeNfEsWE8w/aFTAZsPes3do1GhwLvaBg7SEdytS6i1lWdESlhYtZmnhYjaVbzgkHHWI70Tv5D41U+l60T2ph5brFhERiRIRC0v5+fmkpqbidDrD2zIyMvB4PJSUlJCWlhbefsYZZ/DVV19x2WWXYbPZsFqtPPPMMyQnN3w1p2g4L35fDZGoZVinFNLjHBRW+fhxWwmjc9IO/6AWoDF6blRX49+8Cf+qFXgXL8K3dAlGcVHtnex27H364Rici3NwLvYBA7HGtb4PvpE8xiOp1FvC0sIlLClaxNLCJWwq33DIPp0TujAoLZdB6bkMTsslzZXeKK/dWnseSeq5udRv86nn5lPPzXOkPY5YWHK73bWCEhD+3uv11tpeXFxMfn4+d999N4MGDeKNN97gzjvv5P333yc9vWEfNNLTE4+t8EYUqVrOGpTFy3O3MmtzMecO7xyRGiLlSHpuBAJ4t23Ds249nnXrwv+827YdslKdJSaG2EGDiDvuOOKOG0bsoEFYdR5dWDS935pCobuQhXsWsmDPAubvns+GkkPDUbfkbgxrN4zj2h3H0LZDyYht2nPSWnrPo5F6bi7123zqufnU8+gRsbAUExNzSCja973L5aq1/Z///Cc9e/bk8ssvB+C+++7j9NNP59133+X6669v0OsWFpZHfKUoiyX0JohULWO6pPDy3K18vnI323eV4HLYzC/CZPX1PFhUiH/jRvwb1+PftJHAxg34t2wGj6fu50lJxd6zJ45BuTgHD8Hepy+WmpDvBtyVfqjUCfaRPsabSpGniGVFS1hSuIglhYvZWrH5kH26JuYwKC2Xwem5DEwbTGrMAaO3lVDQRMdHS+15NFPPzaV+m089N596bp59vT6ciIWltm3bUlxcjN/vx24PlZGfn4/L5SIpqfY5HStXrmTy5Mnh761WK71792bnzrqvTP9TDOOQwYGIiVQtA9on0S4xht3lHr7bXMzJPVr+6muG2417x2aqFi3Dv7EmFG3aiFFSXPcDnDHYc3Kw5XTHntMNW7fQrTXt0JHMaDmeolE0vd+ORpGnkKWFi1lStJhlRYvZWrHlkH1yEruFptWlhcJRSkztBTvM/vmbe8+bI/XcXOq3+dRz86nn0SNiYalPnz7Y7XaWLFnCsGHDAFi4cCEDBgyotbgDQJs2bdi4cWOtbZs3b9ZKeEfJarEwoVcmry7Yzow1e1tUWDICAQI7tofDUGDTBvwbNxDcuYOCun7rWCxYsztg79YdW0437DXhyJrdAYut5Y+4SW0F1fksLVrMsprzjvIqD13qvVtiDwalD2ZQ2hAGpg0i2ZlifqEiIiJiioiFpdjYWM4991zuuece/v73v7N3716mTp3KAw88AIRGmRITE3G5XFx88cX84Q9/oH///uTm5vL222+zc+dOzjvvvEiV3+xN7B0KS3M2FVHp9RPvjOgltxrMMAyMwkL8mzbsnz63aSOBLZvBW/cUOlt6OtYuOaFQ1K17aLSoSw6Wg6Z9SuuRX53PssLFoQUZipaw/aBwZMFCt6TuDEobwqC0wQxIG0yys+ELy4iIiEjzFNFPyHfeeSf33HMPV155JQkJCdx6661MnDgRgNGjR/PAAw9w/vnnc8YZZ1BZWckzzzzD7t276dOnDy+//HKDF3eQ/Xq1SaBTaizbit3M2ljI6X3aRrqkehlVVfg3bwqNEoVHizZilJbU/YCYGOxda6bQ1YwYObp3p02PzhQUaA5wa5bv3lsTjEJLee+o2l7rfgsWuif1ZFDaYAalh0aOEh1a6l1ERKS1shhG6/roGA0fli0WyMhIjHgtT3+3hRd+2MbonDQeOa9/5Ao5iFFVhXfeXLyzv8W3cjnBnTvq3tFiwdahY00o6hY+v8ialX3IFLpo6XlrEU39Lqwu4KtdM/lyxwzWla2pdZ8Vaygcpe8752gQCY7muQJRNPW8tVDPzaV+m089N596bp59vT6c5jX3ShrVxN6ZvPDDNn7YUkyp20dyrCNitQRLSvB+Nxvv7G/wzv/xkKl0lrQ07Dn7zyuydeumKXRSr0pfJXP2fMvMnZ+zuGAhQYJAKBz1SO7JoLQhDE7PpX/qIBIcCRGuVkRERKKVwlIrlpMeT4/MeNbnV/L1+gLOHdje1NcP7NmNd/a3eGd9g2/pYggGw/dZs7KJGXsijuEjsXfvgTW1dVw8V46eL+hjfv48vtz5Od/tmY03uP/SBH1T+jMh+1TGtTv5kNXqREREROqjsNTKTeiVyfr8SmaszW/ysGQYBoEtm/DO+gbPrG8JrKs9JcrWoycxY07EOfZEbDndsOjy1XIYhmGwsng5M3d+zje7vqTMVxa+r2N8J8Znn8opWRPJisuOYJUiIiLSXCkstXITemXy1JwtLMwroaDSS0a8s1Gf3wgG8a9agXf2t3hmfUNwe97+O61W7AMGETNmHM4x47Bl6QOtHJmtFVuYueNzvtw5g93uXeHtaTHpnNx+POOzT6VHUi8FbhERETkmCkutXIeUWPq1S2Tl7nK+WpfPxbnHHlgMnw/f4oV4Z32Dd84sgoUF++90OHAMG07M2BNxjhqj6XVyxAqq8/l650y+2Pk5G8rWhbfH2uIY2+5ETsmaSG7GUGwWXR9LREREGofCkjCxdyYrd5fz2eq9XDQ466j+Gm9UVeH98YdQQJo7B6OiInyfJT4e5/GjcI49EceI47HGxTdm+dKCVfoqmb3nG2bu+JzFhQsxCC0NZLPYGJ55POOzJnJ829G4bFroQ0RERBqfwpIwoVcm/561meW7ynlqzhZuHtP1iB73UyvYWdLSiBk9LhSQcodicTbu9D5puXxBHz/m/8DMHZ8zd++cWgs19EsdwPisUzmx/ckkO1MiV6SIiIi0CgpLQmZCDL8/uRsPzNzASz/mkRBj58rhHevc9ydXsMvuEFqgYcw47P36H3KtI5H6BI1gzUINM/j2oIUaOsV3Di/U0D4uK4JVioiISGujsCQAnD8oiwpPgMdnb+aJ2ZtJjLFx/qAsrWAnTWpL+Wa+3Pk5M3fOYI97d3h7ekwGJ2eN55SsU+mR1FPHlYiIiESEwpKETRnekXKPn5fnbeX9t76k50c7yVr5Y90r2I0NjSDZ2usv/dIw+dX5fL3zC2bu/JwNZevD2+PscYxpeyLjs09lcPoQLdQgIiIiEaewJMD+FeymzPuGs778iviKEgCCAE4njqHH1axgNxZrqi7qKQ1T4atg9u5vmLnzc5YULqq1UMOIzOMZn30qx7cZTYwtJsKVioiIiOynsNTKBSsrqH7/XdxvvYFRXARAPOCJieX7zN78mD2AS68/nyE9NYIkDeML+JizexZf7PicuXu/w3fAQg0DUgdxStZExrU/mWRncgSrFBEREamfwlIrFSwtwf32dKrffQujohyoWcFuzDicY07EMmgIP3y2gVkbC/nxs808lZRIv3aJEa5aol1hdQELC+ezsOBH5uXPpcy7f6GGzgldGJ8VWqihXVz7CFYpIiIicmQUllqZQEE+1dNfx/3he+B2A2Dr3JXYK64kZvxELPb9h8Tfz+rD7e8tZ0FeKbe9u5ynfzaI7hm6RpLsVx2oZnnREhYUhALSpvKNte7PiMngpKwJjM+aSHct1CAiIiLNjMJSKxHYuQP3669S/elH4PMBYOvRi7gpV+MceyIWq/WQx8TYrfzz3H7c8s5yVuwq59Z3lvPcJYPokBJrdvkSJYJGkI1l61lYMJ8FBT+yvHhZrel1Fiz0SOrFsMzhjO9+Ip1sPbCihRpERESkeVJYauH8W7fgfu0lPF98DoEAAPYBg4ibcjWOEccf9i/98U47j57XnxveWsrGgipufmc5z/1sEG0SdSJ+a5Ffnc/Cgh9ZkP8jiwrnU+ItqXV/G1dbhmUMZ2jGcQzJGEayMwWLBTIyEikoKMcwIlO3iIiIyLFSWGqh/OvWUvXKi3hnfc2+T6uO40aEQtLgIQ16ruRYB09cMICfT1/K9pJqbnl3Oc9ePIiUOEdTlC4R5va7WVq0ODx6tLVic637Y21xDErPZVjGcIZlDKdjfCdNrxMREZEWSWGphfEtW0rVqy/i++H78DbnmHHETr4aR5++R/28GQkxPHnhQH7+5hI2F1bxy/eW89RFA0mI0SHU3AWNIOtL14bD0YriZfgNf/h+K1Z6JvdmWGZo9KhvSn8cVgVlERERafn0SbcFMAwD34IfqXrlRfxLFoU2Wq3EnDKB2Cuuwp7TrVFeJyvZxRMXDuT66UtZvaeCX3+wkn+f3x+XQ+ekNDd73LtZWLMow8KCBZT5Smvd3za2XXjkKDd9GEnOpAhVKiIiIhI5CkvNmBEM4p0zC/drL+FfvSq00W4n5rQzibt8CrYOHRv9Nbumx/H4Bf35xVvLWLy9lD98tJp/nNMXh+3QBSIkelT5K1lSuDh07lHBj+RVbqt1f5w9jtz0oTXnHg0nO66DptaJiIhIq6ew1AwZfj+er2fifu1lAptqlmqOicE16TxiL7kcW5u2Tfr6vdsm8sh5/bn13eV8t7mIv/xvLfed0RubVR+uo0XACLCudA0LCn5kYcF8VhYvJ2AEwvdbsdI7pW949Kh3Sl/sVv06EBERETmQPh01I4bPh+ezT6ia9grBHdsBsMTH4zrvImIvvgRrapppteR2SObBSX357Qcr+WJtPvFOG3+c0EOjERG0u2oXCwrmsaBgPosLF1DuK691f1ZcNkPDU+uGkODQRYZFREREforCUjNgVFdT/dEHuN98jeDevQBYkpOJvegSXOdfjDUxMh96R3VN474zenPXJ6v5YPluEmLs/HJsVwUmkwSCfpYXL2POnln8uHcu26vyat0fb09gSPqw8MIMWXHZEapUREREpHlSWIpiwYoKqt9/B/dbb2CUFANgzcgk9pLLcU06D0ts5C8OO75XJpVeP3+bsZ7XFmwnyWXn6hGdIl1Wi1UdqGZB/jy+2zObuXvnUOYrC99ntdjol9KfoRnHMSxjOL2Se2PT1DoRERGRo6ZPUlEoWFKC+503qX73LYyKCgCs7bOIvXwKrtPPwuJ0RrjC2s4Z0J4KT4BHv93EU3O2EO+0c3FuVqTLajFKvaX8sPc75uyZxYL8eXiCnvB9SY5kTmg7mhPajCY3fRjxjvgIVioiIiLSsigsRZFAQT7uN16j+r/vQ3U1ALbOXYm94kpixk/EYo/e/1yXD+tAucfPCz9s4x9fbSAhxsYZfZt2oYmWbLd7F9/vmc2cPbNYVrSU4AGLM7SNbcfotuMY3XYs/VMHaPRIREREpInoU1YUCOzcgfv1V6j+9GPw+QCw9exN3JSrcY4Zh8XaPJblvuGEzlR4/ExfvJO/fraWOIeNE3tkRLqsZsEwDDaXb+K7PbOYvedbNpStq3V/t8QejGo7htHtxtItUQtpiIiIiJhBYSmC/Fs2U/XqS3hmzoBAaOTAPnAQcVOuwTF8ZLP7QGyxWPj1Sd2o8Ab4ZOUe/vjJah49rz/DO6dGurSoFDACrCpewZw93zJnzyx2Ve0M32fFSv+0gYxuO45RbcfQPk7TGkVERETMprAUAf4N69n+15cp/+ILMAwAHMNHEjf5KhyDh0S4umNjtVj408SeVHr8fLOhkN9+uJInLxzIgKykSJcWFbwBDwsLFvDdnll8v3c2Jd6S8H1Oq5NhGcMZ1XYsx7cZRUqMQqaIiIhIJCksmSxYUUHxL64Nn5PkHHsisZOvwtG7b4Qrazx2q4X7z+zDrz9YwbytJdz23gqe+dlAemQmRLq0iCj3lTFv79zQEt/5P1AdcIfvS3QkMrLNKEa1HctxGSOItUd+hUMRERERCVFYMpnF5SJm3Em44mOxnnsRtq7dIl1Sk3DarfzjnH7c8s5ylu0s45Z3lvPcJYPplNo6wkB+dT7f75nFnN2zWFK0iMABCzRkutowqu1YRrcdy8C0wdi1QIOIiIhIVNKnNJNZ7HaS/nwvGRmJFBSU75uF1yLFOmw8el5/bnhrKevzK7n57WU8d8kg2iW5Il1aozMMg22VW5mzO3T+0drS1bXu75qQw6h2oYDUI6lXszsfTURERKQ1UliSJpXosvP4BQO4fvpSthW7a0aYBpEaF13XijoaQSPI6pKVfLdnFnP2zGZ75bbwfRYs9EsdwKi2YxnVdgwd4jtGsFIRERERORoKS9Lk0uOdPHnhAK57cylbi93c+u4K/nPRQBJdze/w8wV9LC5cyHe7Z/Hd3tkUeQrD9zmsDoakD2NU27Gc0HYMaTFpEaxURERERI5V8/u0Ks1SuyQXT144gJ+/uZS1eyv41fsreOLCAbgctkiXdkTKfWV8tPUD3t3yFsXeovD2eHs8IzJPYHS7cQzPHEGcPT6CVYqIiIhIY1JYEtN0Tovj8QsH8Iu3lrJ0Zxm/++8qHj63Hw5b9F50d497N+9uns4neR/hDlQBkBaTzui2YxnVdiyD04fgsDoiXKWIiIiINAWFJTFVrzYJPHpef255Zzk/bCnmz5+u4f4z+2CzRteCBxvLNvDW5tf5aucX4ZXschK78bOcyzmp/XitYCciIiLSCugTn5huUHYy/zinL7/+YCVfrisg3rmOuyb2xBrhFeIMw2BJ0SKmb5rGj/k/hLfnpg/lkpzLGZYxQqvYiYiIiLQiCksSESO7pPG3M/tw50er+O+KPcQ77fzqxJyIhJFA0M/sPd/y5sZprCtbA4AVK+Pan8TPci6nZ3Jv02sSERERkchTWJKIOblHBn+a2JO/fr6ONxbtINFl5+fHdzbt9asD1XyW9wlvb3mDXVU7AYixxnBax7O4qOslZMVlm1aLiIiIiEQfhSWJqLP7t6PCG+Dhrzfy7PdbSYixc+mQpg0ppd4S3t/yDh9sfZcyXykASY5kzutyIed2voBkZ0qTvr6IiIiINA8KSxJxlw7JpsLj59nvt/Lw1xuJd9qY1L9do79OXnkez654gf/lfYwn6AGgfWwWF3W9lNM6nonL5mr01xQRERGR5kthSaLCdSM7UeHx8/rCHdw/Yx0JThsn98xslOdeW7Ka6ZtfZ9burwkaQQB6JvXmkm6XM6btOGxa2U5ERERE6qBPiRIVLBYLt4/LodIT4MMVu7nrkzU87LRxfJe0o3o+wzCYXzCPNze9xpLCReHtwzNH8rOcyxmcNkQr24mIiIjIT1JYkqhhsVi4c0IPKr1+Zq4r4HcfruLJCwcwKDv5iJ/DH/Tz1a4veGvT62wq3wiAzWLj5KwJ3DDkOtKDWRhGU/0EIiIiItKSKCxJVLFZLfz1jN5Uelcyd0sxt723ggcn9WVE59SffFyVv5JP8j7i3c3T2Vu9B4BYWxxndjybC7r+jHZx7chIS6SgoNyMH0NEREREWgCFJYk6DpuVhyb15Vfvr2BBXim3vbeCP03swVn9Dl30ochTyHtb3ua/W9+nwh8KQqnONC7ocjFndz6XREeS2eWLiIiISAuhsCRRyeWw8dj5A/jr52v5fE0+9362jl2lHq47vhMWi4VtFVt5e/MbzNjxP3xBHwAd4jvxs5zLmJB1Kk5bTIR/AhERERFp7hSWJGo57Vb+ekZvspJdvDgvj2fnbmV16QriMmcxd+8cDEInH/VN6c8lOZdzQtsxWC3WCFctIiIiIi2FwpJENavFwi9GdcbtWM5/895gibEV9obuO6HNaC7JuYL+aQMjW6SIiIiItEgKSxK1vAEvM3d+zlubXmdb5VZscWAYNnylubQPnsoto0+hXZIuJCsiIiIiTUNhSaLSd3tm88SqR9jj3g1AvD2Bszudy8D4M7j3k91sqfRyzRtLeOS8/vRqkxDhakVERESkJVJYkqiyu2oXj696hLl75wCQHpPBRV0v4cyO5xDviAfgxcvacdt7K9hUWMX1by7l/yb1OeqL14qIiIiI1Ednw0tU8AV9vL7xFa6edRlz987BZrFxac5kXhk3nYtzLgsHJYB2SS6ev2QwwzomU+UL8Kv3VvDh8l0RrF5EREREWiKNLEnELSlcxGMr/8nWii0ADErL5bZ+v6VLYtd6H5PosvPvCwbwtxnr+HTVXv42Yz07S6v5xaguWCwWkyoXERERkZZMYUkipshTxNOrH2fmzs8BSHGm8Is+tzIh67QjCjwOm5V7TutF+yQXL/ywjanz8thV5uHPp/bEYdOgqYiIiIgcG4UlMV3ACPDxtg95Ye0zVPjLsWDh7E7ncm2vG0h0JDXouSwWC78Y1YWsJBd/n7me/63eS36Fh4cm9SPRpcNbRERERI6ePk2KqdaVruGRFf9gbelqAHok9eL2/r+jT0rfY3reSQPa0SbRyR8+Ws2CvFKufXMJj53fn/ZaWlxEREREjpLmKokpKnwV/Hvlw9z03XWsLV1NvD2eW/v+mqdGPX/MQWmfkV3SePZng2iT4GRzYRVXv76ENXvKG+W5RURERKT1UViSJmUYBl/umMGV317CB1vfIUiQU7Im8tLYNzivy4XYLLZGfb2ebRKYelku3TPiKaz0cv30pXy3qahRX0NEREREWgeFJWky2yq28rsfb+P+pfdQ7C2iQ3wn/jn839w1+B7SXRlN9rptE2N47pJBjOicgtsX5NcfrODdpTub7PVEREREpGXSOUvS6DwBD9M2vsz0TdPwBX04rU4u734lP+t6OU6b05QaEmLsPHpef/7+xXo+WrmHB77YQLHX4JphWVjQ0uIiIiIicngNHlm64447mDVrFoFAoCnqkWbuh73fc82sy3ltw0v4gj5GZB7P1LHTmNz9atOC0j52m5U/n9qTG07oDMDT327kT5+swesPmlqHiIiIiDRPDR5ZSkhI4K677sLn8zFx4kTOOOMMRowYoQuBtnJ73Xt4YtWjzNnzLQCZrjbc3Pd2xrQdF9Fjw2KxcN3xnWmfFMPfZqxnxpp88ss9/OOcfiTHOiJWl4iIiIhEP4thGEZDH2QYBvPnz+ezzz5jxowZAJx++umceeaZDB48uLFrbFQFBeU0/CduXBYLZGQkRkUtx8of9PPulrd4ef0LVAfcWC02LuzyM67scQ2x9rhIlxdmscDaEg/Xv7KASm+AzqmxPHZBf7KTYyNdWovUko7x5kI9N596bi7123zqufnUc/Ps6/Vh9zuasHSgiooKnn/+eV588UW8Xi9ZWVlcfPHFXHXVVcTExPzkYz0eD/feey8zZszA5XJxzTXXcM011xyy3+TJk/nxxx8P2X7++efzwAMPNKjeaDj4WsobYXnRUh5d8Q82V2wCoH/qQG7v9ztykrpFuLJD7ev5D6t3c9t7K9hT7iEtzsHD5/WnX7vDv1GkYVrKMd6cqOfmU8/NpX6bTz03n3puniMNS0e1wENlZSVff/01n332GXPmzKFt27ZcffXVnHHGGeTn5/PPf/6TH3/8kRdeeOEnn+ehhx5ixYoVvPzyy+zcuZM77riDrKwsTjvttFr7Pf744/h8vvD3S5cu5fbbb+eyyy47mvLlGJV4inl27VN8tv0TAJIcydzQ+2ZO7XAGVkt0L7DYPTOeFy8bzO3vrWBdfiU3TF/K/Wf2YVz39EiXJiIiIiJRpsFh6cYbb+T7778nKSmJ008/nVdeeYWBAweG7+/ZsydlZWXcddddP/k8VVVVvP322zz33HP069ePfv36sX79eqZNm3ZIWEpJSQl/HQgEeOSRR7juuusYMGBAQ8uXYxA0gnya9xHPr/0PZb4yAM7sOInret1IsjM5wtUducyEGJ69ZBB3frSauVuK+f1/V/Kbk7pzcW5WpEsTERERkSjS4LCUkZHBM88885OLOgwbNoy33377J59nzZo1+P1+cnNzw9uGDh3K008/TTAYxGqte4Tivffeo7S0lJ///OcNLV2Owcay9Tyy4h+sKlkBQLfEHtze/7f0S22egTXeaefhc/vxf19u4MPlu/nHVxvYWVrNL8d1xarFSkRERESEowhL9913H9OmTaOgoICzzjoLgJtvvpnRo0dz6aWXApCZmUlmZuZPPk9+fj6pqak4nfuXk87IyMDj8VBSUkJaWtohjzEMg+eff54pU6YQHx/f0NKB0PzESNtXQzTUcjhV/kpeXPc8721+myBBYm1xXN3zOs7vciE2a/O5TFddPXfYrfxpYg+yk108NWcL0xZuZ3d5Nfee3guXwxaZQluI5nSMtxTqufnUc3Op3+ZTz82nnpvnSHvc4E+7jzzyCO+99x733ntveNuIESN46qmnKCoq4uabbz6i53G73bWCEhD+3uv11vmYefPmsXv3bi6++OKGlh2Wnh49J/NHUy0HMwyDGVtn8NCPD7HXvReAiZ0n8vvjfk/b+LYRru7o1dXz35/Vj14dUvjt20v5cl0BJZ4Az00ZRlq8udeFaomi+RhvqdRz86nn5lK/zaeem089jx4NDkvvvvsujz76KMOGDQtvmzJlCr169eJ3v/vdEYelmJiYQ0LRvu9dLledj/n8888ZO3ZsrXOYGqqwMPKri1gsoTdBNNRSlx2V23ls5b+Ynz8PgKy4bG7r/xuGZ44ENxS4yyNcYcMdruejOiTx+AUD+N2Hq1i4tZhzn5jDvy/oT4cULS1+NKL9GG+J1HPzqefmUr/Np56bTz03z75eH06Dw5Lb7SYhIeGQ7ampqZSXH/mH6LZt21JcXIzf78duD5WRn5+Py+UiKSmpzsfMnj2bW265paEl12IYRM3BF021AHgDHt7Y9Bqvb3wVX9CLw+rg0pzJXNZtMk5bTFTVerR+qudDO6bw/KWDuP29FWwrdnPVtCU8fG4/BmTVfTzK4UXbMd4aqOfmU8/NpX6bTz03n3oePRq8zvOYMWO4//772blzZ3jbnj17ePDBBxk9evQRP0+fPn2w2+0sWbIkvG3hwoUMGDCgzsUdioqKyMvLY+jQoQ0tWY7AooIFXDt7Mi+vfwFf0MvQjON4YcxrXNXzOpy2n75eVkuSkx7P1Mty6dM2gRK3jxvfXsbX6wsiXZaIiIiIRECDw9Ldd9+Nz+fjlFNOYeTIkYwcOZITTzyRYDDI3XfffcTPExsby7nnnss999zDsmXLmDlzJlOnTmXKlClAaJSpuro6vP/69euJiYmhQ4cODS1ZDmNJ4SJ+P/9X7KjaTnpMBnfn3sdDxz1Kh/iOkS4tIjLinTx98SBG56Th8Qe547+reH3h9kiXJSIiIiIma/A0vLS0NN58803WrFnDli1bsNvtdOnShe7duzf4xe+8807uuecerrzyShISErj11luZOHEiAKNHj+aBBx7g/PPPB6CwsJCkpKR6lyuXo5Pv3stfF/+JoBFgbLsT+d2Au4h3HN1Kgy1JnNPGP87pxz+/2sC7S3fxyDeb2FXm4fZxOdisOgZFREREWgOLYTR8RqTf76ewsJBAIACEVk7zer2sXr2aM844o9GLbEwFBZE/Yc5igYyMxIjX4g14uf2Hm1hTuopuiT14/IRncNnqXlyjuTvanhuGwavzt/P47M0AnNg9nfvO6K2lxQ8jWo7x1kQ9N596bi7123zqufnUc/Ps6/XhNHhkaebMmfz5z3+mpKTkkPsyMzOjPizJfk+uepQ1patIdCRy79C/t9igdCwsFgtThnekXVIM93y2lm82FHL99KX8YXwP+rbTsp4iIiIiLVmDz1n617/+xYQJE/jkk09ISkrizTff5OmnnyY7O5vbb7+9CUqUpvC/vI/5KO8DLFi4a/C9ZMVlR7qkqDaxdxuevHAgSS47q/dUcOW0xfzpk9XsKHVHujQRERERaSINDkt5eXlcd9115OTk0L9/f/Lz8xk3bhx/+ctfePHFF5uiRmlk60rX8OjKfwJwVY/rQtdPksPK7ZDMtMlDOLNvGyzA52vyuejFBTzyzUZK3L5IlyciIiIijazBYSkpKQm3O/TX9K5du7JmzRoAcnJy2L5dK4ZFu1JvCXcvvBNf0MvxbUZzefcrI11Ss9IuycU9p/fm1SuGMLxTCr6AwesLd3DeCz/y6vw8PP5gpEsUERERkUbS4LA0btw47r33XjZs2MCIESP48MMPWblyJdOnT6dNmzZNUaM0koAR4G+L/8Le6j1kx3XgzkF/xmpp8CEgQK+2CTx50UAev6A/PTLjqfAE+PeszVw4dT6frtpDUGdlioiIiDR7Df6kfNddd9G5c2dWrFjB+PHjGTRoEBdeeCHTpk3jjjvuaIoapZG8uO45FhbOx2Vz8dehD5Dg0AIFx2pklzRevWIIfzmtJ20SnOwu9/CX/61l8quLmLelONLliYiIiMgxaPDS4R9//DGjRo0iNTU1vK2iooKYmBgcDkejF9jYomEpxkgsCzl797f8ZdGdAPxp8L2cnDXBnBeOEmb0vNoXYPrinbw4bxuV3tCy+iO7pHLrmK70bJPQNC8apbT0qfnUc/Op5+ZSv82nnptPPTfPkS4d3uCRpXvvvZfi4tp/MU9ISGgWQam12laxhQeX3QfABV1+1uqCkllcDhtXDu/IB9cO59Ih2ditFn7YUswVry7ins/WsrusOtIlioiIiEgDNDgsjRgxgo8//hiv19sU9Ugjq/JX8pdFf6TKX8XAtMHc0PvmSJfU4qXEOfj1Sd14++phTOyViQF8snIPF764gMdnbaa82h/pEkVERETkCDT4orSFhYU89dRTPP3006SlpRETE1Pr/i+//LLRipNjYxgGDy37O1srtpAek8HduX/Dbm3wf3I5Sh1SYrn/rD5cNjSbx2ZtZvH2Ul6Zn8eHy3dx7fGduXBQexw2LbAhIiIiEq0a/Mn54osv5uKLL26KWqSRvbX5DWbt/hq7xc49Q+4nLSYt0iW1Sv3aJ/HMxQOZs6mIx2dtZnNRFQ9/vZHpi3Zw0+guTOiVicViiXSZIiIiInKQBoel8847rynqkEa2qGABz615CoCb+95Ov9QBEa6odbNYLIzpls7xXdP4aMVunvl+KztKq7nrkzVMW7iDX47tytCOKZEuU0REREQO0OCwNHny5J/8K/grr7xyTAXJsdvr3sN9S+4mSJBTs89gUicF3Ghht1o4b2B7TuvThmkLtvPq/O2s2l3OL95axpicNG4Z25Wc9PhIlykiIiIiHEVYGjFiRK3v/X4/eXl5fPvtt9x4442NVpgcHW/Ayz2L7qLUW0L3pJ7c3v93muIVhWIdNq47vjPnDWzP83O38v6yXczeVMR3m4uY1L8dN5zQmYyEmMM/kYiIiIg0mQaHpVtuuaXO7e+99x4zZszg2muvPeai5Og9seoR1pSuItGRyL1D/k6MTR+4o1l6vJM7xvfgZ0OyeXL2Zr7ZUMgHy3fz2eq9XD6sA5OP60C8U4tyiIiIiERCoy3FddxxxzF37tzGejo5Cp/mfcTHeR9iwcKfBt9L+7isSJckR6hLWhz/OKcfz18yiAHtk6j2B3nhh22c/8J83lmyE38gGOkSRURERFqdBv/JeufOnYdsq6ys5IUXXiA7O7tRipKGW1uymsdW/guAq3v+nOMyR0a4Ijkag7KTeeHSQXy9oZAnZ29mW7GbB7/cwBuLdnDLmK6c2D1d0ypFRERETNLgsHTyySdjsVgwDCP8oc0wDNq3b8/f//73Ri9QDq/UW8JfFv0RX9DLCW1Gc1m3KZEuSY6BxWLh5B4ZjM1J471lu3l+7la2Fbv5/X9XMTAriV+O7cqg7ORIlykiIiLS4jU4LB180VmLxYLD4SAjI0N/8Y6AQNDPfYvvZm/1HjrEdeQPg+7GatGFTlsCu83KxblZnNG3Da8u2M60BdtZtrOM695cysk9MrhpdBc6p8VFukwRERGRFqvBn6qzs7P55ptvWLx4MdnZ2WRlZXHvvffy5ptvNkV9chgvrHuWRYULcNliuXfo30lwJES6JGlkCTF2bhzVhfeuOY5zBrTDaoGv1hfws5cX8tCXGyiq8ka6RBEREZEWqcFh6ZFHHuE///kPcXH7/6I9fPhwnnrqKZ588slGLU5+2qzd3/DmptcA+P3AP9I1sVuEK5Km1CYxhj9N7Mm0KUMZnZNGIGjw9pKdnPf8fF74YSvVvkCkSxQRERFpURoclt59910effRRTj755PC2KVOm8M9//pPp06c3anFSv20VW3hw6d8AuKjrJZzY/pQIVyRm6Z4RzyPn9ec/Fw2kT9sEqnwBnv5uKz97eSHfbijEMIxIlygiIiLSIjQ4LLndbhISDp3qlZqaSnl5eaMU1eIFvHAMH2ir/JXcvfBO3IEqBqcN4fpeNzVicdJcDOuUwkuX5/K3M3rTJsHJztJqfvvhSm5/fwXbit2RLk9ERESk2WtwWBozZgz3339/rSXE9+zZw4MPPsjo0aMbtbgWyecm9eXj4ZH+xKx6E4L+Bj3cMAweWnY/2yq3kuHK5M+5f8Vm1UVLWyurxcKpfdrw9tXHceXwjtitFr7fXMwlLy/gqTmbcWtqnoiIiMhRa3BYuvvuu/H5fJx88smMHDmSkSNHMm7cOAKBAH/5y1+aosaWxQKGKxnKtpP41W9JfXM8zo2fHvFI0/RN05i1+xvsFjv35N5PakxaExcszUGc08YtY7ry5pVDGdklFV/A4MV5eVz04gK+XJevqXkiIiIiR8FiHOWnqLVr17J582bsdjtdunShe/fujV1bkygoKD+WGXCNwhKoJmPTdIKz/om1uhgAX5tBVB7/R3wdRtX7uEUFC/j9j7cTJMjt/X7HpM7nmVVys2exQEZGYlT8929qhmEwa2MhD3+9kZ1lHgCO65TC707uTtd0c5Yab039jhbqufnUc3Op3+ZTz82nnptnX68Pp8EjS16vl4ceeogFCxZw2mmnMX78eH7/+9/zz3/+E5/Pd1TFtjp2F5xwC8WTv6Ny2G0Y9jgce5eS8uHPSP7vZdj3LjvkIXvcu7lvyd0ECXJahzM5u9O55tctzYLFYmFc9wymXzWMnx/fCafNwvxtJVz6ykIe/WYTFZ6GTf0UERERaa0aHJb+9re/8e2339K7d+/wtptuuolvvvmGBx98sFGLa+mMmCSqRvyOwsnfUTXgagyrA2feLFLfPoPEz36BrXgjAN6Ah3sW/ZFSbwk9knpxW7/f6gLAclguh43rT+jC9KuGMbZbOoGgwbSF27noxQX8b/UeTc0TEREROYwGT8MbOXIkL774In369Km1ffny5dxwww18//33jVpgY4uGYc36hlitZduI//FfxKx9DwsGhsVGdZ+fcW9yDJ/s/pIkRxJPj3qRdnHtI1d8M6VhbfhuUxH/+noDeSXVAORmJ/Hbk7vTs03jX8hY/Tafem4+9dxc6rf51HPzqefmabJpeIZh4PF46tyuaXjHJpjUifLxj1F8yQw8XSZgMQJ8uu1DPtn9JRbgT31/p6AkR21UThpvXjmMm0Z3wWW3snhHGZNfW8Q/vtxAebWm5omIiIgcrMFh6dRTT+XPf/4zCxYsoKqqiqqqKhYtWsQ999zDhAkTmqLGVieQ3oeyM1/ku1Mf5f6MdAB+WVTCqZ/eStyCx8FXFeEKpbly2q1cPaITb189jPE9Mwka8NaSnVwwdT7/Xb6boP6MJSIiIhLW4LB055130qNHD6688kqGDh3K0KFDmTx5Mn369OGuu+5qihpbpRJPMXdvm4bPAmMS+3ClPQurt4z4eQ+S/uooXMtfDl3cVuQotEty8cDZfXjywgF0TYuj2O3jvhnruPaNJazarYtLi4iIiMAxLB1eVlbG1q1bcTgcdOjQgYSEBPbu3UubNm0au8ZGFQ1zQA83HzUQ9PP7+b9iceFCOsR34j8nvEC8PZaY9R8SP++f2Mq2hvZL6kzliN/i6XEOWBqce1sVzQGunz8QZPrinTw3dyuV3gAW4NyB7bhpVFdS4hxH9Zzqt/nUc/Op5+ZSv82nnptPPTdPk52ztE9SUhIDBgwgJyeHb7/9luuuu46TTjrpaJ9ODvDCumdYXLgQly2Wvw55gHhHPFiseHqeR9FlX1M+9n6CsZnYyraS9MWtpE4/FeeWL4/4wrYiB7LbrFw+rAPvXD2M0/u0wQDeX7abC1+cz7tLdxII6rgSERGR1umow9LChQv585//zKhRo/jtb3/L7t27+eMf/9iYtbVKs3Z9zZubpgHw+4F30SWxa+0dbE6qB1xJ4eTvqBxxB0FnIvbC1SR/ciXJ71+Ifdf8CFQtLUFGQgx/PaM3z/5sED0y4ymt9vN/Mzdw5bTFLNtZFunyREREREzXoGl4O3bs4IMPPuDDDz8kLy+PpKQkysrKePjhhzn99NObss5GEw3DmvUNsW6t2MJN312HO1DFxV0v4xd9bjn8c1UXE7foSWKXvYglEFql0NNlApUjf08gvc9hHt16aFi7YfxBg/eW7uLp77ZQXnMR2zP7teXWMV1Jj3ce9vHqt/nUc/Op5+ZSv82nnptPPTdPo07De/fdd5k8eTLjx4/nrbfeYtSoUUydOpXvvvsOq9VKjx49jrng1q7SV8ndC/+AO1DF4PQh/LzXL47ocYYrlcoT/kTRFbNx970Mw2IjZssXpL45kcSZt2Et29bElUtLZLdauDg3i3euGcY5/dsB8MnKPVwwdT5vLNqBX1PzREREpBWwH8lOd911F507d+bBBx9k0qRJTV1Tq2MYBg8tu5+8ym1kutrw58F/xWY9ov80YcGELCpOegj34BuIm/cPXBs/xrX2XWLW/xd3vyuoGvZLjLjMJvoJpKVKi3Pyp1N7ct7Adjz45QZW76ng4a838uHyXfzu5O4M7ZgS6RJFREREmswRjSz9/e9/p0OHDtx5550cf/zx3HnnnXz55Zd1XpxWGu7NTa8xe883OKwO7hnyd1Jj0o76uQKp3Sg/7WmKL/oEb8exWII+4pa/SPqro4ib9w8sHp17Ig3Xr30SL12eyx8n9CDZZWdjQRW/eGsZf/pkNXvL9XtAREREWqYGnbNUVFTE//73Pz799FMWLVqEy+WiurqaP/3pT1x88cU4HEe3zLCZomEO6IHzURfkz+eOH39FkCC/7v97zup0bqO+liNvDvE/PIBj71IAgq5Uqobeirv/FLC7GvW1opnmADeeUrePp7/bwnvLdhE0INZh5bqRnbl0aDYOW+jvL+q3+dRz86nn5lK/zaeem089N8+RnrN01NdZ2r17Nx9//DGffvopq1atIiUlhXPOOYc777zzaJ7ONNFw8O37j7Ni2zpumHMNZb5STu9wFr8dcCcWi6XxX9AwcG76H/E/PIi9ZCMAgYT2VB33G6p7XwgNnPLXHOmXT+Nbu6eCh77aEF4pr3NqLL89uRsju6Sp3xGgnptPPTeX+m0+9dx86rl5mjwsHWjLli3h4PTpp58e69M1qWg4+CwWSEx1ctlHV7CudA29knvz2Mj/4LTFNO0LB/241rxD3Px/YavYBYA/tTuVI36PN+f0UGEtlH75NA3DMPh01V7+PWsTRVU+AE7qkcGvT8xhQLdM9dtEOsbNp56bS/02n3puPvXcPKaGpeYkOg4+g8fX/ZP3N7xPkiOZp0dPpV1se/Ne3l9N7IpXiFvwb6yeEgB8bQZTOfw3+DqNA8tRX34raumXT9Oq8Ph5bu5Wpi/aQcCAGLuVm0/qzvl9M4mx2yJdXqugY9x86rm51G/zqefmU8/N06hLh0vj+jjvQ97f8D5WrPw596/mBiUAuwv34Ospmvw9lcNuw7DH4ti7hJSPJ5P22hhiFz2JparA3JqkWUuIsfOrE7sxbcpQhnZMxuMP8vAX67hg6nw+XbWHoH7ji4iISDOkkSWTVfkrOW/mmfiCXq7vfSOX5EyOXDE1LFX5xC16Etfq6Vi95QAYVgeenNOo7ncFvuwTmv0UPf2lxjyGYTBzXT5PztnKjhI3AL3aJHD7uByGdUqJbHEtmI5x86nn5lK/zaeem089N0+jTsO79tprOf744zn++OPp169foxQYKZE++AJBP/csvouuaZ25puuNQBSFEF8VrvX/xbXyNRx7l4Q3+1NyqO57OdV9LsZwpUauvmOgXz7mslggITmOJ79Yy9QftlHpDQAwOieNX47NoWt6XIQrbHl0jJtPPTeX+m0+9dx86rl5GjUszZs3j7lz5/LDDz+Ql5fH0KFDGTlyJMcffzxdu3ZtlILNEg0HX3N4I9jzV+Ba+Rox697H6qsEwLDF4Ol2Rmi0qf3wZjXa1Bx63pIc2O/iSh/P/7CVd5buIhA0sFng3IHtuf6EzqTFOSNdaouhY9x86rm51G/zqefmU8/N02QLPFRUVDB//nzmzp3L3LlzKS8vZ+TIkeHw1LZt26Mu2gzRcPA1pzeCxVtBzPoPcK14DUfBivB2f2pPqvtdRnWvCzFcKZEr8Ag1p563BHX1e2tRFU/M3sw3GwoBiHfauHJ4Ry4dko3LoUUgjpWOcfOp5+ZSv82nnptPPTePaavhFRYW8sMPPzB37lzmzZvHF198cSxP1+Si4eBrlm8Ew8C+dymula/hWv8hFn/oXBTDFoOnxyTc/a7A33ZI1I42NcueN2M/1e9F20t47NvNrNodOj+uTYKTm0Z35fS+bbBG6fHTHOgYN596bi7123zqufnUc/No6fB6RMPB19zfCBZPGTHr3iN25WvYC9eEt/vT++DudwWenudhxCRFsMJDNfeeNzeH63fQMPhiTT5PztnMrjIPEFoE4rZxXTmuU/M8Ly7SdIybTz03l/ptPvXcfOq5eRSW6hENB1+LeSMYBvY9i4hd+Rox6/+LJRD60GvYY6nucQ7V/SfjbzMowkWGtJieNxNH2m+PP8hbi3cwdd42Kjz7F4G4dWxXctLjTaq2ZdAxbj713Fzqt/nUc/Op5+ZRWKpHNBx8LfGNYKkuwbX2HVwrp2EvXh/e7sscQHW/y6nucR44I/fhtyX2PJo1tN8lVbUXgbBa4NwBoUUg0uO1CMSR0DFuPvXcXOq3+dRz86nn5lFYqkc0HHwt+o1gGDh2/RhaSW/DJ1iCXgCCjgQ8Pc/D3e8KApnmLz/fonsehY623wcvAhHnCC0CcdlQLQJxODrGzaeem0v9Np96bj713DxNGpY2btxImzZtSExMZPbs2Xz11Vf07duXiy666KiKNVM0HHyt5Y1gcRfhWvM2rpWvYS/dHN7uazOY6n5XUN1jEjjMud5Oa+l5tDjWfi/eXsqj326qtQjEjaO7cEbftloEoh46xs2nnptL/Tafem4+9dw8RxqWrA194unTpzNp0iRWr17NqlWruPHGG8nLy+Oxxx7jscceO6pipWUyYtNw595A8eWzKDlnOtXdz8awOnDsXULi178l/aVhJMz6E7YDFokQAcjtkMyLlw3m/jN70z4phr0VXu79bB2TX13Ej1uLI12eiIiItBINDkvPP/88Dz74IMOHD+fdd9+lT58+PP/88zzyyCO8/fbbTVGjNHcWC74Ooyg/9T8UXjmfiuPvJJDUGau3jNjlL5H25nhS3juPmLXvQM2S5CJWi4WJvdvw9tXH8cuxXUmIsbEuv5Kb31nO7e+tYFNhZaRLFBERkRauwWFpz549DB06FICvv/6a8ePHA9CuXTsqK/XhRX6aEZeBe8jNFF0xm5Kzp+HJOR3DYsOxaz5JM28n/aVhxM+5B1vxhkiXKlEixm5l8nEdef+a4fwsNwub1cJ3m4u49OWFPPDFegorvZEuUURERFooe0MfkJOTw0cffURaWho7d+5k/Pjx+Hw+pk6dSu/evZuiRmmJLFZ8ncbh6zQOa+UeXKun41r1Orby7cQtfZ64pc/jzRpJdd9L8XY9FcOZEOmKJcJS4hz89uTuXJybzROzN/P1+gLeW7aLz1bvZcrwDlw+tIMWgRAREZFG1eCwdMcdd3D77bdTWlrKZZddRrdu3fjrX//KF198wdNPP90UNUoLF4xvS9WwX1I15Gac277BtXIazq0zce78AefOHzBsMXg7n4yn+yQ8XcaDIzbSJUsEdUqN5aFJfWstAvH0d1t5b+kufjEqtAiEzapFIEREROTYHdVqeMFgkPLycpKTkwEoKCggOTkZh8PR6AU2tmhYXUQrnRyetXwnrtVvErP+A+wlm8LbDXssni4T8PQ4G2+nk8DuOqLnU8/NZVa/g4bBzLX5PDF7M7vKQhdF7pkZz23jchjeObXpXjgK6Rg3n3puLvXbfOq5+dRz8zTp0uGzZs2iX79+pKen88477zBjxgz69u3LTTfdhNMZ3ReQjIaDT2+EBjAM7AUridnwETEbPsJWti18V9CRgLfrRDw9JuHtOBZs9R976rm5zO63xx/krcU7mDpvGxWeAACjuqZx69iudMuI3MWQzaRj3HzqubnUb/Op5+ZTz83TZGHpySef5Pnnn+ell17C4/Fw1VVXcdFFF7FgwQKGDx/OX/7yl6Mu2gzRcPDpjXCUDAP73qX7g1PFzvBdwZhkPF1Pw9PjbHzZo8BWe5RTPTdXpPpd4vbx/NytvLN0F4GggdUC5wxox/UndCEjPrr/kHOsdIybTz03l/ptPvXcfOq5eZosLI0bN47777+f0aNHc9ddd7F9+3Zefvllli9fznXXXce8efOOumgzRMPBpzdCIzCC2HcvImbDf4nZ8Am2qj3hu4KuVDw5Z+DpMQlf1kiw2tRzk0W639uK3eFFIABiHVamHNeRy4d1ILaFLgIR6Z63Ruq5udRv86nn5lPPzdNkF6UtLS0lJycHwzD45ptvOOmkkwBISEggEAg0vFKRo2Gx4m8/jMoxf6Xoyh8pOfdt3P2nEIxNx1pdTOyqaaR8+LOaC9/ehX3nPAgGI121mGTfIhDP/WwQ/dol4vYFeeb7rVwwdT7/XbGbQFD/BxIREZHDa3BY6t27Ny+88AJPPPEERUVFTJgwgT179vDwww8zePDgBj2Xx+Phj3/8I8OGDWP06NFMnTq13n3Xrl3LpZdeysCBAzn77LP54YcfGlq6tFRWG77s46kY93cKr1pIyaQ3cPe9lGBMClZ3PrHLXyblvQvgkX7Ez74H++6F6M81rcPgDsm8eNlg7j+zN1lJMeRXeLnv83VMfm0R87YUR7o8ERERiXINDkv33HMPCxYs4OWXX+bXv/412dnZPP/88+zYsaPB5ys99NBDrFixgpdffpm//OUvPPHEE3z22WeH7FdeXs4111xD9+7d+eijj5gwYQK33HILhYWFDS1fWjqrHV/HMVSc9A8Kr15M6VmvUN37IoLOJCjfSezS50l99xzSXj2e+O//hn3vMgWnFs5isTCxdxvevvo4bhuXQ2KMnfX5ldzy7nJ++e5yNuTrYtoiIiJSt6NaDe9gXq+3wavgVVVVMXLkSJ577jlGjBgBwFNPPcXcuXN59dVXa+37yiuv8Oqrr/LZZ59hs4XON7jgggv45S9/ybhx4xr0utEwB1TzUc1nCXrIKP6R6kXTcW7+Aqtv/wfkQFJnqntMwtP9bALpfUL/geSYRPMxXuL2MfWHbby9ZCf+mkUgzu7XjhtGdSYzISbS5R21aO55S6Wem0v9Np96bj713DxHes5Sgy9KC7Bq1SpeeOEFNm3aRCAQoGvXrlx++eUMHz78iJ9jzZo1+P1+cnNzw9uGDh3K008/TTAYxGrdP+j1448/csopp4SDEsC77757NKVLa2WLgd5nUJExBsPnxrn1K2LWf0TM1pnYyrYSv/Bx4hc+jj+1O57uZ+PpPolAWo9IVy1NICXWwa9P6sbFuVk8OXszM9cV8OGK3Xy+Zi+Tj+vAFcM6EudsmYtAiIiISMM0OCx98cUX/OpXv2LixImcf/75BAIBlixZwjXXXMOjjz7K+PHjj+h58vPzSU1NrTUilZGRgcfjoaSkhLS0tPD2vLw8Bg4cyJ///Ge++uorsrOzueOOOxg6dGhDy4+KQYN9NURDLa1FrZ47YvF1PxNf9zOp8Fbi3DKTmA3/xbn1G+zFG7DPf4T4+Y/gT++Np2bEKZjSNaL1NzfN4RjvmBrL/03qy9IdpTz27WaW7SzjubnbeG/Zbm4c1Zmz+7fDZo3iH+AgzaHnLY16bi7123zqufnUc/McaY8bPA3vrLPO4sILL+Sqq66qtf2ll17i/fff58MPPzyi5/nggw947LHH+Prrr8Pb8vLyGD9+PN9++y3t2rULb58wYQLFxcVMmTKF8ePH88knnzBt2jT+97//0b59+4aUL1K/6jJY+ymseA82fgVB3/772g+CfudDv/MgtXPkapQmYRgG/1uxm//73xq2FVUB0LNtAnee0YcTe2Zi0f+1REREWqUGjyzl5eWFlws/0EknncTDDz98xM8TExOD1+uttW3f9y6Xq9Z2m81Gnz59+OUvfwlA3759+e677/jwww/5xS9+0aD6CwsjPwfUYoH09MSoqKW1OLKeWyD7TMg+E0t1Cc5NnxGz/iMc2+dg2bUUdi2FmX/B1/44qobegq/zyfrTTz2a4zE+vH0C068cwttLdvLC3G2s21PB1S/OZ3jnFG4bl0OvNgmRLvEnNceeN3fqubnUb/Op5+ZTz82zr9eH0+Cw1K1bN2bNmsXkyZNrbf/222/Jzs4+4udp27YtxcXF+P1+7PZQGfn5+bhcLpKSkmrtm5mZSU5OTq1tXbp0YdeuXQ0tH8OInsXPoqmW1uJIe27EpFDd5xKq+1yCxV1IzKb/hYLTzrk4ds0n+eMr8WUOoGrY7Xi7TlRoqkdzO8btViuXDunAmX3b8uK8PKYv3sGPW0u44pVFnNGvLTeO6kLbxOheBKK59bwlUM/NpX6bTz03n3oePRoclm699VZuvfVWli5dyqBBgwBYsmQJn3/+OQ899NARP0+fPn2w2+0sWbKEYcOGAbBw4UIGDBhQa3EHgMGDBzN//vxa2zZt2sRZZ53V0PJFGsyITae63xVU97sCa+UeYpc+T+zyl3HkLyf5f9fiT+9L5XG34c05HSwNXo1folCSy8Ft43K4cHB7/jNnC5+vyeeTlXuYuTafy4dmM2V4R+KdR7U+joiIiDQjDf5kd9JJJ/Hcc8/h8Xh44403eO+99zAMg9dff50zzjjjiJ8nNjaWc889l3vuuYdly5Yxc+ZMpk6dypQpU4DQKFN1dTUAl1xyCWvXruXxxx9n69atPPbYY+Tl5XHOOec0tHyRYxKMb0vlCXdROOUHKofeStCRgL1wFcmf3UDqmxOIWf9fCAYiXaY0kuzkWP52Zh9eumwwudlJePxBps7L4/wX5vPu0tDS4yIiItJyNcp1lgA8Hg979+6lY8eOR/wYt9vNPffcw4wZM0hISODaa68NLxzRq1cvHnjgAc4//3wgNOp0//33s379erp168Zdd93Fcccd1+A6o2Hdeq2hb76m6rmlupjYpS8Qu2wqVm8ZAP7U7lQN/SWeHpPA2jpHH1riMW4YBt9uKOTx2ZvZVuwGoEtaLL8cm8PonLSILwLREnse7dRzc6nf5lPPzaeem+dIr7PUaGFp9uzZXH/99axevboxnq7JRMPBpzeC+Zq65xZPKbHLphK79HmsnlIA/MldqRr2Szw9z2t1oaklH+P+QJD3lu3iubnbKHGHVkwc2jGZ28bl0Kft4X/pNpWW3PNopZ6bS/02n3puPvXcPEcalnSChUgjMGKSqTruVxRN+YHKEXcQjEnBXrqZpC9/Rdq0cbhWvQEB7+GfSKKe3Wbl4txs3r/2OK4c3hGnzcLCvFKmvLaYuz9dw+6y6kiXKCIiIo1EYUmkERnORKqG3UrRlB+oOP6PBGPTsZVtJfHr35E2bSyuFa9BwBPpMqURJMTYuWVMV9655jhO79MGgP+t3ssFU+fz+KzNVHj8Ea5QREREjpXCkkgTMJwJuIfcROHkuVSMuptgbCa28u0kfvsH0l4bjWv5S+DXCERL0D7JxV/P6M0rV+QytGMy3oDBK/PzOO+F+by1eAf+QDDSJYqIiMhROqITKQ5etrsua9euPeZiRFocRxzuwdfj7j+Z2JWvE7v4KWwVu0ic9SfiFjyOe8iNuPtdDvbYSFcqx6hP20T+c9FA5mwq4t+zNrGlyM0/vtrI9MU7uXVMV8Z1T4/4IhAiIiLSMEe0wEPv3r2P7MksFi3wcAR08p75oqbn/mpcq6cTt+gJbBWhiyoHYzOpyv0F7v6TwREXweIaT9T0O0L8QYMPl+/i2e+3UlQVWgRicHYSt4/LoV/7pMM8+ui09p5HgnpuLvXbfOq5+dRz85i+Gl5zEQ0Hn94I5ou6ngc8uNa8TdzCJ7CVbwcg6EqjKvcGqvtfieFMiHCBxybq+h0hlV4/r8zfzrQF2/H4Q9PxJvbK5KYxXchObtzRRPXcfOq5udRv86nn5lPPzaPV8ESimS2G6n5XUHT5bMpP+ieBpM5Yq4tImPsAaa+MJG7Bv7F4yiJdpRyjeKedG0d14d1rjuOsfm2xADPW5nPRiwt49JtNlFX7Il2iiIiI/ASFJZFIsjmo7nsJRZd/S9kpj+JP7orVU0L8vIdIe/V44n58GEvNdZuk+WqbGMNfTuvFq5OHcFynFHwBg2kLt3PeC/N5feF2vH4tAiEiIhKNFJZEooHVjqf3hRRf9g1lEx7Hn9odq6eU+PkPh0aa5v0DS3VxpKuUY9SrTQJPXjiAR8/vT056HGXVfh75ZhPnT53PB8t2aeU8ERGRKKOwJBJNrDY8Pc+j+JIvKZv4H/xpvbB6y4lf8Bhpr4wkfu7/YXEXRbpKOQYWi4VRXdOYNmUof5zQg8wEJ3vKPdz/xXouemkBn67aQyCoieoiIiLRQGFJJBpZbXh6nE3xJV9Qetqz+NP7YvVVErfoCdJfGUn893/DUpUf6SrlGNitFs4b2J73rjmOX52YQ2qsg+0l1fzlf2u59OWFfLkun6DO7hUREYkohSWRaGax4u12BsU/+5zSM6biyxyIxV9F3OKnSX/1eOLn3IO1cnekq5Rj4HLYuGxoBz64bjg3je5CksvO5qIq/vDRaia/uojZGwtpZYuWioiIRA2FJZHmwGLB23UiJRd9QumZL+NrMxiLv5q4pc+T9uooEmbdha1kU6SrlGMQ57Rx9YhOfHjdcK4b2Yl4p411+ZX8+oOVXPPGEuZtLVZoEhERMZnCkkhzYrHg7XIKJRd+RMnZ0/C1G4Yl4CF2+cukTRtL8n8vx7n5CwgGIl2pHKWEGDs3jOrCB9cOZ8pxHYixW1mxq5xb3lnOL95axpLtWh1RRETELLoobQTogmPma7E9NwwcO74ndulzOLd8iYXQDxdI7Ii7/xSq+16C4Uo1vawW2+8IKKj08tK8bby3bBe+QKiZx3dJ5RejutC33f6L6ann5lPPzaV+m089N596bp4jvSitwlIE6I1gvtbQc2vpVmJXvIJr9ZtYa67NZNhiqO5xLtUDr8KfOcC0WlpDv822u6yaqfO28d8V+1fLG9ctnV+M6kL3zHj1PALUc3Op3+ZTz82nnptHYake0XDw6Y1gvlbVc58b1/oPcS1/EUfByv2b2w3FPeAqPN3OBJuzSUtoVf022fYSN8/P3cr/Vu8laIAFmNArk+tHdWZYz7bquYl0nJtL/Tafem4+9dw8Ckv1iIaDT28E87XKnhsG9t0LiV3+IjEbP8US9AEQjM3E3e8yqvtdTjAhq0leulX222SbC6t49vutzFwXWkLeaoHzcjswZUh7spJjI1xd66Dj3Fzqt/nUc/Op5+ZRWKpHNBx8eiOYr7X33FK5l9hVr+Na+Sq2yj0AGBYb3pzTcA+4Cl/WyFCTGuv1Wnm/zbRubwXPfL+VWRsLAbBZLZw7oB1Xj+hE28SYCFfXsuk4N5f6bT713HzquXkUluoRDQef3gjmU89rBHw4N39O7PKXcO78IbzZn9YL94CrqO55Pjjjj/ll1G/zrdxdxtT5O5hVM9LktFk4f1AWVw3vSHp80067bK10nJtL/Tafem4+9dw8Ckv1iIaDT28E86nnh7IVriZ2+cu41r6Lxe8GIOhMpLr3xVQPuJJASs5RP7f6bb59Pf9iyXaemrOFxTVLjLvsVi7OzWbycR1IiXVEuMqWRce5udRv86nn5lPPzaOwVI9oOPj0RjCfel4/i6cU15q3cS1/GXvp5vB2b8dxuAdchbfzyWC1New51W/THdjzYNDgx60l/Oe7LazcXQ5AvNPGZUOzuWxoBxJi7BGutmXQcW4u9dt86rn51HPzKCzVIxoOPr0RzKeeHwEjiCNvVmiK3jFes0n9Nl9dPTcMgzmbivjPd1tYn18JQLLLzhXDOvCzIdnEOhoWgqU2HefmUr/Np56bTz03j8JSPaLh4NMbwXzqecMc6zWb1G/z/VTPg4bBV+sKePb7rWwuqgIgLc7BlcM7csGgLGLs1ghU3PzpODeX+m0+9dx86rl5FJbqEQ0Hn94I5lPPj9JRXrNJ/TbfkfQ8EDT4fM1env1+KztKqwFok+DkmpGdmNS/HQ6bQlND6Dg3l/ptPvXcfOq5eRSW6hENB5/eCOZTz49R+JpNLxGz8ZPDXrNJ/TZfQ3ruDwT5aOUeXvhhG3vKPQBkJcVw3fGdOb1vW+zWxltGviXTcW4u9dt86rn51HPzKCzVIxoOPr0RzKeeN54juWaTxWpRv012NMe41x/kg+W7mDovj8JKLwCdUmO54YTOnNIzE5tC00/S7xVzqd/mU8/Np56bR2GpHtFw8OmNYD71vAn8xDWbqgdeRcLxUygoN9RvkxzLMV7tC/D2kp28/GMepdV+ANolxnDOgHZM6t+ONrq4bZ30e8Vc6rf51HPzqefmUViqRzQcfHojmE89b1p1XbMJVzKVQ26masA1YHdFtsBWoDGO8UqvnzcX7eCNhTvCoclmgdE56Zw3sD0ju6RqtOkA+r1iLvXbfOq5+dRz8ygs1SMaDj69Ecynnptj3zWbYpe/jK3mmk2BhGwqR/4eT8/zwKIFBJpKYx7jHn+Qr9bn8/6y3eGL28L+0aZzBrQjM0GjTfq9Yi7123zqufnUc/MoLNUjGg4+vRHMp56by0KQjB2fEpj5V2wVOwHwZQ6g8oQ/4eswKsLVtUxNdYxvLqzig+W7+GTlnlqjTWO6pXPuwPaM7Nx6R5v0e8Vc6rf51HPzqefmUViqRzQcfHojmE89N1e437v34lo6lbiFT2D1lgPg6XwylcffRSC9V4SrbFma+hj3+IN8uS6fD5btYvGOsvD29kn7z21qbaNN+r1iLvXbfOq5+dRz8ygs1SMaDj69Ecynnpvr4H5b3EXEzX+E2JWvYgn6MSxWqvv8jKrhvyUY3zbS5bYIZh7jmwor+WDZbj5ZtYeyg0abzhvYnhGtZLRJv1fMpX6bTz03n3puHoWlekTDwac3gvnUc3PV129bySbif/g/YjZ+CoBhj6Vq8A1U5d4IzvgIVdsyROIY/6nRpnMHtOfs/m1b9GiTfq+YS/02n3puPvXcPApL9YiGg09vBPOp5+Y6XL/tuxaQ8P19OHYvBEIXt60c/huq+14CVrvJ1bYMkT7GW+NoU6R73tqo3+ZTz82nnptHYake0XDw6Y1gPvXcXEfUb8PAuelT4uc+gL10CwD+1B5UHv9HvF3Gh55Ejli0HOPVvgBfrS/g/WW7WFLHaNOk/m3JaCGjTdHS89ZC/Tafem4+9dw8Ckv1iIaDT28E86nn5mpQvwNeXCtfI37+I1iriwHwZo2kctSf8bcZ1PTFthDReIxvKqzk/WW7+WTlHso9tUebzh8UGm2yNuNQHI09b8nUb/Op5+ZTz82jsFSPaDj49EYwn3purqPpt8VTRtyiJ4ld+jyWgAeA6h7nUDnyDwSTOjZhtS1DNB/j9Y02ZSXFcE4zHm2K5p63ROq3+dRz86nn5lFYqkc0HHx6I5hPPTfXsfTbWr6D+Hn/IGbtu1gwMKxO3AOvpmrorRiulCaptyVoLsf4xoJKPlh+0GiT1cLYbumcN7Bdsxptai49bynUb/Op5+ZTz82jsFSPaDj49EYwn3pursbotz1/BfHf/w3n9jkABGOSqRp2G+4BV4Kt+Y1CNLXmdoxX+wJ8uS402rR0Z+3RpnMHtufs/u3IiHdGsMLDa249b+7Ub/Op5+ZTz82jsFSPaDj49EYwn3purkbrt2Hg3PY18d/fj71oLQCBpE5UjrwDT/dJWgTiAM35GN9QUMkHy3bx6aq9h4w2nT+wHcOjdLSpOfe8OVK/zaeem089N4/CUj2i4eDTG8F86rm5Gr3fwQCuNW8RN++f2Kr2AOBrM4jKUX/GlzWyEV6g+WsJx3i9o03JLs4d0I6JvTPJTo6NYIW1tYSeNyfqt/nUc/Op5+ZRWKpHNBx8eiOYTz03V5P121dF3JJniV38H6y+SgA8XSZSecIfCaR2b8QXan5a2jG+b7Tpk1V7qPAEwttz0uMY0y2dMTlp9G+fFNFrN7W0nkc79dt86rn51HPzKCzVIxoOPr0RzKeem6up+22pyif+x4dxrXodixHAsNio7nsZlcN/jRGX2fgv2Ay01GN832jTxyt3s3h7KYEDfraUWAejuqYypls6IzqnkhBj7gWNW2rPo5X6bT713HzquXkUluoRDQef3gjmU8/NZVa/bcUbiP/+78RsmQFA0BGPO/dGqgZfD464pnvhKNQajvGyah9zNxcze1Mh328uDp/fBGC3WhjaMZkxOemM6ZZOVrKryetpDT2PJuq3+dRz86nn5lFYqkc0HHx6I5hPPTeX2f127JhL/Pd/w7F3KQCB+LZUDf8t1b0vBqut6QuIAq3tGPcHgizdWcasjYXM2VTEtmJ3rfvNmK7X2noeaeq3+dRz86nn5lFYqkc0HHx6I5hPPTdXRPptBInZ8BHxc/8PW3keAP60XlSecBfeTie1+JXzWvsxvrWoitmbipi9sZClO2pP10uNdXBCThpjc9IY0SWVeGfjTNdr7T03m/ptPvXcfOq5eRSW6hENB5/eCOZTz80V0X4HPMQuf5m4BY9h9ZQC4O0wmsoT/oQ/s7/JxZhHx/h+pW4fc7cUM3tjId9vKaq1QITDZmFohxRG56Qd83Q99dxc6rf51HPzqefmUViqRzQcfHojmE89N1c09NtSXUzcwieIXfYilqAXAwueXudTNfTWFrlyXjT0PBodbrpet4y48HlO/dolNmi6nnpuLvXbfOq5+dRz8ygs1SMaDj69EcynnpsrmvptLdtG/A8P4lr/YXibp/MpuAdfjy/7hBYzPS+aeh7NthRVMXtjIbM3FbGsjul6o3LSGHOE0/XUc3Op3+ZTz82nnptHYake0XDw6Y1gPvXcXNHYb/ueJcQtfBzn5hlYCBXly+iHe/DP8XSfBDZnhCs8NtHY82hX6vbx/ZYi5mwsqne63phuoel67ZMOna6nnptL/Tafem4+9dw8Ckv1iIaDT28E86nn5ormfttKNhG79AVca6Zj8VcDEIhri3vg1VT3uxzDlRrhCo9ONPe8OfAHgizZUcbsTYXM3lhIXkl1rfu7Z8SHglNOOn1rpuup5+ZSv82nnptPPTePwlI9ouHg0xvBfOq5uZpDvy3VxbhWTiN22YvYqvYAYNhjqe59Me5B1xJIyYlwhQ3THHreXBiGwdYidyg4bSpi6Y5SgnVM1xvbLZ1TB3fAV1WtnptAx7j51HPzqefmUViqRzQcfHojmE89N1ez6nfAS8yG/xK3+FnshasAMLDg7ToR9+Cf42s/olmc19Sset7M7JuuN3tjEXMPmq4H0CUtlgHtkxiQFfqXkx6HtRkcM82NjnHzqefmU8/No7BUj2g4+PRGMJ96bq5m2W/DwLHje2KXPEvM1i/Dm32ZA0PnNXU7C2yOCBb405plz5shfyDI4h2lzNlUxHebi9ha5D5kn3injf7tE8MBqn/7RJJc0XvsNBc6xs2nnptPPTePwlI9ouHg0xvBfOq5uZp7v23FG4hd+jyuNW9jCXgACCS0xz3gGqr7XYYRkxzhCg/V3HveHFksYI2N4dsVO1m2s4zlO8tYubscty94yL4afTp2OsbNp56bTz03j8JSPaLh4NMbwXzqublaSr8t7iJiV75K7LKXsLrzATDscbj7XoJ74LUEkztHuML9WkrPm5O6eu4PGmwsqGT5zjKW7woFqIMXiwCNPh0NHePmU8/Np56bR2GpHtFw8OmNYD713Fwtrt/+amLWf0jckmexF60FwLBY8XY9larB1+NvNyzi5zW1uJ43A0fa8+IqLyt2lYfDU32jT13T4hiQtT9AddXoUy06xs2nnptPPTePwlI9ouHg0xvBfOq5uVpsvw0Dx/bZxC15Fue2b8KbfW1zcQ+6Hk+308H60xcybSottudR7Gh7frSjTwPaJ5HoiszxFQ10jJtPPTefem6eIw1Lrfe3rohIQ1ks+DqOpbTjWGyFa4ld+hyude/j2LMYx4wbCSRk4x50LdV9LsGISYp0tRKl7FYLvdok0KtNAhcOzgJCo0/Ld5WHA9TKXeVUegPM21rCvK0l4cdq9ElExFwaWYoA/dXAfOq5uVpTvy1V+cSueIXY5S9jrS4CIOhIoLrvpaHzmpI6mFNHK+p5tGjKnvuDBhvzK1lWM/K0fFcZ2+sYfUqIsdG/XVIoQGUl0b9dyx190jFuPvXcfOq5eTQNrx7RcPDpjWA+9dxcrbLffjeude8Tu+Q57MXrgdB5TZ5uZ+Ie9HP87YY06cu3yp5HmNk9L6rysnxn6NynFTWjT9X+us996t8+kf5ZSQxon0hOejw2a/MffdIxbj713HzquXkUluoRDQef3gjmU8//v737Do+iahs4/Nu+STY9IZUOCS2EEkSakSoWEPnAjiIiqCDKqyJgw4IoWFDRlyJib4ii+NpAUJqAtFCkhNACCSGk163z/bFhIWRDz6bw3NfFld2ZszNnHs5u8uwp41lXdLwVB/rDf+K1dR76I6tcm63hCRS3ewBL4/6g1lz2017RMa8m1R3z8+198tKpaRXuS5sIZ/LUOsKPEB+95yt8iao73lciibnnScw9R+YsCSFEdVCpsTTshaVhLzQn/sU76QMMe79Hd2wj/r9uxO7XgJK291Pa8jYUvam6aytqMa1aRWyYidgwE0PL5j5ll628tzM9n+3pBfx7zDn3aVNqHptS81yvjfAz0CbCz7WARGw9E3qturouRQghaqxq7Vkym8288MIL/P777xiNRkaMGMGIESPcln3ooYdYvnx5uW2zZ8+mZ8+eF3TOmpCpy7cGnicx9yyJd3nqogyM2z/Ga8cnqM25ADj0fpS2vpOSuBE4fCMv+RwSc8+rDTG3OxQOZBezIy2fHccK2JGez/4TxZxZ3ZOLTpxMnlpH+BLlb0RVgxaPqA3xrmsk5p4nMfecWtGzNH36dHbs2MHHH39MWloaTz31FJGRkfTv379C2ZSUFGbMmEGXLl1c2/z9/T1ZXSGEuCgOnzCKr55AccdHMO75Fq+keWhz9+O9ZTZeW+dhbnaTc15TWLvqrqqoYzRqFc1CfGgW4sOgthEAFJpt/HusgJ3HnKvv7UgvIKfEys6ybV9vSQMg0EvnTJ4i/Wgd7kurcF9MBhmQIoS4slTbp15xcTELFy5k3rx5tG7dmtatW5OcnMznn39eIVmyWCwcOXKEuLg4QkNDq6nGQghxiXRelLYZRmnru9AfWo7X1rnoj67FmPwDxuQfsEZc5ZzX1KhflcxrEgLAZNByVcNArmoYCICiKBzNK2VHurPnaUd6AXuOF5JTYmXV/mxW7Xeu8qgCmoR4O4fvhTsXkGgc5F0nFo8QQojKVFuytHv3bmw2G+3bt3dt69ixI7Nnz8bhcKBWnxo7vX//flQqFfXr16+OqgohxOWlUmNp1AdLoz5oM3fglTQPQ/IP6NI34J++AbtfQ0ra3ue8X5PMaxJVTKVSER3gRXSAF/1b1gPAbHOw53ihK3nakZ5Per6ZlBPFpJwo5oftxwDnjXNbhfu6Fo5oE+FLkHftWzxCCCEqU23JUmZmJoGBgej1pz5UQ0JCMJvN5ObmEhQU5Nq+f/9+TCYTEyZMYMOGDYSHh/PII4+QmJh4weetCcOvT9ahJtTlSiEx9yyJ9/mz12tDYd+3Ke4yCeP2jzHu+BRN/iFMq6fgveENSlvdSWn8CBy+UWc9jsTc8+pyzI06NfFRfsRHnbq58olCc1ni5Fy+/OTiEf8czuWfw7muclH+RuIifV0LSMTWM6HTXPriEXU53jWVxNzzJOaec74xrrZkqaSkpFyiBLieWyyWctv3799PaWkp3bt3Z9SoUSxdupSHHnqIr7/+mri4uAs6b3DwuSdyeUpNqsuVQmLuWRLvCxDiC41ehusmQ9KXsO591Fn78N46B++kD6DVQOgyFqITznoYibnnXSkxDwnxpUWjEIaUPbfZHezNKGRrai5bDuewJTWXfccLOZpXytG8Un7dlQmAXqumY4NA+rYKo2+rMOoHeV9SPa6UeNckEnPPk5jXHNW2Gt4vv/zCyy+/zJo1a1zbUlJSuOGGG1i/fj0BAQGu7Q6Hg4KCgnILOjz44IOEhoby0ksvXdB5s7Kqf3URlcr5JqgJdblSSMw9S+J9GSgOdIdWlN2vabVrszW8IyXtHsDSpD+oT33fJTH3PIl5RQWlNnYecw7d257mHL6XV2orVyYm1IfEZsEkNgsmtp7pvFfck3h7nsTc8yTmnnMy1udSbT1LYWFh5OTkYLPZ0Gqd1cjMzMRoNOLn51eurFqtrrDyXZMmTdi3b98Fn1dRqDGNrybV5UohMfcsifelUGNp2BtLw95n3K9pE7pfN2H3jXber6nV7Sj6Ux/2EnPPk5ifYjJo6dwwiM4NnUPpFUXhUE4Ja/Zn81dKFklH89ibWcTezCLm/X2YMF8D1zQNJrFpMB3q+5/XcD2Jt+dJzD1PYl5zVFuy1LJlS7RaLVu3biUhwTmsZNOmTcTFxZVb3AFg4sSJqFQqpk2b5tq2e/duYmJiPFpnIYSoDvaQVhT0fpPCqyfitcN5vyZNwRFMa14om9d0B6XxIyCkVXVXVYhyVCoVjYK8aRTkzV0J0eQWW1l9IIu/9mWx7mAOGQVmFm5NY+HWNEwGDV0bBZHYLJiujYNkmXIhRI1QbZ9EXl5eDBo0iClTpvDKK69w/PhxPvzwQ1dClJmZia+vL0ajkV69evGf//yHzp070759e5YsWcKmTZt48cUXq6v6QgjhcYpPPYo7P0lxx7EY93yHV9IHaHOS8U6ah9e2+dByANqWI7CGd6zuqgrhVoC3jptah3NT63BKrXY2HM5l5b4sVu3PIrvYyu97Mvl9TyZatYqO9f1JbBbCNU2DCfM1VHfVhRBXqGqbswTORR6mTJnC77//jslk4v7772f48OEAxMbGMm3aNAYPHgzAwoUL+eCDD0hLS6N58+ZMmjSJTp06XfA5a8IdkeXuzJ4nMfcsibeHKA50h//CO2ke+tSVrs3WsPaUxD+AuekN5eY1ictL2vnlY3co7EjPZ2WKs9fpUE5Juf0tw0wkNgvm5oQGhGjBedcnUdWkjXuexNxzTsb6nOWqM1mqDjWh8ckbwfMk5p4l8fY8bdYuAvd8jJL0DSqHc0VRuynKeb+mVnegGPzPcQRxoaSdV52D2cWs3JfFXylZbE/L5/TwRvoZuKZZCIlNg2kX7Y9WbopbZaSNe57E3HMkWapETWh88kbwPIm5Z0m8Pe9kzLMO78e4/RO8dnyCuiQLAIfOh9KWt1PSdgQO/4bVXNO6Q9q5Z2QVWVi935k4bTiUi9nmcO3zN2rp1iSIxKbBXN0oCG+9phprWvdIG/c8ibnnSLJUiZrQ+OSN4HkSc8+SeHtehZjbSjHu/d45ryl7DwCKSo2lcT+K40dhi+gkdz28RNLOPUulAm8/L/63KZU/92WxOiWr3LLkeo2KTg0CuaZZMNc0CSLEJPOcLpW0cc+TmHuOJEuVqAmNT94Inicx9yyJt+dVGnNFQXdkFd5b56I//Kdrs7VefNm8phtBo/N4fesCaeeedWa8bQ6FbWl5/LUvi5UpWRzJLS1Xvk2EL9c0DebaZiE0CvI67/s5iVOkjXuexNxzJFmqRE1ofPJG8DyJuWdJvD3vfGKuyd6LV9IHGPcsQmU3A2A3RVASdx+lre5EMQZ4rsJ1gLRzzzpbvBVFYX9WsWuBiJ3HCsrtbxDo5bqfU1ykHxqZ53RepI17nsTccyRZqkRNaHzyRvA8iblnSbw970JirirJwmvHp3ht/xh1SSYAitab0pa3Utz2fhwBjT1Q49pP2rlnXUi8MwvNrsRpY2ouVvupFwR66ejeJIhuTYJoF+VPsI++imtee0kb9zyJuedIslSJmtD45I3geRJzz5J4e95FxdxuxrD3B7yT5qHN2gWAggpLo76Ymw/EUr8Hildw1VW6lpN27lkXG+8ii42/D+TwV0oWa/ZnU2C2ldvfINCLdlF+tIvyp320P1H+RhmyV0bauOdJzD1HkqVK1ITGJ28Ez5OYe5bE2/MuKeaKgu7IGryS5mE49MepzaiwhcZhrX8NlgaJzpvdauRb+JOknXvW5Yi3ze5gy9E8VqZksyk1l32ZRZx5qBAffVni5Eygmob4XLHD9qSNe57E3HMkWapETWh88kbwPIm5Z0m8Pe9yxVyTsw/jrq/QH/7L1dt0kqL1xhLdFUv9RKwNErH7N76iV9STdu5ZVRHv/FIr29Ly2XIkn61H8/j3WAE2R/mDmwwa4iP9aRflR/tof1qG+aLXqi9PBWo4aeOeJzH3HEmWKlETGp+8ETxPYu5ZEm/Pq4qYq4sy0B1Zhf7wX+hTV7ru23SS3bc+lpO9TtHdrrgb30o79yxPxLvUamfnsQK2Hs1j65F8tqXlU2y1lyuj16hoHeFH+yg/2kX7Exfhh8mgrZoKVTNp454nMfccSZYqURMan7wRPE9i7lkSb8+r8pgrDrQn/kWX+hf6w3+hS/8HlcN6ardKjS2sPZb6iVgaJGKrFw/quvkH5EnSzj2rOuJtcygkZxay5UgeW4/ms/VIHjkl1nJl1CpoHmqifbQ/7aP8iK9Di0ZIG/c8ibnnSLJUiZrQ+OSN4HkSc8+SeHuex2NuLUZ/9G9n8pS6Em3OvnK7HQZ/rNHdnMlT/UQcftEeqJRnSTv3rJoQb0VROJRTwtYjeWw9mseWo/mk5ZVWKNcg0Iv2Uf7Elw3dq62LRtSEmF9pJOaeI8lSJWpC45M3gudJzD1L4u151R1zdf4R9EdWOnudjqxGbc4rt98W0MQ118kS2QX0Pp6v5GVW3TG/0tTUeB8vMDsTp7Lep5QTFReNCDXpiY88tWhEs1Af1LUgeaqpMa/LJOaeI8lSJWpC45M3gudJzD1L4u15NSrmDjva41vRp6509jod24xKOTXvQ1HrsEYkuJInW0hrUNW+CfM1KuZXgNoS7/xSK0lH88sSqHx2ZdTeRSNqS8zrEom550iyVIma0PjkjeB5EnPPknh7Xk2Oucqch+7oWudCEYf/QlOQWm6/wysYS3QP50IR9a/B4RNWTTW9MDU55nVRbY33yUUjtpQN3dueVlBh0QiDVk2rcF/aRfnRJsKPNhG+BHlX/7yn2hrz2kxi7jnnmyzV7dm3Qgghqp1i8MfS5HosTa4HRUGTdwBd6kr0h1eiO7oGdUkWxuTFGJMXA2ALbuFaKMIacRVojdV7AUJcAqNOQ8f6AXSsHwA4F43Ye7zQNXQv6Wg+OSVWthxxPj8p0t9IXIQvrSP8iIvwJSbUVCN7n4So66Rn6TSKomCzWd3vvIxUKggM9CEnp0i+NfCQ2h5zjUaLWl17fknKN2OeV2tjbregy9iMrmx5cu3xbahOm/GhaAxYo652DtmL6oItuBWoNdVY4VNqbcxrqboa79MXjdiens/29AIOZhVXmPek06iIrWeidbgvcRF+tIn0JdKvaheOqKsxr8kk5p4jw/AqUVnjs9msZGUdQ1EcHqmHWq3G4fDMuYRTbY+5l5cJP7+gWrGiknzYe15dibmqJBv9kVXoDq9En/onmqKMcvsdOhO2iI5YIzpjjeiENawdaL2qp651JOa1xZUU70KzjZ3HCtiRns+O9AJ2pBeQW1Lxy9xALx1tInxdQ/dahfte1ns+XUkxrykk5p4jyVIl3DU+RVHIzj6Ow2HD3z8YlQcmGms0Kuz2Kyr01a62xlxRFCwWM4WFOXh5mfD3D67uKp2TfNh7Xp2MuaKgyd6LPnUlutSV6I5tRG0pKF9ErcNWL96ZOEV2xhqegGIM8Ej16mTMa7ArOd6KonA0r7QscXImUHuOF1ZYOEIFNA72Ji7Cj9YRzh6oxsHeaNQX9yXblRzz6iIx9xxJlirhrvHZ7TYyM4/i7x+Cl5dnlrPVatXYbLW3l6M2qu0xLyzMp7Awh3r16tf4IXnyYe95V0TMHXY0WbvRpa9Hl7YBXfoGNMXHyxVRUGEPjsUacZXzX+RVOEyRVVKdKyLmNYjEuzyzzcHe44VsT89nZ1kSlZZvrlDOW6ehVbjJNfepdYQfIed501yJuedJzD1HFni4ACeHZmk0Eg5Rc+n1BsCZ3KvV1b9KkhAep9ZgD22NPbQ1pW1HgKKgzj/kSpx06RvQ5u5Hm7UbbdZuvHZ8AoDdN9qVOFkjOmMPbOb8LSlELWbQqomL9CMu0s+1LavIwo70AnYec859+jfdufLextQ8NqaeWjwiws/gGrrXJsKP2HomDLJ4hBBuSXZwmtowF0RcuaR9CnEGlQqHfyPM/o0wt7zVuak4E136P87kKW0D2hM70BQcQVNwBOPe7wBwGANP9TxFdMIWGgcaXXVeiRCXRbCPnsRmwSQ2cw7XtjsUDmQXsyMtnx1lc6D2nygmPd9Men4mS/dkAqBVq4ipZ6JNuC9tIp3D96L8q3bxCCFqCxmGB1itFrKy0gkOjkCn88w39rV9SFhtVNtjXh3t9GLJMALPk5i7p7IUos3YjC5tvTOJytiMylZaroyi9cIa1uHUvKewDqA/95BsiblnSbwvj0KzjV0ZBa6FI3ak55NdXHHxiICyxSOubhZCi2AvWoX5otNI71NVk3buOTIMr46bOnUKv/zyU6X733lnNh06JFzQMceOHUX79h25//7R5yw7ZMgARowYxQ03DLigc5zL5s0bGTfuQVav3nhZjyuEuDIpehPW+tdgrX+Nc4PdgjZze9nQPWcPlNqci/7oGvRH1zhfo9JgC21z2tC9q1C8av7CKkKcD5NBS6cGgXRqEAg4F49IzzeftvJePruPF5JbYmX1/mxW788GwKhV0y7Kn471/elYP4CW4b5oL3LhCCFqE+lZonb2LBUWFmI2O78d/eOPpXz11WfMm/exa7+fnz863YUNK8nPz0Or1eHt7X3Osjk5OXh7e2EwXN6bRVZlsiQ9S54j34x5nsT8IikONNnJZYmTc+EITeHRCsVsAU1dc56sEZ1w+DVApVZJzD1I2rjnWGwOkjML2XGsgH8zi1i7L6vC0uXeOg3tov1IqB9Ah/oBxNYzSfJ0GUg79xzpWarjTCYTJpPJ9VitVhMcHHJJx/Tz8z/vsoGBgZd0LiGEqBFUauzBsdiDYyltczcA6oKjrjlPuvQNaLP3oM1NQZubgte/XwJg9wnDFtkZ4gZAaCJoz/0lkxC1hV6rpnWEH20i/QgJ8eV4Zj4pmcVsSs1lY2ouW47kkVdqY+2BHNYeyAHAR6+hfbSz1ymhvj/NQ00XvWS5EDWJJEt1VHp6GkOHDmTkyAf56qvP6devP+PHT+DTTxewZMliMjOP4+8fwM03D2bEiFFA+WF4U6dOwc/Pj8zMTNasWYm/fwCjRj1M//43AuWH4Y0dO4pOnTqTlLSFrVu3UK9eGOPHP0nnzl0AyMvL5bXXpvLPP+sICAjirruG8frrr15U75HD4eCrrz7j++8XkZV1gtat2/DYY0/StGkzAP7443c++GA2GRnHiIyMYtSoMVxzzbUAfP31l3zxxafk5GTTuHFTxo17nPj4dpcebCFEneLwjcLsewvmmFsAUJXmoEvf6Ox5Sv8H7fFtaIoy0CT/CMk/EqTzwdLkekpjB2ON6gZqTTVfgRCXl1qlolmoD81CfbitQxQORSE5s4hNqblsSs1j85FcCs32csP2fA1aOkT706G+Pwn1A2gW6oNaFowQtZAkS5VQFIXSKhyypXUo2Ozlj2/Uqi/7yjPbtiUxf/6nOBwOfv31f3zzzZdMmTKVqKho1q9fy+uvv0q3btcQG9uiwmsXLfqGBx54iNGjx/Dtt18zY8YrdO+e6OrROt0nn3zI449P5PHHJzJ79ixee+1lvv12CWq1muefn4zFYuH99+dz4sRxXn31pYu+ngUL5rF48SKeeuppoqMb8PnnH/P444/w5ZffUVpawksvPceECU/ToUMCy5cvY8qUp1m8+GeOHUtn1qyZTJ06g8aNm7Bw4Zc899xTfP/9LzX+nkVCiOqlGAOxNO6LpXFf5wZrCbrjW9AfWYN3yo+ocw5g3PMtxj3fYvcJw9x8EKWx/4c9pFX1VlyIKqJWqYitZyK2nok7O0ZjdygkZxayMTWPTWU9TwVmG3+lZPFXShYA/kYtHeoH0DHan44NAmga7C2r7YlaQZIlNxRFYeRXSWxLy/foeeMj/Zh3e/xl/fC49dY7iIqKBiAz8ziTJz9PQsJVAAwaNIQFC+Zx4ECK22SpWbMY7rrrXgBGjhzNwoVfcuBACnFx8RXKdunS3bXYw7333s/w4XeQnZ1FcXExGzdu4OuvFxMVFU3z5jHcd98oXn992gVfi6IoLFr0DaNHj6F790QAnnrqGW699WZ+++1nWrVqjc1mIzS0HuHhEdxxx900a9Ycvd5Aeno6KpWK8PBwIiIieeCBh+natQcOh0OSJSHEhdF5YY3qii26K943vkDujr8w7FmEIflHNEUZeG+dg/fWOdiCW1IaMxhzzCAcpojqrrUQVUajVtEizJcWYb7cnRCNzaGw53ghmw47h+1tPeoctrci+QQrkk8AEOilo2N9fzrUDyChfgCNgrwkeRI1kiRLlagrb9eIiFN3ru/QIYGdO3cwe/YsDh06wN69e8jKynLdlPdM0dH1XY99fJy9STabzW3Z+vUbnFbWx1U2JSUZPz9/V8IG0KZN24u6lpycbPLz82jVqo1rm1arpUWLVhw6dJCbbx5M167dGT9+DA0aNKR790QGDBiE0Wikc+cuNG3ajHvuuZ2YmFi6d09k4MBb0GrlLSCEuAQqFbaIjljDO1LYfQr6Q8sx7v0O/YFlaLN2Yfp7Kj5/v4I1ujulsYOxNLkeRV+xd16IukSrVtE63JfW4b7cc1V9bHYHuzIK2Ziay6bUXJKO5pNTYmXZ3hMs2+tMnoK8da75Th3rB9AgUJInUTPIX4puqFQq5t0eX7XD8DRqjwzD0+tPrZq2ZMli3nnnTQYMuJnExF6MGfMY48Y9WOlr3a2mV9niie6SDkVR0Gi0FV5zsQsw6vUGt9sdDjsOhx2VSsX06TP5998drF69kpUrV/D999/y/vvzaN48lvnzP2Hjxo2sWbOSn39ewuLFi5g//1NCQ+tdVH2EEKIcjR5Lk/5YmvRHVZqLIeUnjHu+Q5e+Af2RVeiPrEL5axLmxv0xxw7GUv8aUMuvYVH3aTVq4iL9iIv0477ODbDaHfx7rICNqblsTM1je5rzXk9L95y6UW6oSU+HaOd8p4QGAXKTXFFt5FO6EiqVCi9d1U3SdS5j7dk3/eLFi7jvvpHceec9ABQUFJCdnXXRycv5aNSoMQUF+aSlHSUyMgqAPXt2XdSxTCYTQUHB7Ny5nebNYwBn79WePbvp1Kkzhw4dZMmSxYwd+xitWrXhgQceYtiwW1m//m/MZjNbtmxk2LARdOiQwOjRYxk4sB/btm2ld+9+l+16hRACQDEGUNr6bkpb3406/zDGvd9j2LMIbe5+jMmLMSYvxuEVSmnMzZhj/w9bSBvnOrZCXAF0GjXxUf7ER/lz/9XOpcp3HMtn0+E8Nqbmsj09n8xCC7/tzuS33c7kKczX4LrHU9tIP8J9DRir8O80IU6SZOkK4u/vz8aNG+jePZHi4mLmzn0Pm82G1WqpsnM2aNCQq67qwrRpL/Loo0+Qk5PF/Plzzvm6devWlnuu1+vp0CGB2267k/nz5xASEkp0dH0+//xjLBYzvXr1w+Gws3jxt5hMJvr1u54DB/aTnp5GTEwLDAYD8+fPJSAgiISEq9i6dTMlJSU0bdq8qi5dCCEAcPg1oDjhUYo7jkN7PAnDnkUYk39AXZKJd9IHeCd9gC2wOaWx/4c55hYcvlHVXWUhPEqvVdMhOoAO0QE8QENKrXZ2pDt7njan5rI9vYCMAjM//3ucn/897npdgJeOeiY9Yb4G1796pz82GdBrZV6yuDSSLF1BHn30CV555QWGD7+TwMBAevfui9Hoxd69e6r0vJMnP8/06S8zatRwQkNDueGGAXzxxSdnfc0TT4wr9zw0tB7ff/8zt99+N0VFRUyfPpWiokLatInn3XfnuO77NHXqDP7733f55JMFBAYGMnr0WK666moAnn76eT78cB5vvTWdsLBwnn32RRo1alw1Fy2EEGdSqbCFtcMW1o6ibs+hTy1bGOLA72hzkjGtexXTulexRHXBHDMYc9MbUQx+1V1rITzOqNOQ0MA5/A6g1GonKS3feZ+nw3kkZxZSanOQW2Ilt8TK3syiSo8V5K0rl0ydTKLCfA2E+RkI9dGj1UhCJSqnUqpyDFYN5O6OyFarhaysdIKDI9Dp9O5feJk5h+FV3ZyomqK0tJSNG9dz9dXdXPOali9fxvvvv8233y7xaF1qe8yro51eLLkDuedJzD3vcsVcZc7HkPIzhr2L0B/927Vd0RgwN+6HOWYwlgbXgqbiPNIribRxz6upMVcUhQKzjYwCs+vf8dMeZxSYOV5owXwev/NVQLCPvmJCddrjEB+9x26wW1NjXhedjPW5SM+SqFJ6vZ5p015k0KAh3HjjQLKzs1iwYC49e/ap7qoJIUSNoBj8KG11O6WtbkddcBTD3u8x7vkObc5ejPuWYNy3BIcxCHPzgZTG/h+2eu1kfpO4oqlUKvyMOvyMOpqHul9dUlEU8kqcCdUxVwJlrpBg2RwKJ4osnCiysPNYgdtjaVQnEyrjacmUnvDTEqogH73cdLeOkp4lpGepqiUlbeW992aSkpKMj49zPtGoUQ+XW6nPE2p7zKVnSZyNxNzzqjTmioL2xA4Me77DuHcx6pJM1y5bQBPMMYMpjR2Mw6/BWQ5St0gb97y6HnOHopBTbD1rD1VmoRn7eVy7QaumSbA3MaEmYur5EBNqolmoDybDhfVL1PWY1yTn27MkyRKSLF0panvMJVkSZyMx9zyPxdxhQ5e6CuOeRRgO/IrKVuraZY24ynnj22Y3oRgDqrAS1U/auOdJzMHuUMgutpRLoM5Mqk4UWXBUEp8ofyPNQ32IqWdyJVLhvoZKl0GXmHuODMMTQggh6gK1FmvDnlgb9qTQUoh+/68Y9yxCd2Q1uvQN6NI3YFr1HJZGvSmNHYw18moUQ4AM1RPiMtCoVYSaDISaDLSJcF/G5lBIyyslObOQvZlF7D1eyN7jhRwvtHA0r5SjeaX8uS/LVd7XoD0tgXL2QjUO9paV+2ooSZaEEEKIWkLRmzC3GIK5xRDUhekYkn/AuGcR2qxdGPb/gmH/L85yWiN2UyQOnwgcvpHOx6YIHKZI7GU/Fb2fJFRCXAZatYoGgV40CPSid0yoa3tuiZXkzEKSTyZQmUXszyqmwGxj85E8Nh/Jc5XVqFU0CfameagPHRoHE+mtpXmIiQDvK3thl5pAkiUhhBCiFnKYIihp/yAl7R9Ec+JfjHu/w7DvJzQFR1DZStHm7ofc/ZW/XueDwxRZlkCFn/Y4suxxBIre/eR5IcS5BXjp6NQgkE4NAl3bLDYHB7KLnb1Qx4tcvVH5pTaSM4tIziwqdy+peia9qweqeaiJmHomogOMspiEB0myJIQQQtRy9pBWFIW0oqjrM2ArRV10DE1hGurCNNSFpx5rCsq2mXNRW4tQ5yRDTnKlx3Xo/XCYIs7omSpLpnwjsftEgM7Lg1cqRO2m16qJrWcitp4JWju3KYpCRoGZvZnO5OlQnpntR3I5klvK8UILxwuzWb0/23UML52aZiEnF5JwDudrFuKDUaeppquq2yRZEkIIIeoSrRGHfyMc/o0qL2MtQVOUjroseTqVWKWXPU5Hbcl3/svOR5td+c3LHYYAZxLlW5ZE+URg9z09sYoAjeHyX6cQdYRKpSLcz0i4n5HEZsGuBR4KSm2knChiz2k9UCkniiixOtiens/29PxTxwAaBHoRU8/kmg/VLMSHUJMsaX6pJFkSQgghrjQ6L+wBTbAHNKm0iMpSeEYCdTKxSncmU4Vpzt4pcy5qcy7arH8rPZYtsBnW6O5YontgjeqCYvCriqsSok4xGbTER/kTH+Xv2mZzKKTmlLjmQO0tmxOVVWThUE4Jh3JKWLrn1K0GdBoVYb4Gwv2MRPgaCPcre+xnIMLPed8onUYWljgbSZZqqYcfHklYWDjPP/9yhX2///4Lb745nR9//K3Sexmlp6cxdOhAFi78kYiISLp3T+Cdd2bToUNChbKbN29k3LgHWb1643nVbfnyZbRv34HAwCDmz5/Dli2bmDVr7oVd4HkYMmQAI0aM4oYbBlz2YwshxJVO0ZuwB8VgD4rB6raAgsqSf2p4X1H6qcTqtB4rld2MNmcf2px9eG3/CEWlwVYvHkv9Hliju2MN7yA9T0KcJ61aReNgbxoHe3Ndy1Pbs4osrnlQe8t6oQ5nF2O1KxzJLeVIbqnb46mAEJOecF8j4X4GIk5Lpk7+9NFf2enClX31tVifPtcxd+57WK1WdLryK6UsX76Ua6/tdUE3ff3hh1/x8/M/d8FzOHYsneeem8jChT8CcMcdwxg69PZLPq4QQogaRqVCMfhjN/hjD27pvoyioCrJQndsI/rUVeiOrEKbux9dxmZ0GZth49soWi+skZ2xRPfAUr8H9uAWoJJvuoW4EME+eoJ9gri6UZBrm82hkFlo5li+mfT80oo/C8yYbQ4yCy1kFlrYnu7+2L4GbVkiZayQTIX7Ggjy1lV636i6QJKlWqpnzz68/fbrbNy4ni5duru2FxUVsmHDOmbMePuCjhccHHJZ6nXmPY69vb0vy3GFEELUQioVincIlib9sTTpD4C64Ci6I6vRp65Cf2Q16pIT6A//if7wnwA4vEKwRHfDWpY8OXyjqvEChKi9tGpVWYJjpD0VvxBXFIWcEivH8s0cyy8l3U0ylV9qo8BsoyDTuVqfOwatmjDf8r1SJ4f4RfgZqedrQKuuvcmUJEuVURSwlVTh8dVgc5TfpvU673teBAYGkpDQmb/+WlEuWVq16i/8/Pxp374jmZnHyxKqfzCbS2ncuAmPPfYkbdu2q3C804fhFRUVMn36K6xdu5rg4BAGDhxUruy2bVv573/fZe/e3ahUKtq168DEic8REhLC0KEDARg6dCCTJz9PenpauWF4O3Zs47333iY5eQ+BgUHcddc9DBo0BICpU6fg5+dHZmYma9asxN8/gFGjHqZ//xvPM6jlnXmuYcOGM3DgYACOHTvGa6+9xI4d2zAYjPTu3ZdHHvkPWq2W5OS9vPHGqyQn78HX14+bbx7Mffc9cFF1EEIIUZ7DNwpzy9swt7wNFAVN9m70qavRHVmF/ug61CUnMCb/gDH5BwBs/o2x1u+BtX538OmH/OkixOWhUqkI8tYT5K2nVbiv2zJFFltZMuVMoNJPS6yOFZRyotCC2ebgcE4Jh3Pc/92sVkGoyZlMNQ725sFujQjyPv/RT9VNPnHcURQCvrsF3bHzm6NzuVgjOpF7y3fnnTD16dOP996bid0+GY3GuVzk8uXL6N27L2q1mhdffBaTyZc5cxbgcDiYPftd3njjVT7++KuzHnfGjGkcPnyQWbPmkpubw9SpU1z7CgsLmTDhMW677S6effZFTpzI5JVXXuSzzxbw2GNPMm/exzzwwL3Mm/cxTZo05bPPPna99uDBA4wb9xC33XYnkyY9y86dO3jjjVcJDAwmMbEnAIsWfcMDDzzE6NFj+Pbbr5kx4xW6d0/EZLqwe31Udi5//0ASE3syc+Z0vLy8WbDgC3JysnnmmQk0bNiYwYOH8vLLz9O2bTuee+4lDh8+xDPPTKBFi5blklIhhBCXgUqFPbglJcEtKWn3ANgt6DK2oEtdhf7IKrQZW9HmHUCbdwCvHZ/Ar2r8Q+NcvU7W8I6gNVb3VQhRZ/notTQN0dI0xMftfqvdQUZBxaF+6QXOpCqjwIzV7lwaPaPAzNaj+bSL8ueGVmEevpKLJ8lSZWrB2MvExJ7MmDGNpKQtdOiQQGFhIf/8s44RI0ahKAo9elzLtdf2ol49Z4McPPhWnnzy0bMes7CwkBUrlvHOO7OJjW0BwPDhI3nzzdcAMJtLuffekdx++12oVCoiI6O49tpe7Nq1E4CAgEDXT4Oh/C+wJUu+JyYmltGjxwDQoEEjDh48wBdffOJKlpo1i+Guu+4FYOTI0Sxc+CUHDqQQFxd/QbFxd67Dhw+6zpWenk5sbAvCwyOIjq7PjBlv4+vrXJ3p2LE0evRIJDw8gsjIKGbOfJ+IiMgLOr8QQoiLoNFjjeyMNbIzxZ2fQGXOR5e2rix5Wo02Jxnd8SR0x5Pw3jwLRWMom+/UHWv9HthCWst8JyE8SKdREx3gRXSA+/utORSF7CKLa4if1a7QOybUw7W8NJIsuaNSOXt4qnAYnlarxnYJw/AAvL196Nq1O3/++QcdOiSwatWfRERE0qKFc6LtLbcMYdmy39ixYxuHDh1kz57dOByOsx4zNfUQdrud5s1jXNtatmzlehwcHML119/E119/TnLyXg4ePMC+fXvPK5k5ePAgrVq1LrctLq4tP/ywyPU8Orq+67GPj7M3yWaznfPY53eueL7//lsA7rrrHl555QVWrlxB585d6d27HzExzuRw2LD7mDPnPX744Tu6du3OddfdcNnmdAkhhDh/isEPS+N+WBr3o1gFIfoCCrb9hi51FbrU1WiKM9CnrkSfuhL+BocxEEtUN6z1ncuUO/wbVvclCHFFU6tUhJgMhJgMxEXWzlsGSLJUGZUKdFW4OIFWDaqzJy7no2/f/sycOYPx4yewfPlS+vS5DgCHw8H48WMoKCigd+++dOt2DVarlaeffvK8jnv6Qg1a7anV9jIzjzNy5DBiY1uSkNCZgQNvYe3a1ezcuf2cx3S3Op/d7sBuPxWHM1f2O7Mu58vduRwOu+tc/fpdT8eOnVi16k/Wrl3Ns88+xV133cuoUQ9z993D6dWrLytXrmDNmlU8+uhDTJjwNAMGDLrgegghhLiM/CIxtxhCaewQ53ynnOSyVfZWozv6N+rSHIwpP2FM+QkAu18DZ69TdA8s0d1QvILOcQIhhChP+qpruS5dulFSUszmzRvZtOkf+vZ1rjZ08OB+tm7dzMyZ73PPPSPo2rU7WVkngLMnHw0aNESr1bJr16mbCyYnn7pz+8qVK/D19Wf69JnceusdxMe3Jy3tqGv/2ZaObNCgITt37ii3befObTRocPm/+XN3ru3bT51rzpz3yM7OZtCgIUyfPpORIx/ir7+WYzabmTnzdXQ6HbfffjfvvjuHgQNv4c8/l1/2OgohhLgEKhX2oBhK4u8n/8YFZN2/nZzBiym66nGsEVehqLVo8g/j9e8X+P3+EMEfxhPwzfX4rJ2KLnUlWIur+wqEELWA9CzVcnq9nmuu6cmsWW/RpEkz6tdvAIDJ5ItareaPP36je/dEdu3ayYcfzgHAYrFUejwfHxP9+9/IzJkzmDTpeczmUj788NQNZf38/MnIOMbGjRuIiIhkxYpl/PXXclq0cA7VMxqdY1b37duLv39AuWPfcstQFi78ijlz3uP6629i587tfPfdQsaPn3DR15+Sso9169aW29ayZSu351q06BvXuQ4fPshbb03nP/95CrVazbp1a2jePBaDwcC2bVs5fjyDBx8cQ3FxMUlJW+jR49qLrqMQQggP0OiwRSRgi0iguNN4VJZCdGnrnavspa5Cm70HXeZ2dJnb8d7yXxSVGntgc2z14rHWa4sttC22kFayYIQQohxJluqAvn2v4+efl/DII+Nd2+rVC+Pxxyfy0UcfMGfOe9Sv35BHH32Cl19+nuTkPWedgzN+/JO89dYMxo8fg6+vL0OG3M57780EoFevviQlbeGZZ55CpVLRsmUrxo59jPnz52CxWAgICOC6667nuecm8dBDj5Q7bnh4ONOnv8X777/NV199RlhYOGPHjufGGwde9LV//fXnfP315+W2vfXWe3Tq1LnCuR599D+ucz3xxCTeeONVxo4dhd1up2vXbjz2mHOI4osvTuPNN19j5Mh70Wg09OrVh+HD77/oOgohhPA8RW/C0qg3lka9KQLURRnojqxBf8S5TLmmMB1t9h602Xsw7v7G+Rq1FltQLLZ6bbGFxjt/BseCxlC9FyOEqDYq5WImhNRiJ04UcOYVW60WsrLSCQ6OQKfzzLrvbhd4EFWqtse8OtrpxVKpICTE1+37TVQNibnnScw963LHW110DO3xbWiPJ6E9vg1d5jbUJVkVyilqHbbgls7EqV5brKHx2INiQFNxjm1dI23c8yTmnnMy1uciPUtCCCGEuOI4fMKxNA7H0rifc4OioC5MQ5u5zZk8lSVSanMuukxnMsXOsqIaA7aQVq7kyVavLfbAZqCWP6uEqGvkXS2EEEIIoVLh8I3C4huFpcn1zm2KgrogtSx5cvZAaTO3o7bkO2+em7GFk3eXUbRe2EJaO+c/lQ3jswc0AbWm2i5JCHHpJFkSQgghhHBHpcLh1wCLXwMszW5yblMcqPMOoSvrgdIeT3ImUNYidMc2oju20fVyh84HW2ibU/Of6rXF7t9IbpwrRC0iyZIQQgghxPlSqXEENMYc0Bhz85ud2xQHmtz95eY/aTN3oLYWoU9bjz5tvevlDr0fttA4bPXisIU6V+Jz+DW4oJvSCyE8R5IlIYQQQohLoVJjD2yGPbAZ5tj/c25z2NHk7EObedoQvhM7UVvy0R9dg/7oGtfLHQZ/bPXisQXF4vCNwu4b7fxpikIxBkoiJUQ1kmRJCCGEEOJyU2uwB8diD47F3GKoc5vdiiYn+bT5T9vQntiF2pyHPnUl+tSVFQ6jaL2w+0bhMEVh940s+xmNwzcSuykKhykCNDV7hVQhajNJloQQQgghPEGjwx7SCntIK2h1h3Ob3eK831NGEpq8A6gLjqIpOIK6MA1N8XFUthK0OfsgZ5/bQyqocPjUK0uionCYIsv1TDl8o1AM/tI7JcRFkmRJCCGEEKK6aPTOOUyhcRX32c2oC9LQFKY5k6jCo6gLjqApSENdeBRNwVFUdjOaogw0RRnoMja7PYVD54PDFOXsjfKNPtVL5RuF3RSNwyfsirhvlBAXQ5IlIYQQQoiaSGPAEdAYR0Bj9/sVBVVJVlkS5UyeTiZR6sI0Zw9VSRZqaxHqnL2Qs9f9YVRqHD5hOHyjsZsiT/VK+UWDKg6UUEB6psSVSZKlWmrq1Cn88stPle5/553ZdOiQcEHHHDt2FO3bd+T++0efs+yQIQMYMWIUN9ww4ILOcb5+/nkJr7zyAhMnPsNNNw2qknMIIYQQtZpKheIdgs07BOrFuy9jK0FTmF7WI1WWVBWmnXpemI7KYUFTmI6mMB13/UuBPmFYI7tgjeqCJaorDv9GMqxPXDFUiqIo1XVys9nMCy+8wO+//47RaGTEiBGMGDHirK85cuQIAwYMYPbs2XTu3PmCz3niRAFnXrHVaiErK53g4Ah0Os9MktRq1dhsjot+fWFhIWZzKQB//LGUr776jHnzPnbt9/PzR6e7sC71/Pw8tFod3t7e5yybk5ODt7cXBoPxwip+nv7zn7EcPXqE0NB6zJo197Ic81JjXt2qo51eLJUKQkJ83b7fRNWQmHuexNyzJN5VRHGgLs5E7eqNKhvqV9Yzpc1JBrul3EvsPuFYo7pgjeqKJaoLDr+GkjxdJtLOPedkrM+lWnuWpk+fzo4dO/j4449JS0vjqaeeIjIykv79+1f6milTplBcXOzBWtZMJpMJk8nkeqxWqwkODrmkY/r5+Z932cDAwEs619nk5GSzadM/TJr0HFOnTiEt7SiRkVFVdj4hhBDiinVyCJ5PGNCh/C4VhPhrydv5F9oja9EdXYcuYzOaomNo9n6Pce/3ANhNka5eJ2tUF+d9o4SoI6otWSouLmbhwoXMmzeP1q1b07p1a5KTk/n8888rTZZ+/PFHioqKPFI/RVEotZdW2fG1VOzlMGqMqC7TNzPp6WkMHTqQkSMf5KuvPqdfv/6MHz+BTz9dwJIli8nMPI6/fwA33zyYESNGAeWH4U2dOgU/Pz8yMzNZs2Yl/v4BjBr1MP373wiUH4Y3duwoOnXqTFLSFrZu3UK9emGMH/8knTt3ASAvL5fXXpvKP/+sIyAgiLvuGsbrr7/K6tUb3dZ9+fJlmEwm+vW7njlz3uPXX//nqiNASUkJ7777Jn/+uRyAxMRePPbYExgMBnJysnnrrRmsW7cWo9HIjTcOZNSohzl2LJ2hQweycOGPREREAjB//hy2bNnErFlz+fnnJSxZ8j0BAUFs3vwPjz8+kW7devD222+wdu1qCgsLiIyM4sEHH+Gaa64FqPRc06dPJTs7i9dee8tV57femk5hYQHPPvvSZfn/FUIIITxC54U1uhuWqG7O59YSdMc2oUv7G/3RtWgztjp7ofYswrhnEQB232hn8hTp7H1y+EVX4wUIcWmqLVnavXs3NpuN9u3bu7Z17NiR2bNn43A4UKvV5crn5OQwY8YMPvzwQ2666aaLPq+7XOTMbYqiMG7dg+zM2X7R57kYbQLb8vbV/71sCRPAtm1JzJ//KQ6Hg19//R/ffPMlU6ZMJSoqmvXr1/L666/Srds1xMa2qPDaRYu+4YEHHmL06DF8++3XzJjxCt27J7p6tE73yScf8vjjE3n88YnMnj2L1157mW+/XYJareb55ydjsVh4//35nDhxnFdfPXvC8Mcfv9OlS3fUajXdul3Dr7/+j/vue8AVl1dffYmUlH28+uobGAxGXnrpWebN+y9jxz7GpElPoNFomDVrDsXFxTz//CRCQkLo2rXHOWO1ffs27rlnBKNHjyEgIJC3336D1NRDvPXWLIxGL7744hNee+0lunTphk6nq/Rcffpcx5NPPkpRUSE+PiYcDgd//rmcp5565jz/185Opar5ox1O1q+m17MukZh7nsTcsyTenuc25novbA26Y2vQnRIAazG69I3ojv6N7uhatMeT0BQcQbN7IcbdCwGw+9bHGt3VNXTP4Rvp6UupNaSde875xrjakqXMzEwCAwPR60/NvQgJCcFsNpObm0tQUFC58q+++iq33HILzZs3v6TzBgdXHJtYWlpKdrYajUaFVqtGURTU1dBKVSrnvJoLTZbUamd5rfZUgqnROB/fccedNGzo7A7Pzs7k2WencPXVVwNQv/6tLFjwAYcP76d161aoVCrUapWrDs2bx3DvvfcB8OCDD7Fw4ZccPnyAtm3jXec9WbZbtx4MHHgzACNGjGTYsNvJy8uhpKSYjRs3sGjRj0RFRQMtOHFiNK+99kq5+p6UkXGM7duTuPPOu9Fq1fTq1ZvFi79l584k2rXrQH5+Pn/++QfvvPNfOnRwDheYOPFp9u7dy4ED+9ixYxvffbfENWzvqaeepri42BUPjUbtOq9arUKlcl7DyccjRozEaHTOw+rQoSN33TWMpk2bAXD33fewZMli8vNzyM/Pr/RcnTp1ws/Pj7//Xk3//jewefMWrFYrXbt2cXvN58vhUKFWqwkM9HHVsaZz934TVUti7nkSc8+SeHve2WPuCxE3QgfnyBPMhZC6Hg6ugoOr4ehmNAWpaHZ9jXHX184ygY2gUXdodI3zp78MtT+TtPOao9qSpZKSknKJEuB6brGUn0i4du1aNm3axE8/Vb762/nKynK/wIPD4cBuV1xD42Z2/m/VDsNzs9iAUWPEbleAC5vR53A4y59+PLvd+bhevQjX9vj4juzcuYNZs97h0KED7N27h6ysE1itdmw2B4qi4HAorsdRUfVdrzUYnIs+mM0W17bKyhqNp8ru2bMHPz9/wsIiXftbtoyrUN+TfvvtV/R6PQkJV2OzOWjbtj2+vn789NMS2rRpx6FDh7Db7TRvHut6fZs27WjTph3Lly/Dz8+/3DV37XoN4ByWeDIup9dfUZzX4HAoBAYGodXqXfv79buBVav+5PvvF3Ho0EH27NkNgMVi48CBg5Wey+GAnj378scfS+nTpz9Ll/5OYmJPQHNJC0zY7QoOh4OcnCJ0OutFH8cTVCrnB72795uoGhJzz5OYe5bE2/MuOuYBV0G7q6Dd46gshWjT/0F3dC26o3+jPb4NVc5ByDkIWz4DwO7fyNXrZI3qgsMUXhWXUytIO/eck7E+l2pLlgwGQ4Wk6OTz0781Ly0t5bnnnuP555+/LN+mKwoVGp+7xqhSqfDSel3y+Sqj1aqxUfUrs52ekC5Zsph33nmTAQNuJjGxF2PGPMa4cQ9W+lp3q+lVtniiVluxKSmKgkajrfCasy3AuGzZb5jNZq67LtG1zW63s2LFMsaPf9Ltec5Wh5Pc9dbZ7fZyz89M3l9++Xm2b99G//43MGjQEIKDQ3jwwfvOeS6APn2u45FHRlNUVMjKlcsv61wld224pqpNda0rJOaeJzH3LIm3511KzBWdCUuDnlga9ARAZSlAl7YBXdrfzuQpczuavINo8g5i/PdLAGwBTVxLlVujupQtPnFlkXZec1RbshQWFkZOTg42m831h2dmZiZGoxE/Pz9XuW3btpGamsq4cePKvf6BBx5g0KBBvPjiix6td222ePEi7rtvJHfeeQ8ABQUFZGdnnTV5uVSNGjWmoCC/3Ip2e/bsclv28OFD7N27h8cee6LcPaIOHNjP889P5q+//qRbt+5oNBqSk5OJj28HwKpVf7JgwTyeeeZF8vPzyMg4RliY81uphQu/KluwYRJAuZUU09KOVlrvoqJCli79lblzP6Jly9YA/P33asCZ7EVH16/0XNOmvUHr1m0IDQ3l888/QVGgffuOFx48IYQQoo5R9L5YGvXG0qg3ACpzPrr0DafmPGXuQJu7H23ufrz+/RwAW0BTV6+TJaoLindodV6CuMJUW7LUsmVLtFotW7duJSHB+Yfxpk2biIuLK7e4Q9u2bfn999/LvbZfv368/PLLdOvWzaN1ru38/f3ZuHED3bsnUlxczNy572Gz2bBaLed+8UVq0KAhV13VhWnTXuTRR58gJyeL+fPnuC27bNlv+Pn5M3Dg4HK9PE2aNGPBgg/49def6NevP/3738jbb8/giScmoVarmTPnfbp06UaTJk3p2LETr776EmPHjicvL5fPPvuIe+4ZQVBQEGFh4XzxxSeMGDGKpKQt/P33apo3j3VbF73egNHoxZ9/LicgIJDDhw/x5pszALBarWc910m9e/fjq68+Z8CAm9FoNJcxqkIIIUTdoBj8sDTqg6VRHwBU5jxnz9PJYXsndqLNTUGbm4LXzk8BsPs1xBbQBId/Q+z+jbD7NcTu3xC7XwPQ1o45vaL2qLZkycvLi0GDBjFlyhReeeUVjh8/zocffsi0adMAZy+Tr68vRqORhg0bVnh9WFgYwcHBnq52rfboo0/wyisvMHz4nQQGBtK7d1+MRi/27t1TpeedPPl5pk9/mVGjhhMaGsoNNwzgiy8+qVDujz9+p1+/6ysMhwO45Zb/4+233yAz8ziPPvo4M2e+zvjxY9DpdPTq1ZcHHngIgGeffYk33niV0aOH4+NjYuDAWxg8eCgqlYrJk5/jjTdeY9iwW+nYsRP33DOCv/9e47bOOp2O5557kVmzZvLtt18RERHFvfeOYN68/7J3724aNmxU6blO6t27H5988iG9e/e7TJEUQggh6jbF4I+lcV8sjfsCoCrNcQ3b0x9ZizbrXzT5h9DkH3L7erspwpU8OfwaOZMof+dPxXD+95MU4iSVUpVjsM6hpKSEKVOm8Pvvv2Mymbj//vsZPnw4ALGxsUybNo3BgwdXeF1sbCyffPIJnTt3vuBzursjstVqISsrneDgCHS6in+oVwV3CzzURaWlpWzcuJ6rr+7mGm65fPky3n//bb79dolH6+LpmP/zzzpee20qCxf+eFmWg6+Odnqx5A7knicx9zyJuWdJvD2vJsZcVZqD9kRZwpR3EE3eIdR5zuRJbSk462sdhoDTkidnj5Szd6ohDu+wGrFed02MeV11MtbnUm09S+DsXXrttdd47bXXKuzbs6fy3o6z7RM1i16vZ9q0Fxk0aAg33jiQ7OwsFiyYS8+efaq7alXmxIkTbNu2lU8//ZCbbrr5st43SwghhLiSKcZArNHdsHLGVAxFQVWagybvAJqy5Mn1M/cg6pJM1OZc1Mdz0R1PqnhcrbGsR+q0YX3+DZ0JlW80aCoueiWuDNWaLIm6T61W88orb/DeezP56qvP8PEx0a/f9a5hc3VRYWEB06a9SOvWbbj99ruruzpCCCFE3adSoXgFYfMKwhbuZlElS5Fr+J4m71SvlCb/EOqCI6hspWiz96DNrviFvKLS4PCNdiVPrkSqLLFC5+2BCxTVRZIlUeXi49sxd+5H1V0Nj2nUqDFLl66s7moIIYQQ4iS9D/aQVthDWlXcZ7eiLjjiTKBcydQh11A/ld189nlS3vVw+DXA7hOOwycMx8mfpnAcPuHYfcIloarFJFkSQgghhBBXLo0OR0BjHAGNqXDLd8WBuijD2QN1Ro+UJu8ganMemuLjaIqPc7aBeg6976kkquxn+eQqHId3KGhluF9NI8mSEEIIIYQQ7qjUOEwROEwREHl1xd2lOc5FJgqOoCk6hrooA/VpPzWFx1DZilFbCpwLUOQkV3oqBRWKdwj4R+JnCK3QU2UvS6oUY2CNWIziSiHJkhBCCCGEEBdBMQZiMwZCWLtKy6gsBc7kqfAY6uJjzp9FGaclVxmoizNQOWyoijOhOJOzrXmrqPWuYX5277Lhfid/liVXMvTv8pFkSQghhBBCiCqi6H2x632xBzY7SyEHqpJsNMXHCNTkU5C2v1wvlabwGOriDNQlWagcFjQFqWgKUs8+9M/gjy2oBfbgFtiCW2ILaYk9KBZFb7rs11iXSbIkhBBCCCFEdVKpUbxDsPuEQIgv5qBK7rNkN6MuyixLoo6hOWPYn+untQi1OQ99+npIX1/+EH4NnMlTWRJlD26J3b8RqDUeudTaRpIlIYQQQgghagONAYdfNA6/6LMWU1kKUecfRpu1G23WLrRZu9Bk7UZTdAxN/mE0+YcxHPjNVV7RGrEFxWILboE9uGVZMtUSxSuoqq+oxpNkqZZ6+OGRhIWF8/zzL1fY9/vvv/Dmm9P58cff0Ovdj3pNT09j6NCBLFz4IxERkXTvnsA778ymQ4eECmU3b97IuHEPsnr1xvOq2/Lly2jfvgOBgUHMnz+HLVs2MWvW3Au7wPNUUlLCgAF9iYlpwfvvf1Al5xBCCCGEqE0Uvcm1VLr5tO2q0hxn8nRiF5qsXc5kKnsPKlsJuuNJFW7Ya/cOKxvG1wJbSEtswa2wBzYFjcGzF1SNJFmqpfr0uY65c9/DarWi05Ufsbp8+VKuvbZXpYmSOz/88Ct+fv6XXK9jx9J57rmJLFz4IwB33DGMoUNvv+TjVmb16r8IDg5h+/Ykjh49QlTU2b9pEUIIIYS4UinGQKxRXbFGdT210WF3LoV+Mnk6mUzlH0JTnIGmOAN96l+njqHWYg9oWm4Yny24pXPFwDq4Sp8kS7VUz559ePvt19m4cT1dunR3bS8qKmTDhnXMmPH2BR0vODjkstRLOWOArbd31a7EsmzZb/TocS3//LOeX3/9H/ffP7pKzyeEEEIIUaeoNdgDmmAPaIKl6Y2ntluK0GbvOW0YnzOZUpvznNuz90DyD67irgUlQlq4hvHZglqA3qcaLurykWSpEoqiQGlplR3foVWj2BzlNxqNqM4zIw8MDCQhoTN//bWiXLK0atVf+Pn50759RzIzj5clVP9gNpfSuHETHnvsSdq2bVfheKcPwysqKmT69FdYu3Y1wcEhDBw4qFzZbdu28t//vsvevbtRqVS0a9eBiROfIyQkhKFDBwIwdOhAJk9+nvT0tHLD8Hbs2MZ7771NcvIeAgODuOuuexg0aAgAU6dOwc/Pj8zMTNasWYm/fwCjRj1M//434k5+fj4bNqxjwIBB6HQ6fv31Z0aMGFUuhr/99jMffzyfjIxjxMTEMn78BGJiWgDw1Vef8e23X5OXl0tcXDxPPDGJyMgoxo4dRfv2HV2Jl7shi8OHj+T77xfSpk1bXnvtLZYsWcyXX35KWtpRfHx86NWrH4899gQajabSc504kckjj4xm8eJfCQwMBGD37l2MGTOSJUt+x9u7dn+4CCGEEKIW0/tgC++ALbzDqW2KgroovfwwvqxdaHJTzrKgRENXL5QtrD2Whr1qVQ+UJEtuKIpC3sMPYNuxzaPn1cbF4//e3PNOmPr06cd7783Ebp/s+qN8+fJl9O7dF7VazYsvPovJ5MucOQtwOBzMnv0ub7zxKh9//NVZjztjxjQOHz7IrFlzyc3NYerUKa59hYWFTJjwGLfddhfPPvsiJ05k8sorL/LZZwt47LEnmTfvYx544F7mzfuYJk2a8tlnH7tee/DgAcaNe4jbbruTSZOeZefOHbzxxqsEBgaTmNgTgEWLvuGBBx5i9OgxfPvt18yY8QrduydiMlVc5nLlyuWo1WoSEjoTFBTMp58uIClpC+3aOd/U69f/zbRpL/LYY0+QkNCZRYu+ZsKE8Sxc+CP/+9+PLFgwjwkTniYmpgVz5rzHs89OZP78T88r9mvWrOS//52P3e5gy5ZNzJw5g+eee4mYmBbs3v0vL730HAkJnUhM7MXixYvcnuuDDz4hJCSUlStXcPPNg8v+/5bSpUt3SZSEEEIIUfOoVDhMkVhMkdCo96ntdjOanBRXL5Q2axeaE7udw/jyD6HJP+RaUCK/7yzMMYOqp/4XQZKlytSCjDcxsSczZkwjKWkLHTokUFhYyD//rGPEiFEoikKPHtdy7bW9qFcvDIDBg2/lyScfPesxCwsLWbFiGe+8M5vYWGcPzPDhI3nzzdcAMJtLuffekdx++12oVCoiI6O49tpe7Nq1E4CAgEDXT4PBWO7YS5Z8T0xMLKNHjwGgQYNGHDx4gC+++MSVLDVrFsNdd90LwMiRo1m48EsOHEghLi6+Ql2XLv2dTp06YzQaadmyNfXqhfHLLz+5kqUffviOvn37u3quxo0bj0ajJT8/jx9//I5bb72T3r37AfCf/0zgyy8/w2w+v97Em28eTIMGjQBnb9DEic+SmNgLgIiISL766nMOHNhPYmKvSs9lsZjp3bsfK1YscyVLK1b8wZgx486rDkIIIYQQNYLG4H5BiZLscsP41OY8rOEVFxOrySRZckOlUuH/3twqHYan0aqxX8IwPABvbx+6du3On3/+QYcOCaxa9ScREZG0aNESgFtuGcKyZb+xY8c2Dh06yJ49u3E4HGc9ZmrqIex2O82bx7i2tWzZyvU4ODiE66+/ia+//pzk5L0cPHiAffv2uk1mznTw4EFatWpdbltcXFt++GGR63l0dH3XYx8fZ2+SzWarcKysrBNs3bqJCROeBpz/Z9dccy0///wT48dPwGg0cvjwIQYNGux6jU6nY+zYxwA4fPgQI0a0dO0LCgpmzJizJ5KnCw+PdD1u0aIlBoOB+fPncOBACikp+zhyJJWrrrr6nOfq2/c6vv76c/LycklLO0peXm65YZVCCCGEELWV4hWENbob1uhu1V2ViybJUiVUKhV4eVXZ8dVaNY4zk6WL0Ldvf2bOnMH48RNYvnwpffpcB4DD4WD8+DEUFBTQu3dfunW7BqvVytNPP3lexz19oQat9tRqe5mZxxk5chixsS1JSOjMwIG3sHbtanbu3H7OY7pbnc9ud2C3n4rDmSv7nVmXk5YvX4bdbmf69KlMnz7VVc7hcLBy5Qr69bserbby5n22fWcmrHa7/azXsn7930ya9AT9+9/A1Vd35b77RvHGG6+e17maN48lOro+q1b9yeHDh+nR4xoMhitnOU4hhBBCiJpMXd0VEJemS5dulJQUs3nzRjZt+oe+ffsDcPDgfrZu3czMme9zzz0j6Nq1O1lZJwD3ycdJDRo0RKvVsmvXv65tycl7XI9XrlyBr68/06fP5NZb7yA+vj1paUdd+8/WM9agQUN27txRbtvOndto0KDhhV008Mcfv9Ox41UsWPC5699HH31BVFQ0v/zyE+Dspdq3L9n1GrvdztChA9m2bSvR0Q3Yt2+va19eXi433dSH9PQ0dDodxcXFrn2nX587S5Z8z403DmTChKe56aZBNGzYiKNHj7j2n+1c4Ex416xZxd9/r6Z37+suOBZCCCGEEKJqSLJUy+n1eq65piezZr1FkybNqF+/AQAmky9qtZo//viNY8fSWbFiGR9+OAcAi8VS6fF8fEz0738jM2fOYOfOHWzevJEPPzx1Q1k/P38yMo6xceMGjh49wmeffcRffy13HdNodPbG7du3t1zCAXDLLUNJTt7LnDnvcfjwIX755Se++24hgwcPvaBrTk9PY8eObQwaNJgmTZqV+3fzzYPZtOkfMjOPM2TIbfz++y/88stPHDmSysyZb+BwOIiNbcGQIbfxzTdflvXoHGLGjGlERESWDWNsxYoVy9i1aye7du3kgw9mn7U+fn7+7NiRRErKPvbvT+GVV14gK+uEKyZnOxc475m1fv06srKyXEP3hBBCCCFE9ZNkqQ7o2/c6kpP30rfvqV6JevXCePzxiXz++ScMG3Yrn376EY8+6lzK+vSeInfGj3+SNm3aMn78GKZOncL//d9trn29evXluuuu55lnnmLkyHvYvHkjY8c+xqFDB7BYLAQEBHDdddfz3HOT+OmnxeWOGx4ezvTpb7F+/Vruvfd2Pv54PmPHjufGGwde0PUuW/Y7AQEBdO+eWGHfDTcMRKvV8uuvP9OuXQf+85+nWLBgHvfeezvJyXuYPn0mBoOR6667gTvuuJs33niN+++/G4vFzEsvTQfg9tvvIiYmljFjRjFlytMMHz7yrPUZMWI0gYFBjB49nPHjx6DX6xk0aIgrzmc7Fzh7wBo1akxiYs+zDtkTQgghhBCepVLONiarDjpxooAzr9hqtZCVlU5wcAQ6XcV5NVVBq1VjuwxzlsT5q6kxdzgcDBkygGeeeYEOHSpfIaY62unFUqkgJMTX7ftNVA2JuedJzD1L4u15EnPPk5h7zslYn4t8jS1ENVq7djUbNvyNXm9wLXkuhBBCCCFqBkmWhKhGX375KYcPH+LFF6ehVsuoWCGEEEKImkSSJSGq0bvvzqnuKgghhBBCiErIV9lCCCGEEEII4YYkS6e5wta6ELWMtE8hhBBCCM+SZAlcc0Xsdls110SIylksZgA0Ghk9K4QQQgjhCfJXF6BWa9DpjBQW5qLRaFCpqj6HdDhU2O3SU+BJtTXmiqJgsZgpLMzBy8skC0EIIYQQQniIJEuASqXC3z+IrKxjZGdneOScarUah6Pm3fOnLqvtMffyMuHnF1Td1RBCCCGEuGJIslRGq9VRr140Npu1ys+lUkFgoA85OUVywzEPqe0x12i00qMkhBBCCOFhkiydRqVSodPpPXAeMBqN6HTWWvmHe20kMRdCCCGEEBdKvqoWQgghhBBCCDckWRJCCCGEEEIINyRZEkIIIYQQQgg3rrg5SypVddfgVB1qQl2uFBJzz5J4e57E3PMk5p4l8fY8ibnnScw953xjrFIUme4uhBBCCCGEEGeSYXhCCCGEEEII4YYkS0IIIYQQQgjhhiRLQgghhBBCCOGGJEtCCCGEEEII4YYkS0IIIYQQQgjhhiRLQgghhBBCCOGGJEtCCCGEEEII4YYkS0IIIYQQQgjhhiRLQgghhBBCCOGGJEtVxGw2M3nyZBISEujevTsffvhhpWX//fdfhg4dSnx8PP/3f//Hjh07PFjTuiEjI4Nx48Zx1VVX0aNHD6ZNm4bZbHZb9qGHHiI2NrbcvxUrVni4xrXf0qVLK8Rx3LhxbsuuXbuWm266ifj4eO655x5SU1M9XNva77vvvqsQ79jYWFq0aOG2/MCBAyuU3bt3r4drXXtZLBZuuukm1q9f79qWmprK8OHDadeuHTfccAOrV68+6zF++ukn+vTpQ3x8PGPGjCE7O7uqq11ruYv31q1buf3222nfvj3XXXcdCxcuPOsxEhISKrT5oqKiqq56reUu5i+//HKFGH722WeVHuOjjz6iR48etG/fnsmTJ1NSUuKJqtdaZ8Z84sSJbj/X77nnHrevz8vLq1C2c+fOnryEK5MiqsSLL76oDBgwQNmxY4fy+++/K+3bt1d++eWXCuWKioqUbt26Ka+++qqyb98+5aWXXlK6du2qFBUVVUOtayeHw6HceuutysiRI5W9e/cq//zzj9K3b1/l1VdfdVu+b9++yg8//KAcP37c9c9sNnu41rXf+++/r4wePbpcHPPy8iqUO3r0qNKuXTtl/vz5yt69e5VHH31UuemmmxSHw1ENta69SkpKysU6LS1N6du3rzJ16tQKZW02mxIXF6ds2LCh3GusVms11Lz2KS0tVcaMGaPExMQo69atUxTF+TkzYMAA5fHHH1f27dunzJ49W4mPj1eOHj3q9hhJSUlK27Ztle+//17ZtWuXcvfddyujRo3y5GXUGu7iffz4cSUhIUF54403lAMHDig//fSTEhcXp6xYscLtMY4dO6bExMQohw8fLtfm5XPGPXcxVxRFGT58uDJnzpxyMSwuLnZ7jF9//VXp2LGjsnz5ciUpKUm54YYblBdeeMFTl1DruIt5fn5+uVhv2bJFadOmjbJ06VK3x9i4caNy1VVXlXvNiRMnPHkZVyRtdSdrdVFxcTELFy5k3rx5tG7dmtatW5OcnMznn39O//79y5X9+eefMRgMTJgwAZVKxdNPP83KlSv59ddfGTx4cDVdQe2yf/9+tm7dypo1awgJCQFg3LhxvPbaazz11FPlylosFo4cOUJcXByhoaHVUd06IyUlhZiYmHPGceHChbRp04YRI0YAMG3aNLp168aGDRvkG7ELYDQaMRqNrudz5sxBURSeeOKJCmWPHDmC1Wqlbdu2GAwGT1az1tu3bx+PP/44iqKU275u3TpSU1P56quv8Pb2pmnTpvz9998sWrSIRx55pMJxPvvsM66//noGDRoEwPTp0+nZsyepqanUr1/fE5dSK1QW72XLlhESEsJ//vMfABo1asT69etZsmQJ1157bYXjpKSkEBoaKrE9D5XFHJxxvP/++8/r9+Mnn3zCvffeS8+ePQF44YUXuP/++3nyySfx8vK67PWuzSqLua+vL76+vq7nEydOpH///vTp08ftcfbv30/jxo3l7xcPk2F4VWD37t3YbDbat2/v2taxY0eSkpJwOBzlyiYlJdGxY0dUKhUAKpWKDh06sHXrVk9WuVYLDQ3lgw8+cCVKJxUWFlYou3//flQqlfxCvQxSUlJo1KjROcslJSWRkJDgeu7l5UXr1q2ljV+C3Nxc5s2bx+OPP45er6+wf9++fUREREiidBFOJvFff/11ue1JSUm0atUKb29v17aOHTtW2o7PbPcRERFERkaSlJRUJfWurSqL98nh1Gdy97kOzjbfuHHjKqljXVNZzAsLC8nIyDivz3W73c727dvLtfF27dphtVrZvXv35a5yrVdZzE/3999/888//7i+IHBn37595/X/Iy4v6VmqApmZmQQGBpb7IyYkJASz2Uxubi5BQUHlyjZr1qzc64ODg0lOTvZYfWs7Pz8/evTo4XrucDj47LPPuPrqqyuU3b9/PyaTiQkTJrBhwwbCw8N55JFHSExM9GSVaz1FUThw4ACrV69mzpw52O12+vfvz7hx4yr88Z6ZmUm9evXKbQsODubYsWOerHKd8uWXX1KvXr0KPdUnpaSkoNPpGD16NDt27KBx48ZMmDCBtm3berimtc+dd97pdvuFtuPjx49Luz8PlcU7Ojqa6Oho1/OsrCz+97//ue3FA2ebLykpYdiwYRw4cICWLVsyefJkSaDcqCzmKSkpqFQqZs+ezcqVKwkICOC+++7jlltuqVA2Pz8fs9lcro1rtVoCAgKkjbtRWcxPN3fuXG655RYiIiIqLZOSkoLNZmPIkCFkZGSQkJDApEmTKnzWiMtLepaqQElJSYU/GE8+t1gs51X2zHLi/M2YMYN///2X8ePHV9i3f/9+SktL6d69Ox988AGJiYk89NBDbN++vRpqWnulpaW52u7MmTN56qmnWLJkCdOnT69QVtr45aUoCgsXLuTuu++utMyBAwfIy8tj6NChzJ07l6ZNm3LvvfeSnp7uwZrWLRfajktLS6XdXyalpaU88sgjhISEcNttt7kts3//fvLy8njooYd4//33MRqNDB8+vNKeKFHRyZEXTZo0Ye7cuQwdOpRnn32WpUuXVihbWloKIG38MklNTWXdunUMGzbsrOX2799PYWEhkyZN4q233uL48eM8+OCD2O12D9X0yiQ9S1XAYDBU+LA4+fz0OQdnK3tmOXF+ZsyYwccff8xbb71FTExMhf0PP/www4YNw9/fH4AWLVqwc+dOvvnmG+Li4jxd3VorKiqK9evX4+/vj0qlomXLljgcDp588kkmTZqERqNxla2sjfv5+Xm62nXC9u3bycjI4MYbb6y0zEsvvURpaSkmkwmAKVOmsHnzZn744QcefPBBT1W1TjEYDOTm5pbbdrbP6sravczluDBFRUU8/PDDHDx4kC+++KLS+M2fPx+r1YqPjw8Ar7/+OomJiaxYsYIBAwZ4ssq11qBBg+jZsycBAQGA8/fjwYMH+fLLL+nbt2+5sieH+Eobvzx+++03WrZsWWGk0Zn+97//oVKpXJ8777zzDt27dycpKYkOHTp4oqpXJOlZqgJhYWHk5ORgs9lc2zIzMzEajRX+QAwLC+PEiRPltp04cUK6VC/CSy+9xIIFC5gxYwbXXXed2zJqtdqVKJ3UpEkTMjIyPFHFOiUgIMA11w6gadOmmM1m8vLyypWrrI3LBNWLs2rVKhISEiq049NptVpXogS4vi2Wdn7xLvSzWtr9pSssLOT+++8nOTmZjz/++KxzNfR6vStRAucf89HR0dLmL4BKpXIlSidV9rkREBCAwWAo18ZtNhu5ubnSxi/CqlWr6N279znLeXl5lfuCJjg4mICAAGnnVUySpSrQsmVLtFptuYm/mzZtIi4uDrW6fMjj4+PZsmWLa4UURVHYvHkz8fHxnqxyrTdr1iy++uor3nzzzbN+4z5x4kQmTZpUbtvu3btp0qRJVVexTlm1ahWdO3cud0+NXbt2ERAQUG5OHjjb+KZNm1zPS0pK+Pfff6WNX6Rt27ad8xvEYcOGMWvWLNdzh8PBnj17pJ1fgvj4eHbu3OkafgTOz/XK2vGZ7T49PZ309HRp9+fJ4XAwduxYjhw5wqeffkrz5s0rLasoCn369OG7775zbSsuLubQoUPS5i/A22+/zfDhw8ttq+z3o1qtJi4urlwb37p1K1qtttJ7vwn3FEVh+/bt5/xcLywspFOnTqxbt861LSMjg5ycHGnnVUySpSrg5eXFoEGDmDJlCtu2bWPZsmV8+OGHrpuMZWZmun7h9u/fn/z8fKZOncq+ffuYOnUqJSUlXH/99dV5CbVKSkoK77//Pg888AAdO3YkMzPT9Q/Kx7tXr14sWbKExYsXc+jQIWbNmsWmTZvOOv9DVNS+fXsMBgPPPPMM+/fv56+//mL69OmMHDkSu91OZmama3jG//3f/7F582bmzp1LcnIykyZNIjo6WpYNv0jJyckVhmqcGfNevXrx0Ucf8ccff7B//35efPFFCgoK3E7UFufnqquuIiIigkmTJpGcnMzcuXPZtm0bQ4YMAZzDjzIzM11zB+644w5++OEHFi5cyO7du5kwYQLXXnutrMR5nr799lvWr1/Pyy+/jJ+fn+sz/eRQyNPjrVKpuPbaa3n33XdZv349ycnJTJgwgfDwcFm85wL07NmTf/75h/nz53P48GG++OILFi9e7LrtQ2lpqev3KjgXLZg/fz7Lli1j27ZtTJkyhVtvvVWG4V2go0ePUlRU5HYI3ukxN5lMdOzYkWnTprFt2zZ27tzJ+PHj6dGjB7GxsZ6u9pWlmu7vVOcVFxcrEyZMUNq1a6d0795dWbBggWtfTEyMsmjRItfzpKQkZdCgQUpcXJwyZMgQZefOndVQ49przpw5SkxMjNt/ilIx3t98843Sr18/pU2bNsott9yibNiwobqqXqvt3btXGT58uNKuXTulW7duyrvvvqs4HA4lNTW1wo0O//zzT6Vfv35K27ZtlXvvvVc5fPhwNda8douLi1NWrlxZbtuZMXc4HMp///tf5dprr1XatGmj3HXXXcqePXuqo7q12pnt+ODBg8pdd92ltGnTRrnxxhuVNWvWuPatW7dOiYmJUVJTU13bFi1apCQmJirt2rVTxowZo2RnZ3u0/rXN6fEeMWKE28/0u+++W1GUivEuLS1Vpk2bpnTr1k2Jj49XRo8eraSlpVXbtdQWZ7bxpUuXKgMGDFDi4uKU/v37K7/99ptr36JFi1y/V0+aM2eO0qVLF6Vjx47KpEmTlNLSUo/VvbY6M+Zbt25VYmJiFLPZXKHsmTHPzc1VJk6cqHTu3Flp37698sQTTyi5ubkeqfeVTKUobu5KJoQQQgghhBBXOBmGJ4QQQgghhBBuSLIkhBBCCCGEEG5IsiSEEEIIIYQQbkiyJIQQQgghhBBuSLIkhBBCCCGEEG5IsiSEEEIIIYQQbkiyJIQQQgghhBBuSLIkhBBCCCGEEG5oq7sCQgghxPno1asXR48edbvvk08+oXPnzlVy3okTJwLw6quvVsnxhRBC1FySLAkhhKg1Jk+ezA033FBhu7+/fzXURgghRF0nyZIQQohaw9fXl9DQ0OquhhBCiCuEzFkSQghRJ/Tq1YuPPvqIAQMG0K5dO0aNGkVmZqZrf0pKCvfffz8dOnSgR48ezJo1C4fD4dr/ww8/0L9/f+Lj47n99tv5999/XfsKCwsZP3488fHxXHvttSxZssSj1yaEEKJ6SLIkhBCiznj33XcZOXIkX3/9NSUlJTzyyCMAZGdnc+edd1KvXj0WLlzI888/z2effcYnn3wCwKpVq3j66ae59957+fHHH2nTpg2jR4/GYrEAsHTpUlq3bs1PP/3E9ddfz+TJkykoKKi26xRCCOEZKkVRlOquhBBCCHEuvXr1IjMzE622/AjyyMhI/ve//9GrVy/69OnD5MmTAUhNTaVPnz4sWbKEdevW8eGHH7Js2TLX67/88kvee+89Vq9ezdixYzGZTK5FHCwWC2+99RYjRozgjTfe4ODBg3z11VcAFBQUkJCQwDfffEN8fLwHIyCEEMLTZM6SEEKIWmPcuHH069ev3LbTk6cOHTq4HtevX5+AgABSUlJISUmhdevW5cq2b9+ezMxM8vPzOXDgALfffrtrn16v56mnnip3rJN8fX0BMJvNl+/ChBBC1EiSLAkhhKg1goODadiwYaX7z+x1stvtqNVqDAZDhbIn5yvZ7fYKrzuTRqOpsE0GZgghRN0nc5aEEELUGbt373Y9PnToEAUFBcTGxtK4cWN27tyJ1Wp17d+yZQtBQUEEBATQsGHDcq+12+306tWLTZs2ebT+QgghahZJloQQQtQaBQUFZGZmVvhXXFwMOG9O+8cff7B7924mT55Mt27daNSoEQMGDMBisfDcc8+RkpLCsmXLePfdd7njjjtQqVQMGzaMH3/8ke+//55Dhw4xbdo0FEWhdevW1XzFQgghqpMMwxNCCFFrvPLKK7zyyisVtj/66KMA3HLLLbz55pukpaWRmJjICy+8AIDJZOKDDz5g6tSpDBo0iKCgIO69915Gjx4NQKdOnXj++ed57733yMzMpE2bNsyePRuj0ei5ixNCCFHjyGp4Qggh6oRevXoxduxYBg8eXN1VEUIIUUfIMDwhhBBCCCGEcEOSJSGEEEIIIYRwQ4bhCSGEEEIIIYQb0rMkhBBCCCGEEG5IsiSEEEIIIYQQbkiyJIQQQgghhBBuSLIkhBBCCCGEEG5IsiSEEEIIIYQQbkiyJIQQQgghhBBuSLIkhBBCCCGEEG5IsiSEEEIIIYQQbvw/Br5uIy9VfNMAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 1000x600 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_learning_curve(history)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "3.12.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}